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Abstract

We use the complex logarithm as a transformation for the visualization and navigation of highly complex satellite
and aerial imagery. The resulting depictions show details and context with greatly different scales in one seamless
image while avoiding local distortions. We motivate our approach by showing its relations to the ordinary per-
spective views and classical map projections. We discuss how to organize and process the huge amount of imagery
in realtime using modern graphics hardware with an extended clipmapping technique. Finally, we provide details
and experiences concerning the interpretation of and interaction with the resulting representations.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Methodology and Techniques]: Interaction
Techniques; H.5.2 [Information Interfaces and Presentation]: User Interfaces;

1. Introduction

Modern satellite and computer technologies provide data
with scales ranging from the whole Earth to very small
objects located on it. By using internet-based services like
Google Maps and Microsoft’s Virtual Earth, everybody can
explore the resulting very complex datasets.

With modern graphics hardware and broad network con-
nections, it is possible to interactively render perspective
views of the globe on consumer hardware. This enables users
to not only look at the Earth from straight above, but to tilt
the camera, gaining the advantage of the familiar subjective
perspective: Parts of the world closer to the virtual camera, in
the foreground, are depicted larger than objects in the back-
ground of the resulting images. This allows for inspecting
details of the Earth without losing orientation in their wider
context. However, the range of scales depicted in one im-
age is limited by the fact that the representation is getting
compressed towards the horizon. Another limitation of the
classical perspective is the fact that the information behind
the camera can not be seen at all.

We propose a new perspective for the exploration of the
Earth: Our distortion oriented approach of complex loga-
rithmic views shows details and context with greatly dif-
ferently sized objects in one single image. The mapping
function we employ can represent single houses seamlessly
connected to the continents they are standing on. Similar

to a panoramic perspective, this approach simultaneously
presents the whole world showing all directions around
the viewpoint. An additional advantage is the avoidance of
anisotropic compression, preserving the shapes of the image
details, which is especially important for the identification
of geographic objects. By utilizing an extended clipmapping
technique to organize and process the huge amount of nec-
essary data, we are able to render our representations in real-
time, allowing the user to interactively explore and navigate
within very complex datasets of satellite and aerial imagery.

The paper is organized as follows: In Section 2 we dis-
cuss distortion oriented detail-in-context methods and their
properties. In Section 3 we firstly discuss the general princi-
ple and properties of the complex logarithm. We then derive
a mathematical connection between the intuitive concept of
perspective and the complex logarithm, and show how to ap-
ply the transformation to satellite imagery. Then we present
the implementation aspects of the data organization and the
actual rendering in Section 4, and describe the resulting rep-
resentations in Section 5. Finally, in Section 6 we discuss
our results, and give an outlook to future work.

2. Background

The intention of showing small details on the Earth’s surface
while preserving the overview of the whole world or its parts
is a typical detail-in-context problem [KR96, Kea98]. The
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utilization of zooming and panning, or different windows
for different detail levels, puts a significant mental strain on
the user because of the necessary switch between the views.
Rather, nonlinear magnification techniques help in the effort
to show both, detail and context, in one single image.

As a side effect, these techniques, which map points in a
space to other points in another space, introduce distortion
that changes several properties of the depicted information.
If we look at the infinitesimal elements from which the infor-
mation is pieced together, the properties that are of interest to
us are size, orientation, and connectivity between neighbors
preceding the mapping.

We follow [Nee97], which describes mappings as locally
linear, meaning that small circles are mapped to small el-
lipses. The alteration of size of the different parts of the
information is the most critical property for their recogniz-
ability: If the scaling operations are not equal for all direc-
tions, then so-called anisotropic compression is introduced.
This compression leads to degenerated shapes, which, for
large differences in scaling factors, results in almost lin-
ear structures that are not recognizable anymore. Conformal
mappings, on the other hand, are mappings that scale the
pieces of information equally in all directions. This means
that small circles are mapped to other small circles without
causing distortions to local angles or introducing anisotropic
compression.

A change of orientation of the pieces of information itself
leaves intact what we perceive as the object’s shape. How-
ever, it is more difficult to recognize the shape of the object
after a rotation, especially if there exists a clear notion of
the object’s orientation—for example, the shape of the Eu-
ropean continent is often not recognized if it is presented
upside down.

The property of connectivity describes whether a mapping
maps two infinitesimally close points to distinct positions,
introducing a cut between these points. If this cut separates
objects belonging together, a user has to mentally reconnect
them, which increases the mental strain. However, given the
case that strong magnifications are required, these cuts are
preferable to approaches in which parts of the information
are compressed to such an extent that they are no longer rec-
ognizable. Especially for geographic data, cuts are common
when generating flat cartographic map projections.

Several algorithms were developed that allow displaying
complex information by magnifying one or several parts
of interest while simultaneously shrinking the surrounding
space: Spence [SA99] was the first to show details in context
on a computer display in one seamless visualization by using
bifocal views, partially showing non-uniformly scaled con-
tent. Other approaches are the Perspective Wall [MRC91]
and the Document Lens [RM93] that are using perspective
projection. Another class of mapping functions are Fish-
eye views [KR97], which generate symmetrical distortions
around the center of interest. Furthermore, there exist many

(a) Undistorted regular grid (b) Perspective projection

(c) Fisheye view (d) Complex logarithmic view

Figure 1: Examples for the distortion of a regular grid (a)
using nonlinear magnification techniques (b,c,d)

other techniques, such as [KR96, Car99, RC94]. All of the
mentioned detail-in-context techniques anisotropically com-
press parts of the information, where the shape of objects
which are not in the center of interest are often unrecogniz-
able after the transformation.

The perfect mapping that keeps all properties intact while
scaling parts of a plane differently does not exist. Thus,
choosing a mapping function for a certain problem always
has to be a tradeoff between the different kinds of distortion
it introduces. We believe that, for the exploration of complex
satellite and aerial imagery over several orders of magnitude,
keeping shapes intact is more important than keeping rota-
tions constant and even justifies giving up some of the con-
nections between points in the plane.

In [BBD06] we described a similar approach of complex
logarithmic views for visualizing flat vector data in the field
of information visualization, which also possesses parallels
to the astronomic maps in [GJS∗05]. The new contribution
of this paper is founded by the differences of the method
and its implementation for the application domain of satel-
lite and aerial imagery. We present a mathematical connec-
tion to the intuitive concept of perspective to motivate and
illustrate our method, and discuss how different cartographic
map projections influence the resulting representations. We
address relevant implementation aspects to organize and pro-
cess the required massive amount of data, using an extended
clipmapping approach.



3. Method

Essentially, our method is a mapping between points in R2

using a complex logarithm. In this section, after describing
this complex function and its properties, we motivate our ap-
proach by deriving a connection to the ordinary central point
perspective. Then, we discuss the relationship to Mercator
projections and other cartographic map projections.

3.1. Complex Logarithm

The complex logarithm [Nee97] is a function that maps
complex numbers onto other complex numbers. With such
a complex function it is possible to describe a mapping of
points within the two-dimensional plane. The complex loga-
rithm belongs to the class of analytical functions, and thus
possesses certain desirable properties: The derivative of a
complex function is itself complex. Similar to the derivative
of a real-valued function, the magnitude of the derivative in-
dicates a scaling factor for a certain point in the geometrical
interpretation. This scaling factor is for that point equal for
all directions. This means that the parts of the mapped plane
are not anisotropically compressed.

The complex logarithm log(z) maps every complex num-
ber z to another complex number with the logarithm of the
original number’s magnitude as its real part. The imaginary
part of the transformed number is the angle of the original
number in radians:

log(z) = ln(|z|)+ iarg(z)

Through the resulting transformation of the corresponding
plane, all the points on concentric circles around the ori-
gin are mapped onto parallels with identical real value. The
transformation scales parts of the corresponding plane de-
pending on their distance from the origin. In the transformed
image, the scaling factor increases or decreases exponen-
tially by moving along the real axis.

Points on straight lines starting from the origin in the orig-
inal data are mapped to parallels with identical imaginary
value. The argument function is responsible for the fact that
certain points connected in the original data are disconnected
after the transformation: Two points with equal distance and
angles of +π and an angle slightly bigger than −π are very
close before, but on opposite sides of the defined area after
the mapping. This introduces a cut along the line of points
with |arg(z)| = π. Typically, the complex logarithm would
yield an image with the highest magnification on the left,
and the lowest magnification on the right side. However, the
chosen orientation of our representations is similar to the
perspective view we are used to [Mor03], since objects far
away from the center of interest are mapped more to the top
of the image. The resulting mapping is further illustrated in
Figure 2.
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Figure 2: The complex logarithm maps concentric circles to
horizontals, and directions to verticals.

3.2. From Perspective to Complex Logarithmic Views

In this section we motivate our approach by showing its
mathematical and intuitive connection to the familiar per-
spective projection; both map a two-dimensional space,
which the surface of the Earth basically is, in a way that
differently scales parts of the image. Objects close to the
midpoint of the complex logarithm, or to the viewpoint of
the perspective projection respectively, are enlarged, while
farther parts are depicted much smaller.

To show the mathematical connection between the ordi-
nary perspective view and the complex logarithmic view, we
start with the former, which maps points by projecting them
along straight rays on a viewing plane, as illustrated in Fig-
ure 3. An example for a perspective view of the Metropoli-
tan Museum in New York, can be seen in Figure 4(a). A first
shortcoming of this form of perspective is, that it only shows
parts of the world in the direction in which the camera is
pointed. The information about what is beside and behind
the camera is completely lost.
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Figure 3: Side view of a perspective projection

In contrast, a panoramic perspective uses an unfolded
cylinder as viewing plane, and presents information in all
directions around the camera simultaneously. The result of
this form of panoramic perspective view is shown in Fig-
ure 4(b). Like in the ordinary perspective view, every vertical
still is the image of a line from the viewpoint outwards, but
information in every direction is represented on the cylinder.
The horizontals no longer correspond to lines parallel to the
viewing plane, but rather to circles around the viewpoint.

Although the complete plane is depicted, the panoramic
perspective view still suffers from the second shortcom-
ing of perspective projection, namely the introduction of
anisotropic compression towards the horizon. If we look at



(a) Ordinary perspective view (b) Panoramic perspective view

Figure 4: Perspective views of the Metropolitan Museum in New York: The information beside and behind the virtual camera is
lost in the ordinary perspective view, whereas it is preserved in the panoramic perspective view. In both perspective mappings,
the information far away from the viewpoint is compressed into to a singular line, the horizon.

the magnification factors for small pieces of the depicted
plane in vertical and horizontal direction, we can show that
the compression approaches infinity towards the horizon:

dx = d · f
z

dy = d · f ·h
z2

c =
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dx

=
z
h

=
f
y

Here, dx and dy are the size of the image of an infinitesimal
circle with diameter d in horizontal and in vertical direction,
respectively, and c is the compression factor. Larger values
of c mean that the relative size of the depicted circle in the
vertical direction gets smaller. The compression obviously
gets arbitrarily big for large distances from the viewpoint
z, squashing the information which is very distant from the
viewpoint into a singular line, the horizon.

The connection to our complex logarithmic view is obvi-
ous, if we consider it as a panoramic perspective view, which
simply strives to avoid any anisotropic compression towards
the horizon. Figuratively speaking, it is necessary to stretch
or squash every piece of perspectively mapped information
just enough to compensate the compression introduced in
the mapping. This means, we have to vertically scale every
piece by the compression factor. This pushes every row in
the depiction to a new position in the image, which we can
calculate by integrating the magnification factors:

ynew(z) =
∫

f
z

dz = f · ln(z)+C

The projection cylinder has a radius of f , which results in
a projection width of 2π f . The height of the projection is
potentially infinite.

Summarizing, this stretched panoramic perspective view,
which compensates anisotropic compression towards the
horizon, maps points in R2 in a way that the horizontal po-
sition depends on the angle to the viewpoint, and the verti-
cal position depends on the logarithm of the distance to the

viewpoint. Mathematically, this mapping is the complex log-
arithm from the previous section. The final result of a com-
plex logarithmic view showing the Metropolitan Museum is
given in Figure 9 at the end of the paper. The similarities of
the lower part, and the differences of the upper part, between
this image and the panoramic perspective are evident.

In the final result, the upper part of the image shows
the whole Earth. For this result, we have to take its spher-
ical shape into account. The complex logarithm operates on
points in a two-dimensional plane, therefore we need a map-
ping from the sphere to the plane. These transformations are
offered by cartographic map projections, which are the sub-
ject of the next section.

3.3. Cartographic Map Projections

After having analyzed different map projections, it became
apparent to us, that there exists a strong relationship between
complex logarithmic views and the well-known and widely
used Mercator projection. Using this projection in its oblique
form, is in its core a complex logarithmic view. We will
therefore firstly illustrate this relationship, before general-
izing to other map projections and their properties.

Relationship to the Mercator Projection

The Mercator projection [Sny87] maps the Earth’s geo-
graphic coordinate system to R2. It belongs to the group
of cylindrical map projections. Beside the standard Merca-
tor projection, where the axis of the projection cylinder runs
through the poles, there also exist more general types: First,
the transverse type, where the cylinder’s axis is orthogonal
to the axis of the standard type, and second, the oblique type
with an arbitrarily angled axis, while for both types, the axis
still passes the Earth’s center.

The standard Mercator projection has the following prop-
erties: The scale is true only along the Equator, but rea-
sonably correct within 15◦ of the Equator. The areas and



shapes of large regions are distorted, whereby the distortion
increases away from the Equator, and is extreme in polar
regions. The projection of the poles itself would require a
cylinder of infinite height. Therefore, the cylinder is cut off
for large latitude values. Usually, this latitude threshold is
between 70◦ and 85◦ north or south, depending on the in-
tended application. Mercator projections are conformal map-
pings in which angles and shapes within any small area are
essentially true, not introducing anisotropic compression.

In our approach we aim for depicting very small details of
the Earth’s surface within the context of the overall world,
while avoiding local distortion in a way that the shapes of
the geographical objects, such as rivers, islands, or conti-
nents, remain recognizable for the user. For the special case
of presenting a detail view of the north or south pole in the
context of the overall world, the standard Mercator projec-
tion offers exactly such a mapping. When applying the cut
of the projection cylinder at high latitude values above 85◦,
then the poles are extremely magnified at the top and bottom
of the resulting image, and the middle of the image presents
the rest of the world. This characteristic of extreme magnifi-
cation at top and bottom of the Mercator projection, which is
usually identified as its main drawback, can be exploited to
generate detail-in-context representations of any point on the
Earth’s surface by utilizing oblique Mercator projections.

Given aerial imagery with sufficient resolution, a detail-
in-context representation of a certain point of interest on the
Earth’s surface is obtained by using an oblique Mercator pro-
jection, for which the axis of the projection cylinder runs
through this point of interest. To actually generate this rep-
resentation, the corresponding latitude and longitude values
for each point in an image can be computed by inverting
this oblique Mercator projection. Then these resulting lati-
tude and longitude values are used to look up the information
in the imagery at an appropriate level of detail by applying
the map projection used for the imagery.

To now generalize our method, it is important to under-
stand that the essence of the Mercator projection is a loga-
rithmic transformation. To be more precise, it is a concate-
nation of the Stereographic map projection and a complex
logarithm [PL74]. In the remainder of this section, we dis-
cuss map projections that are useful for our representations.

Azimuthal Map Projections

While in general arbitrary map projections could be used, we
considered the class of azimuthal map projections [Sny87],
which are using a plane as projection surface, as especially
applicable. The property qualifying them for complex log-
arithmic views is that they present true directions, but not
necessarily true distances, from a chosen center point to any
other point. The projections of points with equal direction
yield vertical lines in the complex logarithmic view, whereas
points of equal distance yield horizontal lines.

Below we discuss the results of complex logarithmic

views for the following azimuthal map projections: The
aforementioned Stereographic, the Azimuthal Equidistant,
and the Orthographic projection. These different map pro-
jections and their resulting complex logarithmic views are
presented in Figure 5.

The Stereographic projection is a true perspective, with its
point of projection being located on the surface of the sphere,
opposite the point of tangency of the projection plane. It is
the only true perspective or azimuthal projection that is con-
formal. The concatenation of the Stereographic projection
and the complex logarithm is therefore a conformal mapping
itself, and equivalent to the Mercator projection. Due to this
relation, the resulting representation needs a potentially infi-
nite space at the top. Since we just want to enlarge the point
in the center of interest, we simply cut off the representation
close to the other pole, similar to the Mercator projection.

The Azimuthal Equidistant projection is not a true per-
spective, nor is it conformal. It is constructed by plotting
a given point, with a given angle to the center point, at a
distance from that center proportional to its distance on the
sphere. This projection is relevant in practice because its
complex logarithmic view presents the whole world with-
out a necessary cut at the top. Rather, the point opposite to
the center of interest is mapped to a line at the top.

The Orthographic projection is a true perspective that
uses a point of projection at infinite distance. It is not con-
formal either. In contrast to the other two projections, it does
not represent the whole Earth in one image, but rather just
the half that is visible from the point of projection. Hence,
complex logarithmic views using the Orthographic projec-
tion reintroduce the concept of a horizon. In this respect, it
is a combination of the familiar appearance of the Earth as a
globe, and our detail-in-context approach.

4. Implementation

In this paper, we show how to adapt complex logarithmic
views for the realtime exploration of the Earth’s surface. For
our prototypical implementation, we used multi-resolution
tiled imagery from Microsoft’s Virtual Earth, which we
downloaded and cached from the Internet in realtime. The
available satellite and aerial imagery is enormously com-
plex, down from continents to single houses, which poses
different problems for the organization and rendering of this
massive amount of data. Due to the similarity of our map-
pings to perspective projections and terrain rendering, we
can apply ideas from the research on large texture render-
ing to our problem. Hence, we adapted the frequently used
clipmapping technique [TMJ98, STH∗07] to our approach.

The purpose of clipmapping is to render perspective views
of geometry with very large textures. This is necessary, be-
cause using an ordinary mipmap is not feasible due to mem-
ory constraints. The clipmapping method benefits from the
fact that, in perspective views, not the whole mipmap is



(a) Stereographic (b) Equidistant (c) Orthographic

Figure 5: Complex logarithmic views (bottom) of azimuthal
map projections (top, middle). The stereographic mapping is
transformed to an oblique Mercator projection with the cen-
ter of interest as one of the poles. It thus necessitates cutting
off the second pole on top of the representation. Contrarily,
the Equidistant projection is mapped to finite space, while
still showing the whole Earth. The Orthographic projection
only shows half of the world, introducing a virtual horizon.

needed with an equally high resolution at the same time.
Rather, it is sufficient to use only a small subset of the data
at any given moment. Depending on the viewpoint, the res-
olution of the necessary images decreases with increasing
distance from that viewpoint. This means, that only nearby
objects require high resolution texturing, while objects far
away from the viewpoint are rendered with low resolution
textures. Consequently, a clipmap is an updatable represen-
tation of a partial mipmap, in which each level of the im-
agery has been clipped to a specific maximum size. This re-
sults in an obelisk shape for the stack of images as opposed
to the pyramid shape of mipmaps. While moving through the
rendition, it is then only necessary to ensure that always the
appropriate section of the mipmap for the current viewpoint
is represented in the clipmap stack.

We extended the clipmapping technique with regard to our
application: We took into account, that the data is sampled
in tiles of a certain size, and that it does not cover the com-
plete Earth, for each of the detail levels—for example, the
resolution of the data for large cities is usually higher than
for rural areas or the ocean, especially. Therefore, we intro-
duced an additional index structure to enable a more flexi-
ble arrangement of and access to the image tiles, reducing
memory consumption. Additionally, our implementation is
realized by only using OpenGL, without the need of special
hardware with clipmapping support.

Our rendering system consists of two different parts: The
first part is responsible for loading and caching the required
image tiles in the memory of the graphics hardware, and
managing the index structure to allow the fast and consistent
access to the clipmap stack. The second part performs the
actual rendering by employing a fragment shader program,
which allows for using arbitrary mappings without any ge-
ometry operations. The fragment shader calculates for each
pixel the corresponding detail level in the imagery by invert-
ing the current mapping, and then computes the pixel’s color
value by texture interpolation within the determined level.
These two parts can be run concurrently, as long as a consis-
tent state of the index structure is guaranteed while the actual
rendering is performed.

4.1. Data Organization

Satellite and aerial imagery exists for different detail levels,
where each of these levels is stored as a potentially incom-
plete set of small tiles. Like in clipmapping, for rendering
a complex logarithmic view for a specific center of interest,
we need only a small fraction of these tiles: Tiles with high
resolution near the center of interest, and tiles with low res-
olution for parts that are far away. Therefore, we only need
roughly the same small number of tiles for every detail level.
Figure 6 shows a typical footprint of image tiles from dif-
ferent levels necessary for a certain viewpoint by an ortho-
graphic and a complex logarithmic view.

As an extension of the clipmapping approach, in order to
allow a more flexible organization of the detail levels, we
realized the clipmap stack using a three-dimensional index
structure, as illustrated in Figure 7. Each two-dimensional
layer in that structure contains a detail level, whereby the
layers are sorted vertically from low resolution at the top
to high resolution at the bottom. Each layer itself contains
references to image tiles that are linearly organized in the
memory of the graphics hardware. The neighborship of the
references in one layer is identical to the original neighbor-
ship of the image tiles in the dataset. If an entry of a layer
does not possess a valid image tile, then it refers to the cor-
responding entry in a higher layer that possesses a valid im-
age tile. This enables quick access to the data with the best
available resolution in the pixel shader, in case the optimal
resolution is not avaliable for a geographic location.



Figure 6: Zones of tiles with different size and resolution
around the center of interest in the orthographic (left) and
complex logarithmic view (right)—greener means higher
resolution. In the transformed view, the concentric zones are
mapped to horizontal stripes with almost equal size.

clipmap stack detail levels image tiles

...

...

Figure 7: We use a clipmap with an index structure (left) to
organize the imagery in the graphics hardware. The index
structure contains one layer (middle) for each detail level
in the clipmap. These layers contain references to the image
tiles, which are arbitrarily arranged in the memory (right).

When the center of interest is moved, we update the ref-
erences in the three-dimensional index structure, and load
only these image tiles that are not yet existent in the graphics
memory. The loading is performed in the order of tile impor-
tance, loading upper levels, which are offering the context
information, first.

The actual size of the index structure, and thereby the
number of image tiles needed in memory, depends on the
number of detail levels, the size of the image tiles in each
detail level, and the size of the resulting representation. For
our representations we used datasets with up to 25 detail lev-
els and up to 256 tiles per layer, with a size of 256x256
pixels per tile. Usually, the graphics memory offers more
space than needed for storing the entire clipmap stack. Our
technique allows to cache image tiles that have already been
needed, or are presumably needed in the future, outside of
the scope of the index structure.

The advantages of our approach, which realizes clipmap-
ping via an index structure, is the more flexible updating and
caching of the individual tiles, as well as the reduced mem-
ory consumption for the entire clipmap stack. The latter one
is due to the fact that missing tiles, and tiles that are not in
the detail levels, still occupy memory within the originally
clipmap levels, while with our technique they do not.

4.2. Rendering

After having organized our data with the aforementioned ex-
tended clipmapping approach, we can actually render our
complex logarithmic views. To achieve maximum flexibility,
we implement the rendering algorithm for the programmable
fragment shader on the graphics hardware. This allows us to
use a variety of mappings without considering any compli-
cated geometry operations, like mesh deformation and re-
finement or the implementation of cuts. We only draw one
large rectangle that covers the entire window, and use the
fragment shader to calculate the image by inverting the in-
tended mapping, determining the optimal detail level, and
sampling the corresponding image tiles for each pixel.

The detailed algorithm for computing the color value of a
pixel is as follows:

1. We determine the location of the pixel as coordinates in
our imagery of the Earth. For this step, we invert the con-
catenated mappings as shown in Figure 8: After normal-
izing the screen coordinates, we apply the inverse of the
complex logarithm, the complex exponential function:

ez = ex+iy = excos(y)+ iexsin(y)

We then apply the inverted azimuthal mapping function,
to yield the latitude and longitude values. Lastly, we ap-
ply the mapping function of the image data, which is, for
the tiles we used, the standard Mercator projection.

2. We determine the detail level of the imagery that has
the appropriate resolution by calculating the magnifica-
tion factors between the original data and the pixel on the
screen. This can be done analytically by differentiating
the mappings from the beginning to the end. For exam-
ple, for the complex exponential function, the derivative
is again the exponential function. This derivative is com-
plex, and contains the magnification factor in the magni-
tude of the resulting number.

3. We determine the tile for the sampling of the pixel by
using the coordinates from Step 1, which describe the lo-
cation of our pixel in the imagery, and the detail level
from Step 2. If the tile is not loaded, we use the lower
resolution tile the index structure points to.

4. We sample the pixel by using the normalized coordinates
from Step 1 for the image tile from Step 3.

To prevent aliasing artifacts, we implemented trilinear in-
terpolation by determining the two detail levels that are di-
rectly above and below the optimal resolution in Step 2.
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Figure 8: Our complex logarithmic views are a concatena-
tion of an azimuthal map projection with a complex loga-
rithm. To sample the pixels of the complex logarithmic view,
we have to invert the complex logarithm and the azimuthal
projection, and apply the projection of the imagery.

5. Results and Interaction

As a result, in Figure 9 we present a complex logarithmic
view of the Metropolitan Museum in New York. It extremely
enlarges the Museum while the context of the whole Earth
is preserved. Objects that are in the same direction from the
center of interest are mapped to vertical lines, resembling
the panoramic perspective. Objects with the same distance
to the center are mapped to horizontal lines. The scale of
the image varies exponentially from bottom to top. Despite
the extremely different scales, small pieces of the world are
left nearly undistorted, keeping their familiar shape, rang-
ing from nearby houses, over regional objects like rivers, to
coastal features, and even continents.

Due to the facts, that our representations present a view of
the whole world, and modern graphics hardware allows for
rendering the images at high resolutions in realtime, we can
use the representations to intuitively explore and navigate on
the Earth’s surface. By dragging a point in the image with the
mouse to the bottom, we can fluently move to any object.
Since input devices only possess finite accuracy, it requires
more than one mouse click, of course. But by adjusting the
target while moving it closer to the bottom, we are able to
correct inaccuracies during the interaction. Zooming and ro-
tating in the original world coordinate system is changed
to a one-dimensional translation in the complex logarithmic
views: zooming translates the view vertically, while rotating
translates it horizontally.

In Figure 10 we show a series of stills from an interaction
operation. Starting from a point in the Mediterranean next
to Crete, a user navigates towards the Metropolitan Museum
in New York. Since New York is located in North Amer-
ica, the user pulls this continent, which is clearly visible in
the upper part of the first frame, downwards. As a result,
the virtual camera follows a great circle towards the cho-
sen target. In the second frame, after pulling North Amer-
ica only a few pixels closer, the camera is already close to
the French Atlantic coast. In the fourth frame, the user gets
close to North America and is able to locate the character-
istic shape of Long Island. Flying over Long Island, Man-
hattan becomes visible in the seventh frame. After locating
Central Park in the ninth frame, the user reaches the goal in
the tenth frame.

Figure 9: Complex logarithmic view of the Metropolitan
Museum in New York, in the context of the whole Earth. Up
to the middle, the image is covered by the American conti-
nent, and the upper part shows the other continents.



Figure 10: An example of an interaction sequence, moving from Crete to New York, by dragging it downwards. The starting
point is marked green, the end point red. A detailed description is given in Section 5.

6. Conclusion

We presented a detail-in-context method for very complex
satellite and aerial imagery employing complex logarithmic
views. We described an extended clipmapping approach for
the realtime rendering of such representations. This enables
the use of our method for the interactive exploration of the
Earth’s surface from its smallest details to the whole planet.

During informal experiments with the interactive visual-
ization, we made a couple of interesting experiences: After
the users have familiarized themselves with our representa-
tions, within a couple of minutes most of them were able
to understand and navigate within the complex logarithmic
views. One limitation of our approach is that it does not uti-
lize conventional map orientation, with North towards the

top of the map. Since many users seem to strongly depend
on these directional relations, some of them tended to get lost
in our visualizations. Others were able to interact effectively,
once they understood the similarities to a perspective projec-
tion. The fast movement in the bottom part of the visualiza-
tion during interaction was seldom reported as a problem,
since the users’ attention was focused on the mouse pointer.

Successful navigation within complex logarithmic views
depends on the familiarity with the data. The data needs to
contain small, recognizable details throughout all scales, for
users to be able to locate their intended targets. It is easy
to find coastal cities, since the shapes of the neighboring
seashore are typical, or single houses in a city, since we
can follow roads and other prominent features. In contrast,



finding small cities in the middle of a country mostly cov-
ered with forest is hard, since relative directions from other
features are different from the directions on ordinary maps.
However, annotating the imagery with secondary map infor-
mation, like labels and symbols, alleviates this problem. The
distortion of linear features, like roads and rivers, seems to
pose no problem, as long as the aerial data contains enough
local shape information. Then, users tend to follow such fea-
tures in order to reach targets as in the real world. Therefore,
our approach seems to be promising for car navigation sys-
tems. The mapping makes it also easy to estimate the re-
lations between distances to objects in different directions:
The object higher in the visualization from a viewpoint is
farther away in the real world.

Since every order of magnitude is mapped to a stripe with
equal width, the aspect ratio of the resulting depictions is
fixed by the ratio between the largest and the smallest ob-
jects depicted on the top and the bottom of the display. Our
examples of single houses in the context of the whole world
are more than twice as high as wide. This is a limitation on
today’s ordinary computer displays. However, even on these
displays, the aspect ratio would be perfect for an accompa-
nying navigational bar next to an ordinary square map. High
resolution displays are very beneficial for the success of our
method. They allow to represent small details with a resolu-
tion that still allows their recognition, thereby clearly show-
ing the advantage of our method.

In future work, we plan to extend our approach to three-
dimensional geographical data; mountain ranges and build-
ings could support the perceived similarities to ordinary per-
spective views. We also want to employ complex logarithmic
views for car navigation systems, and to explore the possibil-
ities of using conformal mappings for route visualizations.
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