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Abstract
Algebraic Point Set Surfaces (APSS) define a smooth surface from a set of points using local moving least-squares
(MLS) fitting of algebraic spheres. In this paper we first revisit the spherical fitting problem and provide a new,
more generic solution that includes intuitive parameters for curvature control of the fitted spheres. As a second
contribution we present a novel real-time rendering system of such surfaces using a dynamic up-sampling strategy
combined with a conventional splatting algorithm for high quality rendering. Our approach also includes a new
view dependent geometric error tailored to efficient and adaptive up-sampling of the surface. One of the key
features of our system is its high degree of flexibility that enables us to achieve high performance even for highly
dynamic data or complex models by exploiting temporal coherence at the primitive level. We also address the issue
of efficient spatial search data structures with respect to construction, access and GPU friendliness. Finally, we
present an efficient parallel GPU implementation of the algorithms and search structures.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve and surface repre-
sentations I.3.3 [Computer Graphics]: Viewing algorithms

1. Introduction

Point Set Surfaces (PSS) are a very attractive meshless sur-
face representation defined by local moving least-squares
(MLS) approximations of the data [Lev03,ABCO∗03]. Since
PSS embed a (locally controllable) low pass filter in the sur-
face definition, they are de facto very well suited for point
cloud denoising as well as for surface reconstruction. PSS
have been successfully used in a wide range of applica-
tions [GP07], making them one of the most flexible surface
representations for point sets.

Although the initial Levin’s definition [Lev03] is still
relatively expensive to compute, significant progress has
been made to design simpler and more efficient definitions
[AK04, AA04]. Such simple definitions can be interpreted
as either a product space of two smooth vector fields or as
purely planar approximations. More recently, Guennebaud
and Gross [GG07] proposed an Algebraic Point Set Surface
(APSS) framework to locally approximate the data using al-
gebraic spheres. It turns out that this strategy exhibits high
tolerance with respect to low sampling densities while re-
taining a tight approximation of the surface.

As a first major contribution of this paper we revisit the

Figure 1: APSS defined from 1.2M points rendered at 50/100
fps using our dynamic upsampling algorithm.

APSS problem and present a new, explicit and more generic
solution that combines simplicity of formulation with effi-
ciency of computation (section 3). A central feature of our
new approach is its improved control of the curvature of the
fitted sphere by means of one intuitive parameter. Not only
does it allow the sphere fit to continuously degenerate to a
plane fit, but it also permits users to invert or amplify sur-
face microstructures.

Efficient high quality rendering of PSS is a non-trivial

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



G. Guennebaud, M. Germann & M. Gross / Dynamic Sampling and Rendering of APSS

task. An obvious option is to use raycasting [AA03]. While
interactive rates could be reported [WS05], such perfor-
mance requires optimized point clouds and the construction
of an expensive and spatially accurate data structure in a pre-
process limiting the approach to static data.

As a second major contribution of this paper we make
rendering likewise efficient for dynamically changing point
sets. To this end, we designed a fast sampling and rendering
algorithm based on forward warping and integrated APSS
into this framework. Compared to the potentially superior
image quality of raycasting, our algorithm avoids redundant
evaluations and allows for quality/performance by adjusting
the target density. The idea is to upsample the point cloud in
a view dependent fashion and to render it using a standard
splatting algorithm, e.g. [BHZK05]. A key feature of our al-
gorithm is an adaptive upsampling scheme based on a new
view dependent geometric error. In order to keep both the
memory consumption and the number of generated splats at
each frame as low as possible, we designed our algorithm
to operate at the primitive level. Temporal coherence is ac-
counted for by a low level cache mechanism and the inher-
ent parallelism of our algorithm makes implementations on
massive multi-core processors very efficient. Our rendering
system is presented in section 4.

The most expensive parts of our rendering algorithm are
the neighbor queries needed to evaluate the APSS during
the projection of the splats onto the surface. In section 5
we present and compare several data structures with respect
to our specific requirements including complexity of con-
struction and update for dynamic point clouds as well as ef-
ficiency of access for static arrangements.

Our results in section 6 demonstrate that the algorithm is
able to handle dynamic point clouds of up to 100k points in
real time including the reconstruction of the data structure
at each frame. In cases of local changes of the geometry our
approach can even handle a few millions of samples without
the need of caches or additional high level data structures.

2. Related Work

Point Set Surfaces
Point Set Surface (PSS) [ABCO∗03] were initially defined
as the set of stationary points of the Levin’s moving least
squares projection operator [Lev03]. This is an iterative pro-
cedure where at each step the point is projected onto a
polynomial approximation of the data which is fitted from
a local reference plane found using a non-linear optimiza-
tion. By omitting the polynomial fitting step, Amenta and
Kil [AK04] showed that the same surface can be defined and
computed by weighted centroids and a smooth gradient field.
This leads to a significantly simplified implicit surface def-
inition and faster algorithms, especially in the presence of
normals [AA04]. Such a simple approximation scheme can
be extended to achieve convex interpolation using Hermite
centroid evaluations [AA07].

Recently, Guennebaud and Gross [GG07] have shown
that defining the surface by mean of sphere fitting signifi-
cantly improves the robustness against low sampling density
and reduces the approximation error of planar approaches
while retaining high performance. Indeed, even though fit-
ting polynomials allows to achieve tighter approximations,
the approach breaks down as soon as the data cannot be lo-
cally represented as a height field. Another central limitation
of the robustness of the previous definitions comes from the
plane fit operation that becomes highly unstable when the
sampling rate drops down. On the other hand, a higher order
surface like a sphere better fit region of high curvature and
performs better in the correct handling of sheet separation.

In the well know multi-level partition of unity implicit
(MPU) technique [OBA∗03], the authors also propose to di-
rectly fit quadrics to alleviate the limitations of polynomial
fitting. In their work, the quadrics are fitted by adding a few
point constraints away the surface neglecting the fact that the
algebraic distance is not linear. Another related approach is
sparse low-degree implicit (SLIM) [OBA05] where the ge-
ometry consists of points equipped with bivariate polyno-
mials. Efficient rendering is accomplished by blending the
primitives in screen space. However this approach still suf-
fers from the polynomial fitting limitations and does not
properly define a smooth surface since it depends on the
view direction.

Dynamic Point Cloud Refinement
A common approach to control the sampling density of a
point cloud spread over an implicit surface is to use a par-
ticle simulation procedure [Tur92, PGK02]. Targeting real-
time performance, Guennebaud et al. present both a dyadic
[GBP04] and

√
3 [GBP05] iterative refinement schemes

based on the construction of accurate one ring neighbor-
hoods. Again, in practice it turns out that such iterative re-
finement schemes are too costly to be able to handle dynamic
data. For instance the authors report a point generation rate
around 300k/s while a highly dynamic point cloud require a
similar rate but per frame instead of per second.

In their initial PSS work [ABCO∗03], Alexa et al. present
an efficient upsampling algorithm where the tangent plane
of each input sample is uniformly upsampled and projected
onto a precomputed polynomial approximating the underly-
ing surface. Since the so-generated ”patches” have to over-
lap each other, this strategy does not provide properly up-
sampled point clouds like the previous methods do. Con-
versely, the simplicity of this scheme makes it amenable to
efficient GPU implementation. For this reason we adopted
their basic upsampling procedure, but in our case the gen-
erated splats are indeed projected onto the true PSS hence
yielding a smooth surface and avoiding both preprocessing
and extra storage requirements.

Geometric Error Metric
Related to our work are so called geometric error metrics
that allow to locally adapt the sampling density according to
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a given threshold. Several meshless methods have been pro-
posed for offline processing [PGK02, WK04]. The sequen-
tial point trees rendering system [DVS03] includes a view
dependent geometric error for multi-resolution rendering of
point clouds. However their approach cannot be extended to
refinement and is quite expensive to compute. In this paper
we therefore present a new view dependent geometric error
metric tailored for upsampling combined with splatting.

3. Surface Definition
In this section we present our surface definition as a gen-
eralized version of the Guennebaud et al.’s APSS approach
[GG07]. For the reader’s convenience we will briefly sum-
marize the fundamentals of APSS and we refer to the previ-
ous paper for the details.

3.1. General Settings
Throughout the paper we will consider as input a set of
points P = {pi ∈ R3} equipped with normals ni and radii
ri representing the local point spacing. If the normals are
not available, then they can be computed in a preprocess
using, for instance, an algebraic sphere fitting without nor-
mals [GG07]. Similarly, the radii ri can be computed using a
local estimation of the density. These radii are used to define
the following adaptive weighting scheme

wi(x) = φ

(
‖pi−x‖

ri ·h

)
(1)

describing the weight of the point pi for any point x ∈ R3.
Here, h is a global scale factor allowing to adjust the influ-
ence radius of every point, and φ is a smooth, decreasing
weight function for which we use the following compactly
supported polynomial

φ(x) =
{

(1− x2)4 if x < 1
0 otherwise.

(2)

3.2. The APSS approach
The key idea of APSS is to locally approximate the point
cloud by a fitted algebraic sphere that moves continu-
ously in space. An algebraic sphere is defined as the 0-
isosurface of the scalar field su(x) = [1, xT , xT x]u, where
u = [u0, ..., u4]T ∈R5 is the vector of scalar coefficients de-
scribing the sphere. Then, the APSS SP approximating the
point cloud P yields as the zero set of an implicit scalar field
f (x) representing the distance between the evaluation point
x and a locally fitted algebraic sphere u(x):

f (x) = su(x)(x) =
[
1, xT , xT x

]
u(x) = 0 . (3)

The sphere u(x) is obtained by minimizing given distances
between itself and the neighbors of x in a weighted least
square sense. The original algorithm minimizes the posi-
tional constraints su(pi) = 0 and the derivative constraints
∇su(pi) = ni simultaneously such that:

u(x) = argmin
u

∑
i

wi(x)
(

su(pi)2 + ‖∇su(pi)−ni‖2
)

. (4)

This minimization yields a standard system of linear equa-
tions. In order to reduce the dependence on the scale of the
point cloud, the authors proposed to scale the derivative con-
straints by an arbitrarily large value. They observed that this
choice makes the fitting more robust to low sampling den-
sity, less prone to oscillations and less sensitive to outliers.

3.3. Direct APSS
The novel and generalized fitting procedure we propose min-
imizes the two key constraints (positional, derivative) sepa-
rately and starts with the derivative constraints. We observe
that, unlike the positional constraints, the derivative con-
straints provide sufficient information to determine the four
coefficients u1 to u4 that define the gradient of the sphere.
Intuitively, the positional constraints are subsequently only
used to specify the isovalue to approximate the data. In prac-
tice, minimizing the set of derivative constraints yields the
normal equation below which can be solved explicitly. ∑wi(x)I3 2∑wi(x)pi

(2∑wi(x)pi)T 4∑wi(x)pT
i pi

·


u1
u2
u3
u4

=

 ∑wi(x)ni

2∑wi(x)pT
i ni

 (5)

Next, using the algebraic distance constraints to determine
the value of u0, we obtain the following explicit solution for
the coefficients of u(x):

u4 = β
1
2

∑wipT
i ni − ∑ w̃ipT

i ∑wini

∑wipT
i pi − ∑ w̃ipT

i ∑wipi u1
u2
u3

 = ∑ w̃ini−2u4 ∑ w̃ipi (6)

u0 = −[u1u2u3]∑ w̃ipi − u4 ∑ w̃ipT
i pi

where wi = wi(x) and w̃i is the normalized weight of the
sample pi: w̃i = wi/∑ j w j. β is an additional scalar parame-
ter that, for the time being, is equal to one. The equations for
the gradients are omitted, but can be derived easily.

Figure 2: Smooth variation of the curvature parameter β

from 8 to 1 (top) and 1 to −4.5 (bottom). Note the inversion
effect on the surface microstructure.
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Figure 3: APSS reconstruction of a noisy data (left) using different values of the curvature control parameter β : −1, 0.5, 5.

3.4. Plane Fit and Curvature Control

If we utilize our new spherical fitting procedure to fit a plane
by setting u4 = 0 (i.e., β = 0) the remaining formulas corre-
spond exactly to the ones of a plane fit with normal averaging
as used in the PSS definition of [AA04]. By introducing the
parameter β , we can therefore continuously tweak our alge-
braic spherical fit from a pure planar fit and a pure spherical
fit for β ∈ [0,1]. This is illustrated in figures 3 and 2.

More generally, this parameter allows us to control the
curvature of the fitted sphere. For instance, a negative value
of β inverts the curvature, thus increasing the APSS smooth-
ing effect or even allowing to invert the surface features as
depicted in figure 2-bottom. Note however, that extreme set-
tings of β reduce the stability of the representation which
means that this feature should only be used for densely sam-
pled models. Conversely, a value greater than one tends to
exaggerate the surface features (figure 2-top).

This new feature enhancement is particularly useful in the
case of noisy data as it enables to preserve the surface struc-
ture while removing the noise (figure 3-right). Note that it is
also possible to locally adapt this parameter over the input
point cloud and still retain a continuous surface as long as β

varies smoothly. Figure 2 depicts an example.

4. Realtime Upsampling

In this section, our main goal is to design an efficient and
as flexible as possible rendering procedure of APSS. As ex-
plained in the introduction, we opted for a forward warping
approach. The general principle of our algorithm is relatively
simple. After building the spatial data structure required for
a fast evaluation of the surface (see section 5), the render-
ing of a frame is basically a four steps procedure which is
entirely performed on the GPU:

1. Selection of the visible samples. This step includes com-
mon view frustum and back face culling.

2. Adaptive up-sampling of the neighborhood of each se-
lected sample yielding a dense set of splats.

3. Projection of the splats onto the APSS.
4. Splatting of the generated splats.

The central step is the second one which is described in the
next section 4.1. Some additional issues regarding the pro-

jection steps are discussed in section 4.2. A parallel imple-
mentation is presented in section 4.3 and extended to support
temporal coherence in section 4.4. For the remainder of this
section, we use the following naming convention: a sample
represents an input point pi, while a splat defines a newly
created point on the surface for the purpose of rendering.

4.1. View Dependent Upsampling

Remark that each input sample pi of normal ni and radius
ri can be interpreted as an oriented disk. The task is to gen-
erate sufficiently many splats onto these disks such that the
resulting set of points is dense enough to be rendered us-
ing a splatting algorithm. For the upsampling we opted for
a simple but very efficient approach that generates a regular
pattern of m×m splats within the quad bounding the disk of
each input sample (figure 4a).

The main issue is now to determine m for each input sam-
ple pi. A first criterion is obviously to ensure that the screen
space sizes of the splats are below a given pixel threshold ts.
To this end we use the following approximation

m = η
ri

ts
(7)

where η is the scale factor between the viewport and the
input point pi. A simple choice for ts is one or two pixels.
However, when the underlying surface is flat and parallel to
the screen, for instance, this choice produces prohibitively
many splats without contributing to visual quality.

e

vini

pi

i
−1

r ini

r i m

m

(b)(a)

Figure 4: (a) Illustration of the upsampling algorithm. (b)
2D view to illustrate our view dependent geometric error.
The tangent disk representing pi is displayed in blue and the
viewing ray in red.
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A more sophisticated approach makes our refinement pro-
cedure both feature and view sensitive. For this purpose we
propose a new view dependent geometric error metric. The
key idea is to define the error as the maximal distance be-
tween the sample and the underlying surface along the view
direction (figure 4b). Since the accurate computation of this
error is too expensive for realtime, we approximate the un-
derlying surface by a tangent sphere passing through pi. The
radius of this sphere is conservatively estimated from the
principal curvature λi:

λi = max
j

‖ni−n j‖
‖pi−p j‖

. (8)

A second approximation is to assume that the view direction
vi = pi− c remains constant over the input sample, where c
is the position of the camera. Using these approximations,
the computation of our view dependent error e boils down
to a 2D problem considering the plane spanned by the vec-
tors ni and vi and passing through pi. Correspondingly, the
input sample can now be seen as a segment, and the sphere
as a circle. e is eventually obtained by computing the inter-
section between the circle and the ray with direction vi and
origin in the extremity of the splat in the direction of vi. This
is illustrated in figure 4b. Finally the number of generated
splats is set such that the minima of e and ri in screen space
is below the threshold ts:

m =

√
η

min(e,ri)
ts

. (9)

The square root is needed because e varies quadratically if
we consider the underlying surface to be a sphere. The effect
of this strategy is shown in figure 5 where we see that both
the high curvature regions and the silhouettes are properly
taken into account by our geometric error.

4.2. MLS Projection
After upsampling, each generated splat has to be projected
onto the underlying APSS. There are three different projec-
tion procedures [AA04]. The simple one iteratively projects
the sample onto the best locally fitted sphere: qn+1 =

Figure 5: Illustration of our view dependent geometric error
metric with color coded density. The right picture shows the
generated splats utilized for rendering the left images. Note
the accurate culling (view and backface) and the higher den-
sity near the silhouettes.

(a) (b)

Figure 6: Comparisons of the three projection procedures
for some splat extremities. Blue: simple. Red: almost orthog-
onal. Magenta: orthogonal. Note that in (a) the simple and
almost orthogonal operators overlap.

pro ject(qn,u(qn)). The almost orthogonal always projects
the initial point x: qn+1 = pro ject(x,u(qn)), and the orthog-
onal projection uses the real gradient of the scalar field.

As illustrated in figure 6a, the orthogonal projection ap-
pears to not be suited for our purpose since, in addition to
be prohibitively expensive, it can lead to uneven sample dis-
tributions. The simple projection leads to the best coverage
but may sometimes project points very far away (figure 6b).
Finally, the almost orthogonal projection appears to be the
best choice since it is simple and efficient, has reasonable
convergence, and still provides a good coverage when the
tangential components of the input samples do not overlap.

Note that after the projection, the distances between the
generated splats vary and hence their radii might have to be
updated. In particular, if their distances increase too much,
then some holes could appear. However, since an APSS ap-
proximates the input point cloud, the point spacing has a ten-
dency to decrease instead of increasing. Indeed, we observed
an average shrinking of 98% with a negative and positive
standard deviations of 18% and 3.7% respectively. More-
over, since the radii of the generated splats are set to the
pattern resolution, a hole free rendering is achieved while
the point spacing does not increase by a factor greater that√

2. In practice, we therefore never experimented such holes.

4.3. Parallel Implementation

The presented algorithms can be implemented on massively
parallel multicore architectures. As a main implementation
target we employ a GeForce 8800 using CUDA, but our con-
cepts can be applied to most other multi-core processor units
as well. We assume the reader to be familiar with the parallel
programming model offered by CUDA and refer to [NVI07]
for an introduction. Since current GPUs process multiple
data in parallel in an SIMD fashion, a first challenge is to
avoid sparse computations. A second challenge is to avoid
thread communication which constitutes a major source of
bottleneck.

The different stages of our algorithm are illustrated in fig-
ure 7. We assume the input samples to be sequentially stored
in memory. The selection step consists of building a vector V
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Figure 7: Parallel implementation of the selection (blue
part) and upsampling (red part) algorithms.

which contains the list of the selected sample indices. In or-
der to avoid the need of a global and shared counter to build
this index vector, we use the following three step algorithm:

1. foreach pi
A[i] = is_visible(pi) ? 1 : 0

2. A’ = prefix_sum(A[i])
3. foreach pi

if A[i] then V[A’[i]] = i

The two foreach loops are parallelized with potentially
one thread per sample. The clue of this procedure is the use
of an efficient parallel prefix sum algorithm [Ble90, HSO07]
to compute the vector A’ such that A’[i]=∑

i−1
j=0A[j]. In-

deed, after this step, the vector A’ contains for each sample
the number of selected samples having a lower index. For a
selected sample that number exactly corresponds to its posi-
tion in the target index vector V. Note that if nb is the number
of input samples then A’[nb] holds the number of selected
samples nbv.

For the view dependent upsampling algorithm we have to
generate a variable number of splats per selected sample. In
addition, all the new splats have to be sequentially stored in
memory. To this end we use the same technique as before.
For each selected sample, we write to the counter vector C
the number of splats that have to be generated. Next, we use
the prefix sum algorithm to build a new vector C’ from C,
and in a third step we fill a vector of splats as follows:

foreach ji ∈V
for k=0 to C[i]-1
splats[C’[i]+k] = gen_splat(k,p ji)

Only the first loop is parallelized and the projection step be-
comes trivially parallelizable.

In fact, the latest GPUs support the required features (i.e.,
the geometry shader and transform feedback buffer) to im-
plement the previous algorithms without the need of prefix
sum passes. While the presented approach is somewhat more
complex to implement, it provides several advantages: it is
surprisingly much faster, in particular for the upsampling
step where we observed a speedup of an order of magni-
tude, and it is less dependent on the actual architecture and

0 1 3 4 5 6 7 8 9

0 2 3 6 7

2

0 1 1 0 0

0 0 1 2 2 2

V[]

B[]
B'[]

9

3

1

2 3 9 0 6V[] 7

copy upsample

selection

Figure 8: Illustration of the prefix sum based classification
used in our low level temporal coherence algorithm.

thus more generic. Moreover, it gives us more flexibility to
design an efficient low level temporal coherence mechanism
described in the next section.

4.4. Low Level Temporal Coherence
In the previous algorithm, all the splats required for render-
ing are generated from scratch for each frame. If some parts
of the model are static, we can additionally take advantage of
temporal coherence and only perform local updates in the ac-
tive splat buffer (list of the generated splats). To achieve this
goal, we modify the previous parallel algorithm as follows.
First, we add two additional attributes nbi and δi to each in-
put sample representing the number of generated splats and
the position of the first splat in the actual splat buffer respec-
tively. Secondly, the selection step is slightly modified such
that nbi is set to zero if the ith sample is culled which has for
effect to invalidate its corresponding set of rendering splats.

Next, after computing the vector V, we compute and up-
date the number of generated splats nb ji for each ji ∈V. Then
we sort the vector V into two distinct segments such that the
indices of all samples with valid refined splats are sequen-
tially stored at the first segment of V. To this end, we use a
similar principle as for the selection step (see figure 8). Dur-
ing the update of the values nb ji , we build a vector B such
that B[i] equals one if nb ji changed and zero otherwise.
Next we compute the vector B’ from B using a prefix sum,
we then read the number of samples which are still valid
nbc =B’[nbv], and do the sort as follows:

foreach ji ∈V
k = B[i]==1 ? B’[i] : nbc+B’[i]+i
V[k] = ji
C[k] = nb ji

At the same time we pack the value nb ji into the vector
C such that the prefix sum algorithm can efficiently compute
C’ without the need of additional, performance-killing indi-
rections.

Finally, the new splat buffer is obtained by simple copies
from the old one for the first part of V and by using the
up-sampling procedure followed by the MLS projection for
the second part. Note that during the copy and upsampling
passes, we have to update each δ ji from C’[i] such that we
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are able to perform the copies at the next frame. In the case
of a dynamic point cloud, we have to invalidate the set of
rendering splats of each sample pi for which at least one of
its neighbors, or itself, has changed. This is simply achieved
by setting nbi = 0 for such samples.

4.5. High Level Culling

For very large models, i.e. beyond a few millions of splats, it
becomes expensive to check at each frame the whole set of
input splats. For such complex scenes it is common to add
a high level data structure (DS) enabling per block culling
(including occlusion culling) and low resolution LOD selec-
tion. Adding such mechanisms to our refinement procedure
is a relatively simple task. Let us assume that each cell of
the high level DS stores its set of sample indices sequen-
tially in the device memory. Moreover, each cell stores the
smallest radius value of its samples such that we can rapidly
and conservatively determine if the point cloud is already
dense enough for this cell using equation 7. At each frame,
we traverse the DS and build two sequential index buffers
using efficient device to device memory copies representing
respectively the list of the samples which are dense enough
and the list of the samples which have to be processed by
our low level up-sampling algorithm. This classification al-
lows us to apply on the first buffer a simplified version of
our algorithm where the geometric error evaluation and the
upsampling are disabled.

5. Data Structures for Efficient GPU Implementations
In this section we present and discuss several octree variants
for efficient MLS spherical fitting on a GPU. Given a query
point x, the purpose of such a data structure (DS) is to find
every sample pi such that the weight wi(x) is strictly pos-
itive. According to the weighting scheme presented in sec-
tion 3, the influence of a sample pi is bounded by a ball of
center pi and radius rih. Our problem is hence equivalent to
finding all the balls containing x.

5.1. Redundant Octree
One common option is to use a space partitioning where
each cell stores the list of all the samples (balls) that inter-
sect the cell, e.g. like in [WS05]. In the following we call
such a DS redundant. Here, smaller cells lead to more effi-
cient queries but the construction/updates and memory cost
are more expensive.

Usually such DS store the references to the samples at
the leaves only. In this work we propose a different and, to
our knowledge, new strategy where the basic principle is to
store a sample at a given level that only depends on its influ-
ence radius. In particular we propose an octree using the fol-
lowing iterative insertion procedure. Starting from an empty
octree, we insert a point pi into the finest level l having a
cell size greater than t · 2rih, where t controls the tradeoff.
Thanks to the regularity of an octree, this insertion proce-
dure can be accomplished very efficiently. For each cell of

the virtual grid of level l covered by the ball of center pi and
radius rih, we compute the location code [FP02] of the cell
in the tree and insert i into it using a fast top down proce-
dure which, at the same time, builds the potentially missing
nodes.

Compared to a conventional split and sort construction
strategy, we observed a speedup of an order of magnitude.
Moreover, with our strategy dynamic updates are as simple
and efficient as with a grid for instance. Note that perform-
ing a neighbor query with such an octree does not require
any recursive process and is thus very well suited for GPUs.
Indeed, all we have to do is to go down the tree visiting all
the nodes containing x until we reach a leaf. This traver-
sal can be implemented very efficiently using bitwise oper-
ations [FP02]. A typical choice for the tradeoff value is to
take t = 1 which guarantees that the bounding ball of a sam-
ple does not overlap more than 23 cells.

5.2. Single Reference Octree
While the previous approach delivers optimal query perfor-
mance, such a DS is not optimal with respect to memory
consumption and is still relatively expensive to build and
update. When construction time and/or memory consump-
tion matter, we show that the previous octree can easily be
adapted so that each sample is referenced only once.

Indeed, let each sample be inserted into the unique cell
containing it at the finest level and having a cell size greater
than t · 2rih. Then all the neighbors of a query point x are
guaranteed to be found by visiting at each level l of the hier-
archy, all the cells intersecting the ball of center x and radius
wl
2t , where wl is the cell size of the level l. Moreover, since
the samples are referenced only once, such a DS can also be
used to perform other kind of neighbor queries or to use an-
other weighting scheme. For instance, while increasing the
global scale factor h with a redundant DS requires to rebuild
it, here we only have to scale the radius of the query balls.
On the other hand, the queries are obviously much more ex-
pensive since we have to loop over several cells at each level
of the hierarchy.

5.3. GPU Construction
In some applications the construction of the DS is a very crit-
ical issue. In such cases we propose to build the DS directly
on the GPU, thus reducing the CPU to GPU memory trans-
fers at the same time. However, our GPU based construction
algorithm currently support only a particular case of octrees
where all the cells of every level are explicitly stored. Such
octrees can be seen as a dyadic pyramid of grids. In the re-
minder of the paper we will refer to redundant pyramid and
single pyramid for such versions of our previous octrees.

Purcell et al. [PDC∗03] proposed to build a spatial grid on
a GPU using a bitonic sort. While inherently parallel, this
approach appears to be quite expensive and is not easily ap-
plicable to our redundant DS.
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(a) (c)

(b)

(d) (e) (f)

Figure 9: Pictures taken from the walkthrough of figure 13. (a) frame #1. (b) and (c) frame #370 showing respectively the
input point cloud and the refined one with color coded density. (d) and (e) frame #411 rendered with color coded density and
accessibility shading respectively. (f) frame #412 with temporal coherence activated where the red parts correspond the newly
generated splats.

We therefore opted for a more basic algorithm: for each
sample pi, we insert its index i into the lists of all the cells
covered by it. First, let us remark that with our DS the num-
ber of covered cells by a single sample is bounded by a given
value b, e.g., with a single pyramid b = 1. We therefore avoid
the need of a dynamic stack by storing the indices of the cells
as linked lists stored in a buffer where the b elements from
b · i to b · (i + 1) are allocated to the sample pi. Another is-
sue is that two different threads cannot update the list of the
same cell at the same time. Here, because the risk of conflict
is relatively low, we opted for a mutex strategy. Since it is
not possible to allocate one mutex per cell, and real mutex
are not implementable on current GPU, we use the follow-
ing algorithm. We allocate a vector M of m bytes in shared
memory. When a thread has to edit the cell of index ic, the
thread writes its index it at the position M[ic%m] and repeats
this step until M[ic%m] is indeed equal to it . Then the cell
can be safely updated. Obviously this algorithm only works
if all the threads are executed in parallel and in a SIMD fash-
ion. We therefore have to run a single warp per SIMD core.
Furthermore, this technique does not allow to synchronize
the threads which are not in the same SIMD core since there
is no shared memory between them. Our solution is there-
fore to build one DS per SIMD core and to merge them in an
additional pass.

Finally, in order to optimize the memory access during
the neighbor queries, we observed that it often pays off to
sort the list buffer such that the list elements of a cell are
sequentially stored in memory. This operation is efficiently
implemented using a prefix sum algorithm similar to our up-
sampling algorithm (see section 4.3).

6. Results
In this section we present some results obtained with a Core2
duo 2.4GHz processor and an NVIDIA GeForce 8800 GTX.
Our dynamic upsampling algorithm is entirely implemented
in CUDA, except the final rendering of the generated splats
which is performed using a standard multi-pass splatting al-
gorithm with OpenGL [BHZK05]. All our results were ob-
tained without the high level culling system.

Comparison of Data Structures
In section 5 we presented four different DS where the trade-
off accuracy versus build time is controlled by the parameter
t. The influence of this parameter is shown by the graphs in
figure 11. For comparison, these results were obtained from
a roughly uniform point cloud allowing us to include an opti-
mally sized redundant grid. Note that the step effects shown
by these graphs are due to both the uniformity of the input
and the dyadic refinement of the cells.

As expected, the redundant DS are much more sensitive to
this parameter than the other ones. It appears that all the re-
dundant DS exhibit very similar query and CPU based con-
struction performances. However, the redundant pyramid re-
mains interesting since its simplicity allows to enable a faster
GPU based construction. Even though the single DS exhibit
relatively poor query performance, they remain, by far, the
fastest to build and the most compact ones. Note that the con-
struction performances were obtained using a single thread
for the CPU versions, and 32 threads times 8 cores for the
CUDA versions. Even though such settings are far to allow
to use the GPU at its best efficiency, our CUDA implemen-
tations are still an order of magnitude faster.

Upsampling Performance
Figure 13 shows the cost of each different part of our al-
gorithm for a walkthrough around a static and non uniform
model of 85k points stored in a redundant octree. The se-
quence starts with a zoom shown in figures 9abc and in-
cludes a large jump between two consecutive frames, hence
explaining the peak in the temporal coherence graph. The
figures 9ef depict the behavior of our temporal coherence al-
gorithm in this case of temporal incoherence. As we can see,
with the temporal coherence enabled, the rendering cost of a
frame is mainly dominated by the splatting algorithm, thus
proving the efficiency of our approach.

Figure 12 shows that the performance of the MLS projec-
tions does not only depend on the accuracy of the DS, but
also on the coherence of the input data. This behavior is due
to both the SIMD architecture of current GPUs and the co-
herence of the memory accesses. This figure was obtained
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Figure 10: Global deformation involving realtime construc-
tion of the data structure.

for an input point cloud randomly sorted in space. As we
can see, the projection rate significantly varies from a few
millions to more than 100 millions of projections per second
depending on the number of generated splats per input sam-
ple. Hence, generating more but coherent splats, as in the
closeup views, might indeed increase the performance.

Figure 10 depicts a global and fast deformable object ren-
dered by our system at about 45 fps. In this sequence the
DS (redundant pyramid) is reconstructed from scratch at
each frame and represents about 25% of the rendering time
while the deformation itself represents 50%. Note that, as
suggested in [GG07], this sequence was rendered with cur-
vature shading using the radius of the fitted spheres as an
approximation of the surface curvature. Our system can also
handle large models as illustrated in figure 1.

7. Discussion and Conclusion

In this paper we first presented a new general solution to
perform the spherical fits used to define APSS. In particu-
lar, our new approach offers a curvature control parameter
allowing to inverse or enhance the surface microstructures.
Since this feature is embedded into the surface definition,
high smoothing can be accomplished while preserving the
surface structures. However, it would be interesting to better
understand the properties of this feature and compare it to
other nonlinear smoothing techniques. While very intuitive
to use, let us remind that this parameter has to be used with
some care since inverting the sphere curvature significantly
reduces the stability of the representation to low sampling
density.

We also presented a realtime parallel upsampling frame-
work of APSS targeting efficient and flexible rendering. To
achieve our goals we had to do some compromises. For in-
stance, the simplicity of the upsampling scheme makes it
not really well suited for applications other than rendering.
Moreover, a hole-free rendering can only be guaranteed if
the set of the input tangent quads used to generate the render-
ing splats cover the entire surface. To overcome this limita-
tion we could use a higher order approximation for generat-
ing the splats, as in the SLIM method [OBA05] for instance.
This would, however, requires additional preprocessing and
storage requirements. In practice, the use of a non orthogo-
nal projection operator handles such cases well.
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Figure 11: Performance of the MLS projections (left) and
construction time (right) for varying values tradeoff t and for
different data structures. The solid and dashed lines stand
for the CPU and GPU DS constructions respectively.
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Figure 12: Performance of the MLS projection (in million of
projection per second) according to the number of generated
splats per sample. We use the same color scheme than in
figure 11.

We emphasise that our approach can easily be used to
render most of point based representations, like implicit
MLS [SOS04, Kol05] or MPU implicits [OBA∗03] for in-
stance. Our approach can also easily be extended to sup-
port both an anisotropic weighting scheme [AA06] and
anisotropic upsampling pattern that is particularly useful
during anisotropic deformations for instance.

Compared to latest adaptive mesh-based refinement tech-
niques [BS07], our approach is entirely performed on the
GPU in a parallel fashion that allows us to handle very large
input models. Moreover, since we do not have any connec-
tivity to manage, we successfully designed a very efficient
low level temporal coherence mechanism. It would there-
fore be interesting to adapt our techniques to the refinement
of meshes by replacing the input tangent quads by the poly-
gons of the mesh. As future work, we would also investigate
faster parallel algorithms for the construction of the spatial
data structures, and in particular for octrees for which we
currently do not have efficient solution.

Finally, we believe that the high degree of flexibility of-
fered by our approach, combined with its high performance
allow to investigate new applications for Point Set Surfaces,
like interactive shape modeling for instance.
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