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Abstract
Current unsteady multi-field simulation data-sets consist of millions of data-points. To efficiently reduce this enor-
mous amount of information, local statistical complexity was recently introduced as a method that identifies dis-
tinctive structures using concepts from information theory. Due to high computational costs this method was so
far limited to 2D data. In this paper we propose a new strategy for the computation that is substantially faster and
allows for a more precise analysis. The bottleneck of the original method is the division of spatio-temporal configu-
rations in the field (light-cones) into different classes of behavior. The new algorithm uses a density-driven voronoi
tesselation for this task that more accurately captures the distribution of configurations in the sparsely sampled
high-dimensional space. The efficient computation is achieved using structures and algorithms from graph theory.
The ability of the method to detect distinctive regions in 3D is illustrated using flow and weather simulations.

Categories and Subject Descriptors (according to ACM CCS): I.6.6 [Simulation and Modeling]: Simulation Output
Analysis J.2 [Physical Sciences and Engineering]: Mathematics and Statistics

1. Introduction

Due to the increase in compute power, computer simula-
tions result in inceasingly large data sets. Often, the data is
3-dimensional, time dependent and multivariate. Visualiza-
tion techniques can help reduce the giant amount of informa-
tion provided by the data to the important facts. An example
for the importance of such techniques is aircraft design. To
reduce costs large parts of the development and testing of
an aircraft are performed using computer simulations. Thus,
flight quality and performance can be tested in many differ-
ent scenarios. In order to analyze the behavior of the aircraft,
developers have to extract relevant features from the simula-
tion and visualize them. Relevant structures are for example
the wake of an airplane or vortex breakdown. Understanding
the wake of an airplane is important to decide at which inter-
vals airplanes can start and land. Planes that enter the wake
of a preceding flight might experience large turbulences that
can cause a crash. Similarly if the bend that a delta wing flies
is to sharp the vortex that keeps it in the air might break down
causing a crash. Finding such structures early in the design
process is an important task. In most application domains,
scientific data visualization is used to understand both the
mean features as well as unusual patterns in the data.

A standard technique to detect relevant structures is fea-
ture extraction. Post et al. [PVH∗03] provide a detailed ex-

amination of techniques that are available in the field of
flow visualization. The methods are divided into approaches
based on image processing, vector field topology, physical
characteristics and selective visualization. For a detailed ex-
planation we refer the interested reader to this publication.
Opposed to feature extraction methods that extract single
formations, structure-based visualization focuses on a par-
titioning of the entire domain. Techniques can be classified
as cluster-based or integral-line based methods. Salzbrunn
et al. [SJWS07] provide a good overview over these ap-
proaches. Methods from both fields have in common that
they need a priory information about the structures that are
to be found. Moreover, most techniques were developed for
a special type of field, e.g., scalar or vector valued. Thus, a
precise definition of what is to be found is needed that can-
not always be given. For example, there exists no general
definition of a vortex.

Recently Jänicke et al. [JWSK07] adopted local statisti-
cal complexity, a concept from information theory, and used
the method to automatically detect structures in an unsteady
multi-field that deviate from the average behavior in the
field. Due to high computational costs, the method was so
far restricted to 2D data-sets. In this paper we propose a new
strategy for the computation that is substantially faster and
allows for a more precise analysis. In the examples we will
focus on individual variables of the multi-fields in order to
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Figure 1: The configuration space: (a) Neighboring values (brown cone) in the previous time-step are used to compute the value
at the current position (green). (b-c) Cone-configurations are extracted from the field and stored in the configuration space.

prove the correctness of the method by comparing it to stan-
dard techniques and to get a better understanding of what
local statistical complexity extracts.

2. Local Statistical Complexity

Local statistical complexity extracts those regions in an un-
steady field, where a lot of information from the local past
is required to predict the dynamics in the local future. This
happens where the temporal evolution is very unusual com-
pared to what happens in the rest of the field. In general,
users are interested in a subset of these distinctive regions,
as they know the basic structure of their data-set and want
to find regions that behave differently. Especially for large
intricate and little understood data-sets local statistical com-
plexity is a helpful tool to guide the user to regions that might
be relevant to him or her.

As mentioned before, local statistical complexity focuses
on the local temporal evolution of the field. The local past
of position p in the field consists of all the points that might
influence p. As effects propagate at finite speed, the past has
the shape of a light-cone that is directed towards the past.
The apex is located at p. This concept is likewise used when
computing simulations using finite differences or finite ele-
ments. Here the value at position!x in time-step t is computed
from the neighborhood of the point in the previous time-step
t−1 (Fig. 1(a)). (An exception is pressure in incompressible
flow.) The future is given by a light-cone that is directed in
the opposite direction, i.e., the future. Each light-cone com-
prises a set of positions. The values at these positions to-
gether with the neighborhood information are called a con-
figuration (Fig. 1(b)). A configuration can be thought of as
a pattern that extends in time, space and if appropriate over
multiple variables. By definition future configurations con-
tain the value at the apex, past configurations do not.

For each past-cone configuration we would like to be able
to predict, what might happen in the future. The only value
that we can predict exactly, is the one at the future-cone

apex, as it results from the calculation rule of the simula-
tion method (remember Fig. 1(a)). To predict the remain-
ing values in the future-cone, we need statistics. We group
several similar past-configurations and compute a histogram
over the different futures that occur. This estimated distribu-
tion tells us which future configurations are likely for this
particular class of behavior in the past. This procedure is re-
peated for all different groups of past-configurations.

Analyzing the histograms we computed in the previous
step, we will observe that some of them are very similar.
This means that the differences we detected in the past-
configurations have no significant influence on the dynam-
ics in the future. Thus, we merge all those past groups that
have very similar histograms. The different groups that re-
sult after the merging are called causal states. A causal state
represents a cause-and-effect relationship between what was
observed in the past and what might happen in the future. So,
if we have a past configuration and can determine its causal
state, we can estimate the most probable future dynamics.

Now that we can predict the dynamics in the future given
the past configuration, we want to find a minimal lossless
encoding for this information. The optimal code (shortest
expected length) is given by a Huffman-code. A Huffman-
code assigns frequent symbols short codewords and rare
symbols longer ones. The entropy H[X ] is a measure of
the smallest codeword length that is theoretically possible
for the given alphabet X . For functions f (x), mutual infor-
mation I[ f (X),X ] equals entropy H[ f (x)]. In order to find
an optimal encoding for the past-configurations, we have
to find a function f that minimizes the mutual information
I[ f (PastCon f );PastCon f ]. Shalizi et al. [SHR∗06] showed
that the unique function that minimizes the mutual informa-
tion is the mapping to the causal states. Thus, if we store at
each position the Huffman-code of the corresponding causal
state, we resolve the file with shortest expected length that
still gives us all informations about the dynamics in the local
future.

The encoded file can finally be used to detect distinc-
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(a) Number of configurations per cell

v0

v1

1 1 1
1

11

1
1

1
1

1
1

1 1
1 1

1

1
1

1

1

1
13

3

3

2
2

2

2
1 1 1

1
1

1

1
3

4

4

4

X
X

X

X

(b) Density driven clustering
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Figure 2: Density-driven voronoi tesseletation: (a) The configuration space is quantized first and the number of configura-
tions in each cell are counted. (b) Starting from the cells with most configurations, region growing is performed. (c) The final
partitioning captures regions of high density.

tive regions. The Huffman-code assigns each causal state
a codeword whose length depends on the number of posi-
tions that are assigned to it. Causal states with a very long
codeword feature dynamics in the future that occur very
rarely in the field. Local statistical complexity measures for
a past-configuration the length of the codeword of the corre-
sponding causal state, i.e., the amount of information that is
needed to predict the causal state/the dynamics in the future.
The longer the codeword, the more likely it is that some-
thing extraordinary is going to happen in the local future of
this position. More information on the theory and implemen-
tation of local statistical complexity and causal states can be
found in [SHR∗06, JWSK07].

3. Computation of Causal States

3.1. Partitioning of the Configuration Space

As mentioned before, local statistical complexity requires a
partitioning of the past-configurations into causal states. For
this purpose we examine all configurations from all posi-
tions in all time-steps simultaneously in the configuration
space (Fig. 1(c)). Note that we treat past and future cones
separately. Each entry in the cone configuration is repre-
sented in a separate dimension. Hence each configuration is
represented as a point in the high-dimensional configuration
space. A causal state is a subset of the configuration space.
The set of all causal states gives a partitioning of the oc-
cupied regions of the configuration space. The partitioning
method proposed by Jänicke et al. [JWSK07] extends the
ideas of Shalizi et al. [SHR∗06] and consists of four steps:

1. Partition the configuration space of past-cones into re-
gions l− by selecting n− farthest points.

2. Partition the configuration space of future-cones into re-
gions l+ by selecting n+ farthest points.

3. Estimate the conditional distributions P(L+|L− = l−)
with L+ =

S

l+ and L− =
S

l−.

4. Cluster those l− that have similar corresponding distri-
butions P(L+|L− = l−) using a χ2-test.

The crucial part are the partitionings in Step 1 and 2. The
algorithm proposed by Jänicke et al. [JWSK07] is based on
the farthest points method. Their approach, however, has two
disadvantages: The computation is very expensive as cone-
configurations have to be read from the field very often.
Moreover, the farthest points are seeded randomly and thus
do not take the distribution of points in the configuration into
account. In doing so, clusters of similar configurations might
be split and are possibly not joined again by the χ2-test as too
few samples are present to compute it correctly.

3.2. Density-driven Voronoi Tesselation

With our new method we are able to overcome both prob-
lems at a time. We propose a density-driven voronoi tes-
selation of the configuration space that takes clusters into
account and computes each light-cone only once. A graph
structure is used to accelerate computations.

Quantization of the Configuration Space: When analyz-
ing 3D fields, we have to cope with millions of data points
in a (at least) 27-dimensional configuration space. (Cones
in 3D are increasing cubes, minimal size 3x3x3 = 27) As
the space is sparsely sampled, we first extract occupied re-
gions. Using a close meshed quantization of the configura-
tion space, we can precisely locate relevant cells (Fig. 2(a)).
In order to compute the number of configurations in each
cell, we once sweep through the whole data-set, compute the
cone-configuration at each point in each time-step, discretize
this configuration and store it in a tree. Each level in the tree
represents a dimension of the configuration space and a path
from the root to a leaf gives a single configuration. The num-
ber of occurrences of individual configurations in the whole
data-set are stored in the leaves.
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Figure 3: The voronoi tesselation of the past configuration space (a) tells in which class each past-cone configuration in the
field is (b-top). The same computation is performed for the future configurations (b-bottom). (c) Afterwards local statistical
complexity is computed for each causal state (top) and positions in the past field are marked respectively (bottom).

Region Growing: As explained earlier this simple quanti-
zation results in a deficient local statistical complexity. To
overcome this problem we compute equally sized voronoi
cells that deemphasize the quantization boundaries. First we
sort the occupied cellsCi according to their number of sam-
ples and store them in a list NbSamplesList. We start the
region growing at the cell with most samples (Fig. 2(b) red
cells). If several cells with the same value exist, we com-
plete them in random order. The distance between two cells
is given by:

dist
(

C0,C1
)

= |C0−C1|2 =
coneSize

∑
k=0

|v0k − v1k |
2 (1)

with coneSize being the number of entries vk in a cone-confi-
guration (compare Fig. 3(b)). Using the tree structure, we
can find all cellsC j ( j "= i) within distance Δd fromCi (Fig.
2(b) orange cells). Ci and its neighboring cells C j form a
new cluster.

To ensure that the voronoi cells have approximately the
same size, we require the centers of the region growing to
have mutually minimal distance 2Δd. To clarify this require-
ment think of a Gaussian distribution in configuration space.
The first cell would be centered at the peak and successive
cells at its boundary. The boundary cells would capture only
half as much space as the central one, and thus have usu-
ally fewer hits, which makes them more distinct using lo-
cal statistical complexity as a measure. To circumvent this
problem, cells Ck with distance Δd < dist(Ck,Ci) < 2Δd
are blocked (Fig. 2(b) red crosses). Blocked cells cannot be
used as a center for region growing. For each blocked cell
we store the closest center cell Ci and the corresponding
distance dist(Ck,Ci). If in the process of the region grow-
ing blocked cells fall into the neighborhood of a new cen-
ter, they are add to this cell’s cluster. The process continues
with the next cell in the sorted list NbSamplesList. Cells that
are already clustered or blocked cannot be used for region

growing and the algorithm directly continues with the next
cell. The initial region growing is finished when there are no
more cells in the list. Blocked cells that are not assigned to
a cluster at the end of the process are assigned to the closest
cluster, whose ID is stored in the cell.

Search in High-dimensional Space: The expensive part
of the region growing is the detection of neighboring cells
in the high-dimensional configuration space. Extensive re-
search has been carried out in this field. The algorithms can
be divided in three classes: tree-like index structures, ap-
proximate similarity search and indexing by clustering. Li
et al. [LCGMW02] give a good overview over the differ-
ent techniques. We chose a tree-like index structure, as we
need exact neighbors and want to find the blocked cells at the
same time. Most proposed tree structures like the R∗-, SS-
or RS-tree (see [LCGMW02] for references) are based on a
hierarchical subdivision of the space to reduce the amount
of distance computations. These methods are optimized for
large databases where the goal is to minimize the number of
database accesses. In our case we do not use a database to
store the cone-configurations, but have to recompute them
from the loaded fields. As this might involve many differ-
ent time-steps, we would need plenty of swapping to load
the required time-steps. Therefore, we choose a different ap-
proach, using a standard tree. Each level in the tree repre-
sents a dimension of the configuration space and a path from
the root to a leaf gives a single configuration. Neighbors
and blocked cells can be determined at the same time. The
pseudo-code is given in Algorithm 1. The search time can be
decreased by storing a label for each node. Nodes that only
lead to leaves that are already assigned to a cluster are la-
beled FINISHED and are no longer considered in following
neighborhood requests.

submitted to Eurographics/ IEEE-VGTC Symposium on Visualization (2008)



/ Distinctive Structures in 3D Unsteady Multi-fields 5

(a) Streamlines (b) λ2 Criterion (c) LSC of Pressure (d) LSC of Velocity

Figure 4: Flow around a cuboid.

3.3. Causal States and Local Statistical Complexity

After the partitioning of the past and future configuration
spaces (Fig. 3(b)), the causal states can be determined. For
each voronoi cell l− in the past configuration space we
estimate the conditional probability P(L+|L− = l−) with
L+ =

S

l+ and L− =
S

l−. Those cells l−i that have very
similar distributions P(L+|L− = l−i ) are clustered using a
χ2-test. Each cell in the merged configuration space forms a
causal state (Fig. 3(c) top). The local statistical complexity
of each causal state is given by:

LSC (causalState) =− log(P(CausalState= causalState))
(2)

The complexity field is determined by the local statistical
complexity of the causal state corresponding to the past-
cone at each position (Fig. 3(c) bottom). More details on
the theory and implementation of this last step can be found
in [JWSK07] and [SHR∗06].

4. Results and Discussion

So far we have explained what local statistical complexity
theoretically extracts and how it can be computed fast and
efficiently. The following three examples are used to illus-
trate that those structures that are assigned a high local sta-
tistical complexity actually are relevant in the context of the
data-set. We use examples from flow simulation and a simu-
lation of a hurricane. The first two data-sets are well under-
stood examples from flow visualization that we chose, as we
first want to illustrate that local statistical complexity is able
to detect those regions that are rated as relevant by experts.
The hurricane example is far more complicated and less un-
derstood. This data-set is used to explore the capabilities of
local statistical complexity.

4.1. Cuboid

The flow around an obstacle is a standard test-case in CFD
simulations. In our example, the flow passes a cuboid and
evolves into intricate turbulent structures (Fig. 4(a)). In
the wake of the cuboid many small vortices interact and
form a complex flow pattern. The dataset is simulated on a

100x100x100 rectilinear grid and consists of a velocity and
a pressure field.

The local statistical complexity fields of pressure and ve-
locity are very similar (Fig. 4(c), 4(d)). Both pictures show
all positions that are assigned a complexity value in the up-
per third. The resulting structure stretches from the cylin-
der to the end of the dataset and covers the region of turbu-
lent flow. Different vortices can be identified that leave the
main structure and enter again. The coarse resolution is due
to the small amount of positions in the data-set, which limit
the number of different classes that can be extracted. The
complexity field was computed for a single time-step in less
than a minute. Integrating additional steps in the analysis did
not improve the results significantly, as the dynamics in the
flow change very rapidly and similar patterns hardly ever oc-
cur again in later time-steps. As vortices are the dominating
structures in the data-set, an image showing the vortices is
given in Figure 4(b), which displays the λ2-criterion [JH95],
a standard technique for vortex detection. The individual
vortices are much better captured by λ2, but essentially we
get the same structures. This means that the vortices are the
major cause of irregularities in the data-set and that a lot of
information is needed to predict the temporal evolution of
the elements in a vortex. As explained earlier, a more pre-
cise analysis of the vortices could be achieved with more
data. Using a finer resolution, we would get more samples
and could analyze the data-set at a finer level of detail and
extract more subtle structures.

4.2. Delta Wing

The EDELTA dataset represents the airflow around a delta
wing at low speeds with an increasing angle of attack. Mul-
tiple vortex structures form on the wing due to the rolling-up
of the viscous shear layers that separate from the upper sur-
face. These formations of three vortices can be observed on
either side of the wing (Fig. 5(a)). With increasing angle the
intensity of the primary vortices (purple) increases until in
time-step 700 a vortex breakdown occurs. This phenomenon
is characterized by rapid deceleration of both the axial and
tangential mean velocity components inside the vortex. Dur-
ing breakdown, the axial mean velocity component vanishes
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(a) Streamlines (b) Sujudi-Haimes (c) λ2 Criterion (d) LSC of Vorticity Magnitude

(e) LSC of Pressure (f) LSC of Density (g) LSC of |Velocity| > 10 (h) LSC of |Velocity| > 14

Figure 5: Delta Wing: (a) The interesting structures in the delta wing are two formations of three vortices on either side of
the wing illustrated using streamlines in different colors. Recirculating bubbles can be observed at the ends of the primary
vortices. (b) Sujudi-Haimes of the vector field. (c) λ2-criterion applied to the Jacobian of the velocity field. (c) Local statistical
complexity applied to the density field.

and becomes negative on the axis of the vortex, correspond-
ing to appearance in the flow structure of a stagnation point
followed by a recirculation bubble. The analysis of vortex
breakdown is highly interesting, as it is one of the limit-
ing factors of extreme flight maneuvers. The extraction and
visualization of the individual structures, however, is still a
challenging task as the different structures are nested and in-
teract with each other. The unstructured grid was resampled
on a 292x224x75 grid (∼ 4.1 Mio positions) and consists
of more than 1000 time-steps. The images in Figure 5 de-
pict time-step 700. The computation of the complexity fields
took less than five minutes each for a single time-step with
corresponding past and future.

The upper row of Figure 5 gives an overview over stan-
dard vortex detection techniques. The algorithm by Sujudi
and Haimes [SH95] (Fig. 5(b)) is a technique that detects
vortex core-lines. Applied to the delta wing, this method per-
fectly extracts the core-line of the major vortices. However,
we only get a vague indication of the core-lines close the
surface, whose vortices are less dominate and interact with
each other. The same observation holds for the λ2-criterion,
which extracts a “hull” of the vortex, where the two smaller
vortices are combined in a single structure. The best separa-
tion was achieved by an isosurface of the magnitude of the
vorticity.

The lower row of Figure 5 shows the local statistical com-
plexity of different quantities. While the major vortices are
well extracted by the complexity field of the pressure (Fig.
5(e)), the smaller vortices and the recirculation bubbles are

barely visible. This means that the local temporal evolution
of the pressure in this regions is very similar to ordinary
pressure dynamics in the field. A more distinguished rep-
resentation is provided by the complexity field of the den-
sity (Fig. 5(f)). Although all interesting structures feature
distinct behavior with respect to the density, the three vor-
tices cannot be separated very well. The most extraordinary
dynamics could be observed in the field of the norm of the
velocity. Figure 5(g) shows all positions that are assigned a
complexity value greater than 10 (maximum: 14.7). The vi-
sualized structures do not only comprise the vortices and the
recirculation bubble, but also the regions at the outer cor-
ners of the wing, where the flow from the smaller vortices
and the flow from underneath the wing interact and form a
swirling motion that is classified by the other regions as vor-
tex. Increasing the complexity value further (Fig. 5(h)), we
see that the individual vortices are well separated. The ma-
jor vortices are no longer visible as their complexity value
is smaller than those of the small vortices. This observation
means, that the local temporal evolution of the norm of the
velocity is very distinct for vortices and for the recirculating
bubble. The exceptional behavior of the norm of the velocity
is a typical characteristic for recirculating bubbles, as was
explained earlier. With our method we can extract these dis-
tinctive formations automatically without defining a definite
patter beforehand. This feature is an important characteris-
tic of our method, as it is therefore capable of identifying
structures that exhibit an extraordinary formation without
precisely describing its pattern.
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(a) Temporal Mean of the Temperature (b) Temperature Anomaly (c) LSC of Temperature

(d) Isosurface at −8◦C (e) Temperature Anomaly (f) LSC of Temperature

Figure 6: Time-step 60 of the Hurricane Data-set

4.3. Hurricane

In [JWSK07], 2D-LSC has been applied to simulation re-
sults from different application domains. The potential abil-
ity of the method to detect and enhance exceptional features
in multivariate time dependent flow fields was demonstrated
using different physical quantities. LSC highlighted specific
regions, but especially for the weather data example, the re-
sults may have to be further analyzed in order to identify
ideal use cases for the method.

In this work we examine the ability of the method to
automatically detect the three dimensional structures of re-
gions with anomalous behavior in data where the signal is
hidden behind a strong background pattern. For this pur-
pose we selected an atmospheric data set from a warming
simulation with a regional climate model. Analyzing re-
sults of an ensemble of regional climate models, Gaertner
et al. [GJG∗07] found a general increase of cyclone inten-
sity over the Mediterranean Sea under a climate change sce-
nario. At least one of the high resolution atmospheric mod-
els, REMO, showed even cyclone activity with the character-
istic features of tropical cyclones. These are strong and very
large low pressure systems which persist for several days.
Although strong cyclones can easily be visually detected in
some quantities (e.g. sea level pressure), some of the aspects
of the cyclone dynamics cannot directly be visualized be-
cause of dominating natural patterns - a good test for our
method.

If we examine an 3D atmospheric temperature field, we
observe a strong vertical temperature gradient ranging from

less than −60◦C to more than 40◦C. Depending on the ge-
ographical extent of the data set, the horizontal temperature
variations within a horizontal slice can span more than 50
deg. Figure 6(a) shows a 3 weeks temporal mean of the tem-
perature for late summer using the REMO climate change
data. Evidently, the near surface air temperature is higher
over land compared to the ocean. Also not surprisingly, the
southern regions are generally warmer than the northern
countries.

In the time dependent case, pronounced yearly and daily
cycles are superimposed to the mean state. Further variations
are related to the natural variability of the system, which is
dominated by weather patterns.

Outstanding examples of weather induced 3D-
temperature anomalies are the patterns connected to
cyclone activities: In low pressure systems, warm air
rises because of their lower density compared with the
surrounding air. The condensation of water vapor releases
more energy at higher levels, enhancing the updraft process.
Due to this strong convection near the center of cyclones,
typical positive temperature anomalies can be observed at
higher altitudes.

This time dependent 3D temperature anomaly cannot
be visualized directly without applying further processing
steps. In order to derive the temperature anomaly pattern, for
each grid point a time mean has to be built over an appropri-
ate number of time steps. In our case, we have computed a
time mean over a 3 week period in order to reduce the influ-
ence the daily cycle and of single weather events.
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Algorithm 1 Search_neighbors( double configuration )
dist← allowed distance
nodesToCheck← (rootNode, remainingDist = 2*dist)
currNode← nodesToCheck[0]
while nodeToCheck.size > 0 do
if currNode.hasChildren() then
for each child that is not FINISHED do
compute distance to value in configuration
if distance < currNode.remainingDist then
nodeToCheck.add( child,

currNode.remainingDist - distance )
end if

end for
else
if currNode.remainingDist < dist then
for BLOCKED nodes update closest cell
currNode.state = BLOCKED

else
currNode is neighbor
update FINISHED state

end if
end if
currNode++

end while

The original REMO data set has a horizontal resolution of
approximately 50 km, defined on a rotated rectilinear grid.
The original hybrid vertical model levels (terrain following
at the bottom, pressure levels at the top of the atmosphere)
have been interpolated onto 30 unevenly distributed height
levels, allowing for a higher resolution near the surface. For
our purposes, the data was interpolated onto a horizontally
regular grid, using a higher resolution of 0.25 Deg in order to
maintain the most important structures. The grid finally used
for the LSC analysis has a size of 180x134x30 for a total of
76 time steps, resulting in a field of 723600 positions for
each scalar value.

Figure 6 shows different representations of the tempera-
ture field for time step 60. On the left panels (a) and (d), the
temperature isosurface at 265 Kelvin ( -8 deg C) is shown
in purple. Due to the strong vertical temperature gradient,
the positive anomaly at the location of the cyclone can only
be suspected in the area above the bump, but the 3D struc-
ture is not visible. The isosurface of the positive temperature
anomaly (+4◦C) is shown in (b) and (e). Clearly, the loca-
tion of the large cloud of exceptional warm air is correlated
with the cyclonic activity.

In 6 (c) and (f) the results of the 3D LSC method are
shown. In contrast to the offline computation of the temper-
ature anomaly, where specific knowledge about the general
structure of the data and about the dynamical processes hints
us to apply methods like the one described above, LSC au-
tomatically gives us information about locations of extraor-

dinary temporal changes in the temperature field. Due to the
pronounced daily cycle in the near surface temperatures and
the sparse temporal resolution of the data (6 hourly), LSC
produces small scale structures near the surface in addition
to the large scale structure at higher altitudes. The near sur-
face structures distract the perception of the signal related to
the cyclone dynamics, but even though, especially in the top
view the general shape of the LSC isosurface is in good cor-
relation with both the cyclone position and the temperature
anomaly pattern. The perspective view shows differences in
the upper part of the structure. Here we find the highest LSC
values near the center of the storm, in contrast to the broader
shape of the temperature anomaly.

5. Conclusion and Future Work

In our paper we explained the idea behind local statistical
complexity, proposed an new method for its fast and accu-
rate computation and showed that local statistical complex-
ity can be used to automatically detect relevant structures in
unsteady 3D multi-fields.
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