
Eurographics Symposium on Rendering 2008
Steve Marschner and Michael Wimmer
(Guest Editors)

Volume 27 (2008), Number 4

Accelerating Ray Tracing using Constrained Tetrahedralizations

Ares Lagae & Philip Dutré†

Department of Computer Science
Katholieke Universiteit Leuven

Abstract

In this paper we introduce the constrained tetrahedralization as a new acceleration structure for ray tracing. A

constrained tetrahedralization of a scene is a tetrahedralization that respects the faces of the scene geometry.

The closest intersection of a ray with a scene is found by traversing this tetrahedralization along the ray, one

tetrahedron at a time. We show that constrained tetrahedralizations are a viable alternative to current acceleration

structures, and that they have a number of unique properties that set them apart from other acceleration structures:

constrained tetrahedralizations are not hierarchical yet adaptive; the complexity of traversing them is a function

of local geometric complexity rather than global geometric complexity; constrained tetrahedralizations support

deforming geometry without any effort; and they have the potential to unify several data structures currently used

in global illumination.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1 Introduction

Tracing a ray through a scene and finding the closest inter-
section with the scene geometry is a fundamental operation
in computer graphics. During the last two decades, signifi-
cant efforts have been made to accelerate this operation, with
interactive ray tracing as one of the major driving forces. At
the heart of a fast method for intersecting a scene with a ray
lies the acceleration structure. Many different acceleration
structures exist, but research has focused almost exclusively
on a few well-tried and well-established techniques: regu-
lar and hierarchical grids, bounding volume hierarchies and
kd-trees. For an overview we refer to [Gla89, Hav00]. Spec-
tacular advances have been made, which have contributed
significantly to making interactive ray tracing a possibil-
ity [WSBW01, Wal04, RSH05]. However, despite the suc-
cess of these acceleration structures, several problems re-
main open. Handling deforming and dynamic geometry still
poses significant challenges [WMG∗07], and the local vs.
global complexity of acceleration structures is still not en-
tirely understood. One therefore wonders whether other ac-
celeration structures, that leave the beaten path of efficient
grids, bounding volume hierarchies and kd-trees, can pro-
vide viable alternatives.

Next to computer graphics, the ray shooting problem is

† e-mail: {ares.lagae,philip.dutre}@cs.kuleuven.be

also studied in computational geometry. For an overview
we refer to [dBCvKO08]. Ray shooting queries against a
large collection of polyhedra are answered by tracing the
ray through a simplicial complex such as a constrained
tetrahedralization. This is a well-known technique, see e.g.
the chapter Ray shooting and lines in space by Pelle-
grini in Handbook of Discrete and Computational Geome-

try [Pel97]. However, relevant work in computational geom-
etry is usually theoretical, and practical implementations and
experimental results are typically not available.

In this paper we explore the idea of accelerating the
operation of intersecting a scene with a ray using con-
strained tetrahedralizations. A constrained tetrahedralization
of a scene is a tetrahedralization that respects the faces of
the scene geometry. The closest intersection of a ray with a
scene is found by traversing this tetrahedralization along the
ray, one tetrahedron at a time, until a constrained face is en-
countered. This is illustrated in figure 1. We show that con-
strained tetrahedralizations are a viable alternative to state-
of-the-art acceleration structures, such as kd-trees, and that
constrained tetrahedralizations have a number of interesting
and unique properties that set them apart from traditional ac-
celeration structures. Constrained tetrahedralizations are not
hierarchical yet adaptive; the complexity of traversing them
is a function of local geometric complexity rather than global
geometric complexity; constrained tetrahedralizations sup-
port deforming geometry without any effort; and they have

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Ares Lagae & Philip Dutré / Accelerating Ray Tracing using Constrained Tetrahedralizations

(a) (b) (c) (d)
Figure 1: Accelerating ray tracing using constrained tetrahedralizations. (a) A scene consisting of the Armadillo model. (b) A tetrahedralization
of space that respects the geometry of the scene. (c) A ray is traced through the tetrahedralization. (d) A constrained face is hit.

the potential to unify several data structures currently used
in global illumination. Although constrained tetrahedraliza-
tions are not a silver bullet, and although they are in general
not yet faster than the most optimized kd-trees, constrained
tetrahedralizations offer several new perspectives on accel-
eration structures for ray tracing and deserve attention.

2 Constrained Tetrahedralizations

Triangulations are fundamental geometric structures in com-
putational geometry. It is often useful to require that a trian-
gulation contains specific vertices or edges. Such triangula-
tions are called constrained triangulations. Our acceleration
structure is based on constrained tetrahedralizations, their
three-dimensional counterpart.

2.1 Constrained Triangulations

Constrained triangulations are constructed starting from a set
of constraints. These constraints consist of a set of vertices
and a set of edges that must appear in the triangulation, and
are formalized as a planar straight line graph (PSLG). A
PSLG consists of a set of points and a set of segments, such
that the endpoints of each segment in the PSLG are also in
the PSLG, and the intersection of two segments in the PSLG
is either empty or an endpoint.

We introduce three types of constrained triangulations
with properties similar to the Delaunay triangulation. The
conforming Delaunay triangulation [ET92] adds vertices to
the PSLG such that all segments in the PSLG are also seg-
ments of the Delaunay triangulation. The constrained De-

launay triangulation [Che89, She07] does not add vertices
but relaxes the Delaunay criterion. The constrained Delau-
nay triangulation is not strictly a Delaunay triangulation, but
retains many of its desirable properties. The quality Delau-

nay triangulation [She98b] is obtained by refining a con-
strained Delaunay triangulation according to a quality crite-
rion based on the angles, the area, or the radius-edge ratio of
the triangles. Quality Delaunay triangulations are frequently
used in finite element methods.

Figure 2 shows a PSLG and its conforming Delaunay tri-
angulation, constrained Delaunay triangulation, and quality
Delaunay triangulation.

2.2 Constrained Tetrahedralizations

Constrained tetrahedralizations are also constructed starting
from a set of constraints. These constraints consist of a set
of vertices, edges and faces that must appear in the tetrahe-

dralization, and are formalized as a piecewise linear com-

plex (PLC) [MTT∗96]. A PLC consists of a set of 0D sim-
plices (vertices), 1D simplices (segments) and 2D simplices
(faces), such that the simplices corresponding to the bound-
ary of each simplex in the PLC are also in the PLC, and that
the intersection of two simplices of the PLC is either empty
or the union of lower dimensional simplices also in the PLC.

The three constrained triangulations introduced in the pre-
vious subsection have geometric equivalents in three dimen-
sions. The conforming Delaunay tetrahedralization [ET92]
adds vertices to the PLC such that all segments and faces
in the PLC are also segments and faces of the Delaunay
tetrahedralization. The constrained Delaunay tetrahedral-

ization [Che89, She07] does not exist for every PLC (a fa-
mous example is the Schönhardt polyhedron [Sch28]), and
deciding whether a polyhedron is tetrahedralizable is NP-
complete [RS92]. However, a condition guaranteeing the ex-
istence of the constrained Delaunay tetrahedralizations is
available, and that condition can be enforced by inserting
additional vertices into the PLC [She98a]. The quality De-

launay tetrahedralization [She98b] is obtained by refining
a constrained Delaunay tetrahedralization and is frequently
used in finite element methods.

Figure 3 shows the constrained Delaunay tetrahedraliza-
tion and quality Delaunay tetrahedralization of a PLC corre-
sponding to the Armadillo model.

3 Constructing Constrained Tetrahedralizations

We construct constrained tetrahedralizations from geometric
models in two steps. First, a piecewise linear complex is cre-
ated from the geometric model. Then, a constrained tetrahe-
dralization is constructed from the piecewise linear complex.

3.1 Constructing Piecewise Linear Complexes from

Geometric Models

Piecewise linear complexes can be seen as very general ge-
ometry representations, and are able to represent arbitrary
polygons, holes, and non-manifold geometry. The only re-
quirement is that polygons properly intersect. More specifi-
cally, polygons are only allowed to touch at shared edges or
shared vertices. This is a necessary condition because tetra-
hedralizations do not allow intersecting faces.

Many geometry representations in computer graphics sat-
isfy the requirements of piecewise linear complexes: man-
ifold geometry, geometry modeled using constructive solid
geometry operations, and geometry obtained by triangulat-

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Accelerating Ray Tracing using Constrained Tetrahedralizations

(a) (b) (c) (d)
Figure 2: Constrained triangulations. (a) A planar straight line graph representing a room containing a square and a tessellated circle. (b) The
conforming Delaunay triangulation. (c) The constrained Delaunay triangulation. (d) A quality Delaunay triangulation.

(a) (b) (c) (d)
Figure 3: Constrained tetrahedralizations. The constrained Delaunay tetrahedralization (a, b) and the quality Delaunay tetrahedralization (c, d)
of a piecewise linear complex representing the Armadillo model. Cutaway views expose the interior of the constrained tetrahedralizations.

ing higher order primitives such as NURBS or subdivision
surfaces. Polygon soup, an unstructured collection of arbi-
trary polygons, does not satisfy these requirements, because
polygons most probably will intersect. A piecewise linear
complex can be constructed from polygon soup by eliminat-
ing all self-intersections in the polygon soup by triangulating
polygons with respect to their intersection.

3.2 Constructing Constrained Tetrahedralizations

from Piecewise Linear Complexes

To compute constrained Delaunay tetrahedralizations, we
use the method by Si and Gärtner [SG05]. This method
works by updating the piecewise linear complex into an-
other geometrically equivalent piecewise linear complex that
is guaranteed to have a constrained Delaunay tetrahedral-
ization, and subsequently recovers the missing faces us-
ing a cavity re-tetrahedralization algorithm. For computing
quality Delaunay tetrahedralizations, we use the method by
Si [Si06a], which computes a constrained Delaunay tetrahe-
dralization and then generates an isotropic mesh using a siz-
ing function automatically derived from the geometric data.
Both of these methods are implemented in the TetGen soft-
ware package [Si06b], of which the main goal is to generate
suitable meshes for solving partial differential equations by
finite element methods.

For the remainder of the paper we use constrained Delau-
nay tetrahedralizations and quality Delaunay tetrahedraliza-
tions. We do not use conforming Delaunay tetrahedraliza-
tions since they are similar to constrained Delaunay tetra-
hedralizations, except that they are strictly Delaunay. Since
we do not rely on specific properties of these tetrahedral-
izations, we define a constrained tetrahedralization as any
tetrahedralization for which the constrained faces are geo-
metrically equivalent with a given geometric model.

4 Traversing Constrained Tetrahedralizations

Traversing a constrained tetrahedralization with a ray is done
by locating the tetrahedron containing the ray origin, and
traversing the tetrahedralization along the ray, one tetrahe-
dron at a time, until a constrained face is encountered. This
face is the closest face of the corresponding geometric model
hit by the ray. Figures 4 and 6 illustrate ray traversal in two
and three dimensions.

4.1 Locating the Ray Origin

Several methods can be used for locating the ray origin. For
now, we assume that the ray origin is situated within the do-
main of the tetrahedralization, but we will later relax this
assumption (see subsection 6.4).

The simplest method is a linear search over all tetrahedra
using a point-in-tetrahedron test. This test substitutes the ray
origin into the plane equations of the faces of the tetrahe-
dron, and uses the sign of the results to determine whether
the point is inside the tetrahedron. More efficient methods
for point location in triangulations and tetrahedralizations
are available both in computational geometry (e.g. monotone
subdivisions) and in computer graphics (e.g. grids).

In general, we will avoid locating the ray origin by ex-
ploiting ray connectivity, and only locate the position of the
camera once (see subsection 4.3). Therefore, we use a simple
method such as a linear search or a coarse grid. This already
suffices for reducing ray origin location to a fraction of the
total ray tracing time (see subsection 5.3).

4.2 Traversing the Tetrahedralization

After the tetrahedron containing the ray origin is located, the
tetrahedralization is traversed, one tetrahedron at at time, un-
til a constrained face is hit. The next tetrahedron traversed
by the ray is obtained by determining the face where the
ray exits the current tetrahedron, given the face where the
ray enters the current tetrahedron. This can easily be done

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Accelerating Ray Tracing using Constrained Tetrahedralizations

(a) (b) (c)
Figure 4: Ray traversal in 2D. (a) A constrained triangulation of the
scene of figure 2(a) and a ray. (b) The triangle containing the ray
origin is located. (c) The triangulation is traversed along the ray.
Ray traversal stops when a constrained edge is encountered.

(a) (b) (c)
Figure 5: Triangle traversal in 2D. (a) The 2D equivalent of the plane
intersection method. (b) The 2D equivalent of the half space classi-
fication method. (c) The 3D method based on Plücker coordinates
or scalar triple products.

using several ray-triangle intersection tests or a full ray-
tetrahedron intersection test [PT03]. However, we present
several more efficient alternatives.

Plane Intersections The planes of a tetrahedron intersect
the line corresponding to the ray at four different points.
The exit face corresponds to the smallest ray parameter
larger than the ray parameter of the entry face. The two-
dimensional equivalent of this method is illustrated in figure
5(a). A special case occurs for the tetrahedron containing the
ray origin, for which the entry face is not available. How-
ever, since the ray origin is inside the tetrahedron, the small-
est positive ray parameter indicates the exit face. A similar
method was used by Garrity [Gar90] (see subsection 6.8).

Half Space Classification The half space classification
method has a two-dimensional version, for traversing a tri-
angulation, and a three-dimensional version. In two dimen-
sions, the exit edge can be determined by classifying the ray
direction against the normal or direction vector of a single
line, which is determined by two vertices. The first vertex is
the intersection point of the ray and the entry edge. The sec-
ond vertex is the vertex opposite the entry edge. This method
is illustrated in figure 5(b). In three dimensions, the exit face
can be determined by classifying the ray direction against
the normals of three planes. Each of these planes is deter-
mined by three points. Two of these points are common for
all planes: the entry point of the ray, and the vertex opposite
to the entry face. The third point is one of the other vertices
of the tetrahedron.

Plücker Coordinates A directed line in three-dimensional
space can be expressed by six Plücker coordinates [TH99].
The permuted inner product of two pairs of Plücker coordi-

nates determines the relative orientation of the lines corre-
sponding to these coordinates. More specifically, the sign of
the permuted inner product determines whether their relative
orientation is clockwise or counterclockwise. A ray inter-
sects a triangle if the relative orientation of the ray direction
and each of the three consistently oriented directed edges is
the same. This is illustrated in figure 5(c). A ray-tetrahedron
intersection test can be computed as four ray-triangle inter-
section tests [PT03], requiring 12 permuted inner products.
However, the permuted inner product flips sign if the direc-
tion of one of the lines is reversed. This means that 6 per-
muted inner products can be reused.

Scalar Triple Products The scalar triple product of three
vectors is defined as the dot product of the first vector with
the cross product of the second and third vector. The scalar
triple product is equal to the signed volume of the paral-
lelepiped determined by the vectors. Scalar triple products
and Plücker coordinates are closely related. The sign of the
permuted inner product of two pairs of Plücker coordinates
corresponding to two directed lines is the same as the sign of
the scalar triple product of three vectors determined by the
direction vectors of the lines. Determining the exit face given
the entry face can be done using 3 to 6 scalar triple prod-
ucts. This method is more efficient than the method based on
Plücker coordinates since Plücker coordinates are relatively
expensive to compute.

Each of these methods is more efficient than several ray-
triangle intersection tests or a full ray-tetrahedron intersec-
tion test. In our ray traversal algorithm we have opted for
the scalar triple product method, which is simple to imple-
ment and efficient. However, additional performance gains
are most likely possible using low-level optimizations, or by
exploiting data level parallelism through SIMD instructions.

4.3 Ray Connectivity

Ray traversal consists of locating the ray origin, which de-
pends on the global number of tetrahedra in the tetrahedral-
ization, and traversing the tetrahedralization, which depends
on the local geometric complexity of the tetrahedralization.
Locating the ray origin for every ray is potentially costly.
Therefore we will avoid locating the ray origin by exploit-
ing ray connectivity. When using a camera model for which
all primary rays have the same origin, such as the tradi-
tional perspective camera, then the camera position has to
be located only once. All primary rays have the same origin.
Shadow rays and secondary rays start where the previous ray
in the path ended. The cost for locating the camera position
is amortized over all rays, and the complexity of tracing a
single ray now only depends on the local complexity of the
tetrahedralization.

4.4 Data Structure

The data structure for the constrained tetrahedralization used
during ray traversal is a static data structure, since both the
topology of the tetrahedralization and the position of the ver-

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Accelerating Ray Tracing using Constrained Tetrahedralizations

(a) (b) (c) (d)
Figure 6: Ray traversal in 3D. (a) All tetrahedra traversed by a ray hitting the Armadillo model. (b) A close-up of (a). (c) All tetrahedra traversed
by a ray just missing the Armadillo model. (d) A close-up of (c). The ray is not visible since it is entirely inside the tetrahedra.

tices is static. The data structure consists of an array of tetra-
hedra and an array of vertices. Each tetrahedron stores the
indices of its vertices, the indices of its neighboring tetra-
hedra, and a boolean value for each of its faces indicating
whether the face is constrained. Each vertex only stores its
position. Edges and faces are not explicitly represented.

5 Experimental Results

In this section we compare constrained tetrahedralizations
to state-of-the-art kd-trees, which are generally considered
among the fastest acceleration structures currently available.
We use the local greedy surface area heuristic kd-tree builder
of Wald and Havran [WH06], including optimizations such
as perfect splits. We have verified our implementation by ac-
curately reproducing their results [WH06, table 1]. We use
standard single-ray iterative kd-tree traversal. We did not use
low-level optimizations or SIMD instructions in our con-
strained tetrahedralization traversal nor in our kd-tree traver-
sal. Table 1 shows various statistics. All timings are obtained
on a single core of a 3 GHz Intel Xeon X5365 CPU. All im-
ages are rendered at a resolution of 512×512.

5.1 Ray Tracing Cost

Figure 7 and table 1 compare the ray tracing cost of
constrained Delaunay tetrahedralizations, quality Delaunay
tetrahedralizations and kd-trees.

The Neptune scene is rendered using one primary ray
per pixel using the constrained Delaunay tetrahedralization,
a quality Delaunay tetrahedralization and a kd-tree. Fig-
ures 7(b) and figure 7(c) show the ray tracing cost for each
pixel in the image, measured as the number of tetrahedra tra-
versed by the corresponding primary ray. Figure 7(d) show
the cost measured as the number of kd-tree nodes accessed
by the ray, using the same quantitative color scale. Although
the number of tetrahedra cannot be compared to the number
of nodes, these false color images give an impression of the
relative cost of the different parts of the image.

The quality Delaunay tetrahedralization is better suited
for ray tracing than the constrained Delaunay tetrahedral-
izations. This is because quality Delaunay tetrahedraliza-
tions are more adaptive to the geometry than constrained De-
launay tetrahedralizations, which often contain many large
tetrahedron fans. We will later present theoretical evidence
for this behavior (see subsection 6.3).

Both the quality Delaunay tetrahedralization and the kd-
tree are adaptive to the geometry. Rays that do not pass near

complex geometry have a lower cost than rays that do. The
behavior of the quality Delaunay tetrahedralization is even
slightly better than that of a kd-tree since it is more local-
ized. For example, the hand of Neptune forces the kd-tree
tree to introduce splitting planes that span a portion of the
scene larger than the hand. Quality Delaunay tetrahedraliza-
tions are more localized than kd-trees because they are not
hierarchical.

The ray tracing time using constrained Delaunay tetra-
hedralizations is within a factor 2 to 3 of the ray tracing
time using state-of-the-art kd-trees. This is a surprising re-
sult, considering that constrained Delaunay tetrahedraliza-
tions were not primarily designed for ray tracing, and that
efficient kd-trees are the result of two decades of research.
We present will later more insight into this behavior in (see
subsection 6.3).

5.2 The Teapot-in-a-Stadium Problem

The teapot-in-a-stadium problem consists of a setup where
a small high-polygon-count object (the teapot) is placed in
a large low-polygon-count environment (the stadium). The
cost of a ray should only depend on the geometry in the
neighborhood where the ray passes through.

Figure 8 shows three scenes constructed to test the teapot-
in-a-stadium problem. The high-polygon-count Chair model
is placed into a low-polygon-count Forest scene. For each of
these scenes the ray tracing cost of the constrained Delaunay
tetrahedralization, a quality Delaunay tetrahedralization and
a kd-tree is shown.

The quality Delaunay tetrahedralizations are not subject
to the teapot-in-a-stadium problem. Rays that do not pass
near the complex geometry of the chair have the same cost
as when the chair is omitted. Constrained Delaunay tetrahe-
dralizations on the other hand suffer from the teapot-in-a-
stadium problem. Although kd-trees are generally assumed
not to be subject to the teapot-in-a-stadium problem, the in-
fluence of the chair is less localized than with the quality
Delaunay tetrahedralization.

5.3 Ray Connectivity

Exploiting ray connectivity is important for reducing the
time needed for ray traversal. Figure 9 shows the Cornell

Box scene rendered using a point light source and shadow
rays, and using an area light source and path tracing. The
cost for locating the camera position is typically in the sub-
millisecond range, even for large scenes such as the Nep-

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Accelerating Ray Tracing using Constrained Tetrahedralizations

low cost high constrained Delaunay quality Delaunay kd-tree

N
ep

tu
ne

(a) (b) (c) (d)

Figure 7: Ray tracing cost. (a) The Neptune scene. (b-d) False color images representing the ray tracing cost for ray tracing the scene using (b)
the constrained Delaunay tetrahedralization, (c) a quality Delaunay tetrahedralization and (d) a kd-tree. The ray tracing cost is measured as (b,
c) the number of tetrahedra or (d) the number of nodes traversed by a ray. The color scale used for all false color images is the same.

low cost high constrained Delaunay quality Delaunay kd-tree

Fo
re

st

(a) (b) (c) (d)

Fo
re

st
&

L
ar

ge
C

ha
ir

(e) (f) (g) (h)

Fo
re

st
&

S
m

al
lC

ha
ir

(i) (j) (k) (l)

Figure 8: Teapot-in-a-stadium problem. (row 1) The low polygon count Forest scene, (row 2) the Forest & Large Chair scene, and (row 3) the
Forest & Small Chair scene, obtained by adding a large and a small version of the high-polygon-count Chair model to the low-polygon-count
Forest scene. (col 2, col 3, col 4) False color images representing the ray tracing cost for ray tracing these scenes using the constrained Delaunay
tetrahedralization (col 2), quality Delaunay tetrahedralizations (col 3) and kd-trees (col 4).

tune scene, and is amortized over millions of rays. When ray
connectivity is not exploited, the total rendering time for the
path tracer image increases by about 30%, even when a grid
is used to speed up ray origin location.

6 Discussion

In this section, we discuss several interesting and unique
properties of constrained tetrahedralizations.

6.1 Optimal Constrained Tetrahedralizations

The average cost of a ray shooting query in a simplicial com-
plex such as a constrained tetrahedralization is proportional
to the weight of the simplicial complex [AF99], which is de-
fined as the sum of the surface area of all faces of the tetra-
hedralization. This provides a heuristic for building good

tetrahedralizations, similar to the surface area heuristic for
kd-trees [MB92]. The difference in performance between a
kd-tree built using this heuristic and a kd-tree built using an
ad-hoc method is often a factor 2 or more [WH06].

Table 1 shows experimental evidence that supports this
theory. Quality Delaunay tetrahedralizations have a much
smaller weight than constrained Delaunay tetrahedraliza-
tions and result in better ray tracing performance. Moreover,
for every scene the ray tracing times are roughly proportional
with the weight of the tetrahedralizations. Note that this rela-
tion does not necessarily hold between different scenes since
the heuristic ignores effects due to locality of reference.

This is an important observation since it provides a heuris-
tic similar to the surface area heuristic for kd-trees for build-

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Accelerating Ray Tracing using Constrained Tetrahedralizations

neptune forest chair forest & large chair forest & small chair armadillo

scene statistics
triangles 2.64M 17.52k 408.41k 425.92k 425.92k 345.95k

constrained Delaunay tetrahedralization
tetrahedra 8.53M 63.08k 1.43M 1.48M 1.46M 1.21M

faces 17.07M 126.17k 2.86M 2.96M 2.92M 2.43M
constrained faces 2.65M 19.40k 408.77k 428.44k 429.10k 350.78k
construction time 209.30 s 0.69 s 24.09 s 26.17 s 27.09 s 17.94 s

weight 9.41k 23.49k 14.06k 24.76k 24.21k 6.60k
render time 3.62 s 1.51 s 4.29 s 2.82 s 2.01 s 1.10 s

avg # tetrahedra / ray 158.18 115.12 183.13 142.74 126.48 86.82
quality Delaunay tetrahedralization

tetrahedra 11.71M 123.29k 1.84M 1.96M 1.97M 1.86M
faces 23.42M 246.90k 3.69M 3.92M 3.95M 3.73M

constrained faces 2.65M 21.26k 409.04k 430.69k 430.94k 357.32k
construction time 491.13 s 2.27 s 51.54 s 56.19 s 58.99 s 120.27 s

weight 2.20k 8.10k 2.65k 8.46k 8.22k 2.30k
render time 1.01 s 0.42 s 0.75 s 0.63 s 0.48 s 0.61 s

avg # tetrahedra / ray 45.05 40.39 45.20 47.06 44.02 47.49
kd-tree

leaf nodes 7.65M 47.27k 1.76M 1.65M 1.52M 452.50k
n-emp leaf nodes 4.01M 27.51k 992.63k 921.46k 848.34k 203.38k
construction time 42.30 s 0.30 s 10.62 s 10.72 s 10.00 s 2.48 s

avg # triangles / n-emp leaf node 2.56 2.54 2.42 2.49 2.48 2.31
render time 0.37 s 0.23 s 0.29 s 0.24 s 0.22 s 0.28 s

avg # nodes / ray 45.17 38.94 43.78 32.58 30.86 46.22
avg # intersections / ray 2.24 2.41 2.19 2.43 2.40 2.20
Table 1: Statistics. Various statistics of the constrained Delaunay tetrahedralizations, quality Delaunay tetrahedralizations, and kd-trees.

ing constrained tetrahedralizations for ray tracing, and sug-
gests that minimizing the weight of constrained tetrahedral-
izations will most likely increase ray tracing performance.

6.2 Numerical Robustness of Ray Traversal

Construction and traversal of acceleration structures is sub-
ject to numerical robustness errors due to the approximate
nature of floating point arithmetic.

The construction of the constrained tetrahedralizations re-
lies on adaptive precision floating point arithmetic and ro-
bust geometric predicates [She97] in order to ensure robust
implementations of the geometric algorithms. This is com-
mon practice in computational geometry. The traversal of the
constrained tetrahedralizations on the other hand does not
include any mechanism to detect or avoid numerical robust-
ness errors or to handle degenerate cases. These mechanisms
often compromise speed and are in computer graphics usu-
ally traded for speed.

Although we did not experience any problems with nu-
merical robustness, it is possible to detect and even to avoid
these errors. Detecting problems during traversal can be
done using a traversal algorithm based on the plane intersec-
tions method. If the ray parameters computed during traver-
sal are not increasing, a wrong decision has been made.
Avoiding problems during traversal can be done by simply
temporarily moving a vertex in order to resolve the problem
(see subsection 6.6).

6.3 Time Complexity of Ray Traversal

The time complexity of traversing a constrained tetrahedral-
ization with a ray is linear in the number of tetrahedra tra-
versed by the ray, and the number of tetrahedra traversed by
a ray is relatively small. This assumes that the time for lo-
cating the camera position is amortized over all rays, that ray
connectivity is exploited and that a quality Delaunay tetrahe-
dralization is used. Interestingly, this time complexity does
not depend on the total size of the tetrahedralization.

In contrast, the time complexity of traversing hierarchical
acceleration structures such as kd-trees or bounding volume
hierarchies with a ray is logarithmic at best in the total size
of the kd-tree or bounding volume hierarchy.

This difference in time complexity cannot be overstated.
The number of tetrahedra traversed by the ray can be inter-
preted as the geometrical complexity of the neighborhood
of the ray. Constrained tetrahedralizations are probably the
only acceleration structure for ray tracing that exhibit a time
complexity in function of local geometric complexity rather
than global geometric complexity.

For example, the number of tetrahedra traversed by a ray
in a constrained tetrahedralization of a model of a single
house will not change if several other houses are also added
to the tetrahedralization. This is not the case for hierarchical
acceleration structures such as kd-trees or bounding volume
hierarchies, for which traversal starts at the root of the hierar-
chy. Although there have been some attempts to exploit ray
connectivity with hierarchical acceleration structures, for ex-

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Accelerating Ray Tracing using Constrained Tetrahedralizations

Figure 9: Exploiting ray connectivity. The Cornell Box rendered us-
ing (a) primary rays and shadow rays and (b) path tracing. Only the
origin of the camera was located. The ray origin of all shadow rays
and secondary rays was determined by exploiting ray connectivity,
reducing rendering time by about 30%.

ample by augmenting kd-trees with neighbor links [MB92]
or with sparsely distributed bounding boxes linked from bot-
tom to top [HB07], exploiting ray connectivity with hierar-
chical acceleration structures is difficult.

Unfortunately, we have not yet been able to gather exper-
imental evidence for this difference in time complexity. One
reason is that a single traversal step in a kd-tree or bounding
volume hierarchy is cheaper than a single traversal step in
a constrained tetrahedralization, which means that the effect
of this difference in time complexity might only show up for
large scenes.

6.4 Domain of the Constrained Tetrahedralization

Pellegrini [Pel97] assumes a subdivision of the entire space
for solving the ray shooting problem in simplicial complexes
such as constrained tetrahedralizations. In practice the do-
main of the constrained tetrahedralization is the convex hull
of the piecewise linear complex rather than the entire space.
This poses a problem for rays originating outside of the tetra-
hedralization. In this case the ray origin location fails.

The easiest solution is to enlarge the domain of the tetra-
hedralization to contain all possible ray origins. This is eas-
ily done by adding additional constraints to the piecewise
linear complex when the constrained tetrahedralization is
constructed, for example the bounding box of all possible
camera positions.

The most general solution for rays that originate outside
of the domain of the tetrahedralization is to determine the
tetrahedron where the ray enters the tetrahedralization, for
example by clipping the ray to the convex hull of the piece-
wise linear complex. This does not necessarily have to be an
expensive operation, since the convex hull of the piecewise
linear complex can easily be embedded in a larger simpler
geometric structure, such as a bounding box.

6.5 A Unified Data Structure for Global Illumination

So far, we presented constrained tetrahedralizations as an
acceleration structure for ray tracing. However, constrained
tetrahedralizations have the potential to unify several data
structures currently used in global illumination algorithms.

In a constrained triangulation, arbitrary data can easily be
associated with vertices, edges, faces and tetrahedra, and ad-
ditional vertices, edges, faces and tetrahedra can easily be
inserted to accommodate the data. Moreover, this data is di-

Figure 10: Ray tracing deforming geometry. The top row shows
three frames of animations of a deforming Armadillo model. The
bottom row shows the corresponding deformed constrained tetrahe-
dralization. All frames were ray traced without reconstructing the
tetrahedralization and without updating the topology of the tetrahe-
dralization. (See accompanying video for full animations.)

rectly accessible during ray traversal. This means that other
spatial data structures frequently used in global illumina-
tion, such as the photon map or the irradiance cache, can be
merged into the constrained tetrahedralization, and that ex-
pensive lookups into these spatial data structures during ray
traversal are completely eliminated. Tetrahedralizations are
an excellent tool for interpolation of irregularly spaced data,
and constrained tetrahedralizations can easily accommodate
discontinuities in that data by introducting additional con-
straints. Therefore, constrained tetrahedralizations are well
suited for interpolating global illumination data, such as ir-
radiance estimates from photon maps.

6.6 Deforming and Dynamic Geometry

Although several approaches for ray tracing animated scenes
have been proposed, traditional acceleration structures have
severe problems with handling deforming and dynamic ge-
ometry [WMG∗07]. Constrained tetrahedralizations on the
other hand can support deforming and dynamic geometry
relatively easy.

Deforming Geometry The data structure used to store a
constrained tetrahedralization during ray traversal is static.
Static data structures do not allow to modify the topology of
the constrained tetrahedralization, but do allow to change the
position of the vertices. Vertices can be moved freely as long
as the topology of the tetrahedralization does not change.
This is the case if the vertex stays within the union of the
tetrahedra incident on the vertex. Moving vertices is useful
for avoiding numerical robustness errors (see subsection 6.2)
and for handling deforming geometry.

Figure 10 shows two frames of a deforming Armadillo

model. All frames are rendered with a single static con-
strained quality tetrahedralization. Although the global de-
formation is quite large, the local deformation remains small,
and the topology of the tetrahedralization does not change.
The time to image for the 100-frame animation is 276 s us-

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Accelerating Ray Tracing using Constrained Tetrahedralizations

ing kd-trees and 189 s using a constrained tetrahedralization.
The constrained tetrahedralizations is 30% faster because the
build time is amortized over all frames.

Interestingly, it is possible to exactly describe for which
deformations this works. If the deformation field is C1 con-
tinuous and divergence-free, then no local or global self-
intersections can occur [vFTS06]. These deformation fields
can model a wide variety of deformations. This means that
in contrast with existing acceleration structures, constrained
tetrahedralizations support deformations without any addi-
tional effort, simply by applying the deformation to all ver-
tices. The range of deformations for which this works is
probably much larger than that of several recently proposed
deformable acceleration structures.

Dynamic Geometry Traditional acceleration structures
have to be rebuilt from scratch every frame in order to sup-
port dynamic geometry. This is because efficient insertion
and removal operations that do not compromise ray trac-
ing performance are currently not available for hierarchical
acceleration structures. Dynamic constrained tetrahedraliza-
tions on the other hand do allow to modify the topology and
provide efficient insertion and removal operations. These
data structures are similar to half-edge data structures used
for meshes. This means that in contrast with existing accel-
eration structures, constrained tetrahedralizations can easily
support dynamic geometry without completely rebuilding
the tetrahedralization.

6.7 Other Advantages

Constrained tetrahedralizations have several other advan-
tages not mentioned so far.

Level-of-Detail Combining traditional acceleration struc-
tures with level-of-detail is difficult. Dynamic constrained
tetrahedralizations on the other hand use the same half-edge
like data structures as dynamic meshes. It should be possi-
ble to directly perform progressive mesh operations such as
vertex splits or edge collapses on meshes embedded in con-
strained tetrahedralizations.

Ray Tracing on the GPU Traditional hierarchical acceler-
ation structures such as kd-trees and bounding volume hier-
archies need to maintain a stack during ray traversal. This
can be difficult on GPU-like architectures [PGSS07]. Con-
strained tetrahedralizations on the other hand only need the
current tetrahedron for ray traversal.

6.8 Related Work

In electromagnetics, Yun et al. [YZI02] presented a ray
tracing procedure for radio wave propagation based on a
constrained Delaunay triangulation of a planar straight line
graph. However, their work is limited to two dimensions.

In computer graphics, Márton [Már95] investigated the
use of Voronoi diagrams for accelerating ray tracing. How-
ever, the faces of the acceleration structure are not aligned
with the scene geometry. Marmitt and Slusallek [MS06] pre-
sented a method for ray tracing unstructured volume data by

traversing a Delaunay tetrahedralization, using a tetrahedron
traversal algorithm similar to ours based on Plücker coordi-
nates. Their work is based on earlier similar work by Gar-
rity [Gar90]. However, their methods are limited to volume
data and are not designed for geometric models.

In finite element methods, Favre and Löhner [FL94] pre-
sented a method to ray trace a finite element mesh to display
the results of a field solver analysis. Their idea is roughly
similar to ours, but their work lacks an experimental analy-
sis and offers few insights into the behavior of the approach.

7 Conclusion and Future Work

Constrained tetrahedralizations have been largely ignored
in computer graphics, although they have a number of in-
teresting and unique properties. Constrained tetrahedraliza-
tions are not hierarchical, have an interesting time complex-
ity, can easily support deforming and dynamic geometry,
and have the potential to unify several data structures used
in global illumination. Constrained tetrahedralizations offer
several new perspectives on acceleration structures for ray
tracing and deserve attention.

There are plenty of opportunities for future work. The most
important one is evaluating the performance of constrained
tetrahedralizations for a large variety of geometric models.
This has been difficult because geometric models in com-
puter graphics are often very large and very badly condi-
tioned. This is a problem for current implementations for
geometry repair, and for current implementations for com-
puting constrained Delaunay tetrahedralizations and quality
Delaunay tetrahedralizations, which were developed in the
context of finite element methods. Although these problems
are mostly practical, solving them is a major effort, that can-
not be justified without a proof of concept that shows that
constrained tetrahedralizations are promising.

Acknowledgments

Ares Lagae is a Postdoctoral Fellow of the Research Foundation -
Flanders (FWO). We are grateful to Peter Vangorp and Jurgen Lau-
rijssen for last minute help, to Jan Welkenhuyzen from Materialise
for help with geometry repair, and to Tim Volodine for several useful
suggestions. We acknowledge The Utah 3D Animation Repository,
The Stanford 3D Scanning Repository, and the AIM@SHAPE Shape

Repository for the scenes used in this paper.

References

[AF99] ARONOV B., FORTUNE S. J.: Approximating
minimum-weight triangulations in three dimensions. Dis-

crete and Computational Geometry 21 (1999), 527–549.

[Che89] CHEW L. P.: Constrained Delaunay triangula-
tions. Algorithmica 4, 1 (1989), 97–108.

[dBCvKO08] DE BERG M., CHEONG O., VAN KREVELD

M., OVERMARS M.: Computational Geometry: Algo-

rithms and Applications, third ed. Springer-Verlag, 2008.

[ET92] EDELSBRUNNER H., TAN T. S.: An upper bound
for conforming Delaunay triangulations. In Proceedings

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Ares Lagae & Philip Dutré / Accelerating Ray Tracing using Constrained Tetrahedralizations

of the 8th annual symposium on Computational geometry

(1992), pp. 53–62.

[FL94] FAVRE J., LÖHNER R.: Ray tracing with a space-
filling finite element mesh. International Journal for Nu-

merical Methods in Engineering 37, 20 (1994), 227–253.

[Gar90] GARRITY M. P.: Raytracing irregular volume
data. In VVS ’90: Proceedings of the 1990 workshop on

Volume visualization (1990), pp. 35–40.

[Gla89] GLASSNER A. S. (Ed.): An Introduction to Ray

Tracing. Academic Press Ltd., 1989.

[Hav00] HAVRAN V.: Heuristic Ray Shooting Algorithms.
PhD thesis, Czech Technical University in Prague, 2000.

[HB07] HAVRAN V., BITTNER J.: Ray tracing with sparse
boxes. In Proceedings of the Spring Conference on Com-

puter Graphics 2007 (2007), pp. 49–54.

[Már95] MÁRTON G.: Acceleration of ray tracing via
Voronoi-diagrams. In Graphics Gems V. 1995, pp. 268–
284.

[MB92] MACDONALD D. J., BOOTH K. S.: Heuristics
for ray tracing using space subdivision. The Visual Com-

puter 6, 3 (1992), 153–166.

[MS06] MARMITT G., SLUSALLEK P.: Fast ray traversal
of tetrahedral and hexahedral meshes for direct volume
rendering. In Proceedings of Eurographics/IEEE-VGTC

Symposium on Visualization (EuroVIS) 2006 (2006),
pp. 235–242.

[MTT∗96] MILLER G., TALMOR D., TENG S., WALK-
INGTON N., WANG H.: Control volume meshes us-
ing sphere packing: Generation, refinement and coarsen-
ing. In Proceedings of the 5th International Meshing

Roundtable (1996), pp. 47–61.

[Pel97] PELLEGRINI M.: Ray shooting and lines in
space. Handbook of discrete and computational geometry

(1997), 599–614.

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P.,
SLUSALLEK P.: Stackless kd-tree traversal for high per-
formance GPU ray tracing. Computer Graphics Forum

26, 3 (2007), 415–424.

[PT03] PLATIS N., THEOHARIS T.: Fast ray-tetrahedron
intersection using plÃijcker coordinates. journal of

graphics tools 8, 4 (2003), 37–48.

[RS92] RUPPERT J., SEIDEL R.: On the difficulty of tri-
angulating three-dimensional nonconvex polyhedra. Dis-

crete and Computational Geometry 7, 3 (1992), 227–253.

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.:
Multi-level ray tracing algorithm. ACM Transactions on

Graphics (2005), 1176–1185.

[Sch28] SCHÖNHARDT E.: Über die Zerlegung von
Dreieckspolyedern in Tetraeder. Journal Mathematische

Annalen 98, 1 (1928), 309–312.

[SG05] SI H., GÄRTNER K.: Meshing piecewise lin-
ear complexes by constrained Delaunay tetrahedraliza-
tions. In Proceedings of the 14th International Meshing

Roundtable (2005), pp. 147–163.

[She97] SHEWCHUK J. R.: Adaptive precision floating-
point arithmetic and fast robust geometric predicates. Dis-

crete and Computational Geometry 18, 3 (1997), 305–
363.

[She98a] SHEWCHUK J. R.: A condition guaranteeing the
existence of higher-dimensional constrained Delaunay tri-
angulations. In Proceedings of the 14th Annual Sympo-

sium on Computational Geometry (1998), pp. 76–85.

[She98b] SHEWCHUK J. R.: Tetrahedral mesh genera-
tion by Delaunay refinement. In Proceedings of the 16th

Annual symposium on Computational geometry (1998),
pp. 86–95.

[She07] SHEWCHUK J. R.: General-dimensional con-
strained Delaunay and constrained regular triangulations,
I: Combinatorial properties. Discrete and Computational

Geometry (2007). to appear.

[Si06a] SI H.: On refinement of constrained Delaunay
tetrahedralizations. In Proceedings of the 15th Interna-

tional Meshing Roundtable (2006), pp. 61–69.

[Si06b] SI H.: TetGen: A quality tetrahedral mesh
generator and three-dimensional Delaunay triangulator.
http://tetgen.berlios.de/, 2006.

[TH99] TELLER S., HOHMEYER M.: Determining the
lines through four lines. journal of graphics tools 4, 3
(1999), 11–22.

[vFTS06] VON FUNCK W., THEISEL H., SEIDEL H.-P.:
Vector field based shape deformations. ACM Transactions

on Graphics 25, 3 (2006), 1118–1125.

[Wal04] WALD I.: Realtime Ray Tracing and Interac-

tive Global Illumination. PhD thesis, Saarland University,
2004.

[WH06] WALD I., HAVRAN V.: On building fast kd-trees
for ray tracing, and on doing that in O(N log N). In Pro-

ceedings of the IEEE 2006 Symposium on Interactive Ray

Tracing (2006), pp. 61–69.

[WMG∗07] WALD I., MARK W. R., GÜNTHER J., BOU-
LOS S., IZE T., HUNT W., PARKER S. G., SHIRLEY P.:
State of the art in ray tracing animated scenes. In Euro-

graphics 2007 State of the Art Reports (2007).

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C.,
WAGNER M.: Interactive rendering with coherent ray
tracing. Computer Graphics Forum (Proceedings of EU-

ROGRAPHICS 2001) 20, 3 (2001), 153–164.

[YZI02] YUN Z., ZHANG Z., ISKANDER M. F.: A ray-
tracing method based on the triangular grid approach and
application to propagation prediction in urban environ-
ments. IEEE Transactions on Antennas and Propagation

50, 5 (2002), 750–758.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

http://tetgen.berlios.de/

