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Abstract

We present a spectral approach to automatically and efficiently obtain discrete free-boundary conformal param-
eterizations of triangle mesh patches, without the common artifacts due to positional constraints on vertices and
without undue bias introduced by sampling irregularity. High-quality parameterizations are computed through a
constrained minimization of a discrete weighted conformal energy by finding the largest eigenvalue/eigenvector of
a generalized eigenvalue problem involving sparse, symmetric matrices. We demonstrate that this novel and robust
approach improves on previous linear techniques both quantitatively and qualitatively.

1 Introduction

Due to its central importance in geometry processing, the
subject of mesh parameterization has been researched for
a number of years. “Parameterizing” a triangle mesh tradi-
tionally means computing a correspondence between a dis-
crete, triangulated surface patch (possibly with holes) and a
homeomorphic planar mesh through a piecewise linear map.
Finding this piecewise linear mapping amounts to assign-
ing each mesh node a pair of coordinates (u,v) referring to
its position in the planar region. Such (ideally one-to-one)
mappings provide a flat parametric space, allowing com-
plex mesh processing operations such as surface fitting and
remeshing to be performed directly on a flat domain rather
than on the curved, original surface patch. Planar coordinates
are also particularly useful to dramatically enhance the vi-
sual richness of a 3D surface through texture mapping, both
for overly simplified character meshes in game engines and
for incredibly detailed surfaces in computer-generated fea-
ture films. Consequently, fast methods generating less dis-
tortion than current tools are still in high demand.

1.1 Previous Work

Since we are trying to flatten an intrinsically non-flat trian-
gulated surface from 3D down to 2D, there is in general no
perfect way to perform this flattening without introducing
some form of distortion. Due to the ubiquitous need for local
and global parameterizations in geometry processing appli-
cations, a number of distortion measures have been defined,
and various numerical approaches have been proposed to ef-
ficiently provide (u,v) parameter values to meshes minimiz-
ing one of these measures. Although thorough surveys are
available [FHO5, SPR06, HLSO7], we go over the methods
most related to our contribution to motivate our approach.

Existing methods generally fall into one of three categories:
linear, non-linear, and hybrid methods. Non-linear methods,
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Figure 1: Sforza. On this mesh (50K vertices) with varying sam-
pling rates (left), previous linear methods (top, LSCM/DCP) fail to
capture the symmetry of the mesh in the parameterization (solved in
4s). In contrast, our spectral approach (bottom) automatically com-
putes a low-distortion conformal map (solved in 5.2s).

based on discrete or differential-geometric non-linear distor-
tion measures [HGOO, SdSO1, SLMBO0S5, ZKK02, SGSH02,
ZSGS04, KSS06, JKG07, SSP08], offer strong theoretical
guarantees on the resulting maps, at the cost of a gen-
erally higher computational effort. Recently, hybrid tech-
niques linearizing these non-linear measures have been pro-
posed to emulate non-linear methods at the cost of only a
few linear solves [ZLS07, BCGBO08], potentially saving ex-
ecution time—although the trade-off between the effect of
the linearization and the computational saving may be very
application-dependent.

Linear methods, instead, require solving a single lin-
ear system. These methods date back to the use of the
connectivity-based graph Laplacian in Tutte’s embedding
theorem [Tut63] and its generalizations [GGTO06]. A signifi-
cant improvement, involving a linear system not only depen-
dent on the connectivity but also on the geometry of the orig-
inal mesh (through the “cotangent weights”), was introduced
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in [EDD*95] (see [HAT*00] as well). Methods arising from
strictly convex combinations were also proposed [Flo97] for
increased robustness on arbitrary meshes. All these initial
linear methods required pinning down the coordinates of the
whole patch boundary to a given (generally convex) shape in
the parameter plane in order to render the linear system full
ranked. Extensions to free boundaries (requiring only two
vertices to be fixed) were later proposed using two very dif-
ferent derivations under the respective names of least square
conformal maps (LSCM) [LPRMO2] and discrete conformal
parameterizations (DCP) [DMAO2]. Those were shown to
achieve significantly lower angle distortion than previous re-
sults. Since then, alternatives offering either less flexibility
in the boundary [LKLO2] or requiring more than just one
linear solve [ZRS05, ZLS07] have appeared. Although we
will not consider altering the topology of the mesh in this
paper, note that much reduced distortion can be obtained if
cuts [GGHO02,LPRMO02,SH02,SCOGLO02] or cone singulari-
ties [TACSD06,BCGBO0S] are judiciously placed in the orig-
inal mesh before parameterization.

1.2 Contributions

We propose a novel linear-algebra-based conformal param-
eterization technique to parameterize triangle mesh patches.
Unlike previous free-boundary linear methods we do not re-
quire point constraints to be given to the solver, thus dras-
tically reducing distortion at the relatively small additional
cost of finding an eigenvector rather than solving a linear
system directly. While Laplacian eigenvectors have been
proposed as a constraint-free approach to least-distorted
maps in the context of manifold learning [BNO3] and graph
drawing [Kor(05], we demonstrate that a better conformal pa-
rameterization can be found through a generalized eigen-
value problem as it minimizes a weighted conformal en-
ergy mostly insensitive to sampling irregularity of the orig-
inal mesh. We discuss the similarities and differences be-
tween our approach and previous work (in particular, the
work of [LPRM02] and [DMAO02]), and demonstrate numer-
ical advantages of our spectral method on small and large
meshes alike.

1.3 Notations

Throughout this paper, the number of vertices will be de-
noted V, while E will refer to the number of edges. V;, will
denote the number of vertices on the boundary of the mesh
patch (i.e., not including other possible internal boundaries).

u

Figure 2: Parameterization. a piecewise-linear map  creates a

correspondence between a 3D mesh X with boundary and a 2D
mesh U of same topology, mapping each triangle from R> to R,

We will also denote x; = (x;,y;,z;) the 3D position of the
i-th node of a mesh patch X, and w; = (u;,v;) the 2D posi-
tion (parameter value) of the corresponding node in the 2D
mesh Y. The vector u will thus denote the column vector
(uy,vi,uz,va,... 7uv,vv)T. Finally, we will use the notation
e;j to denote the edge in U between vertex u; and u;.

2 Background on Discrete Conformal Maps
Before presenting our contribution, we point out some of
the important results known on linear methods to conformal
maps, including the treatment of boundary conditions that
are often glanced over in parameterization surveys.

2.1 Relevant Continuous Definitions

A number of differential geometric notions are quite rele-
vant to the problem of conformal parameterizations, as we
briefly review next. For simplicity, we will restrict our expla-
nations to disk-like surface patches, i.e., simply connected
2-manifolds with boundary.

Dirichlet Energy. For a smooth map u from a differential
surface patch &’ to its image U/, its Dirichlet energy is defined
as the £ norm of its gradient, i.e.:

1
Ep = 7/ |Vu|?dA. (1
2 Jx

This energy is, by definition, always positive, and mea-
sures a form of distortion that the map u creates. Addition-
ally, if the area of the image of the map u is denoted by
A(u) = [ det(u)dA, it is well known that for any map u,
the Dirichlet energy is bounded from below by the map area:
Ep > A(u) [PP93].

Conformality and Harmonicity A map that minimizes the
Dirichlet energy given fixed boundary conditions is har-
monic, as it satisfies Au = 0 (where A is the Laplace-
Beltrami operator, i.e., the Laplacian on the original surface
X). If the minimal possible value of the Dirichlet energy
(i.e., the area of the image of the map) is attained, the result-
ing map is conformal (also referred to as angle-preserving),
as one can show that the angle between any two tangent vec-
tors at a point on the original surface X is mapped to the
exact same angle between the two mapped tangent vectors
on the image U. It is therefore convenient to define another
energy, called the conformal energy E¢ as:

Ec(u) = Ep(u) — A(u), )
so that now a map u is conformal iff this energy is zero. In
this continuous setting, the Riemann mapping theorem states
that for any given shape of the boundary of the image I/, a
conformal parameterization always exists. However, if we
also fix the map of the boundary of the domain (i.e., if we
fix the map u along the boundary), conformality is often im-
possible: minimizing the conformal energy will reduce the
angle distortion of the map as much as possible given this
boundary map, but will not suppress it completely.

2.2 Discrete Setting

When dealing with triangle meshes instead of smooth man-
ifolds, the previous definitions need to be adapted. In fact,
only the map u itself needs to be discretized: the rest of the
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definitions can be used as is, resulting in particularly simple
expressions for piecewise-linear maps.

Discretization of the Map As computer graphics applica-
tions often use triangle meshes, an obvious discretization of
the smooth map u is to now consider it piecewise-linear, i.e.,
mapping each triangle on X’ to a triangle on U/ linearly (see
Fig. 2). It was shown in [PP93] that the Dirichlet energy of
such a piecewise linear map can be expressed in a particu-
larly simple expression:

Ep(u) :Z%(cot(eij)+cot(9ji))(ui—u]')2, (3)
€jj
where 6;; and 6;; are the two angles opposite to the edge
linking x; and x; on mesh X. Notice that this expression is
a quadratic form in the coordinates of I/, with coefficients
computed on the original 3D mesh. Furthermore, the Dirich-
let energy can be expressed in matrix form as:

Ep(u) = %u’LDu,

where Lp is a 2V x 2V sparse, symmetric matrix containing
only the cotangent coefficients computed on X. Since a map
minimizing the Dirichlet energy should have its Laplacian
being zero, the matrix Lp is sometimes interpreted as a dis-
crete Laplacian. It was later noticed that this expression can
be also derived through discrete exterior calculus [DKTO05]:
the Laplacian matrix Lp is formulated as d’ xd, where d is
the edge-vertex adjacency matrix, and % is an E X E diag-
onal matrix called the discrete Hodge star, whose non-zero
entries are the cotan coefficients discussed above (altering
these coefficients allows for the design of quasi-conformal
maps, as we will mention in Section 4.3).

The area of the parameterization can also be expressed sim-
ply: summing up the area At of each mapped triangle T in U
(with Ar(a) =X, er %(uiv]- —u;v;)), the total area is com-
puted using only the coordinates of the boundary vertices (as
contributions from internal edges cancel out) through:

A(ll) = Z %(M[Vj - ujvi),
e,»,»eau

where ¢;; is along the boundary dl{. Therefore, we can de-
fine a matrix A such that A(u)= %utAu. This 2V x 2V matrix
is symmetric and extremely sparse, as only the entries corre-
sponding to boundary vertices are non zero. Consequently,
the conformal energy Ec = Ep—.A can be expressed as a
quadratic form:

Ec(u) = %uthm

where Lc = Lp—A is a sparse, symmetric matrix that was
explicitly given in [DMAO2](Eq. 7).

Minimization of Conformal Energy A natural way to
get a discrete notion of a conformal map is presented
in [DMAO2]: the piecewise-linear mapping is called discrete
conformal when it minimizes the discrete quadratic energy
Ec(u)—thus only requiring a linear system to be solved.
LSCM [LPRMO02], instead, asks that the gradient of the u
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coordinate and the gradient of the v coordinate be as or-
thogonal as possible per triangle in the parameterization. In
other words, a piecewise-linear map is least-square confor-
mal when the energy Ejscm(u) = [y %|VuL — Vv|2dA is
minimized, where L denotes a counterclockwise 90° rota-
tion in X'. However, it is easy to see that:

Erscm(u) :/X %(Vuj‘ Vut + Vv Vv =2Vt - Vv) dA

:/ %(Vu-Vu—i—VwVv—ZVuva)dA
Jx
= Ep(u) — A(u).

(The same derivation can be expressed almost verbatim us-
ing discrete differential forms, by substituting d for V, and
the Hodge star x for (.); this common discrete-calculus
view nicely ties up LSCM/DCP with the other discrete con-
formal methods based on linear algebra [GY03, TACSDO06].)
Consequently, and as noted in [CSD02], LSCM and DCP
are identical, down to the way they constrain two vertices to
guarantee a unique solution—notice that both resulting ma-
trices are symmetric if the constraints are moved to the right-
hand side of the linear system. The only differences that can
be found in practice are due to different numerical approxi-
mations of the cotangent weights, and according to our tests,
the resulting maps are visually undistinguishable. Due to its
simplicity, LCSM/DCP has since been used in many 3D ge-
ometric tools (Blender3D, CGAL, and plugins for Autodesk
3ds Max® and Maya®) as a quick way to provide a good
parameterization for surface patches.

Figure 3: Saddle mesh. LSCM/DCP with different boundary ver-
tices chosen as constraints. The resulting parameterizations (top)
highly depend on the constraints, and impact texture mapping.

3 Spectral Parameterizations

‘We now present our spectral approach to discrete conformal
parameterization through a sparse, symmetric generalized
eigenvalue problem—a fast numerical procedure to solve a
weakly-constrained minimization of the conformal energy.

3.1 Motivation

The conventional approach to find a free-boundary parame-
terization from the quadratic form L¢ of the conformal en-
ergy described above is to fix two (u,v) coordinates (thus
pinning down two vertices in the parameter plane in order to
suppress rank deficiency and avoid the degenerate solution
u = constant), and solve the linear system Lcu = 0: this sets
the translation, rotation, and scale of the solution, and leads
to what can be called a discrete or least-square conformal
map [DMAO2, LPRMO02]. However, the choice of vertices
to pin down drastically influences the results as illustrated
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in Fig. 3, a property specific to the discrete setting since, in
the continuous case, a conformal map exists for any bound-
ary shape homeomorphic to a circle. It was independently
found by the authors of LSCM and DCP that picking two
boundary vertices the farthest from each other (in terms of
their geodesic distance) seems to give good results in gen-
eral. However, this particular choice is far from being devoid
of artifacts on non-trivial models: global distortion can en-
sue and a (sometimes significant) degradation in conformal-
ity is often witnessed around the pinned vertices as shown
in Figures 3, 4, and 6 (note that this dependency on pinned
points has sparked the development of hierarchical meth-
ods, see [RLO3]). This issue only worsens if more vertices
are fixed (unless carefully chosen by hand), as it adds more
point constraints to the minimization. As we now show, a
lesser-distorted parameterization can be efficiently obtained
via spectral analysis of the Laplacian-like matrix Lc.

e
1 Qc 15+

Figure 4: Lion-head. Left: LSCM/DCP with two constrained ver-

tices shown in red. Note the conformality distortion near the con-

straints, despite the nearly uniform and circular boundary. Right:

Spectral conformal parameterization, with no visual bias. The color

scheme indicates quasi-conformality (QC) distortion per triangle.

3.2 Fiedler Vector of ¢

A solution to avoid adding vertex constraints to the rank de-
ficient linear system Lcu = 0 is through recourse to spectral
theory. Digital geometry processing is no stranger to spec-
tral graph theory [Got03,ZvKDO07, KSOO4,L66, ACSTDO7]:
graph theoretical results have even been used for parameter-
ization purposes [GGS03,ZSGS04]—albeit in the context of
non-linear methods. Particularly relevant to our approach, a
well-known graph-theoretical result is a variational charac-
terization of the eigenvectors of sparse symmetric positive
semi-definite Laplacian matrices: the eigenvector u* associ-
ated to the first non-zero eigenvalue of an n x n Laplacian
matrix L (i.e., the vector satisfying Lu* = Au*, A being the
smallest non-zero eigenvalue) of rank n — k is the solution to
a constrained minimization of a simple quadratic form:

u" = argmin u'Lu,
u’::O
u'u=1

where e is an n X k matrix whose columns span the kernel of
L. This eigenvector u” is called the Fiedler vector of L as an
homage to M. Fiedler, who first stressed the importance of
its variational nature [Fie73]. In our context of mesh param-
eterization, the Fiedler vector of Lc has a simple, intuitive
interpretation: it is the closest solution to the linear system

defined in LSCM/DCP under the constraint that the barycen-
ter of the solution must be at 0 (u*te =0) and its moment
of inertia (i.e., sum of squared distances to the barycenter)
must be unit (u*'u* = 1). This spectral approach thus gives
us a parameterization without singling out two vertices; the
constraints are, in effect, spread evenly throughout the mesh.

While exploiting Fiedler vectors of Laplacian-like matrices
has been successfully proposed in the context of manifold
learning [RS00], graph drawing [Kor(05], dimensionality re-
duction [BNO3], image segmentation [SMO00], and spherical
parameterization [GGSO03], we argue that this is not a good
alternative to LSCM/DCP. Indeed, the Fiedler vector mini-
mizes the so-called Rayleigh quotient:
u'Lcu
u‘u

. @

u* = argmin
u

thus striking a balance between discrete conformality (to
best minimize the numerator) and £>-distance to the origin
(to best maximize denominator). The latter L2 norm, tanta-
mount to the energy of springs between each vertex and the
origin, is however not appropriate in our context: minimiz-
ing the Rayleigh quotient may come at the price of severely
sacrificing conformality locally, as illustrated in Fig. 5.

R IR \/
Figure 5: Airplane. A conformal parameterization of the airplane
model (where the boundary is in the front) results in a mesh with
wildly varying triangle sizes (left); while the Fiedler vector of L¢
(top, computed at machine accuracy) creates flips and tent-like dis-
tortion on the back stabilizers (upper right), our robust spectral pa-

rameterization (bottom) produces no flip (lower right).

3.3 Spectral Conformal Map

Instead of directly using an eigenvector of the conformal-
based Laplacian matrix, we propose to define the discrete
spectral conformal parameterization u* as a generalized
eigenvector satisfying:

Lcu = ABu, 5)

where Lc is the matrix associated to the conformal quadratic
form defined in Section 2.2, and B is a 2V x 2V diagonal
matrix with 1 at each diagonal element corresponding to
boundary vertices (not including any of internal boundaries
of the patch) and 0 everywhere else. As L¢ is (theoretically)
positive semi-definite, and both matrices are symmetric, the
generalized eigenvalues and eigenvectors are real. This new
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Figure 6: Egg crate. While point constraints in LSCM/DCP can in-
troduce significant distortion (left), our spectral approach (middle)
better respects the original symmetry with lower distortion (solved
in 3.2s, QC = 1.0629), producing a result similar to Circle Pat-
terns [KSS06] (right) in a tenth of the time (QC= 1.1518).

eigenvalue problem corresponds to a slightly-altered con-
strained minimization:

u* = argmin u'Lcu, 6)

u’Bl:e:O
u'Bu=1

where the 2V x 2 matrix e is such that e;; (resp., €;2) is 1
for each u-coordinate (resp., v-coordinate) and O otherwise.
Equivalently, Eq. (5) corresponds to a modified Rayleigh
quotient u’ Lcu/u’ B u, where now the denominator depends
only on the patch boundary vertices. Consequently, the op-
timal eigenvector will only balance conformality for the
quadratic form defined by B at the boundary, removing the
artifacts seen in internal vertices of the original Fiedler vec-
tor (see comparison in Fig. 5): our spectral parameteriza-
tion maximizes the squared distance from boundary vertices
to their barycenter over the unit ball defined by the confor-
mal energy. Note that our approach differs from other gen-
eralized eigenproblems (such as Normalized Cuts [SMOO],
which picks B;; = (Lp);; to alter the £? norm) in that we pick
a degenerate matrix B. As demonstrated in Figures 8 and 4,
this approach removes the distortion typically arising from
vertex constraints or appearing in the Fiedler vector of the
conformal quadratic form. A natural alternative is to choose
B = A, the parameterization area; however, fold-overs tend
to appear more often with this formulation.
3.4 Numerical Implementation
There are very efficient eigensolvers designed to find the
smallest eigenvalues of the sparse symmetric generalized
eigenvalue problem we need to solve. They usually proceed
through Choleski decomposition (to turn the problem into
a conventional eigenvalue problem) and Lanczos iterations,
particularly fast in our context since our matrices are sparse.
We can thus obtain a spectral free-boundary parameteriza-
tion very efficiently. However, we propose a customized ap-
proach to provide even faster results as follows.

We first transform (at no cost) the minimization (5) into a
maximization by solving for the largest eigenvalue u=1/\
of the eigenvalue problem where the left- and right-hand
sides have been switched, as it makes the solve more robust
and efficient. Robustness to large meshes with extremely
degenerate triangles is further improved by adding €ld to
Lc to guarantee that numerical inaccuracies in the coeffi-
cients of the Laplacian-like matrix will not alter the positive
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semi-definiteness of the matrix (we use € = 1078). Finally,
we remove the need to compute multiple eigenvalues by di-
rectly removing the known kernel of L¢ through the follow-
ing modified generalized eigenvalue problem:

1
[B— vbebe,’,]u =uLcu )

where e, = Be (i.e., a copy of the matrix e for which the
coefficients corresponding to internal vertices have been ze-
roed out), while V4, is the number of boundary vertices (not
including any of internal boundaries of the patch). Note that
the pair of eigenvectors associated with the maximum eigen-
value of this generalized eigenvalue problem coincides ex-
actly with the pair of eigenvectors u* associated with the first
non-zero eigenvalue of Eq. (5): since the eigenvectors of the
latter eigenproblem are B-orthogonal, the added outer prod-
uct is zero for all eigenvectors except the two in the columns
of e. This slightly modified system thus requires the com-
putation of a single eigenvalue/eigenvector pair, speeding up
the solver by 5 to 15% in our tests. Furthermore, the case of
a developable/flat mesh would have required a special test
with the previous expression as the eigenvector u* still has
an eigenvalue 0. Instead, Eq. (7) will always return the opti-
mal solution for any non-degenerate input mesh.

In our C++ implementation, we use a call to the eigs func-
tion from the Matlab library to find the largest eigenvalue
of Eq. (7) and its associated eigenvector u*. We use a call-
back function to perform the matrix-vector product needed
on the left-hand side of the eigenvalue problem, as it does not
require any matrix storage and can be efficiently computed
in O(V) time. Again, no vertex needs to be fixed since the
solver picks directly the first eigenvector associated with the
maximum eigenvalue, with an arbitrary rotation as our prob-
lem is rotation-invariant. Due to the sparsity and symmetry
of L¢, the resulting timings are on the order of a few seconds
for any meshes with V < 10k. For instance, the lion head
in Fig. 4 (8.3K vertices) solves in .7 seconds, while Fig. 1
(50K vertices) solves in 5.2 seconds. According to our tests,
the Matlab call to eigs takes 5 to 10 times less than the
OpenNL solve used in LSCM [LPRMO2]; however, a Mat-
lab linear solve of the LSCM/DCP equation is between two
and three times faster than the eigenvalue solve we require. A
faster Cholesky decomposition and/or a hierarchical eigen-
solver may improve execution times on very large meshes,
such as the head on the right of Fig. 9 (150K vertices), which
solved in 31 seconds.

4 Extensions

While our spectral method can be used as is as a fast and
robust parameterization approach, we also provide a few ex-
tensions that are easy to implement, but particularly relevant
for practical purposes.

4.1 Enforcing Insensitivity to Sampling Irregularity
The sampling of an input mesh can be highly irregular: flat

regions may have only a few large triangles, while curved
parts can contain many small triangles. To better preserve



P. Mullen & Y. Tong & P. Alliez & M. Desbrun / Spectral Conformal Parameterization

this irregularity in our resulting parameterizations, we use
a simple and particularly effective modification of the con-
formal energy. We simply weight the area functional and
Dirichlet energy from each triangle T by the inverse of its
original area |T| in X. The initial sampling is thus taken into
account in the parameterization, removing unnatural distor-
tion due to irregular sampling as Figures 1 and 7 demon-
strates. This weighting can be interpreted in two different
ways: either it can be seen as an alteration of the area form
dA on the original mesh, or, in the context of LSCM, as an
inverse-area-weighted least-square enforcement of orthogo-
nality. This simple change makes the matrix A less sparse
than mentioned in Section 2.2, as now the internal edges no
longer cancel each other out: the coefficients of this matrix
are easily computed on a per edge (i, j) basis as:

1 1
Ay, = 3 [/|T; el =1/ T3], AVi,Mj:E [—|T; | +1/1 T3] -

Each cotangent coefficients in Lp are simply divided by the
area of the triangle they were computed on. However, the re-
sulting inverse-area-weighted L¢ has exactly the same spar-
sity as before, thus no additional computational cost for our
eigensolver is incurred by this modification.

Figure 7: Half-sphere, discretized with variable density; Spectral
conformal parameterization w/o (left) and w/ (right) area weighting.

We note that this area-weighting of the conformal
energy can be directly (and independently of our spec-
tral treatment) applied to the LSCM/DCP method
too. Considerable improvements over the initial
method are often obtained as illus-
trated in the inset (compare to Fig. 1).
However, the distortion due to point
constraints still remains—confirming
the need for our spectral approach.

4.2 User Control

Our spectral method can be further modified to allow for
more user control. First, one can use previous methods di-
rectly to add cuts in the mesh based on the initial distortion
of our results to help unfold the mesh further—and rerun
the eigenvalue solver on the cut mesh. One can also let the
user “interact” with the parameterization by adding “exten-
ders” to repulse two vertices u; and u;: adding a quadratic
term of the form o(u; —u j)z to the quadratic form repre-
sented by matrix B will add a force between these two ver-
tices, where |at| indicates how much the conformality can be
sacrificed to accommodate this user-specified force. Thanks
to the global nature of our minimization procedure, we wit-
ness no local distortion around the extended vertices, and

LSCM/DCP |

Circle Pattern Spectral

Figure 8: Cow. Top: LSCM/DCP with two farthest vertices pinned
(left) results in asymmetric, deformed legs. Our spectral method
(right) does not require any constraints, yielding a parameteriza-
tion which automatically respects the symmetry of the mesh. Bottom:
User-specified extenders (red arrows) modify the parameterization
without undue distortion, offering texture density control.

multiple extenders are trivially handled. This simple modifi-
cation, akin to the multiple-pins option used in LSCM/DCP,
makes it possible for a user to tailor the parameterization at
low cost (see Fig. 8, right). Note that the same idea can be
used to prevent holes in a mesh from collapsing in the pa-
rameterization: we can add extenders between an additional
“fake” vertex (added to the system) and all the vertices of
an internal boundary to add rigidity to the hole if necessary.
While we have found this force-based method of control to
behave in a straightforward manner, the development of a
tool to translate potentially more intuitive control gestures
into this framework is left for future work.

4.3 Extensions to Quasi-Conformal Parameterizations
We finally point out that our framework could also be
adapted to accommodate quasi-conformality by allowing a
bit of slack in the orthogonality of Vu and Vv. This can
be made through a change of the Hodge star as proposed
in [ACSTDO07] and [GIi07], for instance based on a tensor
field derived from two orthogonal tangent vector fields as
proposed in [FSDHO7] or on the Cauchy tensor of existing
parameterizations [ZRS05]. This will in turn change the ex-
pression of the discrete Laplacian Lp, but the spectral ap-
proach remains unchanged. While we foresee no obstacles
in integrating these techniques into our method, we have left
further exploration for future work.

5 Results and Conclusions

We presented a simple and efficient spectral approach to dis-
crete conformal parameterization which is robust to sam-
pling irregularity and does not require distortion-prone po-
sitional constraints on vertices. The numerical procedure re-
quired to obtain the parameterization involves a sparse, sym-
metric generalized eigenvalue problem which, although not
as simple as a single linear solve, proved efficient and ro-
bust in our tests. In terms of computation speed, solving the
eigenvalue problem necessary to alleviate the need for con-
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straints is only two to three times slower than the linear solve
required by LSCM/DCP, thus requiring only a second or
two for moderate meshes. We also tried the quasi-conformal
(QC) distortion as a measure of the deviation from perfect
conformality: it is computed (and rendered in our figures)
per triangle as the ratio of larger to smaller eigenvalues of
the Jacobian of the map [SGSHO2]. This quotient is 1 iff
the mapping is conformal, and above one otherwise. An av-
erage quasi-conformal distortion is computed as the area-
weighted average of each QC distortion, where the area is
computed in the original mesh. Our method achieves pa-
rameterizations that, in our tests, result in lower average
QC than LSCM/DCP (with or without area weighting), even
for meshes with multiple boundaries (see Fig. 10) or many
nearly-degenerate triangles. It can also result in lower QCs
than non-linear methods like [KSS06], even if the resulting
parameterizations are sometimes less visually appealing (see
the cow mesh example in Fig. 8).

Limitations. It bears repeating here that our linear-algebra
solution to conformal parameterization of arbitrary sur-
face patches does not guarantee fold-free results, similar to
LSCM/DCP and any other linear methods. While there are
no folds or triangle flips in the examples presented in this
paper, we have experienced some flips in models with very
degenerate triangles as well as in the three-triangle example
presented in [Flo98]. We also mention that we have occa-
sionally experienced non-injectivity due to the intersection
of separate parts of the mesh in regions where the bound-
ary has large, sharp concavities. The sheer efficiency of our
linear-algebra based method, however, can quickly and ro-
bustly yield an initial parameterization that can be further
improved to achieve whatever goal the user may have. This
should not be considered as an alternative to more involved
methods which, with proper non-linear solvers and higher
computational cost, can provide better results.

Figure 10: Beetle. Our spectral method can also handle multiple
boundaries without modification (solved in 1.69s, QC=1.007874).

As for future work, we want to explore the consequences of
our unbiased treatment of parameterization for other known
weights (mean value coordinates, Wachpress, etc), and in the
context of manifold learning [BNO3] as well: our modifica-
tion to the eigenvalue problem should carry over to higher
dimensions, potentially providing less distortion than current
Laplacian-based eigenmethods. For this type of application,
however, developing multigrid eigensolvers may prove cru-
cial to handling large multidimensional datasets. We would
also like to further investigate the consequences of changing
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the B matrix in the generalized eigenvalue problem to obtain
better control and predictability of resulting parameteriza-
tions. Using our results to develop seamless, global parame-
terizations is another a valuable goal for the future. Finally,
understanding the condition needed to guarantee one-to-one
parameterizations remains an outstanding problem worthy
of further work.
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