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Abstract
In spite of high computational complexity, the bilateral filter and its modifications and extensions have recently

become very popular image and shape processing tools. In this paper,we propose a fast and accurate approxi-
mation of the bilateral filter. Our approach combines a dimension elevation trick with a Fast Gauss Transform.
First we represent the bilateral filter as a convolution in a high dimensionalspace. Then the convolution is effi-
ciently approximated by using space partitioning and Gaussian function expansions. Advantages of our approach
include linear computational complexity, user-specified precision, and an ability to process high dimensional and
non-uniformly sampled data. We demonstrate capabilities of the approach by considering its applications to the
image and volume denoising and HDR tone mapping problems.
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1. Introduction

The bilateral filter presents a natural combination of the
Gaussian spatial and tonal filters. The bilateral filter was first
proposed by [AW95] and then rediscovered in [SB97] within
the so-called SUSAN approach and in [TM98] where its cur-
rent name was coined. The bilateral filter can be also con-
sidered as a very powerful modification of the Yaroslavsky
filter [Yar85] in which the spatial convolution with a box
function is changed to the spatial convolution with a Gaus-
sian.

Because of its edge-preserving ability and conceptual
simplicity, the bilateral filter has become a popular and
powerful image and shape processing tool. It has been ex-
tended and generalized in several ways [CT03], [BCM05b,
BCM05a], [TSP07] and successively used for video en-
hancement [BM05, MS05], mesh denoising [FDCO03],
high-dynamic-range (HDR) image compression [DD02]
purposes, and many other image processing and computer
graphics applications. See [PKTD07] for a nice overview of

properties, extensions, and applications of the bilateral filter-
ing approach.

Mathematically, the classical bilateral filter in its continu-
ous setting is defined as a spatial-tonal normalized convolu-
tion

Inew(x) =

R

g1(x− y)g2(I(x)− I(y))I(y)dy
R

g1(x− y)g2(I(x)− I(y))dy
, y ∈ R

n, (1)

applied to an imageI(x), x ∈ R
n. Hereg1(·) andg2(·) are

Gaussian kernels used for spatial and tonal filtering, respec-
tively. Often other types of decaying kernels are used in (1)
instead of Gaussians.

Previous work on fast bilateral filtering. The nonlinear
and nonlocal nature of (1) makes its straightforward imple-
mentation computationally expensive: a naive discrete im-
plementation of (1) has O(N2) computational complexity
whereN is a number of image elements (pixels/voxels). So
various approaches have been proposed for accelerating the
bilateral filter.

Noted that a separable convolution with a Gaussian is
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fast, Pham and Vliet [PvV05] suggested to apply a one-
dimensional bilateral filter subsequently to each spatial di-
rection. The resulting filter scheme mimics (1) and is quiet
fast. However it often generates undesired artifacts at image
regions where image edges are aligned with coordinate axes.

Weiss [Wei06] introduced a 3D histogram based approach
for accelerating the 2D bilateral filter with a square box spa-
tial kernel. In a very recent paper [Por08], Porikli has also
employed a 3D histogram technique and achieved a remark-
ably low computational complexity when a box spatial ker-
nel is used. Another achievement of the approach of [Por08]
consists of a constant complexity algorithm for a modifi-
cation of the Yaroslavsky filter with constant spatial kernel
(i.e.,g1 = const in (1)).

Durand and Dorsey [DD02] proposed a fast approxima-
tion to the 2D bilateral filter by interpreting (1) as a Gaus-
sian convolution withg2(η− I(y))I(y) whereη is a param-
eter, computing the convolutions for a sparse set of values
of η via 2D Fast Fourier Transforms (FFT), and then lin-
early interpolating the results. It turns out that the algorithm
of [DD02] can be considered as a special case of a more gen-
eral convolution-based scheme introduced by Paris and Du-
rand in [PD06] where 3D FFT is combined with a downsam-
pling strategy. In [PD09] Paris and Durand extended their
approach to color images (bilateral filtering in 5D space). In
their bilateral grid approach, Chen et al. [CPD07] combined
the convolution-based representation of (1) [PD06] with a
GPU parallelization scheme.

Of course, the above-mentioned approximations of the bi-
lateral filter are not free of drawbacks. As noted in [PD09],
convolution and 3D grid based schemes may lead to mem-
ory overhead when dealing with multidimensional data. The
histogram-based approaches of Weiss and Porikli [Wei06,
Por08] are also sensitive to image dimensionality and, in ad-
dition, do not allow for controlling the approximation error.

Our approach. In this paper, we propose a fast and accu-
rate approximation of the bilateral filter. The method is con-
ceptually simple and combines the dimension elevation trick
of [PD06] with Fast Gauss Transform (FGT), a technique
for fast and error-controlled computation of a weighted sum
of Gaussians. FGT belongs to the family of fast multipole
methods which combine clustering and manipulations with
truncated series expansions to achieve computationally ef-
ficient and accurate approximations of sums of radial ba-
sis functions. First we apply the dimension elevation trick
of [PD06] and convert the discrete bilateral filter to a normal-
ized weighted sum of Gaussians in a spatial-tonal domain.
Then FGT is used for a fast and error-controlled numeri-
cal evaluation of the sum. To demonstrate the computational
power of our approach we consider a number of applications
including image denoising and HDR image tone mapping.
The contributions and benefits of our approach can be sum-
marized as follows.

• It has linear computational complexity w.r.t image ele-
ments, such as pixels, voxels, etc.

• It allows the user to control speed/accuracy trade-off.
• It is applicable to non-uniformly sampled data.
• It leads to an extremely fast implementation of a version

of the Yaroslavsky filter with a spatially constant kernel.
• It turns out to be very efficient for volumetric filtering and

HDR image tone mapping tasks.

2. Bilateral Filtering as Convolution

It looks now obvious that bilateral filter (1) can be repre-
sented as a spatial-tonal normalized convolution and, there-
fore, may share many nice properties with linear filtering
schemes. To the best of our knowledge, it was first noted by
Boomgaard and de Weijer [vdBvdW02] and then extended
by Paris and Durand [PD09] who revealed the great power
of this seemingly simple observation. As shown below, it
is straightforward to extend the Paris-Durand approach to a
general multidimensional case.

Observation 1 (nD bilateral filter → (n+1)D convolution)
The n dimensional bilateral filter is given as a ratio of two
(n+1) dimensional convolutions:

J(x,u) =

R

R

R

Rn f (y,v)g1(x− y)g2(u−v)dydv
R

R

R

Rn h(y,v)g1(x− y)g2(u−v)dydv
, (2)

where f(y,v) = h(y,v)I(y), h(y,v) = δ(v− I(y)), x,y ∈ R
n

are spatial variables and u,v∈ R are tonal ones. Hereδ(·)
is the Dirac delta-function.

Substitutingf (y,v) = h(y,v)I(y) andh(y,v) = δ(v− I(y))
to (2) yields (1) with Inew(x) = J(x, I(x)).

Although (2) opens an avenue for fast approximations of
the bilateral filtering scheme, constructing such approxima-
tions is far from being straightforward. At the first glance, a
straightforward use of FFT could be an computationally effi-
cient way to evaluate (2). However FFT can not be applied to
(2) without a modification because(x,u) and(y,v) may not
be equally spaced inRn+1. In addition, FFT hasO(nNlogN)
computational complexity inRn [FJ05] and, therefore, is
not very efficient when dealing with multidimensional data.
These difficulties were partially overcome in [PD06] where a
FFT-based approach to bilateral filtering was combined with
uniform resampling techniques coupled with linear interpo-
lation and downsampling. The bilateral grid [CPD07] also
employs uniform resampling for approximating the bilateral
filter on GPU.

In contrast to the previous approaches, we use the full
power of (2) and obtain a fast and accurate approximation
of thenD bilateral filtering.

3. Bilateral Filtering via Gauss Transforms

In this paper we focus on the situation wheng1(·) andg2(·)
of (1) are Gaussian kernels, since it is commonly used in
applications. LetG(x) = g1(x)g2(x)≡ exp(−‖x/σ‖2) with
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x = {x1,x2, ...,xn+1}, σ = {σ1,σ2, ...,σn+1} ∈ R
n+1 and

‖x/σ‖2 = ∑n+1
i=1 (xi/σi)

2. The discrete Gauss transform we
need for approximating (2) is now defined as follows.

Definition. Consider two point sets: targets{t1, t2, ..., tN}
and sourcess = {s1,s2, ...,sM} in R

n+1. Assume that each
source pointsj is equipped with a positive scalar weightα j
whereα = {α1,α2, ...,αM}. The discreteGauss transform
of target pointt i w.r.t. all source points is defined by

GT(α, t i ,s,M) ≡
M

∑
j=1

α jG(t i −sj ). (3)

Now Observation1 implies that

Observation 2 (nD Bilateral to (n+1)D Gauss Transform)
The n dimensional bilateral filter with Gaussian kernels is
given as a ratio of two(n+1)-dimensional Gauss transforms

J(u) =

R

G(u−v) f (v)dv
R

G(u−v)dv
, u,v ∈ R

n+1, (4)

where J(u) = Inew(x) is the image resulting after bilateral
filtering, u = (x, I(x)), andv = (y, I(y)).

Let us consider two sets of points in the image spacex =
{x1,x2, ...,xN} andy = {y1,y2, . . . ,yM}. The corresponding
spatial-tonal points are given byu = {u1,u2, ...,uN} andv =
{v1,v2, ...,vM} whereui = (xi , I(xi)) andv j = (y j , I(y j )).
DenoteI(y j ) by q j whereq = {q1,q2, ...,qM}. We have

Inew(xi) =
∑M

j=1 q jG(ui −v j )

∑M
j=1 G(ui −v j )

=
GT(q,ui ,v,M)

GT(1,ui ,v,M)
(5)

which delivers a discrete approximation of (4).

The Gauss transform and its fast implementations are of-
ten used as kernel density estimators in statistics. Relations
between kernel density estimators and bilateral filtering was
recently studied in [TSP07]. It is interesting to observe that
(5) can be also considered as a variant of mean-shift filter-
ing [CM02], see also [vdBvdW02] for relationships between
normalized convolution filters, local-mode finding, robust
estimators, and mean-shift analysis.

Straightforward computing of (5) for all xi requires
O(NM) operations. Thus a naive implementation of bilat-
eral filtering of an image withN elements (pixels, voxels,
etc.) hasO(N2) complexity.

Settingg1(x− y) ≡ 1 in (1) yields a modification of the
Yaroslavsky filter [Yar85] which can be thought as a linear
diffusion in the tonal space. The filter was thoroughly stud-
ied in [SSN09]. In our notations, it is given by

Inew
Y (xi) =

GT({I(y j )}, I(xi),{I(y j )},M))

GT(1, I(xi),{I(y j )},M))
, (6)

where {I(y j )} = {I(y1), I(y2), ..., I(yM)}. We call it SC-
Yaroslavsky filter since it has a spatially-constant kernel. For
any dimensionalityn, (6) consists of only one-dimensional

Gauss transforms and, therefore, allows for an accurate and
extremely fast implementation, see Section6 for details. In
addition we will demonstrate that (6) is very useful for de-
noising and segmenting applications in image and volume
processing.

4. Fast Gauss Transform

The Fast Gauss Transform (FGT) method we employ is de-
rived from a more general fast multipole method [GR87]
adapted for dealing with Gaussian kernels. FGT was in-
troduced in [GS91] for rapid evaluations of sums of Gaus-
sians. Since then, FGT has been improved in terms of
accuracy [GS98, BR02, WK06] and memory efficiency
[GM00,YDGD03,LGM06]. Besides numerous applications
in physics and computational mathematics, FGT has been
used in the fields of image processing and computer vi-
sion. In particular FGT was applied for image segmenta-
tion [YDGD03] and object tracking [EDD03] purposes.

Algorithm 1 Fast Gauss Transform

Subroutine: FGT(n,σ,{α},{t},{s},N,M,ε)
Inputs: errorε, dimensionn, bandwidth parametersσ ∈R

n,
targets{t}, sources{s}, number of targetsN, number of
sourcesM, and scalar weights{α}.
Inside Parameters:box lengthw and interaction region ra-
diusr.
Outputs: a scalar set{β}.
Require: ε > 0 andα j ∈ {α} ≥ 0.

1: Set up box partitions with side lengthw(σ) for sandt.
2: Compute the number of kept termsp from ε via an error

estimator (we use that derived in [WK06]).
3: for all source boxes.do
4: for k = 0 to p do
5: Compute the Hermite expansion coefficientsAk.
6: end for
7: end for
8: for all target boxesi . do
9: for all interaction region within(2r + 1)n nearest

boxes.do
10: for k = 0 to p do
11: Compute the Taylor expansion coefficientsBi

with Ak.
12: end for
13: end for
14: end for
15: for all sourcesdo
16: Evaluate the Taylor expansion.
17: for k = 0 to p do
18: Summing up the Taylor series withBk.
19: end for
20: Store the sum to a scalar set{β}.
21: end for
22: Return {β}.

A full description of FGT is beyond the scope of this paper
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and we give only a brief overview of how FGT works. The
Fast Multipole Method strategy for evaluating the sum of
Gaussians (3) includes using far-field and near-field asymp-
totic expansions forG(t− s). For the sake of simplicity, we
consider the one-dimensional case since multi-index nota-
tions allow for treating the multidimensional case in a very
similar way. A far-field expansion centered ats0 for 1D
GaussianG(t−s) has the form

∞

∑
k=0

[
1
k!

(
s−s0

σ
)k]hk(

t−s0

σ
) =

∞

∑
k=0

Akhk(
t−s0

σ
),

wherehk(x) = (−1)k dk

dxk exp(−x2) are Hermite functions.
Interchangingt ands treats this formula as the Taylor series
expansion centered at a nearby targett0 (near-field expan-
sion)

G(t−s) =
∞

∑
l=0

[
1
l !

hl (
s− t0

σ
)](

t− t0
σ

)l =
∞

∑
l=0

Bl (
t− t0

σ
)l ,

Bl =
(−1)l

l !

∞

∑
k=0

Akhk+l (
s0− t0

σ
).

Since the Gaussian falls off quickly, only a limited number of
terms, say firstp terms, in the above expansions are needed
for evaluating the sum of Gaussians (3) with a given preci-
sionε.

The original FGT method starts from constructing a space
partition consisting of regular boxes parallel to the coordi-
nate axes inRn. Then the targets and sources are assigned
to these boxes. For each source box, it requiresO(pnN) op-
erations to compute the coefficientsAk corresponding top-
truncated expansions. For each target box, all the Hermite
expansions in the source boxes within an interaction region
are transformed into a Taylor series expansion to be used
inside the target box. The sources within(2r + 1)n near-
est boxes are sufficient to obtain single (r = 4) and double
(r = 6) precisions [GS98]. ComputingBl involvesO(npn+1)
operations. This leads toO((2r +1)nnpn+1) complexity per
each target box if(2r +1)n interaction regions are involved.
Finally, for each target, evaluating the Taylor series expan-
sion takesO(pnM) operations.

The FGT approximation error consists of two origins: er-
rors due ignoring sources that are far form a given target and
truncation errors. The first component of the approximation
error is easy to control by choosing a proper value for pa-
rameterr, as discussed above. Controlling the second com-
ponent is based on appropriate error bounds for truncated
expansions. In this paper, we use a new and sharp error esti-
mate derived in [WK06].

Algorithm 1 describes a FGT pseudo-code which reduces
the computational complexity of evaluating (3) for all targets
t i from O(NM) to O(M +N). Given a specified precisionε,
the algorithm starts from determining the number of kept
termsp. We refer to [GS91,GS98] and rest of this paper for
further technical details.

The final FGT approximation accuracy is given by

ε∑
∣

∣α j
∣

∣ , (7)

where
{

α j
}

are the coefficients in (3). The upper bound (7)
corresponds to the worst-case scenario. In our experiments
with the FGT-based approximation of the bilateral filter, we
have found out that the real error is much smaller.

Writing a good implementation of FGT is a difficult task.
Several implementations of FGT and its modifications and
improvements [BR02,GM00,YDGD03,MSR∗08] are avail-
able on the web [IM03, MRY∗08]. However after testing
some of these free-available codes we decided to write our
own implementation of FGT in order to have a full control
over our FGT-based image filtering schemes. In our imple-
mentation we follow [GS91,GS98] with a corrected and im-
proved error estimate as in [WK06].

5. O(N) Algorithms

Now Algorithm 1 and Observation2 lead toO(N) imple-
mentations of the bilateral andSC-Yaroslavsky filters, as
described by Algorithms2 and 3, respectively. In contrast
to [Por08] and [AGDL09] our FGT-based approximations
are error-controllable.

Algorithm 2 O(N) Bilateral Filter

Input: error ε, dimensionalityn, spatial bandwidthsσg1 ∈
R

n, tonal bandwidthσg2 ∈R, targets{x}, sources{y}, num-
ber of targetsN, number of sourcesM, scalar image intensity
{I(x)}.
Called Functions:FGT(·).
Output: {Inew(x)}.

Require: ε > 0,∃I(x)≥ 0,∃I(y)≥ 0.
1: {q}← {I(y1), I(y2), ..., I(yM)},y j ∈ y.
2: {1}← {1,1, ...1}.
3: {u}← {u1,u2, ...,uN} : u ∋ ui ← (xi , I(xi)).
4: {v}← {v1,v2, ...,vM} : v ∋ v j ← (y j , I(y j)).
5: σ← (σg1,σg2).
6: { fi}← FGT((n+1),σ,{q},{u},{v},N,M,ε).
7: {gi}← FGT((n+1),σ,{1},{u},{v},N,M,ε).
8: for i = 1 toN do
9: Inew(xi)←

fi
gi

.
10: end for
11: Return {Inew(x)}← {Inew(x1), Inew(x2), ...Inew(xN)}.

6. Results

Our implementation of FGT is based on the original ap-
proach of Greengard and Strain [GS91, GS98] and, there-
fore, is especially efficient in dealing with low dimensional
data. For high dimensional data, one should probably use the
so-called IFGT, Improved Fast Gauss Transform, which has
a number of benefits over FGT [YDGD03,MSR∗08]. How-
ever our own experiments with IFGT were not very encour-
aging.
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Algorithm 3 O(N) SC-Yaroslavsky Filter

Input: errorε, tonal bandwidthσg2 ∈ R, number of targets
N, number sourcesM, scalar image intensity{I(x)}.
Called Functions:FGT(·).
Output: {Inew

Y (x)}.

Require: ε > 0,∃I(x)≥ 0, and∃I(y)≥ 0.
1: {I(x)}← {I(x1), I(x2), ..., I(xN)},xi ∈ x.
2: {I(y)}← {I(y1), I(y2), ..., I(yM)},y j ∈ y.
3: {1}← {1,1, ...1}.
4: { fi}← FGT(1,σg2,{I(y)},{I(x)},{I(y)},N,M,ε))
5: {gi}← FGT(1,σg2,{1},{I(x)},{I(y)},N,M,ε))
6: for i = 1 toN do
7: Inew

Y (xi)←
fi
gi

.
8: end for
9: Return {Inew

Y (x)}← {Inew
Y (x1), Inew

Y (x2), ...Inew
Y (xN)}.

Given an imagey = I(x), x ∈ R
n, n = 2 or 3, let us re-

call that the Gaussian kernel in (3) is given by G(x) =
g1(x)g2(x) ≡ exp(−‖x/σ‖2) with vector of bandwidth pa-
rametersσ = [σg1,σg2] = [σ1,σ2, ...,σn+1]∈R

n+1. Assume
that the source points belong to the bounding box[0,γ1]×
·· ·× [0,γn+1]. In our experiments with FGT, we employ the
bounding box[0,w1]× ·· · × [0,wn+1] with wi = σi√

2γi
and

useε = {10−4,10−3,10−2,10−1,1,10,102,103} and inter-
action region radiir = {2,3,4,5,6}. At the first glance, in
view of (7) it does not seem correct to use large epsilon
values. However, as noted before, the FGT accuracy upper
bound (7) represents the worst-case scenario and that sce-
nario is not realized for typical images (e.g., for a typical im-
age, its intensity distribution is not concentrated on a small
set of points). In our numerical experiments, even setting
ε = 103 leads to a reasonably good FGT-based approxima-
tion of the bilateral filter.

We will also need the standard deviationsd of 1D distri-
bution of the intensity values{I(x)}.

Error metrics. Given an original imageI(x), denote by
I e(x) andI a(x) the images obtained after applying an exact
filtering scheme (we consider the bilateral filter and its vari-
ations) and an approximation of the scheme (e.g., our FGT-
based approximations), respectively. Letd j = I e

j − I a
j be the

difference between the exact and approximated bilateral fil-
tering results, where the subindexj = 1,2, ...,N enumerates
the image elements (pixels, voxels, etc.). In addition to the
method noised(x), the following error metrics are used for
evaluating our fast bilateral filter:

L1 =
1
N

N

∑
j=1
|d j |, L∞ = maxj (|d j |), ARE =

1
N

N

∑
j=1

|d j |

I e
j

,

MRE = maxj (|d j |/I e
j ), MNR = |maxj (d j )−min j (d j )|,

where the abbreviations ARE, and MRE stand for average
and maximum relative errors, respectively. We also employ
PSNR, the peak signal-to-noise ratio (the larger, the better),

used for similar purposes in [PD06,Por08]. Here

PSNR=−10log10(
1

N

N

∑
j=1

(
d j

maxj (I e
j , I

a
j )

)2).

Timing and accuracy. The computation time is measured
in seconds (s), minutes (m), and hours (h). All our numer-
ical experiments reported in this paper were performed on
a Core2 Extreme X9770 (3.2 GHz quad core, no paral-
lelization was used) PC with 16GB RAM and 64 bit OS.
We compare our FGT-based bilateral filter with the recent
state-of-the-art CPU-based fast bilateral filtering schemes:
the histogram-based approach of [Por08], the FFT-based fast
bilateral filter of [PD06], and the separable bilateral filter
of [PvV05]. We use the program codes available from the
authors of [PD06] and from the web [Era08] for [Por08].
The Gaussian functions used in these codes are appropriately
modified to coincide withG(x) defined in Section3.

Figure 1: Left: Lena image consisting of512×512 pixels.
Right: after applying the exact bilateral filter withσg2 =
(16,16) andσg1 = 51; computational time:58 m.

We start our numerical experiments from the famous Lena
image: Figure1 presents the original image and an exact bi-
lateral filtering result. Figure2 delivers the visual, method
noise, and PSNR comparisons of our FGT-based method
with those developed in [PvV05], [Por08], and [PD06]. We
set the number of bins equal to 256 in our evaluation of
the approach of [Por08] and, as a ground truth benchmark,
use exact bilateral filtering of the Lena image with a con-
stant spatial kernel (it takes 9.8s to compute) instead of
the right image of Figure1. Following notations adopted
in [PD06,PD09], we usess andrs to denote the space (spa-
tial) and range (tonal) sampling rates. The timing and er-
rors measurements corresponding to Figure2 are given in
Table 1. Figures3, 5, and6 demonstrate speed and accu-
racy advantages of our method over the approaches devel-
oped in [PvV05], [PD06], and [Por08] for varying band-
width parameters. The graphs in Figures3, 5, and6 corre-
spond to [PvV05] (red), [Por08] (green), [PD06] with (1,1)
abbreviating(ss, rs) = (σg1,σg2) (blue) and (0.1,0.1) staying
for (ss, rs) = (0.1σg1,0.1σg2) (pink), and our method where
(10,2) means(ε, r) = (10,2) (orange), and (1,6) stays for
(ε, r) = (1,6) (sky-blue). We do not include detailed graphs
for the ARE andL∞ metrics because they are similar to the
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graphs forL1 and MRE error metrics, respectively. Table2
presents a computational time comparison of the methods
for various image sizes (we use the same the enumeration
notations and parameter settings as in Figure2). Table 3
summaries the bilateral filter approximation error results for
the Lena image. As demonstrated by the top image of Fig-
ure 6, the relation between the computational time and ac-
curacy (we useL1 metric in this case) for our method dif-
fer for different pairs of the bandwidth parameters. This is
so because, for given bandwidth parameters, our FGT-based
algorithm automatically adapts the necessary computational
cost in order to satisfy a given precision.

Figure 7 presents visual and method noise comparisons
of our method with that of [PvV05] for a volume filtering
task. The corresponding timing results and error measure-
ments are presented in Tables4 and6, respectively, for vari-
ous volume sizes. Table5 demonstrates how fast our method
in processing large size volumetric images (5123 voxels) for
various sets of the bandwidth parameters. According to our
estimates, a straightforward and exact bilateral filtering of a
volume dataset consisting of 5123 would take approximately
31 yearsof computational time.

Whenσg1 is small, our method requires greater computa-
tional time to compare with middle and large values ofσg1

for the same approximation accuracy.

As mentioned before, we have examined the fast bilat-
eral filter of [PD06, PD09] with two parameter settings,
(ss, rs) = (σg1,σg2) and(ss, rs) = (0.1σg1,0.1σg2) (the im-
age intensity range is supposed to be rescaled to[0,1]). Al-
though the first setting is recommended by the authors, we
decided to test the second one since it delivers a much more
accurate approximation to the bilateral filter. In our experi-
ments with the histogram-based approach of [Por08], we use
the 256 bins, although following numbers of bins: 16, 32,
and 64 are recommended by the author. Obviously the more
bins are used, the more accurate approximation is achieved.
In all numerical experiments presented in this paper, our
method with(ε, r) = (1,6) delivers a more accurate approx-
imation of the bilateral filter w.r.t.L1, L∞, MNR, and PSNR
error metrics than the methods of [PD06,PD09] and [Por08]
with the highest accuracy settings. Setting(ε, r) = (10,2)
gives approximately the same accuracy as the above men-
tioned methods with the highest accuracy settings w.r.t.L1

and PSNR metrics but our method is much faster. In ad-
dition, those highest accuracy settings may cause memory
overflows when dealing with large-size images, as indicated
by (b) and (d) of Table2.

Table 7 presents the timing results for our fastSC-
Yaroslavsky image and volume filters. Since the filter is
based on 1D FGT which is very accurate [LKdF05], we
do not include here a detail error analysis in this case and
provide the reader with a typical example: for the Engine
volumetric image consisting of 643 voxels, our FGT-based
SC-Yaroslavsky filtering scheme(ε, r) = (1,6) takes only

0.05s to compute with high accuracy w.r.t. the error metrics
employed (L1 = 0.0098,L∞ = 1.27, ARE= 0.0016, and
MRE = 0.02).

Overall, the numerical experiments show that our ap-
proach leads to fast and accurate bilateral andSC-
Yaroslavsky image and volume filtering. For example, our
fast bilateral filter processes 116K (71K), 474K (541K),
467K (812K), and 873K voxels (pixels) per second in aver-
age when(ε, r) is set to (1,6), (10,2), (102,2), and (104,2), re-
spectively. Our fastSC-Yaroslavsky filter with(ε, r) = (1,6)
is highly accurate and processes images and volumes at high
speed of 5.28M pixels/voxels per second.

The plots of Figure4 illustrate timing and accuracy of our
methods w.r.t. the FGT parameters(ε, r) and can serve as
a guidance for choosing these parameters. It is well known
that ther = 4 andr = 6 are sufficient to obtain single and
double error precisions [GS98]. It is rather unexpected that
using r = 2 delivers quite satisfactory results as demon-
strated by Tables1-5 and in Figures2-8 and10-12. We refer
to [LKdF05] for an empirical study of how the computa-
tional cost depends on the FGT accuracyε.

7. Applications

Noise reduction. The bilateral filter is well known as a pow-
erful denoising tool. Thanks to our FGT-based fast bilateral
filtering scheme, we can use it iteratively in real time. In our
experiments with image denoising by iterative bilateral fil-
tering, we setσg2 proportional to the standard deviation of
the image intensitysd which is updated after each iteration.
Dealing with color images, we process each color channel
separately. For volume denoising, the same volume render-
ing transfer function and pseudo color are used for visual-
izing noisy and corresponding denoised volumetric images.
Figures13 and8 demonstrate how well our fast bilateral fil-
ter applied iteratively performs image and volume denoising.

Figure9 demonstrates 3D image processing with our fast
SC-Yaroslavsky volumetric filter applied iteratively. It re-
veals hidden image structures and seems useful for 3D image
segmentation and feature extraction purposes.

HDR tone mapping. Our fast bilateral filter is useful for
high-dynamic-range (HDR) tone mapping. We have com-
bined the HDR image displaying technique of [DD02] with
our FGT-based filter and extended the technique to 3D volu-
metric images. In our numerical experiments, we have used
a part of the HDR image displaying code available from the
authors of [DD02]. Figures10, 11, and14 demonstrate the
results of HDR image tone mapping based on our fast bilat-
eral filtering scheme with(ε, r) = (102,2). In Figure12, a
3D hurricane velocity image is used to demonstrate the po-
tential of our FGT-based bilateral filter for HDR processing
of volumetric data (in this example, we set(ε, r) = (104,2)
andcp = 50 where the latter is the contrast parameter de-
scribed in [DD02]).
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[PvV05] [Por08] [PD06]
(a) (b) (c) (d)

PSNR:38 PSNR:51, 256 bins PSNR:36,ss = 16, rs = 51 PSNR:51,ss = 1.6, rs = 5.1

Our method(ε, r,PSNR,seconds)

(10−2,6,88,38) (10−1,6,73,12.9) (e):(1,6,65,6.79) (10,6,58,3.54) (102,6,47,1.96)

(10−2,2,50,5.79) (10−1,2,50,2) (1,2,51,1.17) (f):(10,2,50,0.59) (102,2,45,0.37)

Figure 2: A visual comparison of the fast bilateral filtering schemes of [PvV05] (a), [Por08] (b), [PD06] (c,d), and our FGT-
based method (e,f). Here ss and rs are the space and range sampling rates for the fast bilateral filter of [PD06]. The bandwidth
parameters are those used in Figure1. For each experiment, the lower-right image represents the method-noise image, the
differences between the exact filtering result and its approximation. The lower-left images are the method-noise images after
rescaling in order to fit the standard0− 255 intensity range. See also Table1 for the method-noise intensity ranges (MNR)
before rescaling, timings, and approximation errors.

c© 2010 The Author(s)
Journal compilationc© 2010 The Eurographics Association and Blackwell PublishingLtd.



S. Yoshizawa, A. Belyaev, and H. Yokota / Fast Gauss Bilateral Filtering

Timing (Seconds: log-scale)

Our Method (1,6)
[PD06] (0.1,0.1)

 0

 100

 200

 300

 400

 500

Spatial Bandwidth

 0

 50

 100

 150

 200

 250

Intensity Bandwidth

10-2

10-1

100

101

102

Seconds: log-scale

Our Method (10,2)
[PD06] (1,1)

 0

 100

 200

 300

 400

 500

Spatial Bandwidth

 0

 50

 100

 150

 200

 250

Intensity Bandwidth

10-1

100

101

Seconds: log-scale

[PvV05]
[Por08]

[PD06] (1,1)
[PD06] (0.1,0.1)

Our (10,2)
Our (1,6)

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

Spatial Bandwidth

 0
 10

 20
 30

 40
 50

 60
 70

 80

Intensity Bandwidth

10-1

100

101

102

103

Seconds: log-scale

10-1

100

101

102

103

 0  10  20  30  40  50  60  70  80  90  100

S
ec

on
ds

 (
lo

g-
sc

al
e)

Spatial Bandwidth σg1

Average Timing (seconds: log-scale) w.r.t. varying Intensity Bandwidth σg2

[PvV05]
[Por08]

[PD06] (1,1)
[PD06] (0.1,0.1)

Our (10,2)
Our (1,6)

10-1

100

101

102

 0  10  20  30  40  50  60  70  80

S
ec

on
ds

 (
lo

g-
sc

al
e)

Intensity Bandwidth σg2

Average Timing (seconds: log-scale) w.r.t. varying Spatial Bandwidth σg1

Figure 3: Timing comparisons of the exact bilateral filter and its approximations applied to the Lena image (512×512pixels).
Varying bandwidth parameters are used. The upper images present atiming comparison of our method and with those developed
in [PvV05], [ PD06], and [Por08] in bandwidth parameter domains. The lower-left and lower-right imagesare the detailed 2D
plots of computational time averaged w.r.t.σg2 againstσg1 and vice versa, respectively.

Timing L1 L∞ ARE MRE MNR

(a) 14.7s 1.47 39 0.0129 0.3659 75
(b) 1.59s 0.56 2 0.0046 0.0178 2
(c) 0.16s 2.98 33 0.025 0.3 60
(d) 8.2s 0.5 35 0.004 0.018 2
(e) 6.79s 0.02 1 0.0001 0.018 2
(f) 0.59s 0.395 31 0.0033 0.215 49

Table 1: Timing and approximation errors corresponding to
Figure2.

size 2562 5122 10242 20482 40962 81922

(a) 1.6 13.2 109 877 7235 69828
(b) 0.34 1.59 6.46 26.98 N/A N/A
(c) 0.04 0.14 0.6 2.3 9.2 37.5
(d) 2.7 7.95 38.03 134.2 N/A N/A
(e) 1.92 6.64 17.8 50.9 149.6 679.7
(f) 0.18 0.65 1.8 6 22.9 144.5

Table 2: Computation times (in seconds) for the Lena image
in various resolutions. Labels (a)-(f) refer to the methods and
parameter settings used for Figure2.
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Figure 4: The plots show the variation of L1 error (left, log-scaling is applied), PSNR (center), and computation time (right)
as functions of the FGT parameters(ε, r). We present averaged L1 error, minimal PSNR, and maximal computational time w.r.t.
the bandwidth parametersσg1 andσg2.
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Figure 5: A comparison of the fast bilateral filtering schemes considered in this paper on the Lena image. The top images present
plots of L1 error (left), MRE error (center) and PSNR (right) against the bandwidthparameters(σg1,σg2) ∈ [0,100]× [0,75].
The remaining six images demonstrate dependence of average L1 error, maximal MRE error and average PSNR w.r.t one
bandwidth parameter against another bandwidth parameter.
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Figure 6: Error vs timing comparisons (the Lena image is used) for varying bandwidth parameters:(σg1,σg2)≤ (100,75). L1

error (top), MRE error (bottom-left), and PSNR (bottom-right) are considered.

[PvV05] [Por08] [PD06] (1,1)

L1 L∞ ARE MRE PSNR L1 L∞ ARE MRE PSNR L1 L∞ ARE MRE PSNR
Max. 4.9 55.0 0.041 0.66 Min. 31 1 8 0.0088 0.1 Min. 47 5.38 46 0.048 0.52 Min. 31
Ave. 2.36 36.8 0.02 0.39 37 0.55 2.24 0.0045 0.024 51 2.66 20 0.022 0.19 38

[PD06] (0.1,0.1) Our method (10,2) Our method (1,6)

L1 L∞ ARE MRE PSNR L1 L∞ ARE MRE PSNR L1 L∞ ARE MRE PSNR
Max. 0.51 2 0.0044 0.024 Min. 51 1.37 31 0.012 0.21 Min. 42 0.045 1 0.00035 0.022 Min. 62
Ave. 0.5 1 0.004 0.0173 51 0.448 14.5 0.0037 0.1 51 0.019 0.96 0.00015 0.016 68

Table 3: The average and maximal L1, L∞, ARE, MRE errors and the average and minimal PSNR w.r.t. bandwidths(σg1,σg2)≤
(100,75) for the fast bilateral filtering schemes tested in this paper. The Lena image is used for this comparison.
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Input Exact BF is applied [PvV05] Our Method
Input (a) (b) (c) (d) (e)

ε = 1, r = 6 ε = 102, r = 2 ε = 104, r = 2

Figure 7: Left section: an input Engine 3D volumetric image consisting of1283 voxels is shown with aspect ratio1 : 1 : 0.5
(bottom-left), we use a part of the Engine image (top-left) in this comparison,the same part after exact bilateral filtering with
σg1 = (5,5,10) andσg1 = 0.5sd (top-right), we use a coloring scheme represented by a pseudo color bar (bottom-right) with its
lower end (blue) corresponding to0 and its upper (red) corresponding to255. Middle section: approximate bilateral filtering
according to [PvV05] is applied (top), method noise (bottom) shows the difference between the exact and approximate bilateral
filtering results. Right section: the results our FGT-based method tested forvarious setting of parameters(ε, r) (top), method
noise results for the same parameter settings. See Tables4 and6 for the corresponding computational times and approximation
errors, respectively.

size 163 323 643 1283 2563 5123

(a) 0.86s 59s 1.03h 66.7h N/A N/A
(b) 0.01s 0.16s 2.7s 46s 13m 3.6h
(c) 3.3s 9.2s 2.7m 1.4h 5h 6.6h
(d) 2.6s 3.4s 14s 1.7m 4.4m 15.4m
(e) 2.5s 3.3s 12.7s 42s 1.4m 3m

Table 4: Computation times for different bilateral filtering
schemes applied to volumetric datasets of various sizes. The
parameter settings and the labels (a)-(e) are those used in Fig-
ure 7. The Engine volumetric dataset is used in these experi-
ments.

ϕ 2 4 8 16 32 0.2 0.4 0.8
(c) 1.3h 15m 5.2m 4.9m 4.8m 3.1h 1.7h 43m
(d) 208s 154s 139s 136s 132s 4.8m 3.7m 184s
(e) 108s 89s 84s 81s 78s 136s 117s 100s

Table 5: Dependence of computation time for our bilateral
filter on the bandwidthsσg1 and σg2 for Engine volumet-
ric dataset with5123 voxels. First five columns:σg2 = 0.5sd
and σg1 = ϕ(5,5,10). Last three columns:σg2 = ϕsd and
σg1 = (10,10,20). Parameters(ε, r) for (c)-(e) are those used
in Figure7.

size 323 643 1283 323 643 1283

L1 L∞

(b) 0.077 0.337 0.532 4.4 29.5 48.8
(c) 2.6× 4.2× 4.9× 1.5× 1.5× 0.73

10−9 10−9 10−3 10−5 10−5

(d) 0.14 0.1 0.1 6.3 12 24
(e) 0.14 0.15 0.2 6.3 12 21

ARE MRE

(b) 3.8×10−3 0.017 0.036 1.8 173 3838

(c) 3.2×10−3 8.6×10−4 0.13 0.98 0.78 46
(d) 0.11 0.1 0.1 30 9.8 590
(e) 0.11 0.12 0.12 30 14 1216

Table 6: Approximation errors corresponding to experiments
described in Figure7 and Table4.

ϕ 0.1 0.2 0.4 0.6 0.8 1.0
Image 13.4s 13.4s 13.2s 11.4s 12.8s 12.4s

Volume 27.6s 26.4s 25.8s 24.5s 24.3s 24s

Table 7: Computation times for our fastSC-Yaroslavsky image
(81922 pixels) and volume (5123 voxels) filtering with(ε, r) =
(1,6). The bandwidth parameterσg2 is given byϕsd.
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Figure 8: Examples of volume denoising with our FGT-based fast bilateral filter: two iterations withσg2 = sd and (ε, r) =
(102,2). Left-most: original noisy cell-cytokinesis volumetric dataset of size256×256×60 voxels obtained using a confocal
laser microscope. Middle-left: it takes only 9.3 s for our FGT-based bilateral denoising withσg1 = (1.6,1.6,5). Middle-right:
noisy CT-foot volume with2563 voxels. Right-most: it takes 450 s for our FGT-based bilateral denoising with σg1 = (8,8,8).

256x256x128, σg2 = 0.4sd 2563, σg2 = 0.4sd 256x256x64, σg2 = 0.1sd

Figure 9: Volume processing with our fastSC-Yaroslavsky filter,(ε, r) = (1,6): Blade (4 iterations, 5.7 s), MRI-Head (4 itera-
tions, 12.7 s), and Tomato (10 iterations, 8 s). Zoomed parts of the Blademodels (two upper images) demonstrate capabilities
of theSC-Yaroslavsky filter to reveal hidden image structures. The pseudo colors are those used in Figure7.

Figure 10: HDR image tone mapping with gamma correction
1.6 and cp = 15: processing2000×1312pixels takes 2.07 s.

Figure 11: HDR image tone mapping with Gamma correction
1.6 and cp = 50: processing1025×769pixels takes 0.98 s.

Figure 12: HDR volumetric tone mapping with cp = 50, processing512×512×100voxels takes 320s. The pseudo colors are
those used in Figure8. Four left images: different transfer functions are used for visualizing the tone mapped HDR volume.
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Figure 13: Color image denoising with our fast FGT-based
bilateral filter. Top: original noisy Dragon image consist-
ing of 1200×1600pixels. Bottom: after three iterations of
our approximate bilateral filter with(ε, r) = (102,2), σg1 =
(10,10) andσg2 = 0.05sd. Computational time is 240 s.

Figure 14: HDR image tone mapping with gamma correc-
tion 2.2 and cp = 50. Processing the image with767×1023
pixels takes only 0.8 s.

8. Conclusion

In this paper, we have developed a FGT-based approach to
a fast and accurate approximation of bilateral filtering with
Gaussian kernels. Our FGT-based approximation has linear
computational complexity and is precision guaranteed. It can
be used to process high-dimensional and/or non-uniformly-
sampled image data. We have demonstrated that our method
outperforms three recent state-of-the-art fast bilateral filter-
ing schemes. We have also presented applications of our fast
bilateral filter to real-time image and volume denoising and
HDR image displaying problems.

Limitations and future work. In our current implementa-
tion of the bilateral filter, we deal with the Gaussian kernels
only. Dual-tree algorithms of [LGM06] may be useful for
extending the FGT approach to other kernels.

The non-local means filter of Buades et al. [BCM05b,
BCM05a] is a very powerful image denoising tool and ac-
tive research is going on to build fast and accurate approx-
imations of the filter [AGDL09]. Since the filter can be
described in terms of multi-dimensional Gauss transforms,
it seems promising to use our approach for accelerating
of the filter. High-dimensional FGT schemes developed in
[YDGD03,MSR∗08] may be appropriate for this purpose.

Finally, a GPU-based implementation of FGT also consti-
tutes a promising future work.
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