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Abstract

Many useful algorithms for processing images and geometry fall under the general framework of high-dimensional
Gaussian filtering. This family of algorithms includes bilateral filtering and non-local means. We propose a new
way to perform such filters using the permutohedral lattice, which tessellates high-dimensional space with uniform
simplices. Our algorithm is the first implementation of a high-dimensional Gaussian filter that is both linear in
input size and polynomial in dimensionality. Furthermore it is parameter-free, apart from the filter size, and
achieves a consistently high accuracy relative to ground truth (> 45 dB). We use this to demonstrate a number of
interactive-rate applications of filters in as high as eight dimensions.

Categories and Subject Descriptors (according to ACM CCS): 1.4.3 [Image Processing and Computer Vision]:

Enhancement—Filtering

1. Introduction

High-dimensional Gaussian filtering (Equation 1) is a pow-
erful way to express a smoothness prior on data in an arbi-
trary Euclidean space. As such, it is an important compo-
nent of many algorithms in image processing and computer
vision. Algorithms such as color or grayscale bilateral filter-
ing [AWO95] [SB97] [TM98], joint bilateral filtering [ED04]
[PSA*04], joint bilateral upsampling [KCLUO7], non-
local means [BCMO5], and spatio-temporal bilateral filter-
ing [BMO5] can all be expressed as high-dimensional Gaus-
sian filters.

Recent work on accelerating high-dimensional Gaus-
sian filters has focused on explicitly representing the high-
dimensional space with point samples, using a regular grid
of samples [PD09] or a cloud of samples stored in a kd-
tree [AGDLO09]. When the space is explicitly represented in
this way, filtering is implemented by resampling the input
data onto the high-dimensional samples, performing a high-
dimensional Gaussian blur on the samples, and then resam-
pling back into the input space (Figure 1). [AGDL09] terms
these three stages splatting, blurring, and slicing.

We propose accelerating such filters by sampling the high-
dimensional space at the vertices of the permutohedral lattice
(illustrated in Figure 2). The lattice is composed of identical
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Equation 1: High-dimensional Gaussian filtering asso-
ciates an arbitrary position p; with each value V; to be fil-
tered, and then mixes values with other values that have
nearby positions. Usually the values are homogeneous pixel
colors. If the positions are two-dimensional pixel locations,
then this expresses a Gaussian blur. If the positions are pixel
locations combined with color, for a total of five dimensions,
this expresses a color bilateral filter. If the position vectors
are derived from local neighborhoods around each pixel,
then this expresses non-local means.

simplices (high-dimensional tetrahedra), and the enclosing
simplex of any given point can be found by a simple round-
ing algorithm. Splatting and slicing can therefore be done
by barycentric interpolation, which is exponentially cheaper
than the multi-linear interpolation of [PD09], and does not
suffer from the irregularity and parameter-heavy nature of
the randomly bifurcating kd-tree queries of [AGDL09]. Sim-
ilarly to the grid approach, the blurring stage can be done
with a simple separable filter. We describe the lattice and its
properties in section 3.
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Figure 1: High-dimensional Gaussian filtering can be im-
plemented by first embedding the input values V at positions
P in a high-dimensional space (splatting), then perform-
ing a Gaussian blur in that space (blurring), then sampling
the space at the original positions p (slicing). The diagram
above illustrates a bilateral filter of a one-dimensional sig-
nal using this framework.

Using the permutohedral lattice for high-dimensional fil-
tering of n values in d dimensions has a time complexity of
0(d*n) and a space complexity of O(dn). This compares fa-
vorably to existing techniques, and in fact this method proves
to be faster than the state of the art for a wide range of filter
sizes and dimensionalities (Figure 7). We describe its perfor-
mance and accuracy in section 4. The run-time is sufficiently
low that we can demonstrate the first real-time color bilat-
eral filter (a five-dimensional filter). The qualitative change
brought about by this speed increase is that we enable inter-
active use of this class of filter, described in section 5.

2. Prior Work

High-dimensional Gaussian filtering includes, as special
cases, the bilateral filter, and the non-local means filter. In
turn, high-dimensional Gaussian filtering is a type of Gauss
transform, in which a weighted sum of Gaussians, centered
at points j;, is sampled at some other locations ;. For our
case (Equation 1), the weights are always homogeneous vec-
tors, usually storing color, and p; typically equals g;.

There are thus several categories of related work: Bilateral
filters and attempts to accelerate them; non-local means and
corresponding accelerations; and more general attempts to
accelerate computation of the fast Gauss transform. We will
discuss each in turn.

2.1. The Bilateral Filter

Bilateral filtering [AW95] [SB97] [TM98] averages pixels
with other pixels that are nearby in both position and in-
tensity. It is a five-dimensional Gaussian filter (Eq. 1) in
which V; = [r;, g, bi, 1] (the homogeneous color at pixel i),
and p; = [, %, &, g—i, o], where oy is the spatial standard
deviation of the filter and G, is the color-space standard de-
viation. Grayscale bilateral filtering can be expressed by re-

placing r;, g;, and b; with just luminance, and is hence a

three-dimensional filter. Some notable uses of the bilateral
filter include tone mapping [DDO02], halo-free sharpening,
and photographic tone transfer [BPDO06].

Bilateral filters of dimensionalities other than 3 and 5
also occur. Weber et al. [WMM™*04] use a four-dimensional
bilateral filter with a temporal term for smoothing photon
density maps for rendering ray-traced sequences. Adams et
al. [AGDL09] similarly add a temporal term to a color bilat-
eral filter to denoise video, which results in a 6-D filter.

Joint Bilateral Filters By deriving j; from one image and
V; from another, one can smooth an image in a way that
does not cross the edges of another. This technique was in-
vented independently by Eisemann and Durand [ED04] and
Petschnigg et al. [PSA*04] and was used by each for com-
bining images taken with and without flash.

This idea was extended by Kopf et al. [KCLUO7] to use
as an upsampling technique. By splatting at positions deter-
mined by the low-resolution input, and then slicing using
a high-resolution reference image, the low resolution data
can be interpolated in a way that respects edges in the high-
resolution reference.

Fast Bilateral Filters Given the wide ranging utility of the
bilateral filter, considerable research has gone into acceler-
ating it. Durand and Dorsey [DDO02] discretize in intensity,
and compute a regular Gaussian blur at each intensity level
using an FFT, which can then be interpolated between to
produce a grayscale bilateral filter. This approach evolved
into the bilateral grid [PD06] of Paris and Durand, which
was implemented on a GPU for various interactive applica-
tions by Chen et al. [CPDO07]. The bilateral grid discretizes
in space and intensity, and introduced the splat-blur-slice
pipeline for high-dimensional filtering (Figure 1). Paris and
Durand also describe a five-dimensional grid for color bilat-
eral filtering [PD09].

The work of Durand and Dorsey [DD02] was inde-
pendently extended by Porikli [PorO8] who observed that
the FFTs were unnecessary, and used faster integral-image
based methods to blur each intensity level, thus producing
integral histograms. Yang et al. [YTA09] improve on this
by not explicitly representing the entire space, but instead
sweeping a plane through the intensity levels, computing the
output in intensity order. Their low-memory, cache-friendly
algorithm is the fastest known grayscale bilateral filter. How-
ever, the plane-sweep approach does not generalize well to
higher dimensions.

2.2. Non-Local Means

Bennett and McMillan [BMO05], while denoising video with
a combination of bilateral filters, noted that the positions p;
could be usefully augmented by including the color or inten-
sity of nearby pixels as well. This is equivalent to non-local
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means of Buades et al. [BCMO05] [BCMO08], which is an op-
timal denoiser for additive white noise.

Fast Non-Local Means There are numerous methods for
accelerating non-local means that do not explicitly repre-
sent the high-dimensional space. For example, Mahmoudi
and Sapiro [MSO05] preclassify regions of the image accord-
ing to average intensity and gradient direction in order to
restrict the search, whereas Darbon et al. [DCC*08] com-
pute integral images of certain error terms, as do Wang et
al. [WGY*06]. However, this family of methods is restricted
to position vectors composed of rectangular image patches,
and does not generalize to less structured denoising tasks,
such as the geometry denoising [AGDLO09] and the afore-
mentioned photon density denoising [WMM*04].

Fast Gauss Transforms Approaches for evaluating Equa-
tion 1 as a generic Gauss transform have focused on tree-
based representations of the high-dimensional space of po-
sition vectors. Adams et al. use a kd-tree coupled with ran-
domized queries, whereas Brox et al. [BKCO08] use a cluster
tree.

Yang et al. [YDGDO3] describe the improved fast Gauss
transform, which uses a cluster tree in which each leaf stores
not only a value, but also some Taylor series expansion terms
describing how the value varies about that leaf. It is ex-
tremely accurate, but not as fast as other methods.

3. The Permutohedral Lattice

We now describe the lattice we will use to accelerate high-
dimensional Gaussian filters. The d-dimensional permuto-
hedral lattice is the projection of the scaled regular grid
(d+1)Z4"" along the vector T = [1,...,1] onto the hyper-
plane H; : %1 =0, which is the subspace of R in which
coordinates sum to zero. It is hence spanned by the projec-
tion of the standard basis for (d + 1)Z4! onto Hy:

d -1 ... -1

-1 d4 ... -1

-1 -1 ... d
Each of the (d + 1) basis vectors (columns of B;) has co-
ordinates that sum to zero, and that each coordinate of each
basis vector has a consistent remainder modulo d 4 1. Both
of these properties are preserved when taking integer combi-
nations, so points in the lattice are those points with integer
coordinates that sum to zero and have a consistent remainder
modulo d + 1. We describe a lattice point whose coordinates
have a remainder of k as a “remainder-k” point. In Figure 2

we show the lattice for d = 2, and label each lattice point by
its remainder.

The permutohedral lattice has several properties that make
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Figure 2: The d-dimensional permutohedral lattice is

formed by projecting the scaled grid (d +1)Z" onto the

plane X -1 = 0. This forms the lattice (d + 1)A}, which we
term the permutohedral lattice, as it describes how to tile
space with permutohedra. Lattice points have integer coor-
dinates with a consistent remainder modulo d + 1. In the di-
agram above, which illustrates the case d = 2, points are
labeled and colored according to their remainder. The lat-
tice tessellates the plane with uniform simplices, each sim-
plex having one vertex of each remainder. The simplices are
all translations and permutations of the canonical simplex
(highlighted), which is defined by the inequalities xo > x1 >
o> xgand xg—xg <d+1.

it well-suited for high-dimensional filtering using the splat-
blur-slice pipeline illustrated in Figure 1. Firstly, it tessel-
lates high-dimensional space with uniform simplices, so we
can use barycentric interpolation to splat the signal onto
the lattice points. Secondly, the enclosing simplex of any
point, along with its barycentric coordinates, can be com-
puted quickly (in O(d?) time), so splatting is fast. Thirdly,
the neighbors of a lattice point are trivial to compute, so
the blur stage is also fast. Finally, slicing can be done using
the barycentric weights already computed during the splat-
ting stage, and so is also fast. These properties are described
briefly below. Full derivations, proofs, and further helpful
properties can be found in [BA09].

The permutohedral lattice tessellates H; with uniform
simplices. Consider the d-dimensional simplex whose ver-
tices $p, . . ., §y are given by:

Si=lkyeo s k—(d+1),....k—(d+1)]
N——
d+1—k k
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Figure 3: When using the permutohedral lattice to tessellate
the subspace Hy, any point X € Hy; is enclosed by a simplex
uniquely identified by the nearest remainder-0 lattice point
f() (the zeroes highlighted in red) and the ordering of the co-
ordinates of X — 70. The nearest remainder-0 lattice point can
be computed with a simple rounding algorithm, and so iden-
tifying the enclosing simplex of any point and enumerating
its vertices is computationally cheap ( O(dz) ).

We term this simplex the canonical simplex. For example,
when d = 4 the vertices are the columns of:

0 1 2 3 4
0 1 2 3 -1
0 1 2 =2 -1
o 1 -3 -2 -1
0O -4 -3 -2 -1

Note that §}, is a lattice point of remainder k (i.e. its co-
ordinates are all congruent to k modulo d + 1), and the
simplex includes one point of each remainder. The vertices
of this simplex are the boundary cases of the inequalities
X0 >x1 > ... > x4 and xg —xg < d+ 1, and a point lies
within the simplex if and only if it obeys these inequalities.

Now consider any permutation p of the coordinates of the
canonical simplex. Each p induces a corresponding order-
ing of the coordinates xp(g) > Xp(1) = .. 2 Xp(d)> and the
inequality xp(0) — Xp(g) <d + 1. Taklng the union of these
inequalities across all (d + 1)! simplices results in the set
{x;| max; x; — min; x; < d+ 1} (the central hexagon in Figure
3), which is in fact the set of all points which have the origin
as their closest remainder-0 point (See Proposition A.1).

Hence, as the lattice is translation invariant, a point X €
H,;, with closest remainder-0 point /y, belongs to a unique
simplex determined by /g and the ordering of the coordinates

of 70 — X (Figure 3). As every point belongs to a unique sim-
plex, which is a permutation and translation of the canonical
simplex, Hy is tessellated by uniform simplices.

The vertices of the simplex containing any point in H;
can be computed in O(d”) time. This property will be use-
ful for the splat and slice stages of filtering.

The vertices of the simplex containing some point X € H;
can be generated by first computing the closest remainder-0
point l(), and then sorting the difference Ip — X. The result-
ing permutation and translation can then be applied to the
canonical simplex to compute the simplex vertices in O(dz)
operations.

The closest remainder-0 point can be found by first round-
ing each coordinate of X to the nearest multiple of (d + 1),
and then, if the result is outside the subspace H;, greed-
ily walking back to H,; by rounding those coordinates that
moved the farthest in the other direction instead. The sub-
lattice formed by the remainder-0 points is called A, 1, and
this is the algorithm given by Conway and Sloane ( [CS99]
pp 446) for finding the closest point in that lattice.

The nearest neighbors of a lattice point can be computed
in O(d?) time. This property will be useful during the blur
stage of filtering.

The basis vectors given by B; above are those of
minimal length, so the nearest neighbors of a lattice
point 71{ are those separated by a vector of the form
+[-1,...,—1,d,—1,...,—1]. The are 2(d + 1) such neigh-
bors, and each is described by a vector of length d + 1, and
so the neighbors can be fully enumerated in O(d?) time.

3.1. Filtering using the Lattice

There are four main stages for using the permutohedral lat-
tice for high-dimensional Gaussian filtering, illustrated in
Figure 4. We will describe each in turn.

Generating position vectors. Firstly, the position vectors
Di, representing the locations in the high-dimensional space,
must be generated and embedded in H;. Generating the po-
sitions is somewhat application dependent. For a color bi-
lateral filter, we generate 5-D position vectors of the form
[;—;, éi, o e 6—} by augmenting the input image with two
extra channels encoding spatial location, and then scaling
each channel by the inverse of the desired standard devia-
tion. For non-local means we would instead either extract
local windows around each pixel, or compute some bank of
filters around each pixel and record the responses. Typically
we do the latter, using PCA to determine the optimal filter

bank, as first proposed by Tasdizen [Tas08].

We must then scale the position vectors by the inverse of
the standard deviation of the blur induced by the remaining

steps, which totals \/g (d+1) in each dimension (derived
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Figure 4: To perform a high-dimensional Gaussian filter using the permutohedral lattice, first the position vectors p; € R4
are embedded in the hyperplane H,; using an orthogonal basis for Hy (not pictured). Then, each input value splats onto the
vertices of its enclosing simplex using barycentric weights. Next, lattice points blur their values with nearby lattice points using
a separable filter. Finally, the space is sliced at each input position using the same barycentric weights to interpolate output

values.

below). Next we embed the position vectors in the subspace
H,. The basis for H; given above is unsuitable for this task
because it is not orthogonal, so we instead use the orthogonal
basis:

1
1 1 7 0 0
-1 1 0o L
6
|0 -2 Ve
0 0o ... —d 0 0 d(d+1)

We choose this basis because it allows us to compute EX
in O(d) time using the recurrence:

(EX)g = —0gxq—1
(EX);i = —ouxi—1 +xi/0 1+ (EX)iq1
(EX)o = xi/oq + (EX)

o = i/(i+1)

Splatting. Once each position has been embedded in the
hyperplane, we must identify its enclosing simplex and com-
pute barycentric weights. The enclosing simplex of any point
can be described by the permutation and translation that
maps the simplex back to the canonical simplex, which can
be computed in O(dlogd) by using the rounding algorithm
described earlier to find the nearest remainder-0 point, and
then sorting the residual.

Therefore, to compute barycentric coordinates for a point
Ep; in an arbitrary simplex, we can apply the translation and
permutation to map Ep; to some ¥ within the canonical sim-
plex. Barycentric coordinates b for y are then given by the
expression below, as shown by Proposition A.2.
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Barycentric interpolation is invariant to translation and
permutation, and so these barycentric coordinates for y
within the canonical simplex are also the barycentric co-
ordinates for Ep; within its simplex. Once the barycentric
weights are computed, b, V; is added to the value stored at
the remainder-k lattice point in the enclosing simplex of p;
(recall that V; is the homogeneous value associated with po-
sition j;). The lattice point values are stored in a hash table.
Lattice points that do not yet exist in the hash table are cre-
ated when they are first referred to during the splat stage, and
start with an initial value of zero.

There are two ways to identify each lattice point for use as
a hash table key. One can apply the inverse permutation and
translation to the remainder-k point of the canonical simplex
to compute the lattice point’s position, and use that as a key.
Each key is a vector of length d 4- 1, and so this results in a
memory complexity of O(dl) for [ lattice points.

In rare cases where / > n, we can alternatively achieve
a memory complexity of O(dn) for n input values by sepa-
rately storing the simplex enclosing each input position p;,
as a simplex can be identified uniquely in O(d) memory by
its remainder-0 point and its permutation. We then identify a
lattice point using its remainder and a pointer to any simplex
it belongs to, for an additional O(dn) memory. One lattice
point belongs to many simplices, so key comparison is done
by using the simplex and remainder to compute the lattice
point’s coordinates on the fly.

[ is loosely bounded by O(dn), as each input value cre-
ates at most d + 1 new lattice points. However, filters near
this bound correspond to very small filter sizes and are not
very useful, as no shared lattice points means no cross-talk
between pixels, and hence no filtering. In practice, we find
that / < n, so we prefer the first, faster scheme. In either case,
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each hash table access costs O(d) time for key comparison.
Each pixel accesses the hash table O(d) times, and so the
time complexity of splatting is O(d’n).

Barycentric interpolation in the permutohedral lattice is
equivalent to convolution by the projection of a uniformly-
weighted (d + 1)-dimensional hypercube of side length d + 1
onto Hy, and induces a total variance of d(d + 1)?/12 (See
Proposition A.3.)

Blurring. Now that our values are embedded in the sub-
space H,, the next stage of high-dimensional Gaussian fil-
tering is performing a regular Gaussian blur within that sub-
space. To do this we convolve by the kernel [1 2 1] along each
lattice direction of the form +[1,...,1,—d,1,...,1] (Figure
4). This produces an approximate Gaussian kernel with total
variance d(d + 1) /2.

The blur stage spreads energy from each lattice point to
O(Sd ) neighbors. If we created hash table entries for new
lattice points reached during the blur then the memory use
would grow quite large. We therefore do not create new lat-
tice points during the blur phase, which incurs some accu-
racy penalty relative to a naive computation of Equation 1,
as points that may have transferred energy could instead be-
long to disconnected regions of the lattice.

Adams et al. [AGDLO09] observe a similar effect, and ar-
gue it may actually be advantageous. For example, when bi-
lateral filtering, the absence of these “stepping-stone” lattice
points will prevent energy transfer from a white pixel to a
black pixel across a hard edge, but will allow energy transfer
between a black pixel and a white pixel on either side of a
smooth gradient.

The blur step involves looking up O(d) neighbors for each
lattice point. Each lookup takes O(d) time for hash table
key comparison, and so the blur step has time complexity
o(d?).

Slicing. Slicing is identical to splatting, except that it uses
the barycentric weights to gather from the lattice points in-
stead of scattering to them. It produces the same total vari-
ance of d(d + 1)?/12, which brings the total variance in-
duced by the algorithm to %d (d+1)?, which is equivalent to

\/g(cﬂ- 1). Slic-
ing can be accelerated by storing the barycentric weights and
pointers to lattice point values computed during splatting.
This “slicing table” can then be scanned through in O(dn)
time to slice. The entire algorithm thus has a time complex-
ity of O(d*(n+1)).

a standard deviation in each dimension of

3.2. GPU Implementation

The above algorithm is fairly straightforward to paral-
lelize on a GPU. We constructed an implementation using
NVIDIA’s CUDA [Buc07], and achieve typical speedups of

Figure 5: At the top is a 512x256 crop of the input im-
age used for time and memory comparisons - a typical 1.5
megapixel photograph. Below is the same crop of the output
of the permutohedral lattice used to perform a color bilat-
eral filter with a spatial standard deviation of 16 pixels and a
color standard deviation of %. It is visually indistinguishable
from the naive result. The permutohedral lattice produces a
result with a PSNR between 45 and 50 dB relative to an ex-
haustive evaluation of Equation 1, depending on filter size
and dimensionality.

6x on a Geforce GTX280 compared to the single-threaded
CPU implementation on an Intel Core i7 920. Clearly a hash-
table benefits from a cache.

The main point of difference between the CPU and GPU
versions is related to the creation of hash table entries dur-
ing the splatting stage. It is customary to attach locks to hash
table entries and synchronize all accesses to a given entry to
prevent erroneously inserting one key in multiple places. We
found it faster to break the splatting stage into three. First,
we compute the slicing table, recording which lattice points
each input pixel splats to, and with what weights. While do-
ing this, we insert the lattice points found into the hash ta-
ble in a way which permits individual keys being inserted
in multiple locations. Specifically, while we still lock each
hash table entry before insertion, other simultaneous hash
table insertions simply skip over locked entries while look-
ing for a free spot rather than waiting on the lock to see if the
key matches. This means we never have data dependencies
involving one query reading the key that another query has
written, so we can write the keys using faster non-atomic
writes, and only the smaller array of locks needs to be co-
herent. Next, we rehash the entries of the slicing table and
update it so that every reference to a lattice point refers to
the unique earliest instance of that lattice point in the hash

(© 2009 The Author(s)
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Figure 6: Here we show time taken and memory used as a function of filter size and dimensionality for a variety of algo-
rithms. The input was a typical 1.5 megapixel photograph (Figure 5). Position vectors were composed of pixel locations, pixel
luminance, pixel chrominance, and then increasing numbers of filter responses over a Gaussian-weighted 9x9 local window,
depending on the desired dimensionality. These filters were derived using PCA on the space of such local windows, and are
typically local derivatives. The standard deviation for all but the spatial terms is fixed at é. The methods compared are the naive
windowed bilateral filter (n), the dense bilateral grid (d) [CPDO7], the sparse bilateral grid (s), the permutohedral lattice (p),
the Gaussian KD-Tree (g) [AGDL09], the improved fast Gauss transform (f) [YDGDO3], for which memory use is unavailable,
and real-time bilateral filtering (r) [YTA09], which does not apply to dimensionalities above three. The parameters of each
algorithm were tuned so that it ran as quickly as possible while achieving a PSNR of roughly 45dB relative to an exhaustive

evaluation of Equation 1.

table. Finally, we use the corrected slicing table to splat, ad-
ditively scattering onto lattice points as usual.

In an interactive setting, it is common to perform many fil-
ters whilst only changing a few parameters in between runs.
If the position vectors and filter sizes do not change, then the
old slicing table and hash table can be reused for a moderate
speedup.

4. Results and Comparisons

Here we present results of a comparison of a number of algo-
rithms for performing high-dimensional filtering on a typical
photograph. All algorithms were run single-threaded on an
Intel Core i7 920 running at 2.67 GHz. Only algorithms with
source code available were used, and all low-level optimiza-
tions were left up to the compiler. The input photograph and
the output of the permutohedral lattice are shown in Figure 5.
The running times and memory use of each algorithm for a
few different dimensionalities are shown in Figure 6. Figure
7 illustrates the fastest method for a variety of dimensionali-
ties and filter sizes. The permutohedral lattice is significantly
faster than the state of the art for a large range of dimension-
alities and filter sizes.

(© 2009 The Author(s)
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4.1. The Algorithms

Naive: This algorithm considers all pixels within three spa-
tial standard deviations of each pixel and manually computes
Equation 1. While this algorithm scales linearly with dimen-
sionality, it is quadratic in filter size, and does not work for
unstructured data such as geometry.

Dense Grid: This is the bilateral grid of Paris et al. [PD09],
using multi-linear splatting and slicing, and a separable blur
kernel of [1 2 1] in each dimension. It scales exponentially
with dimensionality.

Sparse Grid: The two major differences between the per-
mutohedral lattice and the bilateral grid are the lattice used,
and also the fact that the permutohedral lattice stores values
sparsely in a hash table. In order to disambiguate these two
effects, we constructed a sparse bilateral grid algorithm that
uses the same hash table implementation. Similarly to the
Gaussian KD-Tree and the permutohedral lattice, we do not
allocate new lattice points during the blur stage. However,
the time and memory complexity are still exponential in d,
and indeed this technique is slower than the dense bilateral
grid, while saving only a moderate amount of memory. This
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Figure 7: This contour plot shows the
fastest method for each dimensionality
and spatial filter size, and how many times
faster it is than the second fastest method.
The bilateral grid [CPDO7] is best for di-
mensionalities three and four. The Gaus-
sian KD-Tree [AGDL09Y] is best for high
dimensionalities and small filter sizes.
The permutohedral lattice is the fastest
method for dimensionalities from 5 (color
bilateral filtering) up to around 20, de-
pending on the filter size. Run times were
sampled at the small dots and interpo-
lated. Only methods capable of arbitrary-
dimensional filters were compared, and

244

Permutohedral
Lattice

Filter Dimensionality

the parameters of each method were tuned

Bilateral Grid
. . . IEEN

to achieve an PSNR relative to ground 1
truth of roughly 45dB.

shows that it is our choice of lattice, rather than our sparsity,
which provides the advantage.

Gaussian KD-Tree: This is the Gaussian KD-Tree of
Adams et al. [AGDL09]. Its run time is fairly constant across
filter size and dimensionality, and its memory use is signif-
icantly lower than the other methods for dimensionalities 5
and up.

Improved Fast Gauss Transform: This is the fast multi-
pole method of evaluating the Gauss Transform of C. Yang
et al. [YDGDO3]. It is a fully general method capable of ex-
tremely high accuracy, but even when tuned for speed, it
is not particularly fast compared to the more approximate
methods used in image filtering.

Real-Time O(1) Bilateral Filtering: This is the method of
Q. Yang et al. [YTAQ9] It is the fastest known method for
grayscale bilateral filters (d = 3), but does not scale with
dimensionality.

5. Interactive Applications

Images produced by applications of high-dimensional Gaus-
sian filtering such as non-local means and the bilateral filter
can depend heavily on the standard deviations chosen. The
high speed and parallelizability of the permutohedral lattice
make these filters easier to use by letting users interactively
explore the parameter space. Our CUDA implementation of
the lattice filters 800x600 images at 10 fps. We use this to
implement the following interactive applications. Readers
are encouraged to view the video accompanying this paper
to see these applications demonstrated.

Interactive Color Bilateral Filtering The user is presented
with sliders to control the standard deviations for each of the

T T L
8 16

Filter Standard Deviation

dimensions of the filter (x, y, r, g, b). The result of changing
any of these values is presented immediately, making it easy
to explore the space of bilateral filters.

Interactive Non-local Means As a preprocess, PCA is per-
formed on the space of 7x7 patches centered about each
pixel in the image, in order to reduce dimensionality with-
out losing distance relationships. We use six PCA terms in
addition to the two spatial terms as position dimensions. Six
dimensions is the number suggested by Tasdizen [Tas08],
who demonstrated that performing non-local means in this
way produces superior results to non-local means without
dimensionality reduction. Once again the user is presented
with sliders to control the standard deviations, and the result
is presented in real time, allowing for interactive-rate denois-

ing.

Non-local Means Editing Non-local means can also be
used for making edits to an image that propagate across
similar colors, textures, or brightnesses, in the same manner
as the propagating edits of [APOS]. By choosing appropri-
ate position dimensions, local edits can be made to respect
boundaries with respect to any set of local descriptors.

The user applies approximate edits with a few strokes.
Each stroke paints values on a mask in those locations. The
mask is then filtered with respect to the position dimensions.
For our position dimensions, we use six PCA terms and two
spatial terms, which captures changes in brightness, color,
and texture. The filtered mask, which respects edges in the
position dimensions, serves as an influence map for how the
edit should be applied. For adjusting brightness, the user
paints dark or bright values into the mask, and we simply
multiply the input image by the filtered mask. The filtering
is done at interactive rates, so the user can see the fully prop-
agated edit as they apply their rough strokes.

(© 2009 The Author(s)
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6. Conclusions, Limitations, and Future Work

We have described the permutohedral lattice; a simplicial
tessellation of RY which results in the fastest known high-
dimensional Gaussian filter for dimensionalities between 5
and 20. This covers many commonly used applications of the
filter, such as color bilateral filtering and non-local means.
Our method is consistently accurate, and has no parameters
to tune other than the desired standard deviations. The algo-
rithm is straightforward to implement, and a single-header-
file implementation is included as supplemental material.
The algorithm is also straightforward to parallelize to run
on a GPU.

While we achieve high PSNRs with respect to ground
truth (consistently within 45-50 dB), the barycentric interpo-
lation we use is a linear interpolation, and the structure of the
lattice becomes visible in the output for some filter settings.
One could ameliorate this by storing higher order terms at
each lattice point, such as Taylor series coefficients, in the
manner of the improved fast Gauss transform [YDGDO3].
Accuracy could also be increased by adopting a sampling
strategy in addition to the interpolation.

Finally, while we have applied this lattice to the task of
filtering, we expect that its properties will make it useful for
any task which could benefit from a simplicial tessellation
of high-dimensional space.
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Appendix A: Properties of the Permutohedral Lattice

Proposition A.1 Given X € Hy, the following two statements
are equivalent:

(i). The closest remainder-0 point to X is the origin.
(ii). maxgx, —mingx, <d+1.

Proof The closest remainder-0 point has the form (d + 1)z

for some 7 € Z4*!. Fix two distinct indices i,j€{0,...,d}
and define 7/ where

e+ 1, k=1,

/ .

Tk = Zk—l, k:j,
Zks otherwise.

By choice of Z, it must be that (d + 1)Z is closer to X than is

-

(d+1)Z'. Therefore,

0< Id+1)7 =7 — ||(d+ 1)z — 7|

= f(dmz(zzz—z%>—2<d+1>xk(zz—zw
k=0

2(d+1)*(1+2i—zj) —2(d + 1) (x; — x;)
=2(d+1) [(d+1)(1+2 —z;) = (x — ;)]

Dividing both sides of the last inequality by 2(d + 1) and
rearranging the terms, we obtain

xi—XjS(d-i-l)(]-i-Zi—Zj). (@)
(i=ii) Condition (i) implies 7 = 0. Then (1) becomes,
xi—x;<d+1.

Since this holds for all i, j, we obtain max;x; — min;x; <
d + 1 as desired.

(ii=1) Condition (ii) implies that for all i, j,

Xi—Xxj > mkinxk—m]?xxk >—(d+1).

Combined with (1), this implies z; —z; < 2. Because
(d+1)Z € Hy, the components of Z must sum to zero. Both
conditions hold only if each component is -1, 0 or 1.

Suppose nonzero components exist, i.e. z; = —1,z; = 1.
For these particular values of i, j, (1) must hold as equal-
ity, meaning that 7 and 7 are equidistant from X. Thus we
can continue adding 1 to a negative component and -1 to a
positive component, until we reach the origin, without al-
tering the distance to X. So the origin must be the closest
remainder-0 point to ¥, or at least tied for the closest. []

Proposition A.2 Let ¥ be an arbitrary point inside the canon-
ical simplex, and let by, .. ., b, be its barycentric coordinates
in the simplex, i.e.

M=

bkfk, and
0 k=0

X=

d
by = 1.

k

Then,
Xd—k — Xd+1—k
_ k#0
bk: d+1 I 7é )
_)C()—xd k=0
d+1"’ '

Clearly these weights sum to 1.

Proof Because the vertices of a (non-degenerate) simplex
span the underlying Euclidean space, a barycentric decom-
position exists and is unique. Thus it suffices to show that
the given weights do yield X. Let y = ):,f:() by5). Then,

d
yi=Y b (sk);
=0

d

Y, blk—(d+1))

k=d—j+1

-y
=Y bik| +
| k=0

d

- [(d+1) Y b

[ d
=Y bk
L k=0 k=d—j+1

[ Xa—1 —xa Xg—2 = X4—1
_ | (fd=1TXd ), (Xd27 X1 ),
(55 2 () +

d
X0 — X1
+d (7)] -1 Y xdk_xd+1k:|
d+1 k=d—j+1
—Xg —X4—1 — - — X1 +dxo
= P — (x0 —x;)
T Xg—Xg—1— X =X |
- d+1 Y
=Xj,
as desired. [
d(d+1)?

Proposition A.3 The variance of splatting is 2

Proof Consider the splatting kernel for the lattice point at the
max; x; — min; x;
d+1

On the other hand, consider flattening the hypercube
[0,d + 1]*! onto Hy. For each ¥ € Hy, the points which
project onto X must have the form X + k1. Since %+ k1
must fall in the hypercube, we have Vi, 0 < x; +k < d+ 1.
Hence, k € [—min; x;, d + 1 — max;x;]. That indicates that
the mass of points that are projected onto X is proportional
to d + 1 — (max; x; — min; x;), which in turn is proportional
to the splatting kernel above.

origin. The weights are given by by = 1 —

Therefore, the variance of the splatting kernel equals that
of the flattened hypercube, weighted by density. One may
compute this by integrating over the original hypercube the
second moment of the projected point about the origin:

S X i >

Joarnen |V = dy
. d+1
Variance = - —
j[07d+1]d+1 dy

A number of straightforward algebraic manipulations yields
the desired expression. []
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