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Abstract
We present an automatic image-recoloring technique for enhancing color contrast for dichromats whose com-
putational cost varies linearly with the number of input pixels. Our approach can be efficiently implemented on
GPUs, and we show that for typical image sizes it is up to two orders of magnitude faster than the current state-
of-the-art technique. Unlike previous approaches, ours preserve temporal coherence and, therefore, is suitable for
video recoloring. We demonstrate the effectiveness of our technique by integrating it into a visualization system
and showing, for the first time, real-time high-quality recolored visualizations for dichromats.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—

1. Introduction

According to current estimates, approximately 200 million
individuals present some form of color vision deficiency
(CVD) [SSJN99, Rig99]. Such a condition compromises the
ability of these individuals to effectively perform color and
visualization-related tasks, affecting both their private and
professional lives [OH88]. This situation is particular restric-
tive for dichromats and monochromats. A dichromat is an in-
dividual that misses one of the three types of photopigments
required for normal color vision in humans. Dichromats can
be classified according to the kind of the missing photopi-
ment as protanopes, deuteranopes, or tritanopes, if the miss-
ing photopigment is more sensitive to the long, medium,
or short wavelengths of the visible spectrum, respectively.
Monochromats, on the other hand, have only one or no type
of photopigment, and are classified as cone monochromats
or rod monochromats, respectively.

The recent popularization of digital imaging technology
and color displays has provided an opportunity for mini-
mizing the loss of color contrast experienced by individ-
uals with CVD. This has prompted the interest of several
researchers to the problem of image recoloring for dichro-
mats [ITK∗04, JH06, RGW05a, RGW05b, WS05, KOF08a].
None of these techniques, however, is sufficiently fast to
provide real-time high-quality image recoloring, or preserve

temporal coherence. As a result, they are not suitable for use
in real-time or even in interactive visualization systems.

We present a real-time technique for enhancing color
contrast for dichromats that guarantees temporal coherence
and preserves achromatic colors (gray shades). The cost of
our approach is linear on the number of input pixels, and
most of the computation can be performed independently for
each pixel, lending to an efficient GPU implementation. We
demonstrate the effectiveness of our approach by using it to
obtain real-time, temporal-coherent, high-quality visualiza-
tions for dichromats.

Figure 1 illustrates some results generated by our tech-
nique and compares them with the ones produced by the
state-of-the-art technique for image recoloring for dichro-
mats [KOF08a]. The reference images represent the percep-
tion of normal trichromats. The column Dichromat shows
the simulated perceptions of dichromats for the correspond-
ing reference images. The next two columns show the re-
colored images obtained using our technique and its exag-
gerated contrast version, respectively. The two remaining
columns show the results produced by the regular and by the
exaggerated-contrast versions of the recoloring technique of
Kuhn et al. [KOF08a]. Note how our technique can satisfac-
torily recover the contrast lost by dichromats.
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Figure 1: Comparison of the results produced by our recoloring technique and by Kuhn et al.’s [KOF08a] for a set of scientific
visualization images. The "Dichromat" column shows the simulated perception of dichromats for the corresponding "Reference"
image obtained using the approach of Machado et al. [MOF09]. The simulation and recolorings of the Flame and Nebula
images are for deuteranopes, while the Tornado ones are for protanopes.

The main contributions of this paper include:

• The first contrast-enhancement image-recoloring tech-
nique for dichromats that produces high-quality results in
real time (Section 3). Our solution scales well with the
number of input pixels, can be efficiently implemented on
GPUs, and preserves achromatic colors;
• A technique that enforces temporal coherence in the re-

colored image sequences (Section 3.3);
• The first demonstration of a visualization application with

support for real-time high-quality image recoloring for
dichromats (Section 4);

2. Related Work

Several researchers have investigated the problem of image-
recoloring for individuals with CVD. The existing tech-
niques can be broadly classified as user-assisted and
optimization-based approaches.

2.1. User-Assisted Techniques

The techniques in this class require assistance, in the form
of user-provided parameters, to guide the recoloring pro-
cess. Thus, the quality of their results is highly dependent
on the provided parameters, making them unsuitable for
real-time systems. Iaccarino et al. [IMPS06] employ six pa-
rameters to modulate the original colors of an input image.
Daltonize [DW02] uses three parameters to specify the re-
coloring process (for protanopes and deuteranopes). These
parameters specify how the red-green channel should be

stretched, projected into the luminance channel, and pro-
jected into the yellow-blue channel.

2.2. Optimization-based Techniques

These techniques operate without user intervention and con-
sist of optimization procedures. Ichikawa et al. [ITK∗03]
used a genetic algorithm to recolor web pages for anoma-
lous trichromats. Subsequently, the authors extended their
work for image recoloring [ITK∗04]. Wakita and Shima-
mura [WS05] presented a technique for recoloring docu-
ments (e.g., web pages, charts, maps) for dichromats. Such
a technique is based on three objective functions intended
for: (i) color contrast preservation, (ii) maximum color con-
trast enforcement, and (iii) color naturalness preservation
(for user-specified colors). The three objective functions are
weighted according to user-specified parameters and opti-
mized with simulated annealing. Wakita and Shimamura re-
port that the optimization for documents with more than
10 colors could take several seconds. Jefferson and Har-
vey [JH06] use four objective functions to preserve bright-
ness, color contrast, colors in the available gamut, and color
naturalness. Their technique optimizes the combined objec-
tive functions using preconditioned conjugate gradients. The
authors reported times of the order of several minutes for a
set of 25 key colors (on a P4 2.0 GHz PC using Matlab).

Rasche et al. [RGW05a] presented a recoloring technique
for dichromats consisting of an optimization that tries to pre-
serve the perceptual color differences between all pairs of
colors using an affine transformation. However, such a trans-
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formation does not capture color variations along many di-
rections and does not guarantee that the mapped colors are
constrained to the available gamut. In a subsequent work,
Rasche et al. [RGW05b] addressed these limitations apply-
ing a constrained multivariate optimization procedure to a
reduced set of quantized colors. The resulting set of opti-
mized quantized colors is then used to optimize the entire
set of colors. Despite the improved results, this algorithm
is prone to local minima, and does not scale well with the
number of quantized colors and the size of the input images.

Kuhn et al. [KOF08a] presented a technique for enhanc-
ing color contrast for dichromats based on mass-spring op-
timization, which can be efficiently implemented on GPUs.
Similar to the technique of Rasche et al. [RGW05b], the op-
timization is first performed on a set of quantized colors,
which are then used to optimize the entire set of colors. Al-
though their technique is about three orders of magnitude
faster than previous approaches and can achieve interactive
frame rates, it is still not sufficiently fast to allow real-time
performance. Moreover, since the optimization is based on a
set of quantized colors, it is not clear how one could preserve
temporal coherence on the fly (e.g., during an interactive sci-
entific visualization session).

2.3. Color-to-Grayscale Mappings

Image recoloring for dichromats is a dimensionality re-
duction problem. In this sense, it is akin to the more
constrained problem of color-to-grayscale mapping. Tradi-
tional techniques commonly used in commercial applica-
tions [Bro06, Jes02] perform this mapping by simply tak-
ing the color’s luminance value computed on some color
space (e.g., XYZ, YCbCr, L*a*b*, or HSL). An important
aspect of all these techniques is that they preserve achro-
matic colors, which is a desirable feature for printing. Since
no chrominance information is taken into account, these ap-
proaches map all isoluminant colors to the same shade of
gray, despite of their perceptual differences. Recently, sev-
eral techniques have been proposed to address this limita-
tion [GOTG05, RGW05b, GD07, KOF08b].

Gooch et al. [GOTG05] use an optimization procedure
whose cost is quadratic in the number of pixels in the im-
age. Although the technique produces some good results, its
computational cost precludes it from being used for inter-
active applications. Moreover, it does not preserve achro-
matic colors. Gooch et al. report that they have explored
the use of principal component analysis (PCA) to estimate
an ellipsoid in color space that best approximates the set
of colors found in the image. The grayscale image would
then be computed by projecting all image colors on the
axis of the ellipsoid with the largest variance. According to
the authors [GOTG05] and also pointed out by Rasche et
al. [RGW05b], PCA fails to convert color images with varia-
tions along many directions, and an optimization step would
be required to somehow combine the principal components.

Grundland and Dogdson [GD07] perform the color-to-
grayscale mapping by adding to the original luminance value
Yi of pixel pi, some amount Ki that tries to compensate for
the contrast loss. To compute Ki while avoiding a quadratic
cost (as in previous techniques), the authors introduced a
clever local sampling strategy called Gaussian pairing. It
consists in choosing, for each pixel pi, a pixel p j in a cir-
cular neighborhood around pi. The choice of p j is based on
a Gaussian probability distribution function. The size of the
neighborhood is computed based on the image dimensions.
For a given pair (pi, p j), the relative contrast loss is com-
puted as:

l(pi,p j) = 1−
Yi−Y j

‖pi− p j‖RGB

, (1)

where Yi and Y j are the luminance values of pixels pi and
p j, respectively, and ‖pi− p j‖RGB is the length of the color
vector vi j = pi− p j computed in the RGB color space. Note
that the distance computed in the denominator of Equation 1
has no perceptual meaning. In order to estimate the amount
Ki, the authors map the original RGB colors to their own
opponent-color space (Y PQ), which, again, is not perceptu-
ally uniform. In the YPQ color space, they estimate a di-
rection dmcl of maximum contrast loss (according to Equa-
tion 1) using a technique of their own, which they called
predominant component analysis. The idea of predominant
component analysis is to approximate the direction of maxi-
mum data dispersion using a sum of weighted vectors. Note,
however, that its results are not equivalent to the solution of
an eigenvector problem, such as done in PCA. As a result,
for the same set of input vectors, the direction dmcl is not the
same as the direction of the main eigenvector obtained using
PCA. For computing Ki, the authors essentially project the
original pixel colors expressed in the YPQ space onto dmcl .

Our approach uses the Gaussian pairing technique of
Grundland and Dogdson [GD07] for acceleration. However,
ours differs from their approach in many fundamental as-
pects. First, we are dealing with recoloring for dichromats,
as opposed to color-to-grayscale mappings. Second, we per-
form all the computation in the L∗a∗b∗ color space, which is
an approximately perceptually uniform color space, where it
makes sense to use distances to represent perceptual differ-
ences. Third, we use PCA, an established technique for esti-
mating the direction of maximum variance in a given dataset,
to compute the direction vab that maximizes the loss of color
contrast (in a least-squares sense) in the chromaticity plane
(i.e., a∗b∗ plane). Fourth, we use the coordinates of the pro-
jected colors onto the plane defined by vab and the L∗ axis
as the transformed color coordinates, as opposed to using
them to complement the original luminance values. And fi-
nally, our approach presents temporal coherence, which is
not supported by the technique described in [GD07].
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(a) (b) (c)

Figure 2: Planar approximation for the color gamut of
dichromats in the CIE L∗a∗b∗ color space [KOF08a].
(a) Protanope (θp = −11.48◦). (b) Deuteranope (θd =
−8.11◦). (c) Tritanope (θt = 46.37◦).

3. The Color-Contrast Enhancing Technique

Our approach is based on the key observation that, when-
ever dichromats experience some significant loss of color
contrast, most of this contrast can be recovered by work-
ing on a perceptually uniform color space, and orthographi-
cally projecting the original colors onto a plane aligned with
the direction that maximizes contrast loss (in a least-squares
sense). The coordinates of these projections then become the
new color coordinates on the reduced (2D) color gamut of
the dichromat. Figure 3 summarizes this process, which con-
sists of the following steps:

1. Estimation of the vector vab that represents the direction
that maximizes contrast loss in the CIE L∗a∗b∗ chro-
maticity plane, and

2. Projection of the original colors onto the plane defined by
vab and the lightness (L∗) axis. The projected color coor-
dinates are then rotated around L∗ to align themselves to
the plane of the dichromat, and the resulting colors are
used to recolor the image.

In order to guarantee temporal coherence, we check and cor-
rect for abrupt changes in the sense of vab. Sections 3.1 to
3.3 present the details of these steps.

3.1. Direction that Maximizes Contrast Loss

The color gamut of each class of dichromats can be repre-
sented by two half-planes in the LMS color space [BVM97],
and can be satisfactorily approximated by a single
plane [VBM99]. Figure 2 shows these planes mapped
to the CIE L∗a∗b∗ color space. According to Kuhn et
al. [KOF08a], the angles between such planes and the L∗b∗

plane are θp =−11.48◦, θd =−8.11◦, and θt = 46.37◦, for
protanopes, deuteranopes, and tritanopes, respectively. The
colors shown in Figure 2 represent the actual color gamut
for each class of dichromacy.

Computing the direction that maximizes the loss of lo-
cal contrast (in the least-squares sense) for a dichromat
observing an image I would require evaluating, for each
pixel pi ∈ I, the contrast lost between pi and all pixels
p j in a neighborhood Ni around pi. However, due to spa-
tial coherence, neighbor pixels tend to have similar val-
ues. Thus, estimating the loss of local contrast for each

pixel pi against all pixels in Ni tends to result in a signifi-
cant amount of redundant work. We avoid performing this
computation on the entire neighborhood Ni by resorting to
the Gaussian pairing sampling technique of Grundland and
Dogdson [GD07]. In this case, for each pixel pi, its contri-
bution to the loss of local contrast is estimated from a sin-
gle neighbor p j. The horizontal and vertical distances be-
tween pi and p j are randomly defined by univariate Gaussian
distributions with zero mean and variance (2/π)σ2, where
σ

2 =
√

2min(width,height) [GD07], the function min(a,b)
returns the minimum of a and b, and width and height are
the dimensions of the image. Although the direction of max-
imum loss of local color contrast obtained using this sam-
pling strategy differs from the one computed using the en-
tire neighborhoods, due to spatial coherence these directions
tend to be sufficiently close to each other. To avoid flick-
ering during the recoloring of animated or video sequences
(Section 3.3), we pre-compute the coordinates of the p js and
store them in a texture. The same pairs (pi, p j) are then used
during the entire sequence.

Figures 3 (a) and (b) illustrate the process of computing
the direction that maximizes the loss of contrast for two pairs
of colors, (c1,c2) and (c3,c4), represented as small spheres
in the L∗a∗b∗ color space. c′1 to c′4 are the projections of
colors c1 to c4, respectively, on the dichromat’s plane, and
represent his/her perception of colors c1 to c4 (Figure 3(a)).
Since L*a*b* is approximately perceptually uniform, the
relative loss of color contrast experienced by a dichromat
observing a pair of colors (ci,c j) (with respect to a normal
color vision observer) can be estimated as

l(ci,c j) =
‖ci− c j‖−‖c′i− c′j‖

‖ci− c j‖
, (2)

where ‖.‖ is the vector length operator. For this pair of col-
ors, the direction of contrast loss is given by ϑi j = ci− c j.
Since we preserve the lightness coordinate (i.e., L∗) of the
original colors to avoid polarity reversal [KOF08a], it suf-
fices to compute the direction that maximizes contrast loss
on the chromaticity plane. Computing it in the entire L∗a∗b∗

space does not improve the results, and would require find-
ing the eigenvectors of a 3× 3 matrix instead of a 2× 2.
Thus, let wi = l(ci,c j)ϑi j be the vector representing the con-
trast loss along direction ϑi j associated to pixel pi. Also let

M =


wa∗

1 wb∗
1

wa∗
2 wb∗

2
. . . . . .

wa∗
n wb∗

n

 (3)

be a matrix whose rows contain the coordinates of the chro-
maticity vectors representing the loss of color contrast for
all pixels in image I. The elements of the i-th row of M are
the projections of wi on the a∗b∗ plane. vab can then be ob-
tained as the eigenvector of the 2× 2 matrix MT M whose
corresponding eigenvalue has the largest absolute value. In
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(a) (b) (c) (d)

Figure 3: The steps of our recoloring algorithm. (a) Colors c1 to c4 are perceived by a dichromat as c′1 to c′4, respectively
(their projections on the dichromat’s gamut plane). The relative loss of contrast experienced by a dichromat for a pair of colors
(ci,c j) is given by l(ci,c j) = (‖ci− c j‖−‖c′i− c′j‖)/(‖ci− c j‖), which happens along the direction ϑi j = ci− c j. (b) Direction
vab (shown in blue) that maximizes the loss of local contrast (in a least-square sense) is computed as the main eigenvector of
the matrix MT M, where M is defined in Equation 3. (c) Projection of the original colors on the plane defined by vab and L∗. (d)
Final colors obtained after rotating the projected colors c′′k in (c) around L∗ so that they align with the dichromat’s plane.

order to solve the resulting characteristic equation, we set the
b∗ coordinate of vab to one and solve for its a∗ coordinate.

3.2. Computing the Final Colors

When a dichromat experiences a significant loss of color
contrast, the orthographic projection of the original colors
onto the plane defined by the vectors L∗ and vab tends to
spread these colors more than when they are projected onto
the dichromat’s plane. This situation is illustrated on Fig-
ures 3 (a) and (c). If the spatial relationship among the
projected colors onto the L∗-vab plane is transfered to the
dichromat’s plane, an image with better color contrast will
be produced. This is achieved by rotating the projected col-
ors around the L∗ axis so that they now align with the
plane of the dichromat. Figure 3 (d) illustrates this opera-
tion, which preserves the achromatic colors from the original
image.

Exaggerated Contrast: As one maps the RGB cube to the
L∗a∗b∗ color space, the maximum length of the resulting
chromaticity vectors is 148.47. Thus, we obtain images with
exaggerated contrast, similar to the ones produced by Kuhn
et al.’s technique, simply by rescaling all chromaticity coor-
dinates in the recolored image so that its maximum chroma
becomes 148. We emphasize, however, that this is not the
preferred use for our technique, as images produced with
exaggerated contrast tend to contain higher perceptual dis-
tortions than images obtained using our regular recoloring
technique. Recolorings with exaggerated contrast are shown
in Figures 1, 4 and 8 for the sake of comparison.

3.3. Enforcing Temporal Coherence

Temporal coherence is an important requirement for image-
recoloring techniques, as subtle changes in the color of an
object during an interactive visualization session or anima-

tion can be quite disturbing. This section explains how our
technique enforces temporal coherence.

If the direction of vab is almost parallel to the a∗ axis, a
minor change in the input colors might imply a switch in the
sign of vab’s small b∗ component (see Figure 3(b)). How-
ever, for the solution of the characteristic equation associ-
ated with the computation of vab, we have arbitrated its b∗

component to 1 (Section 3.1), as one possible way to avoid
the trivial solution vab = 0. This constrains vab’s b∗ compo-
nent to be positive, causing its a∗ component to change its
sign to accommodate the change in vab’s direction. Such a
change would cause recolored pixels to abruptly change col-
ors between consecutive frames (e.g., blue pixels would turn
yellow, and vice versa). We avoid the occurrence of these
artifacts during an interactive visualization session (or ani-
mation) by saving the vector vab of the current frame and
using it for comparison in the next frame. As the angle be-
tween the previous and current vectors approaches 180◦, we
invert the sense of the current vab to enforce color consis-
tency. Although simple, this is an effective solution, whose
results can be observed in the accompanying video.

4. Results

We have implemented the described technique both for CPU
and for GPU, using C++ and GLSL, and used them to re-
color a large number of images. We have also integrated the
GPU implementation with an existing visualization applica-
tion using a minimally invasive approach. In this session, we
compare the performance and quality of the results produced
by our technique with the ones obtained with the approach of
Kuhn et al. [KOF08a], which is currently the state-of-the-art
both in terms of performance and image quality. One should
note that all recolored images shown in the paper are per-
ceived similarly both by the class of dichromats they were
recolored for and by normal color vision individuals. This
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Figure 4: Comparison of the results produced by our technique and by Kuhn et al.’s. First row, from left to right: reference
image, simulated perception of a deuteranope, and recolored images using various algorithms. Second row: Perceptual errors
according to the DRIM metric. Third row: Local contrast differences according to the RMS metric of Equation 4 (for k = 100).
According to both metrics, our recoloring technique is less prone to noticeable changes in contrast.

comes from the fact that all colors used for recoloring are on
the dichromat’s plane, which is a subset of the color gamut
of a normal trichromat. Also, all images exemplifying re-
sults of Kuhn et al.’s techniques (regular and exaggerated
contrast) were generated with a CPU implementation based
on K-means (with up to 128 clusters) in order to obtain the
best possible image quality. The results reported in the pa-
per were obtained using a Core 2 Extreme 3.0 GHz PC with
8 GB of memory and a Quadro FX 5800 graphics card.

We assess the quality of our results using both subjec-
tive comparison and a perceptual image quality metric. For
this, we use the dynamic range independent image quality
metric (DRIM) of Aydin et al. [AMMS08]. DRIM uses a
model of the human visual system to try to detect visible
changes in image structure. Figures 1, 4, and 8 show results
produced by our technique and compare them with the ones
obtained with Kuhn et al.’s approach. In these figures, the
reference images illustrate the perception of normal trichro-
mats. The column Dichromat shows the simulated percep-
tion of dichromats obtained with the algorithm of Machado
et al. [MOF09]. The remaining columns present the recol-
ored images obtained using our technique, an exaggerated
contrast version of it, Kuhn et al.’s [KOF08a] technique, and
its exaggerated contrast version, respectively. The reference
images are from different sources. They illustrate cases of ef-
fective visualizations for normal trichromats, but which are
challenging for individuals with CVD. As such, they pro-
vide good test cases for our technique. Most of these im-
ages (Flame, Brain, Knee, Foot, Europe and Chart) have
also been used by Kuhn et al. [KOF08a]. Due to space con-

straints, Figure 1 includes recolorings, but not the error im-
ages produced by DRIM (they favor our results).

Reference Protanope Recolor. (Ours) Recolor. (Kuhn)

C
ha

rt
E

ur
op

e

Figure 5: Recoloring of information visualization images
for protanopes.

Figure 4 shows the results obtained when recoloring the
reference Brain image for deuteranopes. The second row
shows their corresponding color-coded perceptual errors ac-
cording to DRIM (using its default parameters), computed
with respect to the reference image. Green indicates loss
of contrast, blue represents contrast amplification, and red
shows regions with contrast reversal. The more saturated the
colors, the higher the probability of a human observer per-
ceiving these changes in contrast. The DRIM results suggest
that the metric cannot fully capture contrast changes that re-
sult purely from image recoloring.

In order to complement DRIM’s results, we defined a sim-
ple error metric that tries to capture local differences in color
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Figure 6: Integration of our technique with an existing visualization application. (left) Reference image as perceived by an
individual with normal color vision. (center) Simulation of the perception of a deuteranope for the reference image using the
model of Machado et al. [MOF09]. (right) Recolored image for a deuteranope using our technique.

contrast between pairs of images. Such a metric consists
in computing a root-mean-square (RMS) error across cor-
responding neighborhoods in the (pair of) images using the
L∗a∗b∗ color space. Although it produces plausible results,
this metric has not been formally validated as a perceptual
error metric. Due to space restrictions, we only present its re-
sults for the example shown in Figure 4. The proposed RMS
metric is defined as follows: let pi ∈ Ire f be a pixel in the
reference image Ire f , and let Spi = {p j, p j+1, ..., p j+k−1}
be the set of pixels also in Ire f in a neighborhood contain-
ing k pixels centered at pi. Likewise, let qi ∈ Itest be the
pixel corresponding to pi in the test image Itest , and let
Sqi = {q j,q j+1, ...,q j+k−1} be the set of pixels in the cor-
responding k-neighborhood around qi. The difference of lo-
cal color contrast between Ire f and Itest at pi and qi can be
expressed as

RMS(qi) =

√√√√1
k

j+k−1

∑
s= j

(
(pi− ps)− (qi−qs)

160

)2

. (4)

The constant 160 in the denominator keeps the resulting
value in the [0,1] range. The third row of Figure 4 shows
the resulting error images obtained applying Equation 4 to
the foreground pixels of the images in the first row (with re-
spect to the reference one). The value 0 is shown in white,
and darker shades of blue indicate bigger errors. Note how
these errors vary more smoothly over the images. According
to both metrics, the results produced by our technique are
less prone to noticeable changes in contrast than the regular
and exaggerated versions of Kuhn et al.’s technique.

Figure 8 compares our results and Kuhn et al.’s for three
medical visualization images. Again, for these examples,
our recoloring technique introduced less contrast distortions
than both the regular and exaggerated versions of Kuhn et
al.’s approach. Kuhn et al.’s technique [KOF08a] is based
on the more sounding principle of estimating perceptual dif-
ferences between pairs of colors in the reference image, and
using an optimization procedure to try to enforce such differ-
ences in the recolored image. In practice, however, the opti-

mization often might not be able to recover the optimal con-
trast due to the occurrence of local minima. This explains the
results shown in Figures 1, 4, and 8. Our projection-based
approach, on the other hand, tends to produce good results
whenever a dichromat experiences significant loss of color
contrast.

Figures 5 shows ours and Kuhn et al.’s results for two in-
formation visualization examples. In this case, only the re-
sults of the regular recoloring techniques are shown. Table 1
summarizes the performance of our approach in comparison
to both the CPU and GPU versions of Kuhn et al.’s approach
for seven images shown in the paper. The entries in the table
are ordered by the number of pixels in the images. One can
observe that both versions of our technique are up to two
orders of magnitude faster than Kuhn et al.’s counterparts
on images up to 800×800 pixels. Since the cost of our algo-
rithm is linear on the number of pixels, the achieved speedup
improves as the image size increases. Although Kuhn et al.’s
mass-spring optimization applied to a set of quantized colors
is quite efficient, it still requires a quantization and a recon-
struction steps, which dominate the total cost of the algo-
rithm. Table 2 summarizes these costs for some of the im-
ages shown in the paper, considering the two quantization
and reconstruction strategies described by the authors.

Our technique can be easily integrated with existing ap-
plications using a minimally invasive approach. It can be
deployed as a few shader programs, which the application
should call after rasterizing the scene, but before swapping
the back and front buffers. In this case, the shaders simply
read the content of the back buffer, recolor it, and write it
back, after which the host application swaps the buffers. We
used this strategy to integrate our technique to an existing
visualization application. Figure 6 shows some snapshots of
the resulting system. The accompanying video shows the re-
sulting application in action.
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Reference Deuteranope Recoloring (Ours) Exag. Recol. (Ours) Recoloring (Kuhn) Exag. Recol. (Kuhn)
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Figure 7: Example of a situation that causes our technique to fail. Note that deuteranopes (and protanopes) already perceive
the reference image as having sufficient contrast, and no recoloring is necessary.

Image (size)
CPU GPU

Our Kuhn Our Kuhn
Time Time Time Time

Flame (288x184) 0.055 1.148 0.019 0.121
Chart (500x300) 0.191 2.707 0.020 0.106
Foot (446x446) 0.252 3.743 0.021 0.307
Brain (532x523) 0.292 5.053 0.023 0.577
Knee (528x528) 0.341 5.217 0.022 0.313
Europe (596x486) 0.385 5.361 0.023 0.565
Nebula (800x800) 0.614 11.73 0.028 1.145

Table 1: Performance comparison (in sec.) of our technique
and Kuhn et al.’s [KOF08a] for both CPU and GPU versions
of the algorithms executed on several images. Due to the
linear cost of our approach, the relative speedup improves
as the image size increases.

Image (size) Clusters Quant. Reconst.
time time

Flame (288x184) 88 0.9363 0.0027

K
-M

ea
nsFoot (446x446) 78 3.5055 0.0082

Europe (596x486) 70 5.1130 0.0115
Nebula (800x800) 98 11.2448 0.0255
Flame (288x184) 77 0.0155 0.0857

U
ni

fo
rmFoot (446x446) 48 0.0670 0.2764

Europe (596x486) 48 0.0978 0.5356
Nebula (800x800) 74 0.2120 1.1130

Table 2: Times (in sec.) for the quantization and reconstruc-
tion phases of the technique of Kuhn et al. [KOF08a] for sev-
eral images. K-means used in the CPU version of the tech-
nique, and uniform quantization used in its GPU version.
The column Clusters shows the number of clusters identified
in the quantization phase.

4.1. Limitations

Like all previous image-recoloring techniques for dichro-
mats, ours also has some limitations. For example, let d be
the direction of maximum dispersion of the original colors
in image I (in L∗a∗b∗). If vab is approximately perpendicu-
lar to d and the color dispersion along d is larger than along

vab, the recolored image should exhibit less contrast than the
original one. In practice, this requires that the loss of contrast
be small, meaning that the dichromat could already perceive
the details in the original image. In such a situation, there
would be no need for recoloring in the first place. Figure 7
illustrates this situation with an image whose colors were
carefully chosen to achieve this effect. According to our ex-
perience, such cases should happen only rarely. To handle
them, the user can turn our recoloring technique on and off
at any time during an interactive session.

Although our technique preserves gray shades, it does not
provide a mechanism for preserving other colors perceived
similarly by dichromats and normal color vision individu-
als, as does the technique described in [KOF08a]. Also, as a
fundamental limitation of the reduced color gamut of dichro-
mats, no technique, including ours, can fully recover the lost
contrast in all situations.

5. Conclusion

We have presented the first technique to provide real-
time, temporal-coherent, high-quality image recoloring for
dichromats. Its computational cost varies linearly with the
number of input pixels, and it can be efficiently implemented
on GPUs. We have shown that the results produced by our
technique are at least as good as the ones obtained with the
current state-of-the-art technique, while being up to two or-
ders of magnitude faster. We have also shown how to inte-
grate our technique with existing applications using a min-
imally invasive strategy, and demonstrated its effectiveness
producing real-time visualizations for dichromats.

Our results should enable the development of more user-
friendly applications for individuals with color vision defi-
ciency. For instance, the low computational cost of our tech-
nique makes it a suitable solution for implementation on cell
phones and other mobile devices equipped with cameras. On
such devices, the recoloring capabilities of our technique can
be a useful tool for assisting color vision deficient individu-
als in several daily tasks.
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Figure 8: Comparison of the results produced by our technique and the ones obtained with Kuhn et al.’s approach for a set of
medical visualization images. The even rows show the estimated changes in contrast perceived by an observer in the recolored
images (with respect to the reference images), according to the DRIM metric. Green indicates loss of contrast, blue represents
contrast amplification, and red shows regions with contrast reversal. The metric favors our results in all examples.
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