
Volume 28(2009), Number 2 pp. 1–10 COMPUTER GRAPHICS forum

Poisson-based Weight Reduction of Animated Meshes

Eric Landreneau and Scott Schaefer

Texas A&M University

Abstract
While animation using barycentric coordinates or other automatic weight assignment methods has become a
popular method for shape deformation, the global nature of the weights limits their use for real-time applications.
We present a method that reduces the number of control points influencing a vertex to a user-specified number such
that the deformations created by the reduced weight set resemble that ofthe original deformation. To do so we
show how to set up a Poisson minimization problem to solve for a reduced weight set and illustrate its advantages
over other weight reduction methods. Not only does weight reduction lower the amount of storage space necessary
to deform these models but also allows GPU acceleration of the resulting deformations. Our experiments show
that we can achieve a factor of 100 increase in speed over CPU deformations using the full weight set, which
makes real-time deformations of large models possible.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric Algorithms

1. Introduction

Surface deformation is a popular tool in animation and mesh
editing. While there are many different methods for perform-
ing such deformations, barycentric coordinates have recently
been shown to be an effective tool for both image [HF06] and
mesh deformation [JSW05,JMD∗07]. Part of the popularity
of this deformation method is its simplicity. Given a high-
resolution (or target) surface, we can deform the shape by
embedding it in a low-resolution control mesh that approxi-
mates the target shape. The user then deforms the surface by
modifying the control mesh (see Figure1).

Furthermore, these deformations are easy to compute. For
each vertex in the target surfacev, we represent that vertex
as a weighted combination of the verticesci of the control
mesh

v = ∑
k

αici

whereαi are the barycentric coordinates of the vertexv with
respect to the control mesh. As the user modifies the vertices
of the control mesh, we can compute the deformed location
of v using the same weighted combination of vertices

v̂ = ∑
i

αi ĉi (1)

Figure 1: The user deforms the rest pose (left) by modifying
the control cage (right) using barycentric coordinates.

wherev̂ is the deformed position of the vertexv andĉi are the
deformed location of the control vertices. Notice that these
coordinates are also translationally invariant; that is

∑
i

αi = 1 (2)

and the basis functions associated with a vertexci are
smooth, which guarantees the deformations are smooth as
well (typically C∞). Since the weightsαi are independent
of the deformed location of the control vertices, these coor-

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350
Main Street, Malden, MA 02148, USA.

Eric Landreneau & Scott Schaefer / Poisson-based Weight Reduction of Animated Meshes

Figure 2: A bunny’s ear in the rest pose (left) is stretched
using globally defined mean-value coordinates (middle) and
using reduced weights (right). Color corresponds to vertex
movement. Every vertex in the global model exhibits some
movement, but all movement on the reduced model is locally
restricted to the ear.

dinates may be precomputed and stored yielding relatively
fast deformations.

Unfortunately, most barycentric coordinate techniques are
global in nature. Each vertex in the target mesh is weighted
by a combination of every vertex in the control mesh. As
the complexity of the control mesh increases, the storage
space and time required to deform the target mesh’s vertices
linearly increases as well. Even for sparse control meshes
consisting of 50 to 100 vertices, the deformations may be
too slow for real-time animation. In addition, any deforma-
tion using these globally supported weights will influence
the entire target mesh. For example, if the user moves a sin-
gle ear of the rabbit model in Figure2, even vertices on the
other side of the model will move slightly. Such movement
is often counterintuitive, especially with articulated figures
where the user may expect the motion of a body part to be
isolated to that portion of the model.

Given a control vertexci , its basis function defined by
the weightsαi typically decreases with respect to Eu-
clidean distance [JSW05] or geodesic distance in the con-
trol mesh [JMD∗07]. Therefore, many of the weightsαi for
a single vertex will be very small and only a few control
vertices will have significant influence on the vertex. Since
the magnitude of the weights decrease with distance and the
deformation model may contain extraneous degrees of free-
dom, limiting the number of weights influencing each vertex
of the target mesh is not only possible but desirable as well.
By reducing the number of weights we can expose/increase
locality in the resulting deformations. Since the number of
weights is constant with respect to the control mesh, we can
also increase the complexity of the control mesh without in-
creasing the storage or deformation time of the target mesh.
Finally, if the number of weights are small enough, we can
accelerate these deformations by implementing the deforma-
tion equation on the GPU, which requires a small, fixed num-

Figure 3: An example of our weight reduction applied to a
model of Buddha in the rest pose (left) and deformed poses
(right). The model was reduced from 45 weights down to 12
weights using our Poisson reduction and is indistinguishable
from the original model.

ber of weights to maximize computational efficiency. Fig-
ure 3 demonstrates the type of reduction possible with our
method. In this example each vertex of the Buddha model is
weighted by all 45 vertices of the control mesh. After weight
reduction, each vertex has a maximum of 12 weights and the
model is virtually identical to the original under deforma-
tion.

1.1. Contributions

We present a Poisson-based optimization technique that re-
duces the number of control point influences of a deformable
mesh to a specified count. To expose the limited degrees of
freedom in the model we require the user to specify a num-
ber of example poses demonstrating the set of plausible de-
formations of the character. From these examples we show
that we can maintain the appearance of the surface under
deformation and provide an iterative optimization technique
capable of handling even large meshes consisting of millions
of polygons. Using this reduced set of weights, we show
how we can implement these barycentric coordinate defor-
mations efficiently on the GPU and achieve a factor of 50
speed-up over a CPU implementation. Moreover, we show
that our method can be applied not just to barycentric coor-
dinates but to other deformation methods as well and give an
example of weight reduction for skeletal animation.

2. Previous Work

Though barycentric coordinates have existed since Möbius
in 1827, only in recent years has significant work been done
in this field. Given the relatively new interest in this field,
most previous work has focused on developing new forms
of barycentric coordinates or proving properties about their
deformations [FK08] instead of manipulating or reducing
the number of weights. However, all of these methods have

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Eric Landreneau & Scott Schaefer / Poisson-based Weight Reduction of Animated Meshes

Figure 4: From left to right: A deformed armadillo man containing 110 weights per vertexcomputed using mean value coor-
dinates, the example poses used for optimization, reduced to 8 weights per vertex using k-largest weights, geometric reduction,
smooth weight reduction, and Poisson reduction.

globally supported basis functions and are applicable to our
technique.

Wachspress developed one of the first extensions of
barycentric coordinates to convex polygons for finite ele-
ment analysis [Wac75]. Later, [War96] extended this method
to convex polytopes in higher dimensions. [FHK06] also
showed that entire families of coordinates could be con-
structed for convex shapes. However, since all of these meth-
ods relied on the convexity of the control polygon/mesh, they
found limited use in Computer Graphics.

[Flo03] addressed this problem by creating mean value
coordinates, which were well-defined for arbitrary polygons
in 2D. Later [JSW05] and [FKR05] extended these coor-
dinates to higher dimensions. [HF06] and [JSW05] also
demonstrated how these barycentric coordinates could be
used for image and surface deformation.

The disadvantage of mean value coordinates is that they
can contain negative weights, which had the potential to cre-
ate undesirable deformations. [LKCOL07] modified mean
value coordinates to be positive; however, this modification
made the coordinates (and the resulting deformations) only
C0. [JMD∗07] introduced harmonic coordinates, which uti-
lized a discrete solution to the harmonic equation to create
barycentric coordinates and guarantee that the weight func-
tions are always positive and smooth. More recently [HS08]
demonstrated a connection between barycentric coordinates
and statistics to create a non-linear optimization for positive
barycentric coordinates as well.

While this paper focuses on barycentric coordinates,
many techniques represent deformations as a weighted com-
bination of control vertices. For example, free-form defor-
mations [SP86] use a lattice based control mesh and the co-
ordinates of vertices inside of the lattice are given by the
value of the Bernstein basis functions. Radial basis func-
tions [Boo89] may also be used for image/surface defor-
mation where the weights of each control vertex are found
through a linear system of equations.

3. Weight Reduction

We will assume that for each vertex of the target surface, we
are given the weightsαi for i = 1. . .n wheren are the num-
ber of control vertices. We are also given a user-specified
constantk < n, which is the maximum number of non-zero
weights we will reduce to. Notice that, for barycentric coor-
dinates in 3D,k must be greater than or equal to 4. We will
consider 4 possible methods for weight reduction and show
that Poisson-based minimization provides the best results.

There are two components to weight reduction. First we
must choose the set of control vertices of sizek that will
influence a particular vertex. Second, once that set is chosen,
we must determine the values of the weights for thek control
vertices. We concentrate mainly on the later problem though
we must still address the choice of influence set.

There are many possibilities for choosing the influence
set of a vertex. However, the combinatorics of choosing the
best k control vertices fromn, the choice of which may
be affected by the influence set of neighboring vertices on
the target surface as well, is computationally intractable for
even small meshes. Therefore, we use a simple heuristic and
choose the influence set for a vertex based on the largestk
weights. This choice is reasonable since, as mentioned pre-
viously, the weight functions are proportional to distance
meaning that many control vertices will have small influence
on a given vertex. There may be other heuristics for choosing
influence sets that work better, but we find that thek largest
weights does well in practice.

If we simply select thek largest weights for a vertexv and
renormalize the weights such that they satisfy Equation2,
we obtain a new, reduced set of weights forv. Given that the
weights we removed had small magnitude, a commonly held
belief is that these normalized weights will perform well as
a reduced set. However, this is not the case as is illustrated
by Figures4 and5. Though the influence sets exhibit a large
degree of spatial locality as expected, large tears and normal
discontinuities such as those illustrated by Figure6 are visi-
ble in the model where adjacent influence sets are different.
Even when the weights we remove have very small magni-
tude, these normal discontinuities are present. Therefore, we

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Eric Landreneau & Scott Schaefer / Poisson-based Weight Reduction of Animated Meshes

Figure 5: A deformed horse containing 51 weights per vertex computed using harmonic coordinates. From left to right: rest
pose with control cage, original deformed surface, reduced to 8 per vertex using k-largest weights, geometric reduction, smooth
weight reduction, and Poisson reduction.

Figure 6: Normal deviation for several reduction tech-
niques. Color intensity denotes amount of deviation.

must consider more sophisticated techniques for choosing
the value of these weights.

3.1. Smooth Weights

Choosing thek largest weights generates a poor solution
because sharp normal discontinuities are visible in the de-
formed meshes. One solution is then to find a set of smooth
weights that satisfy the property that the weights are zero
outside of the influence set for a vertex.

Let Āi be the original barycentric coordinate function of
theith control point before optimization such thatĀi(v) = αi
for vertexv. For each barycentric weight function, we maxi-
mize the smoothness of this influence restricted function by
minimizing

∑
i
(∇2Ai −∇2Āi)

2

subject to the constraint that, at each vertex,∑i Ai(v) = 1
whereAi(v) is zero at a vertex ifi is not part ofv’s influ-
ence set. We choose to optimize the criteria that the lapla-
cian of the reduced weights match the laplacian of the orig-
inal weight set to preserve the property that, if number of
reduced weightsk is set to the number of control vertices,
thenAi = Āi . As this minimization does not contain any ge-
ometric constraints, we add the constraint thatAi have linear
precision:

∑
i

Ai(v)ci = v.

For polygon meshes,∇2 has a familiar form as a summation
of cotan weights [PP93]. Performing this constrained min-
imization results in a sparse, linear system of equations of
sizemk+ 4 wherem is the total number of vertices in the
surface.

Many barycentric coordinate techniques such as mean
value coordinates may produce negative weights and, hence,
negative weights are even desirable in weight reduction.
However, for some methods such as harmonic coordinates or
skeletal animations (see Section4), the weights are always
guaranteed to be positive. Positive weights not only guar-
antee the convex hull property for bounding deformations,
but can also avoid overfitting in the optimization [JT05].
For these methods, we add an additional constraint that
Ai(v) > 0. This constrained quadratic minimization with in-
equality constraints can be minimized using non-negative
least squares [LH74], though for such large systems of equa-
tions, non-negative least squares may not be practical as
these solvers require repeated solutions of the quadratic.

Instead we found that, by iterating a local solver, we were
able to minimize the entire system of equation effectively. To
do so, we minimize the weights of each vertex separately by
holding the weights of the vertices of its one-ring constant.
The size of the quadratic is then reduced tok variables and is
easy to solve even with non-negative constraints. Each mini-
mization of a vertex reduces the global error over the surface
and this process converges to the minimum. In practice the
number of iterations necessary to converge to the solution
depends on the size of the mesh but we found that iterating
this process a number of times equal to 0.1% of the num-
ber of vertices produced good results. We use this technique,
including the non-negative constraints where appropriate, in
Sections3.2, 3.3and4 as well.

While this minimization is far more costly than simply
choosing thek largest weights, the result is a much smoother
deformation. Figure4shows an example of such a minimiza-
tion applied to a barycentric coordinate deformation. For
models with small discontinuities in the smoothness of the
weight function, this minimization may be adequate. How-
ever, this method still performs poorly for more complex an-
imations as seen in Figure4.

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Eric Landreneau & Scott Schaefer / Poisson-based Weight Reduction of Animated Meshes

Figure 7: A model with a skeletal animation created with Pinocchio contains up to 17 weights per vertex (far left). We reduce the
model to5 skin weights per vertex using k-largest weights (middle left), geometric reduction (middle), smooth weight reduction
(middle right), and Poisson reduction (right).

One of the reasons that this method, as well as simply
choosing thek largest weights, does not approximate the de-
formations well is that it does not use any information about
the types of plausible deformations that may be generated
by the user. The control mesh of these free-form deforma-
tions does not have any limitations placed on its shape, and
any configuration of the control vertices will generate a valid
deformation. While each control vertex is independent from
one another and may be moved in isolation, in practice many
control vertices move in concert to create plausible deforma-
tions of an object. For example, in Figure1 the control ver-
tices at the tip of the hand move in almost a rigid fashion to
maintain the shape and volume of the hand under deforma-
tion.

Since these restrictions are not encoded in the control
mesh, we must have some method of sampling the plausible
space of deformations. A popular technique for sampling a
model’s plausible deformation space is through a set of ex-
ample poses provided by the user [MG03,SZGP05,HXS08].
Solving our weight reduction problem using plausible defor-
mations simplifies the problem a great deal as we do not need
to approximate the original shape for every possible control
mesh configuration. Furthermore, this technique allows an
artist guide the optimization towards the model’s most com-
mon deformations.

Therefore, we require that the user specify a number of
example poses exercising the degrees of freedom of the de-
formation. The number of example poses required to achieve
a good result highly depends on the example poses and the
complexity of the model. Good results may be obtained with
only one example pose though we find in practice several are
needed to express the full range of motion of a character (we
typically use 4-6 examples).

3.2. Geometric Weight Reduction

One possible method for utilizing these examples poses is
a modification of the method of [JT05]. This method mini-
mizes the distance to the deformed example poses in theL2

norm, which results in a minimization of the form

min
αi

poses

∑
j

∣

∣

∣

∣

∣

v j − ∑
i∈in f (v)

αic
j
i

∣

∣

∣

∣

∣

2

(3)

wherev j is the deformed position ofv in the jth pose,c j
i

is the position of theith control vertex in thejth pose and
in f (v) denotes the influence set ofv. Combining this equa-
tion with the constraints from Equation2 creates a con-
strained quadratic minimization with a unique minimum.
Note that, like [JT05], we utilize non-negative constraints
when appropriate.

Figures4 and5 shows an example of the result of apply-
ing this minimization to the weights. While the silhouette of
the model is well approximated, the model suffers from sim-
ilar problems as the k-largest weights and has banding ar-
tifacts caused by normal discontinuities. Since we perceive
shape not only through the geometric shape of the silhouette
but also through the way in which light interacts with the
surface, we can improve the perceived quality of the defor-
mations by optimizing the difference in the normals of the
surface.

3.3. Poisson-based Weight Reduction

Direct optimization of the weights to make the normals of
the reduced deformation match the example poses produces
a non-linear optimization. An alternative is to optimize the
tangents of the surface [GZ08]. The approach we take is to
minimize a Poisson equation similar to [TLHD03,YZX∗04].
Given a functionφ defined over the target mesh, the Poisson
equation is the solution to

min
φ

Z

S
|∇φ−w|2 dA

whereS is the surface andw is a guidance field over the
surface. Equivalently, this equation may be written as

min
φ

Z

S
(∇2φ−∇·w)2dA

where∇2 is the laplacian. If the guidance fieldw is also
given as a divergence of a scalar fieldψ over the target mesh,

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Eric Landreneau & Scott Schaefer / Poisson-based Weight Reduction of Animated Meshes

Figure 8: Weight distribution of the model from Figure7
before and after weight reduction with a maximum of 5
weights.

then we can write the equation as

min
φ

Z

S
(∇2φ−∇2ψ)2dA. (4)

In other words, the equation tries to match the laplacian of
the unknown functionφ to that of the given functionψ.

Using Equation4, we can write our minimization problem
as

min
α

2

∑
γ=0

poses

∑
j

vertices

∑
ℓ

(∇2(∑
i∈in f (vℓ)

αℓ,ic
j
i [γ])−∇2v j

ℓ
[γ])2 (5)

subject to the constraints in Equation2 wherec j
i [γ] repre-

sents extracting componentγ from the vertexc j
i (x = 0,y =

1,z= 2).

Similar to the geometric minimization in Section3.2, this
minimization is a constrained, sparse quadratic in the un-
known weightsα, which can be solved using Lagrange mul-
tipliers and the repeated, local minimization technique de-
scribed in Section3.1.

4. Weight Reduction for Skeletal Animation

While we have focused on barycentric coordinates and other
control mesh weighted deformation schemes, our technique
may be used on many different types of deformations. Here
we give an example of skeletal animation based on its pop-
ularity in computer graphics and real-time applications. In-
stead of blending control vertices, this method blends bone
transformations to deform vertices.

Given a set of bone transformations as matricesMi for
the ith bone, the deformed position ˆv of a vertexv from the
rest-pose is

v̂ = ∑
i

αiMiv.

Figure 9: Vertex shader calculation of normals. The left
shows the result of exact normals computed from the posi-
tions of the deformed vertices. The right shows normals cal-
culated by GPU transformation of rest-pose normals using
approximate affine transformations.

If we substitute this definition into Equation5, we obtain

min
α

poses

∑
j

vertices

∑
ℓ

(∇2(∑
i∈in f (vℓ)

αℓ,i(M
j
i vℓ)[γ])−∇2v j

ℓ
[γ])2

.

For skeletal animation, we typically require thatαℓ,i ≥ 0 so
we can use a non-negative least squares solver to minimize
this equation as in Section3.3.

Figure 7 shows an example of this reduction applied to
skeletal animation. In this example the skeletal weights were
computed automatically using Pinocchio [BP07]. Before re-
duction each vertex had a variable number of weights many
of which were influenced by the entire skeleton (17 bones).
After minimization the maximum number of bone weights
was 5 and Figure8 shows the weight distributions before
and after minimization. The result with the reduced weights
is very similar to the original deformation, takes less storage
space and can be animated more efficiently.

5. GPU Implementation

In recent years, graphics processors on modern video cards
have become useful tools for tasks other than graphics ren-
dering, such as linear blend skinning. A GPU works best
with small, fixed-size data, so a model in which each ver-
tex has tens or hundreds of weight influences may be un-
acceptably slow when animated on a GPU. Therefore, our
technique not only optimizes a model so it consumes less
space and performs better under CPU deformation, but the
reduction also makes the model viable for GPU accelerated
deformation.

To perform this acceleration, we implemented a vertex
shader to calculate the model’s deformation on the GPU.
Vertices of the deformed control mesh are sent to the card
as constants in the shader. Weight indices and weight val-
ues are sent as per-vertex texture coordinates and the shader

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Eric Landreneau & Scott Schaefer / Poisson-based Weight Reduction of Animated Meshes

Figure 10: Poisson weight reduction varying the maximum number of weights. The farleft is the original shape. Then, from left
to right, the maximum weights varies from 4-8.

performs a simple summation to find a vertex’s deformed
position according to Equation1.

A vertex shader does not contain adjacency information,
so finding the normal of the vertex is nontrivial. With skeletal
animations, the vertex normals can be transformed using the
inverse transpose of the weighted bone matrix. However, for
barycentric coordinate animations, this is not the case. While
we could calculate the deformed mesh and read-back its ver-
tices to recompute vertex normals on the CPU, this method
is unnecessarily slow. Instead, we provide a method for ap-
proximating the barycentric coordinate deformation locally
as an affine transformation and use the inverse transpose of
this matrix to transform the normal.

Given a set of control vertices, ˆci for some deformed con-
trol cage (not necessarily an example pose), the positions of
the control vertices in the rest posec0

i and weightsαi , we ap-
proximate the barycentric coordinate transformation using a
weighted least squares formulation. In particular, we find the
affine transformation that maps each control vertexc0

i to its
deformed locationci weighted by the valueαi .

min
M

∑
i
|αi(Mc0

i − ĉi)|
2

Solving for the inverse transpose of the matrix, we obtain

M−T =
1
β

ad j

(

∑
i

αi
2c0

i ĉT
i

)(

∑
i

αi
2c0

i c0
i

T
)

wheread j(X) represents the adjugate of the matrixX andβ
is the determinant of the matrix we compute the adjugate of.
Since the normal will be renormalized after multiplication,
β never needs to be calculated.

Multiplying the normal by this matrix yields a good ap-
proximation of the transformed normal. When ˆci = c0

i , this
method returns the identity transformation and the result is
exact. Furthermore, when the size of the influence set of
the vertex is four, this minimization yields the precise affine
transformation that the control points represent. When the
influence set is greater than four vertices, this method ap-
proximates the deformation with an affine transformation.
Figure9 shows an example of lighting a model with normals
produced by this method. The left figure shows the result
of computing area weighted normals from the positions of
the deformed vertices and is exact. On the right, the figure’s

normals use this approximate affine transformation method.
The result is nearly indistinguishable.

We tested our GPU implementation on an Intel Core i7
920 CPU with an Nvidia 280 GTX video card. To test the
deformation, we used an animation of the model in Figure1,
which contains 702,538 polygons and its control mesh con-
tains 137 vertices. Our CPU implementation achieves about
1.2 fps using the full weight set (137 weights/vertex) and
13.9 fps using the reduced weight set (8 weights/vertex).
However, our GPU implementation was able to achieve
142.9 fps using the reduced weight set. Hence, barycentric
coordinate animation can be practical even for large meshes
using GPU acceleration.

6. Results

We computed weight reductions of several different mod-
els using different types of barycentric coordinates or defor-
mation methods. Furthermore, we compared thek-largest,
geometric, smooth and Poisson reductions. Figure4 shows
an example where the weights were computed using mean
value coordinates. In this example the chest expands notice-
ably using thek-largest weights. Minimizing the difference
to the geometry reduces the inflation but contains severe ar-
tifacts in the normals. However, the Poisson minimization is
able to generate a faithful reproduction of the original shape.

Figure5 depicts a similar example using harmonic coor-
dinates where we constrained the reduced set of weights to
be positive under minimization. The geometric minimization
does a much better job than thek-largest but there is a dis-
continuities in the normals of the shoulder that the Poisson
minimization removes.

Figure 7 shows an example of our method applied to
skeletal animation where the weights were generated by
Pinocchio, which solves an equation based on heat dissipa-
tion to create automatically create a smooth, plausible de-
formation. Unfortunately, this smoothness comes at the cost
of high numbers of weights as nearly a quarter of the ver-
tices are weighted by the entire skeleton (17 bones). After
reducing to only five bones per vertex (constrained such that
the weights were positive), the Poisson reduction is able to
maintain the appearance of the original model and is now
suitable for GPU acceleration. Figure8 shows the weight
distribution before and after reduction.

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Eric Landreneau & Scott Schaefer / Poisson-based Weight Reduction of Animated Meshes

Figure 11: RMS error of the model in Figure10 averaged
over several poses while varying the maximum of number of
weights in the optimization. The normal deviation is measure
in radians and the position error is measured as a percent-
age of the bounding box diagonal.

Figure12 quantifies the differences between the different
reduction techniques. The figure shows the armadillo man
reduced from 110 weights per vertex down to 8 using six
example poses. We reduced this model using the four dif-
ferent methods and performed an animation where none of
the example poses were part of the animation. The figure
shows a graph of the deviation of the normals and the geom-
etry for each frame of the animation. Thek-largest weights
performs the worst of the three methods in both the normal
and geometry metrics. The geometric reduction does well
when measuring the deviation of the surface from the orig-
inal animation; however, the deviation of the normals was
significant. The smooth weight optimization fits the geome-
try relatively well and improves upon the normal error too.
However, the Poisson reduction fits the normals of the de-
formation the best but does not match the geometry as well.
Nevertheless, this deviation in the geometry is rarely if ever
noticeable in the animation. In contrast, it is easy to see the
normal approximation error in the model produced by the
other methods.

We also compared the effect of changing the maximum
number of weights the optimization is allowed to use. Fig-
ure10shows the horse reduced using the Poisson minimiza-
tion with the maximum number of weights varying from 4-
8. For barycentric coordinate animations, we cannot use less
than four weights per vertex since simplices in 3D contain
four vertices. Furthermore, only allowing four weights per
vertex does not leave many degrees of freedom to optimize
the smoothness of the deformation and the result is poor
as expected. However, as the number of weights per vertex
increases, the quality of the deformation improves dramati-

Figure 12: RMS error of the armadillo man reduced to 8
weights per vertex during each frame of an animation. The
normal deviation is measure in radians and the position er-
ror is measured as a percentage of the bounding box diago-
nal.

cally. Figure11 numerically shows the effect of increasing
the maximum weights for this example.

In Table 1, we show the time it takes to perform each
weight reduction technique on different models. These tim-
ings were computed on a AMD Athlon 64 X2 4200+ with
2GB of RAM. As expected, the k-largest and geometric
methods are simple and easy to calculate. The Poisson and
Smooth Weight methods are also slower than the geometric
technique. Furthermore, imposing non-negative constraints
can significantly increase the running time of the optimiza-
tion. Although these optimizations cannot be performed in
real-time for large meshes, the optimizations only need to be
performed once. Using the optimized weights, we can per-
form deformation in realtime with the deformation speed be-
ing linearly proportional to the number of non-zero weights
per vertex. As Section5 shows, the reduced weight set al-
lows us to use the GPU to accelerate these deformations and
we can achieve over a factor of 100 increase in performance
over a CPU implementation with the full weight set.

7. Conclusions and Future Work

Our weight reduction technique reduces the number of con-
trol points influencing a vertex to a user-specified number
such that the deformations created by the reduced weight
set resemble that of the original deformation. We accom-
plished this reduction by solving a Poisson equation for the
reduced weights such that the gradients, and hence the nor-
mals, match a set of example poses provided by the user and
provided an efficient method for optimizing these weights.
We also showed how to implement these deformations effi-
ciently on the GPU and obtain over a factor 10 increase in

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Eric Landreneau & Scott Schaefer / Poisson-based Weight Reduction of Animated Meshes

Model Verts Deformation Max Optimized Poses Timings(in seconds)
Method Weights Weights kL G S P

Buddha 427,616 MVC 45 12 3 5.48 72.3 464.9 360.3
Bunny 35,947 MVC 47 8 4 .5 2.5 18.0 25.3

Armadillo 15,002 MVC 110 8 7 .4 1.6 9.6 16.9
Horse 48,485 MVC 51 8 3 .7 3.3 22.7 24.4

Armadillo 15,002 HC 110 8 7 .4 2.3 124.3 133.6
Horse 48,485 HC 51 8 3 .7 6.1 379.2 420.8
Cheb 6,669 SD 17 5 7 .2 .3 6.4 7.9

Human 120,226 SD 17 5 8 2.6 5.3 129.5 163.2

Table 1: Reduction times for different techniques measured in seconds. kL = k-largest, G = Geometric, S = Smooth Weights,
P = Poisson. The results are shown for different deformation methods including Mean Value Coordinates (MVC), Harmonic
Coordinates (HC) and Skeletal Deformation (SD). HC/SD utilize non-negative constraints during all of the optimizations while
MVC does not.

performance over a CPU implementation using the reduced
weight set. Furthermore, our weight reduction method is ap-
plicable to other deformation techniques and we provided an
example application to skeletal animation.

In the future we would like to address the problem of de-
termining influence sets in more detail. One area that our
weight reduction method may perform suboptimally is when
the control mesh contains planar regions. In these areas all
of the vertices in the planar region may have large weights
associated with them. However, if these vertices all deform
in a planar affine fashion, clearly these vertices contain re-
dundant information. We believe that it is possible to detect
these subsets and remove them from the influence list. How-
ever, if the example set indicates that this removal is possible
and the user produces a movement in which the vertices are
not planar, then poor deformations will result. Hence this
method is highly dependent on the example set provided by
the user to describe the full range of motion of the character.

8. Acknowledgments

We’d like to thank Ilya Baran and Jovan Popović for their
Pinocchio software, which was used for the Cheb model and
animation in this paper. We would also like to thank Nathan
Bajandas for contributing the old man model. This work was
funded by NSF grant CCF-07024099.

References

[Boo89] BOOKSTEIN F.: Principal warps: thin-plate splines and
the decomposition of deformations.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 11, 6 (1989), 567–585.
3

[BP07] BARAN I., POPOVIĆ J.: Automatic rigging and animation
of 3d characters.ACM Trans. Graph. 26, 3 (2007), 72.6

[FHK06] FLOATER M., HORMANN K., KÓS G.: A general con-
struction of barycentric coordinates over convex polygons. Ad-
vances in Computational Mathematics 24, 1–4 (2006), 311–331.
3

[FK08] FLOATER M., KOSINKA J.: On the injectivity of wachs-
press and mean value mappings between convex polygons.Ad-
vances in Computational Mathematics(2008). To appear.2

[FKR05] FLOATER M., KÓS G., REIMERS M.: Mean value co-
ordinates in 3d.Computer Aided Geometric Design 22, 7 (2005),
623–631.3

[Flo03] FLOATER M. S.: Mean value coordinates.Computer
Aided Geometric Design 20, 1 (2003), 19–27.3

[GZ08] GINGOLD Y., ZORIN D.: Shading-based surface editing.
ACM Transactions on Graphics (TOG) 27, 3 (2008).5

[HF06] HORMANN K., FLOATER M. S.: Mean value coordinates
for arbitrary planar polygons.ACM Trans. Graph. 25, 4 (2006),
1424–1441.1, 3

[HS08] HORMANN K., SUKUMAR N.: Maximum entropy coor-
dinates for arbitrary polytopes.Computer Graphics Forum 27, 5
(2008), 1513–1520.3

[HXS08] HE Y., X IAO X., SEAH H.: Example based skeletoniza-
tion using harmonic one-forms. InIEEE International Confer-
ence on Shape Modeling and Applications(2008), pp. 53–61.5

[JMD∗07] JOSHI P., MEYER M., DEROSE T., GREEN B.,
SANOCKI T.: Harmonic coordinates for character articulation.
In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers(2007), p. 71.
1, 2, 3

[JSW05] JU T., SCHAEFER S., WARREN J.: Mean value coor-
dinates for closed triangular meshes.ACM Trans. Graph. 24, 3
(2005), 561–566.1, 2, 3

[JT05] JAMES D., TWIGG C.: Skinning mesh animations. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers(2005), pp. 399–
407. 4, 5

[LH74] L AWSON C., HANSON R.: Solving Least Squares Prob-
lems. Prentice Hall, Englewood Cliffs, NJ, 1974.4

[LKCOL07] L IPMAN Y., KOPF J., COHEN-OR D., LEVIN D.:
Gpu-assisted positive mean value coordinates for mesh deforma-
tions. InProceedings of the Eurographics Symposium on Geom-
etry processing(2007), pp. 117–123.3

[MG03] MOHR A., GLEICHER M.: Building efficient, accurate
character skins from examples.ACM Trans. Graph. 22, 3 (2003),
562–568.5

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

Eric Landreneau & Scott Schaefer / Poisson-based Weight Reduction of Animated Meshes

[PP93] PINKALL U., POLTHIER K.: Computing discrete mini-
mal surfaces and their conjugates.Experimental Mathematics 2
(1993), 15–36.4

[SP86] SEDERBERGT. W., PARRY S. R.: Free-form deformation
of solid geometric models.SIGGRAPH Comput. Graph. 20, 4
(1986), 151–160.3

[SZGP05] SUMNER R., ZWICKER M., GOTSMAN C., POPOVIĆ

J.: Mesh-based inverse kinematics. InSIGGRAPH ’05: ACM
SIGGRAPH 2005 Papers(2005), pp. 488–495.5

[TLHD03] TONG Y., LOMBEYDA S., HIRANI A., DESBRUN

M.: Discrete multiscale vector field decomposition.ACM Trans.
Graph. 22, 3 (2003), 445–452.5

[Wac75] WACHSPRESSE.: A Rational Finite Element Basis. Aca-
demic Press, New York, 1975.3

[War96] WARREN J.: Barycentric coordinates for convex poly-
topes.Advances in Computational Mathematics 6(1996).3

[YZX ∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B.,
SHUM H.-Y.: Mesh editing with poisson-based gradient field
manipulation. InSIGGRAPH ’04: ACM SIGGRAPH 2004 Pa-
pers(2004), pp. 644–651.5

c© 2009 The Author(s)
Journal compilationc© 2009 The Eurographics Association and Blackwell PublishingLtd.

