Eurographics Symposium on Geometry Processing 2010
Bruno Levy and Olga Sorkine
(Guest Editors)

Volume 29 (2010), Number 5

Polygonal Boundary Evaluation
of Minkowski Sums and Swept Volumes

Marcel Campen and Leif Kobbelt

Computer Graphics Group, RWTH Aachen University, Germany

Abstract

We present a novel technique for the efficient boundary evaluation of sweep operations applied to objects in
polygonal boundary representation. These sweep operations include Minkowski addition, offsetting, and sweeping
along a discrete rigid motion trajectory. Many previous methods focus on the construction of a polygonal superset
(containing self-intersections and spurious internal geometry) of the boundary of the volumes which are swept.
Only few are able to determine a clean representation of the actual boundary, most of them in a discrete volumet-
ric setting. We unify such superset constructions into a succinct common formulation and present a technique for
the robust extraction of a polygonal mesh representing the outer boundary, i.e. it makes no general position as-
sumptions and always yields a manifold, watertight mesh. It is exact for Minkowski sums and approximates swept
volumes polygonally. By using plane-based geometry in conjunction with hierarchical arrangement computations
we avoid the necessity of arbitrary precision arithmetics and extensive special case handling. By restricting oper-
ations to regions containing pieces of the boundary, we significantly enhance the performance of the algorithm.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—

1. Introduction

Computing the volume occupied by an object being swept
along a path, surface, or solid, possibly undergoing rotation
during that process, is of interest in various fields of Com-
puter Graphics. The case of translationally sweeping a solid
by another one is known as Minkowski addition, the special
case of one of them being a sphere is referred to as offsetting.
When a solid is swept along a path while undergoing rota-
tion, the occupied volume is called swept volume. Such vol-
umes are for instance used in solid modeling, simulation sys-
tems, path and assembly planning, working volume exami-
nation, collision detection, NC machining, and many others.

Of special interest is the application of such sweeping op-
erations to solids represented by a polygonal boundary, since
this is the most commonly used representations for three-
dimensional objects. Several methods that have been pro-
posed to handle problems of this kind for general polyhedra
so far have problems with one important aspect: the efficient
and precise determination of a boundary representation of
the result. Some produce a (non-manifold) superset of the
boundary, containing self-intersections and spurious inter-

(© 2010 The Author(s)

Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

nal geometry (cf. Figure 1), and those that yield the actual
boundary often have issues concerning robustness (due to
numerics and degeneracies), accuracy (due to discrete volu-
metric resampling), or efficiency (due to arbitrary precision
arithmetics). While some applications can work with bound-
ary supersets, others indeed require a clean boundary repre-
sentation of the result for further use and processing.

Figure 1: Left: Non-manifold polygonal superset of the
boundary of a Minkowski sum (as in Figure 2, but cut open
for illustration; cut curves yellow). Right: consistent mani-
fold polygon mesh of the boundary obtained by our method.

M. Campen & L. Kobbelt / Polygonal Boundary Evaluation of Minkowski Sums and Swept Volumes

We revise and unify approaches to generate tight supersets
of the (polygonally approximated) boundaries of objects re-
sulting from operations like Minkowski addition, sweeping,
or offsetting. We then propose a novel, efficient technique
to robustly and precisely convert these supersets into clean,
manifold polygonal boundary representations. To achieve
robustness and exactness efficiently, we make use of the
paradigm of plane-based geometry representation in con-
junction with binary space partition tree operations that has
recently been brought into focus [BF09]. It elegantly handles
all kinds of intersection constellations and degenerate con-
tact situations, and completely avoids the demand of slow
arbitrary precision arithmetics. Still, it is able to guarantee
exact computations in the sense that starting from input of a
given precision all computations are performed without in-
troducing any round-off errors. Furthermore, for efficiency
we do not process the whole volume globally but apply a
novel localization scheme that disregards the interior space
that usually contains lots of irrelevant geometry.

We build upon previous results concerning boundary
superset constructions and arrangement computations and
specifically contribute the following:

e Unification of boundary superset constructions for
Minkowski sums and swept volumes into a succinct com-
mon formulation.

e Intuitive, easy-to-implement and cheap-to-evaluate
culling rules that heavily reduce the excess of the
supersets in a unified way.

e Exact and robust extraction of manifold and watertight
polygonal boundaries of such supersets, resolving and re-
moving all intersections and redundant internal geometry.

2. Related Work
2.1. Minkowski Sums

Kaul and Rossignac [KR92] constructed supersets of bound-
aries of Minkowski sums for visualization purposes. They
introduced the notion of locally supporting tentative faces
that describes if a face of the superset could possibly be vis-
ible from the outside. Similar notions, called contributing
vertices, elevated vertices, or horizon edges, have been em-
ployed by Wu et al. [WSDO03] and Barki et al. [BDD09a,
BDDO09b]. When restricting to convex polyhedra these con-
cepts can be used to obtain the actual boundary; otherwise a
superset, suitable for visualization, is constructed.

Ghosh [Gho93] introduced the slope diagram, inspired by
Guibas and Seidel [GS87]. Overlaying the diagrams of two
polyhedra yields a diagram that can be transformed into a
superset of the polygonal boundary of the Minkowski sum.
Further researchers followed this path [BGRR96, BRO1,
FHOS, FHO7, GXGO08], but again only for convex input the
actual boundary can be obtained by these methods.

Recently, Chazal et al. [CLMO09] presented a further ap-
proach. It is based on critical points of the projection of

higher-dimensional objects constructed from the operands.
Again, a superset of the boundary, possibly containing self-
intersections and internal geometry, is generated.

Hachenberger [HacO7] presented a well-working solution
to the problem based on convex decomposition, constructing
pairwise convex Minkowski sums, and finally forming the
Boolean union of these elementary results. A robust imple-
mentation is available in the CGAL library. Since it is based
on general Nef-polyhedra and uses arbitrary precision arith-
metics, it does not scale very well for larger input models.
In order to overcome the efficiency and/or robustness prob-
lems of the Boolean union step of such convex decomposi-
tion based algorithms, volumetric approaches [VMO06,PS07]
have been proposed that perform this step in a discrete set-
ting. This, of course, limits the accuracy of the result.

2.2. Swept Volumes

The exact boundary of a swept volume consists of patches of
ruled surfaces and developable surfaces in general. Abrams
and Allen [AA95,AA00] constructed polyhedral approxima-
tions thereof. Polygonal arrangement computations are ap-
plied to an initial superset to extract the outer boundary. They
state that these computations are often not robust enough to
handle practical instances of the problem.

Rossignac et al. [RKO1, RKS*07] constructed supersets
of swept volume boundaries of polyhedra and free-form
solids. Extraction of the actual boundary was performed ap-
proximately using a helix-shooting approach. This approach
has later also been applied for polyhedral sweeps [KimO3].
Blackmore et al. [BSL99] propose an analytical method
for trimming of supersets constructed based on the sweep-
envelope differential equation [LBW97]. Due to the em-
ployed hyperbolic tangent functions, obtaining a robust im-
plementation appears to be rather involved. Abdel-Malek et
al. [AMYO98] also presented such analytical formulations
of boundary identification criteria.

The exact swept volume of a polyhedron, consisting of
ruled surface patches, has been considered by Weld and Leu
[WLO0]. They give a point-wise criterion for boundary iden-
tification but an explicit representation is not extracted.

Schroeder et al. [SLL94], Schwanecke and Kobbelt
[SKO1], and Kim et al. [KVLMO3] followed the path of
implicit modeling to simplify the issue by volumetric dis-
cretization. While this yields robust algorithms, accuracy is
limited due to the spatial (and temporal) sampling.

2.3. Offsets

Specialized methods have been proposed for the particular
case of offset surfaces, e.g. by Jung et al. [JSC04] where
the faces of the input are shifted and the introduced inter-
sections are detected and resolved. To overcome robustness
problems, again volumetric methods have been proposed,
e.g. by Chen et al. [CWRRO05] or Pavi¢ and Kobbelt [PKOS].

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Campen & L. Kobbelt / Polygonal Boundary Evaluation of Minkowski Sums and Swept Volumes

While they augment their voxel structures by explicit geom-
etry in form of points and polygons to enhance output qual-
ity, the overall accuracy of the results is still limited by the
underlying voxel resolution.

2.4. Outer Boundary Extraction

Computing the outer boundary of a polygonal arrangement
in space has proven to be a complicated task. The con-
sistent determination of all intersection loci is numerically
hard to handle, and the piecewise nature of a polygonal sur-
face introduces further challenges. Usually, descriptions of
intersection determination and subsequent topology modi-
fication [Par04, JSC04, Lie08, E1b97, dBGH96, SHO2] rely
on general position assumptions or require arbitrary preci-
sion arithmetics, which makes it hard to provide implemen-
tations that are efficient and reliable. In application scenar-
i0s where robustness is of higher importance than accuracy,
again methods that rely on volumetric representations can be
employed [BPK0S5, WTGT09,NT99, Ju04].

Recently, Campen and Kobbelt presented a method
[CK10] to robustly and exactly extract the outer boundary of
a self-intersecting polygon mesh. We build upon this work
and develop a novel method able of handling loose arrange-
ments of polygons as they are commonly constructed as
boundary supersets for Minkowski sums or swept volumes.

3. Tight Superset Construction

We begin by giving definitions of the operations Minkowski
addition and sweeping, and then describe how supersets
of the boundary of the volumes they produce can be con-
structed in a unified fashion. If this construction is done in
a naive way, only a very small subset of the polygon set
that is generated actually contributes to the boundary — most
polygons lie in its interior. We therefore also describe intu-
itive rules to efficiently cull most of these interior polygons,
which greatly improves the performance of the subsequent
boundary extraction step that produces the exact surface.

3.1. Minkowski Addition

The Minkowski sum of two sets, A and B, is defined as
A®B={a+b|acA, bec B}. We are interested in the
case of A and B being three-dimensional (possibly degen-
erate) solids specified by a polygonal boundary representa-
tion. Their Minkowski sum is again a polygonal solid (cf.
Figure 2) and we want to obtain an exact representation of
its boundary. Offsetting is a special case, with one operand
being an origin-centered sphere. Note that the actual offset
surface of a polygonal surface is not polygonal: it contains
cylindrical and spherical parts. However, we can use polyg-
onally approximated spheres to obtain (arbitrarily precise)
polygonal approximations of an offset surface.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

Figure 2: Minkowski sum of solids CUBE and TETRATHING

3.2. Sweeping

Stating a concise definition of swept volume computation for
polygonal solids, however, is not that easy. The actual result
of the operation is not polygonal and various approximations
are used in practice. Furthermore, various characterizations
of the sweep motion are common. In general, our boundary
extraction (cf. Section 4) can be applied for any definition
yielding a polygonal boundary. We here exemplarily present
our method on the following problem characterization:

Let B be a polygonal solid in R3, called generator in
this context. Further, let ©(¢) = (7'(t),R(¢)) be the sweep
trajectory, a time-varying affine transformation, where 7'(¢)
is a differentiable vector in R* and R(¢) is an orthonor-
mal matrix in the rotation group SO(3). Both depend on
the time parameter ¢ € [0, 1]. Let B(t) = T(t) + R(t)B, then
the swept volume of the moving generator B(r) is defined
as BOT = Uyeo,)B(t1) ={T (1) +R(t)b |1 € [0,1],b € B}.
We strive to obtain a polygonal approximation of its bound-
ary d(B® 1) (cf. Figure 3), that actually consists of patches
of ruled and developable surfaces that are generated by the
sweeping edges and faces of B [WL90]. Such approximation
can be found by choosing a discrete set of consecutive time
samples {19 = 0,f1,...,t,—1,ta = 1}, #; < ;4 and replac-
ing the sweep patches by polygonal facets, corresponding to
faces of an instance B(f;) or spanned by pairs of edges from
consecutive instances B(t;) and B(f;11) as done in [AA00].
The quality of this approximation is determined by the sam-
pling density of T on the one hand and the edge lengths of B
on the other hand — it can hence be controlled arbitrarily by
the sampling strategy and by edge subdivision on the gener-
ator. Due to the wide spectrum of possible trajectory specifi-
cations and precision requirements, in this paper we assume
the input to be given in a form that has already been suitably
discretized in the context of a given application scenario.

)

Figure 3: Swept volume of generator object JOINT moving
along a helical trajectory while rotating.

M. Campen & L. Kobbelt / Polygonal Boundary Evaluation of Minkowski Sums and Swept Volumes

3.3. Unified Superset Construction

‘We now unify Minkowski addition and sweeping as defined
above into a generalized sweeping operation ® that sub-
sumes both operations as special cases. This allows us to
streamline the description of the superset construction and
the culling rules in the following section.

We take as input two polygonal complexes, A and B, and a
map R : V4 — SO(3), V4 being the set of vertices of A. In or-
der to ease presentation we, w.l.o.g., assume all polygons to
be triangles. A and B do not need to be closed meshes; they
may also have holes or be consisting of only vertices and
edges representing a path. Conceptually, object B is the gen-
erator and A together with R is a generalized discrete sweep
trajectory, i.e. B is swept over A, while being rotated accord-
ing to R that specifies a rotation at each vertex of A — in
between the surface is linearly approximated as mentioned
before. Note that if A is a path, consisting only of vertices
and edges, this generalized sweeping reduces to the sweep-
ing operation as defined above; on the other hand, if R is the
identity, it directly corresponds to the Minkowski addition of
A and B. The remaining cases, i.e. sweeping over a surface
or a solid while rotating, are basically academic byproducts.

Matheron [Mat75] showed that the boundary of a
Minkowski sum A @ B is a subset of the boundary of the
Minkowski sum of the boundaries of the operands, i.e.
d(A® B) C 9(dA ©9IB). Similarly, it is well known from en-
velope theory, that the boundary of the volume swept by a
moving object A(¢) is a subset of the boundary of the volume
swept by its boundary, i.e. d(A ® 1) C d(dA ®t) [WLIO].
Furthermore, these operations distribute the set union, i.e.
A® (ByUBy) = (A®B])U(A®By). This means that a su-
perset of the boundary can be constructed incrementally by
uniting the boundaries of the elementary results of apply-
ing the operation to all face-face pairs of the operands, one
face taken from A, one taken from B. The construction of
the boundary of the volume swept by a triangle sweeping
over another one can furthermore be reduced to considering
vertex-face and edge-edge pairs [KR92, BDD(09b, AA0O].

Let vy € Vi, ex € Ex, fx € Fx, x € {A,B}, with Vi, E,,
Fy being the sets of vertices, edges, and faces of object x,
respectively. Furthermore, let ¢® and ¢! denote the two ver-
tices incident to edge e, and flie {0,1,2} the three ver-
tices of triangular face f. (In the following, vertex symbols
are also used to refer to the respective spatial positions.) We
construct the following polygons, called facets hereafter to
distinguish between the polygons of the input and those of
the constructed superset. For each vertex-face pair (va, fp)
we construct a so-called VF facet, for each face-vertex pair
(fa,vB) we construct an FV facet, and for each edge-edge
pair (e4,ep) two EE facets in the following way:

VF facet (v, f): A (v+R(v)f0,v+R(v)f‘,v+R(v)f2)

FV facet (f,v): A (f°+1'e(f°)v,f1 +R(f‘)v,f2+R(f2)V)

EE facets (d,e): Two A by inserting a diagonal into
O (d°+R(d°)e°,d°+R(d0)e',d‘ +R(dYe,d"+ R(d")e°>

For the EE facets the diagonal with lower dihedral angle
is chosen. This also prevents fold-overs in cases where the
quadrangle is flat and non-convex.

The set of all these facets forms a (highly excessive) su-
perset of the desired boundary. Figure 4 shows an exam-
ple. If the rotation map R is constant, as it is the case for
Minkowski sums, this boundary is exact, otherwise it is a
piecewise linear approximation. In order to avoid the actual
construction of this excessive superset the culling rules pre-
sented in the next section can be applied beforehand to de-
termine if a facet needs to be constructed at all.

Figure 4: Collection of facets constructed for a Minkowski
sum: VF (red), EE (yellow, depicted without diagonal), and
FV facets (green). Only 288 of the 12264 facets contribute
to the boundary, i.e. are visible from the outside.

3.4. Culling

We now strive to cull as many irrelevant facets as possi-
ble to increase efficiency of the subsequent processing steps.
A facet is called irrelevant if no non-degenerate part of it
lies on the boundary. This culling is performed using rules
that conservatively estimate the relevance of a facet from the
local mesh neighborhood of the generating vertices, edges,
and faces. Note that the determination of the actual bound-
ary is a global problem; it cannot be solved completely by
local investigation of the objects. The exact determination
on a global scale is thus subsequently performed implicitly
during the actual boundary extraction (cf. Section 4).

The culling rules base on the intuitive property of local
coveredness: if we are able to determine that the elemen-
tary volumes swept by neighboring entities (vertices, edges,
or faces) of a mesh entity completely cover both sides of a
facet generated from it, this facet consequently cannot ap-
pear on the boundary. Conceptually the elementary volumes
we consider are prisms (or deformed prisms if rotations oc-
cur). Such a prism basically is the volume swept by a face
along an edge, thus is part of the whole volume. Its bound-
ary is made from the two VF or FV facets emerging from the
face and the two vertices of the edge, and the three EE facets
generated from the edge and the three edges of the face. A
side of a facet that completely points to the inside of a prism
it bounds is covered — it cannot be visible from the outside.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Campen & L. Kobbelt / Polygonal Boundary Evaluation of Minkowski Sums and Swept Volumes

Beforehand, if a facet is generated from a face of a solid,
we can already conclude that its backside is covered since
it points to the inside. Similarly, if an EE facet is generated
from edges d of B and e of A with R(¢°) = R(e') a side of it
is already covered if the corresponding normal points to the
inside of A at e or to the inside of B at d.

Now let N (v) denote the set of 1-ring vertices of vertex
v, and O(e) the set of (zero, one, or two) opposite vertices of
edge e, i.e. the vertices incident to faces incident to e that are
not incident to e. Then (cf. Figure 5 for an illustration):

e a side of VF facet (v, f) is covered if Ju € Nj(v) such
that facet (u, f) lies completely on that side of the sup-
porting plane of facet (v, f). This is due to the fact that
the EE facets generated from the edge connecting v and u
and the edges of f form a “prism” together with (v, f) and
(u, f) that completely covers that side of (v, f).

e aside of EE facet g generated from (d, ¢) is covered if
Ju € O(e) such that d° + R(d”)u and d' + R(d")u lie on
this side of the supporting plane of g or if 3v € O(d) such
that v+R(v)e” and v+ R(v)e' lie on this side: the “prism”
swept by the triangle incident to e and u along d resp. d
and v along e covers that side of g in this case.

e aside of FV facet (f,v) is covered if there exists a vertex
u € Ni(v) such that facet (f,u) lies completely on that
side of the supporting plane of facet (f,v). The argument
is analogous to the VF facet case.

A facet can safely be culled if both of its sides are found
to be covered. Note that this local coveredness property is
general enough to handle all possible special cases including
rotational sweeps of surfaces or solids along trajectories and
translational sweeps, i.e. Minkowski sums, along solids, sur-
faces, or paths. In fact, for the case of translational sweeping,
it directly reduces to the property of non-matching normal
directions employed for Minkowski addition using convolu-
tion or by inspecting Gauss maps [Gho93, BGRR96, BRO1,
FHOS5, FHO7, GXGO08], to the concepts of locally support-
ing directions, contributing vertices, elevated vertices, and
horizon edges [KR92, WSDO03, BDD(09a, BDD09b], and is
closely related to grazing points used for swept volumes
[LBW97]. In contrast to these notions, in our formulation the
evaluation relies on shallower arithmetic trees since all rules

(.f)

Figure 5: lllustration of the rules for determining covered-
ness. On the left VF facet (v, f) (green) is covered by VF
facet (u, f) (orange) and on the right the EE facets (green)
of edges d and e are covered due to opposite vertex u.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

only require the determination of orientation of a plane with
respect to a point. In fact, exact evaluation induces no further
overhead, posing the same precision requirements as the ex-
act plane-based processing we employ (cf. Section 4.1.2).

By applying these rules to determine if a facet is poten-
tially relevant and culling it otherwise we are able to greatly
reduce the amount of irrelevant interior facets. In fact, in
all of the Minkowski sum and offsetting examples presented
throughout this paper the culling performance has been be-
tween 98.80% and 99.99%, i.e. at most 1.2% of the irrel-
evant facets remained after culling. For the swept volume
examples culling performance has been at least 91.5%.

4. Boundary Extraction

The constructions presented in the last sections yield super-
sets of the (polygonally approximated) boundary of the vol-
ume resulting from the applied sweep operation. We now
strive to extract the outer boundary of this spatial facet ar-
rangement. The outer boundary is defined as those parts of
the boundary of the volume enclosed by the facets that can
be reached from the outside, i.e. if inner voids do exist, these
are omitted. In Section 4.3 we discuss this limitation and
provide viable solutions. Note that this extraction of a man-
ifold outer boundary can also be applied to other kinds of
polygonal arrangements that in some way enclose volumes.

Bernstein and Fussell [BF09] showed how a plane-based
geometry representation combined with binary space parti-
tion (BSP) techniques can be used to deal with polygon in-
tersections in the evaluation of Boolean operations. Campen
and Kobbelt [CK10] recently accelerated and extended that
technique to handle intersections and also self-intersections
in polygonal meshes in a fully robust and exact way. Their
approach, however, relies on and draws its efficiency from
two essential assumptions that do not hold here:

e Closed meshes: The input needs to be a fully connected,
closed mesh. In contrast, here we have to handle a polygon
soup without connectivity information.

o Local self-intersections: Their localization scheme is
tailored to handle local self-intersections in the input mesh
and derived its performance from their spatial coherence.
In contrast, here we usually have to deal with a lot of in-
tersections that are distributed over the whole surface. Es-
pecially, many of them lie in the interior and we neither
need nor want to actually process or even just detect them.

In order to account for these differences we present a
novel approach that marches along the outer boundary while
extracting. It also enables the handling of multiple non-
connected boundary parts, even if their number and constel-
lation is not known in advance. The approach builds upon the
basics concerning representation conversions and BSP tech-
niques presented in [BF09, CK10]. Here we give just a brief
overview and afterwards describe the marching approach.

M. Campen & L. Kobbelt / Polygonal Boundary Evaluation of Minkowski Sums and Swept Volumes

4.1. Plane-Based BSP Processing
4.1.1. BSP Techniques

Binary space partition trees can be used to represent polyhe-
dra: by recursively splitting space by the supporting planes
of the faces of a polyhedron a compatible BSP-tree can be
constructed, i.e. each leaf cell can be labeled ‘inside’ or ‘out-
side’ such that the boundary between inside and outside cells
defines the polyhedron. However, since our polygonal su-
persets do not form closed polyhedra, inside and outside is
not defined inherently. But one can employ flood-filling on
the BSP [CK10] to conquer the whole outside region. Af-
terwards, a polygon mesh representation of the boundary
between inside and outside cells can be extracted [CK10],
which represents the outer boundary of the polygonal ar-
rangement. However, this approach would not be very effi-
cient since the global BSP constructed from the entire polyg-
onal boundary superset is often very imbalanced and unnec-
essarily considers all redundant internal geometry. Although
we already cull large portions of this internal geometry, still
a considerable amount might remain. For instance, in exam-
ple CASTING-KNOT (cf. Figure 9) after culling still 87.6%
of the facets are irrelevant interior facets. Hence it is bene-
ficial to work with local BSPs and restrict operations to the
actual outer boundary region. We achieve this by the process
of octree marching that is introduced in Section 4.2.

4.1.2. Plane-Based Geometry Representation

The BSP techniques reduce the amount of special cases that
need to be treated, easily handle degenerate contact situa-
tions, and allow for an efficient spatial flood-filling. The only
geometric operation that is required, whether during BSP
construction, processing, or extraction, is that of polygon
clipping. So to finally achieve full robustness and accuracy,
we only need to perform this in an appropriate manner.

While polygonal objects are usually represented by vertex
coordinates, this setting is disadvantageous for the clipping
operation: new vertices have to be constructed and their co-
ordinates need to be computed explicitly at the intersections.
Since these constructions cause increasing precision require-
ments with every step, exact arithmetics which are able to
handle arbitrary precision need to be employed. In contrast,
if we choose to explicitly represent the geometry of the faces
by plane equations and let vertices be defined implicitly by
plane intersections [BF09, BR96] this clipping operation re-
duces to a purely combinatorial operation — no intersections
need to be computed, only geometric decision predicates are
required. Due to the absence of increasing precision require-
ments we can use efficient predicates, specifically optimized
for a fixed precision known a priori which guarantees cor-
rect evaluation. Details on determining the precision require-
ments for error-free conversion of the point-based polygons
of our superset into plane-based representation can be found
in [CK10]. Essentially, about three times as many bits are
required for the plane coefficients and the exact predicates
are tailored to that precision to guarantee correct decisions.

LA
&

Figure 6: 2D illustration of the localization scheme using
an adaptive octree. Only the grey cells that are intersected
by the outer boundary are actually processed by embedded
BSPs. The zoomed inset exemplarily shows such a local BSP.

4.2. Octree Marching

The fundamental idea of the localization scheme is to use
an octree that is adaptively refined such that all leaf cells in-
tersected by the (yet unknown) outer boundary contain an
approximately constant number of facets, and then apply the
BSP-processing in these cells individually. Figure 6 illus-
trates the concept. In this way we lower complexity due to
the application of locally restricted BSPs and increase effi-
ciency by only processing the spatial region occupied by the
outer boundary we are interested in. This confronts us with
two major challenges: first of all, the location of the outer
boundary is yet unknown such that we cannot directly con-
struct the desired octree in a straight-forward fashion. Sec-
ondly, the information about outside and inside regions has
to be exchanged between the local BSPs that are embedded
into the individual octree leaf cells.

Suppose we are given an octree leaf cell that contains part
of the outer boundary. Conceptually, we can create a polyg-
onal mesh patch that represents this part of the boundary by
applying the local BSP techniques presented above. Starting
from that cell and its boundary patch we march through the
octree along the outer boundary while extracting it, thereby
successively enlarging the initial patch. During that process
the octree is adaptively refined on demand. In order to be
able to handle cases where the outer boundary consists of
multiple non-connected parts, we need to make sure that
such marching is started for every part. To achieve that, we
also march through empty cells on the outside and use cell
corners as representative points to propagate the information
about the locality of the outside.

We start by adaptively refining the octree (initially con-
sisting of the root cell encompassing the whole set of facets)
such that a leaf cell ccomer in one of the outer corners meets
the criterion “intersected by no more than m facets”. The
value m is a constant that bounds the complexity per cell. In
our experiments m = 60 proved to be a good choice, gaining
near-minimal runtime in general. This cell ccomer incident to
the corner with coordinates pcorner defines our starting posi-
tion, and corner point pcormer 1S our first representative point
known to be on the outside. The following pseudo-code out-

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Campen & L. Kobbelt / Polygonal Boundary Evaluation of Minkowski Sums and Swept Volumes

lines the further processing steps — a detailed explanation
follows and the whole process is illustrated in Figure 7.

Insert (c_corner, {p_corner}) into queue

while queue not empty:

take (c, P) from queue

build local BSP in cell c

determine BSP components and extract boundary patches

mark components containing a point of P as outside

establish connectivity and propagate outside marks

for all newly marked outside components:
enqueue adjacent cells touched by component’s patch
enqueue incident cells of corners lying on the outside

Build local BSP in cell c A BSP-tree restricted to cell
¢ is built from the facets intersecting ¢ by successive in-
sertion as described in section 4.1.1.

e Determine BSP components and extract boundary
patches The volume of cell ¢ is partitioned into com-
ponents (i.e. sets of BSP cells) by the facets. We deter-
mine these components by flood-filling and per compo-
nent extract its polygonal boundary — note that this com-
ponent boundary might consist of several patches. In order
to determine which of these components are on the out-
side (which is equivalent to their patches being part of the
outer boundary) the following two steps are performed:

e Mark components containing a point of P as outside
Point set P is either empty or contains a point in ¢ (more
precisely: a cell corner on ¢’s cell border) that is known
to be on the outside. If it contains such point it is sent
down the BSP, eventually ending up in a BSP-cell. The
component this BSP-cell belongs to is thus found to be on
the outside and marked accordingly.

o Establish connectivity and propagate outside marks

Connectivity between boundary patches extracted in ¢ and

adjoining patches extracted previously in neighbor cells is

established [CK10]. Afterwards, components marked out-
side recursively propagate this marking to all components
whose patches has been connected to their patches.

After a cell has been processed this way, a number of com-
ponents (obtained from this or other octree cells) might have
newly been marked outside. These are the anchor points for
adding new, yet unprocessed octree cells to the queue — we
want to achieve that all cells that are either partially or fully
on the outside are processed eventually:

e Enqueue adjacent cells touched by component’s
patch Suppose component o with boundary patch a
was obtained from cell ¢ and has newly been marked out-
side. We enqueue those unprocessed and unqueued cells
adjacent to ¢ that are touched by a. This basically accom-
plishes the marching process along the outer boundary (or
one connected component of it). These cells are enqueued
without a representative outside point (P = @): the outside
information is implicitly provided by the open boundary
of patch a that patches of neighbor cells will connect to.

e Enqueue incident cells of corners lying on the
outside Suppose component o (with or without a patch)

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

was obtained from cell ¢ and has newly been marked out-
side. In order to not only march along one part of the outer
boundary but also conquer the whole outer space to find
all parts, we enqueue further cells that are known to be at
least partly outside: for each corner r of ¢ that lies in com-
ponent o we enqueue the unprocessed, unqueued incident
cells together with r as outside representative (P = {r}).

As stated before, octree cells are always refined in an on-
demand fashion before entering the queue, such that all en-
queued cells meet the “no more than m facets” criterion.

When the algorithm terminates, all cells that are fully or
partially on the outside have been considered, all outside
components are marked as such, and their connected bound-
ary patches form the desired outer boundary.

4.3. Inner Boundaries

While being able to extract the outer boundary as defined in
Section 4 the presented method is oblivious to inner voids:
if a Minkowski sum or swept volume encloses void space,
the boundary towards these voids is not extracted. While
many applications are indeed only interested in this outer
boundary, others explicitly require these voids to be repre-
sented in the result. Under the assumption that one witness
point somewhere inside a void is known, we can easily ex-
tend our method to extract also the inner boundary towards
it. For a given set of void witness points we recursively re-
fine leaf cells of the octree that contain a witness point un-
til the abovementioned refinement criterion is met. Then we
enqueue these leaf cells together with the contained witness
points as outside representatives. By then proceeding in ex-
actly the same manner as described in the last section, not
only the outer boundary but also the inner boundary towards
each void that contained a witness point is extracted. This
also, for instance, allows us to construct Minkowski sums of
a solid and the complement of another one as it is required,
e.g., for motion planning tasks or for the computation of in-
ner, shrunk offsets (cf. Figure 8 for an example).

This leaves us with the task of determining witness points
inside voids that shall be extracted. In some application sce-
narios they might already be known as part of the prob-
lem specification; otherwise we would have to find them au-
tomatically. A simple approach to determine such witness
points at least for all voids down to a certain minimum size
is the use of a standard discrete volumetric method to (con-
servatively) perform the desired sweep operation. Voids can
be detected in the discrete result, witness points be chosen
within those, and then these can be used as input for our
method to perform the operation accurately. Tiny voids not
resolved by the discrete method are of course missed. Gen-
eral detection and extraction of voids will thus be part of our
future research. This will probably entail the construction
not of an arbitrary boundary superset but a complete 2-cycle
as done, e.g., by Ghosh [Gho93] and Chazal et al. [CLM09],
which should then allow to distinguish between void regions
and swept regions, e.g. by some notion of a winding number.

M. Campen & L. Kobbelt / Polygonal Boundary Evaluation of Minkowski Sums and Swept Volumes

a) b)

d) e)

Figure 7: 2D illustration of the octree marching process. The octree is depicted in its final state (i.e. without on demand
refinement) and only the outer boundary of the object (green) is shown for clarity. a) First, a corner cell (red) is processed:
There is only one space component and since it contains the outside point (yellow), it is marked as outside. b) The adjacent cells
(blue) of outside corners are enqueued (with the respective corner as outside point). c) A few steps later; the first non-empty cell
is processed by building a local BSP and extracting the component boundaries per component. One of the three components
(II1) is found to be outside since it contains the outside point — component 1 will be marked outside later on when marks are
propagated from adjacent boundary patches. d) A few steps later a cell (blue) is enqueued solely because it is touched by the
previously extracted outside patch — this shows the necessity of the first enqueue-rule. e) Now further cells are enqueued, some
solely because of the second enqueue-rule — facilitating the conquering of multiple non-connected boundary parts.

5. Results

To evaluate the efficiency of our method we applied it to
compute several Minkowski sums, offsets, and swept vol-
umes (cf. Figures 2, 3, 8, 9, and 10 — some of the models used
have been obtained from the AIM@SHAPE repository). All
computations were done on a system with 2.67GHz CPU
and 8GB RAM,; timings (of a prototype implementation tai-
lored to 17 bits input vertex coordinate precision) are pre-
sented in Table 1. We compare our method to two other ap-
proaches that are widely used in areas where a robust bound-
ary evaluation of such operations is required: the first one is
a routine provided by the CGAL library — the de-facto ref-
erence for exact and robust geometric computations — that
can be used to perform polyhedral Minkowski addition and
offsetting; the second one is the approach of volumetric pro-
cessing in the style of Varadhan et al. [VM06, KVLMO03]
or Pavi¢ and Kobbelt [PKO0S8]: for the Minkowski sums and
swept volumes a volumetric approach has been used that
voxelizes the boundary superset using an adaptive octree and
extracts an outer boundary mesh using Manifold Dual Con-
touring. This approach is quite simple and does not provide
guarantees regarding topological correctness — if we would
have used a more sophisticated algorithm [VMO6] that does,
further computational cost would have been introduced by
the additional operations (e.g. convex decompositions, con-
vex hulls, star-shaped cell tests). For the offset surfaces a
specialized volumetric method [PKO0S8] that avoids the polyg-
onal sphere approximation and explicit superset construction
for accuracy and efficiency, has been used for comparison.

As can be seen easily (cf. Table 1), our method performs
significantly faster than the Minkowski addition routine of
CGAL while still providing accuracy and robustness. On the
other hand volumetric approaches introduce a considerable
amount of geometric error (due to aliasing) at comparable
runtimes and are not able to reliably reproduce sharp fea-
tures in the output. Another problem of these methods is

the fact that the output is highly overtesselated (cf. last col-
umn of Table 1) due to the high resolution if tight error
bounds shall be fulfilled. In some application areas — espe-
cially when working with very complex objects — it might
nevertheless be beneficial to use such volumetric methods,
possibly with topological guarantees, to reasonably balance
between performance and accuracy.

In the examples the construction of the supersets took be-
tween 0.05% and 19.4% of the total time, the extraction of
the clean outer boundary mesh the remaining time. This vari-
ation is due to the fact that the superset construction time de-
pends on the product of the input sizes, whereas the bound-
ary extraction time depends roughly on the output size.

Figure 8: Polygonal models FANDISK (solid) and BLADE
(surface) and their offset surfaces generated by Minkowski
addition of an approximated sphere. The zoomed inset shows
the output mesh structure as it is generated by our method
when a polygonal sphere with 5K faces is used. The inner
offset has been generated by complementing the operand
and applying inner boundary extraction (cf. Section 4.3).

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

M. Campen & L. Kobbelt / Polygonal Boundary Evaluation of Minkowski Sums and Swept Volumes

Operation Object(s) Input Runtime Error Bound (-107%) | Output Complexity
Complexity Ours CGAL Volum. | Ours CGAL Volum. | Ours CGAL Volum.
ToruUs-JOINT (Fig. 9)| 460 x 100 | 1.7s 729s 2.8s 0 0 68 14K 12K 151K
Minkowski TETRA-CUBE (Fig. 2) | 13K Xx 6 10s 1560s 21s 0 0 17 9.0K 9.0K 2688K
KNOT-CAST (Fig. 9)| 10K x 8K 43s >1h™" 3ls 0 0 34 34K o 488K
ROLL-BAR (Fig. 9) | 108K x 162 | 223s >2h*™* 110s 0 0 8 | 130K ** 5610K
JoiNT (Fig. 3)| 460 x 100 49s - 32s 0* - 8* 10K - 9998K

Sweeping MOUNT (Fig. 10) | 12K x 12 59s - 39s 0* - 4* 8K - 9405K
LEVER (Fig. 10)| 52K x 100 | 152s - 106s 0* - 2% | 55K - 30182K

BLADE (Fig. 8) 6K (x 540) 10s >1h™ 12s 50 50 545 14K U 1289K

Offsetting FANDISK (Fig. 8) | 13K (x 540) 19s >2h™* 16s 50 50 551 24K o 479K
FANDISK (Fig. 8) | 13K (x1620) 26s >2h™* 42s 16 16 275 36K ¥ 1960K

FANDIsK (Fig. 8) | 13K (x 15K) 85s >2h™* 96s 2 2 138 | 121K o 7929K

Table 1: Performance evaluation of our method and comparison with CGAL and volumetric approaches. The volumetric res-
olution has generally been chosen such that runtime is close to that of our method. We clearly see that our method performs
significantly faster than CGAL for equal accuracy and significantly more accurate than volumetric approaches at comparable
runtimes. Error bounds are specified relative to output bounding box size resp. relative to offset distance for the offsetting case.
*) For the case of sweeping (along a path, including rotation) the error to the polygonally approximated sweep surface is stated.
**) Operation has not been finished, since memory requirements exceeded the available main memory after the specified time.

Compared to CGAL (that for most of the examples re-
quired much more memory than available) and the volu-
metric approaches (that for some examples nearly exhausted
it) memory requirements of our method are more moder-

ample at 1.3GB, and all others required less than 700MB.
This allows us to handle even quite complex examples (e.g.
Minkowski addition of refined versions of KNOT-CAST with
128K x92K faces: 6.9GB) without problems.

ate — even in our current non-optimized implementation:

the ROLL-BAR example peaked at 2.1GB, the LEVER ex- .
6. Conclusion

We revised and unified boundary superset constructions for
Minkowski sums and swept volumes and streamlined them
with intuitive local culling rules. These efficiently reduce the
overhead of the constructed supersets of the actual bound-
aries of the volumes resulting from the sweeping opera-
tions. Using a plane-based geometry representation in con-
junction with BSP-based spatial arrangement computations,
we then showed how to extract the actual outer boundary
robustly and precisely. By applying a localization structure
we restricted computational efforts to the regions of interest,
thereby enhancing the performance of the proposed method.

T S
I

Figure 9: Minkowski sums (green) of various objects (blue)
computed by our method: JOINT and TORUS, CASTING and

KNOT, ROLLINGSTAGES and BAR. All results are manifold
and watertight polygon meshes. The third example demon-
strates that multi-component input is handled appropriately.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

Figure 10: Manifold and watertight boundary polygon
meshes (green) of the volumes swept by MOUNT and LEVER
(blue) moving and rotating along specified trajectories.

M. Campen & L. Kobbelt / Polygonal Boundary Evaluation of Minkowski Sums and Swept Volumes

References

[AA95] ABRAMS S., ALLEN P. K.: Swept volumes and their use
in viewpoint computation in robot work-cells. In Proc. IEEE Intl.
Sympos. on Assembly and Task Planning (1995), pp. 188-193.

[AA0O0] ABRAMS S., ALLEN P. K.: Computing swept volumes.
Journal of Vis. and Comp. Animation 11, 2 (2000), 69-82.

[AMYO98] ABDEL-MALEK K., YEH H.-J., OTHMAN S.:
Swept volumes: void and boundary identification. Computer-
Aided Design 30, 13 (1998), 1009-1018.

[BDD09a] BARKI H., DENIS F., DUPONT F.: Contributing
vertices-based minkowski sum computation of convex polyhe-
dra. Comput. Aided Des. 41,7 (2009), 525-538.

[BDD09b] BARKI H., DENIS F., DUPONT F.: Contributing
Vertices-based Minkowski sum of a non-convex polyhedron
without fold and a convex polyhedron. In SMI '09 (2009), Press
I. C. S., (Ed.), pp. 73-80.

[BF09] BERNSTEIN G., FUSSELL D.: Fast, exact, linear
booleans. Comput. Graph. Forum 28, 5 (2009), 1269-1278.

[BGRR96] BAscH J., GuiBAS L. J., RAMKUMAR G. D,
RAMSHAW L.: Polyhedral tracings and their convolution, 1996.

[BPKO5] BISCHOFF S., PAvic D., KOBBELT L.: Automatic
restoration of polygon models. ACM Trans. Graph. 24, 4 (2005),
1332-1352.

[BR96] BANERIJEE R. P. K., ROSSIGNAC J.: Topologically exact
evaluation of polyhedra defined in CSG with loose primitives.
Comput. Graph. Forum 15, 4 (1996), 205-217.

[BRO1] BEKKER H., ROERDINK J. B. T. M.: An efficient algo-
rithm to calculate the minkowski sum of convex 3d polyhedra. In
Int. Conf. on Computational Science (1) (2001), pp. 619-628.

[BSL99] BLACKMORE D., SAMULYAK R., LEU M. C.: Trim-
ming swept volumes. CAD 31, 3 (1999), 215-223.

[CK10] CAMPEN M., KOBBELT L.: Exact and robust
(self-)intersections for polygonal meshes. Comput. Graph. Fo-
rum 29, 2 (2010), 397-406.

[CLMO09] CHAZzAL F., LIEUTIER A., MONTANA N.: Discrete
critical values: a general framework for silhouettes computation.
Comput. Graph. Forum 28, 5 (2009), 1509-1518.

[CWRRO05] CHEN Y., WANG H., ROSEN D. W., ROSSIGNAC J.:
A Point-Based Offsetting Method of Polygonal Meshes. Tech.
rep., 2005.

[dBGH96] DE BERG M., GUIBAS L. J., HALPERIN D.: Vertical
decompositions for triangles in 3-space. Discrete & Computa-
tional Geometry 15, 1 (1996), 35-61.

[EIb97] ELBER G.: Global error bounds and amelioration of
sweep surfaces. Computer-Aided Design 29, 6 (1997), 441-447.

[FHO5] FOGEL E., HALPERIN D.: Exact minkowski sums of con-
vex polyhedra. In SCG ’05: Proc. 21st Annu. Symp. on Compu-
tational Geometry (2005), pp. 382-383.

[FHO7] FOGEL E., HALPERIN D.: Exact and efficient construc-
tion of minkowski sums of convex polyhedra with applications.
Comput. Aided Des. 39, 11 (2007), 929-940.

[Gho93] GHOSH P. K.: A unified computational framework for
minkowski operations. Comp. & Graph. 17, 4 (1993), 357-378.

[GS87] GuiBAs L. J., SEIDEL R.: Computing convolutions by
reciprocal search. Discr. & Comput. Geom. 2 (1987), 175-193.

[GXGO08] Guo X., XIE L., GAO Y.: Optimal accurate minkowski
sum approximation of polyhedral models. In ICIC (1) (2008),
pp. 179-188.

[Hac07] HACHENBERGER P.: Exact minkowksi sums of polyhe-
dra and exact and efficient decomposition of polyhedra in convex
pieces. In Proc. Eur. Symp. Alg. (2007), vol. 4698, pp. 669—680.

[JSC04] JuNG W., SHIN H., CHoI B. K.: Self-intersection re-
moval in triangular mesh offsetting. Computer-Aided Design and
Applications 1 (2004), 477-484.

[Ju04] Ju T.: Robust repair of polygonal models. In ACM Trans.
Graph. 23, 3 (2004), pp. 888-895.

[Kim03] KiMJ. J.: Constructing the boundaries of swept volumes
for screw motions. JSME Int. Series C 46, 3 (2003), 1142-1150.

[KR92] KAUL A., ROSSIGNAC J.: Solid-interpolating deforma-
tions: Construction and animation of pips. Computers & Graph-
ics 16,1 (1992), 107-115.

[KVLMO03] KiM Y. J., VARADHAN G., LIN M. C., MANOCHA
D.: Fast swept volume approximation of complex polyhedral
models. In Proc. Symp. Solid mod. and appl. (2003), pp. 11-22.

[LBW97] LEU M. C., BLACKMORE D., WANG L.: The sweep-
envelope differential equation algorithm and its application to NC
machining verification. CAD 29, 9 (1997), 629-637.

[Lie08] LIEN J.-M.: A simple method for computing minkowski
sum boundary in 3d using collision detection. 8th Int. Workshop
on the Algorithmic Foundations of Robotics (WAFR) (2008).

[Mat75] MATHERON G.: Random sets and integral geometry.
Wiley New York,, 1975.

[NT99] NOORUDDIN F. S., TURK G.: Simplification and repair
of polygonal models using volumetric techniques. Technical Re-
port GITGVU -99-37, Georgia Institute of Technology, 1999.

[Par04] PARK S. C.: Triangular mesh intersection. Vis. Comput.
20,7 (2004), 448-456.

[PKO8] PAVIC D., KOBBELT L.: High-resolution volumetric
computation of offset surfaces with feature preservation. Com-
put. Graph. Forum 27,2 (2008), 165-174.

[PSO7] PETERNELL M., STEINER T.: Minkowski sum boundary
surfaces of 3d-objects. Graph. Models 69, 3-4 (2007), 180-190.

[RKO1] ROSSIGNAC J., KiM J. J.: Computing and visualizing
pose-interpolating 3d motions. CAD 33, 4 (2001), 279-291.

[RKS*07] ROSSIGNAC J., KiM J. J., SONG S. C., SUH K. C.,
JOUNG C. B.: Boundary of the volume swept by a free-form
solid in screw motion. CAD 39, 9 (2007), 745-755.

[SHO2] SHAUL H., HALPERIN D.: Improved construction of ver-
tical decompositions of three-dimensional arrangements. In SCG
'02: Proc. Symp. on Comp. Geom. (2002), ACM, pp. 283-292.

[SKO1] SCHWANECKE U., KOBBELT L.: Approximate envelope
reconstruction for moving solids. Mathematical Methods for
Curves and Surfaces: Oslo 2000 (2001), 455-466.

[SLL94] SCHROEDER W.J., LORENSEN W. E., LINTHICUM S.:
Implicit modeling of swept surfaces and volumes. In Proc. Conf.
Visualization (1994), IEEE Computer Society Press, pp. 40-45.

[VMO06] VARADHAN G., MANOCHA D.: Accurate minkowski
sum approximation of polyhedral models. Graphical Models 68,
4 (2006), 343-355.

[WL90] WELD J. D., LEU M. C.: Geometric representation of
swept volumes with application to polyhedral objects. Int. J. Rob.
Res. 9,5 (1990), 105-117.

[WSDO03] Wu Y., SHAH J. J., DAVIDSON J. K.: Improvements
to algorithms for computing the minkowski sum of 3-polytopes.
Computer-Aided Design 35, 13 (2003), 1181-1192.

[WTGT09] WOoOJTAN C., THUREY N., GROSS M., TURK G.:

Deforming meshes that split and merge. ACM Trans. Graph. 28,
3(2009), 1-10.

(© 2010 The Author(s)
Journal compilation (©) 2010 The Eurographics Association and Blackwell Publishing Ltd.

