
Eurographics Symposium on Geometry Processing 2010
Olga Sorkine and Bruno Lévy
(Guest Editors)

Volume 29 (2010), Number 5

Localized Delaunay Refinement for Sampling and Meshing

Tamal K. Dey1 Joshua A. Levine2 Andrew Slatton1

1 The Ohio State University, Columbus, OH, USA
2 Scientific Computing and Imaging Institute, Salt Lake City, UT, USA

Abstract
The technique of Delaunay refinement has been recognized as a versatile tool to generate Delaunay meshes of a
variety of geometries. Despite its usefulness, it suffers from one lacuna that limits its application. It does not scale
well with the mesh size. As the sample point set grows, the Delaunay triangulation starts stressing the available
memory space which ultimately stalls any effective progress. A natural solution to the problem is to maintain
the point set in clusters and run the refinement on each individual cluster. However, this needs a careful point
insertion strategy and a balanced coordination among the neighboring clusters to ensure consistency across
individual meshes. We design an octtree based localized Delaunay refinement method for meshing surfaces in
three dimensions which meets these goals. We prove that the algorithm terminates and provide guarantees about
structural properties of the output mesh. Experimental results show that the method can avoid memory thrashing
while computing large meshes and thus scales much better than the standard Delaunay refinement method.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction
The Delaunay refinement, a technique to iteratively sam-
ple locally furthest points from an input geometry, is a
versatile tool for generating Delaunay meshes. Since its
introduction by Chew [Che89] and Ruppert [Rup95] in
2D, the technique has been adopted to mesh a variety of
three dimensional geometries such as polyhedra [She98],
smooth surfaces [BO05, CDRR07] and volumes [ORY05],
piecewise smooth surfaces [BO06, DLR05], and piecewise
smooth complexes [CDR08]. The popularity of this tech-
nique is derived from its ability to render algorithms with
provable guarantees as well as its ability to produce good
quality meshes when combined with optimization tech-
niques [ACSYD05, TWAD09, YLL∗09].

Notwithstanding its use as a versatile mesh generation
tool, the Delaunay refinement technique has been plagued
with one shortcoming–it does not scale well with the mesh
size. The state-of-the-art has improved with the current ad-
vances in Delaunay triangulation computations [ACR03,
Dev02, ILSS06]. Still, we look for Delaunay refinement
techniques whose scale is not limited by the particular De-
launay triangulation code being used. Some strategies to ex-

ecute it faster [HMP06] and in parallel [NCC04] have been
developed for special cases of polyhedra. However, the is-
sue of scale for meshing surfaces with Delaunay refinement
has not yet been dealt with. Since the method maintains a
global Delaunay triangulation of the entire existing point set,
it starts slowing down as the point set grows, and reaches a
limping speed as the available main memory becomes insuf-
ficient to hold the entire Delaunay triangulation. A natural
solution to this problem is to split the point set into clus-
ters and operate on the Delaunay triangulations of the indi-
vidual clusters. However, this solution incurs some funda-
mental difficulties. First of all, the termination of Delaunay
refinement techniques depends on the property of Voronoi
points being locally furthest from all existing points. If the
entire point set is not used for building the Delaunay triangu-
lation, this property cannot be guaranteed. Second, individ-
ual meshes computed for each cluster may not be consistent
across clusters to provide a valid global mesh. These two
problems are further complicated by the fact that the clus-
ters need to be re-arranged as the point set grows.

In this paper we present an algorithm that adopts the De-
launay refinement of surfaces in three dimensions by local-

submitted to Eurographics Symposium on Geometry Processing (2010)

2 T. K. Dey et al. / Localized Delaunay Refinement for Sampling and Meshing

Figure 1: Output meshes for (from left to right) HOLEDRING, 3HOLES, and BRACELET. Individual meshes in different nodes
are colored differently. Highlights show triangles across node boundaries emphasizing the mesh consistency.

izing it to octtree based clusters. The standard Delaunay re-
finement of surfaces [CDES01, BO05, CDRR07] maintains
a restricted Delaunay triangulation comprised of triangles
whose dual Voronoi edges intersect the surface. It repeatedly
samples the surface with points where the Voronoi edges in-
tersect the surface. When the algorithm terminates, it out-
puts a mesh which is homeomorphic (isotopic) to the input
surface and is also geometrically close. In our case, we run
the Delaunay refinement on a subset of points residing in an
octtree node and some of its surrounding nodes. We modify
the point insertion strategy and re-process some of the nodes
to take care of both termination and consistency. Figure 1
shows some output meshes of our algorithm highlighting the
consistency across node boundaries.

The algorithm runs with two positive user parameters λ
and κ. The parameter λ determines the granularity of the out-
put mesh. The parameter κ determines the number of points
a node holds before it gets split. In a sense, by λ, the user
controls the scale at which the surface is sampled, and by κ
she controls the granularity of the octtree subdivision. By de-
creasing λ, potentially one may produce a large mesh risking
the memory to accommodate a large Delaunay triangulation,
but the risk can be mitigated by choosing an appropriate κ.
We argue later in section 5 that this appropriate value of κ
does not depend on the model or the choice of λ. Therefore,
it can be estimated a priori for a given computing platform
and be used for all future meshing. We do not assume that
the user has a knowledge of the input feature scale and thus λ
is not tied to it. Therefore, one cannot expect that the topol-
ogy of the input surface is captured completely unless λ is
sufficiently small. We take the approach in [DL09] to over-
come this difficulty. We prove that our algorithm terminates
and outputs a manifold mesh irrespective of the value of λ.
However, if λ is sufficiently small, the output mesh becomes
topologically equivalent to the input. Figure 2 shows how

the geometry and topology of NEPTUNE are progressively
captured with decreasing λ.

1.1. Notations
The Voronoi/Delaunay tessellations and their restrictions on
a surface are used in our algorithm and its analysis. Let S be
a set of points in R

3. We denote the Voronoi diagram and
Delaunay triangulation of S as VorS and DelS respectively.
The Voronoi diagram VorS is a cell complex whose cells are
k-dimensional Voronoi faces for k = 0, . . .,3. The 0-, 1-, 2-,
and 3-dimensional Voronoi faces are called Voronoi vertices,
edges, facets, and cells respectively. The Delaunay triangu-
lation DelS is a simplicial complex dual to VorS where a
k-simplex t ∈ DelS is dual to a (3− k)-dimensional Voronoi
face which we denote as Vt . The 0-, 1-, 2-, and 3-dimensional
Delaunay simplices are Delaunay vertices, edges, triangles,
and tetrahedra respectively.

In our case, the point set S will be a set of sample points
from a surface M embedded in R

3. We assume M to be
closed, that is, compact and without boundary. We are inter-
ested in a subcomplex of DelS consisting of Delaunay sim-
plices whose dual Voronoi faces intersect M. It is called the
restricted Delaunay triangulation of S with respect to M and
is denoted DelS|M . Formally,

DelS|M = {σ ∈ DelS : Vσ ∩M 6= ∅}.

By definition a Delaunay simplex is restricted if its dual
Voronoi face intersects the surface. For example, the re-
stricted triangles are the Delaunay triangles whose dual
Voronoi edges intersect the surface. The restricted triangles
and their dual Voronoi edges play an important role in our
algorithm since the Delaunay refinement is carried out on
these restricted triangles.

It is possible that the dual Voronoi edge of a restricted
triangle t ∈ DelS|M intersects the surface M at multiple

submitted to Eurographics Symposium on Geometry Processing (2010)

T. K. Dey et al. / Localized Delaunay Refinement for Sampling and Meshing 3

points. Each of these points is a center of a ball that circum-
scribes t and does not contain any point of S inside. Follow-
ing [BO05], we call such a ball a surface Delaunay ball of t.
In our refinement we continuously insert the centers of some
surface Delaunay balls, namely the largest one for a triangle.

Figure 2: Varying λ on NEPTUNE: Both geometry and topol-
ogy get progressively captured with decreasing λ though all
three meshes are guaranteed to be manifold.

2. Algorithm
2.1. Overview
Delaunay refinement algorithms for surfaces [BO05,
CDRR07] work on the following generic strategy. The
algorithm maintains the restricted Delaunay triangulation
DelS|M for a set S of points sampled from the surface M.
It checks certain conditions such as, if the restricted trian-
gles around a point make a topological disk [CDRR07], or if
the surface Delaunay balls of the triangles are small enough
with respect to an estimate of the local feature size [BO05].
If these conditions are violated, a point is inserted into S and
the appropriate restricted Delaunay triangulation is updated
accordingly. The inserted point is usually chosen as the lo-
cally furthest point where a Voronoi edge meets the surface.
One shows that this iterative insertion cannot go on forever
and at the termination the restricted Delaunay triangulation
tessellates the surface M with some desirable properties.

In our case, we do not process the entire current point set
S as a single entity to avoid building the Delaunay triangu-
lation of the entire set. Instead, we split S using an octtree
data structure and process the set of points in each node in-
dividually. Since we do not access the entire sample S while
processing a node, we cannot use the same point insertion
strategy. For then, a locally furthest Voronoi point computed
from VorS′ where S′ ⊂ S may be too close to a point in S.

This would hinder maintaining a lower bound on inter-point
distances, a crucial ingredient for guaranteeing termination.
Also, there is another difficulty. Even if we guarantee that
the output mesh for each node is a valid manifold mesh, it
is not certain that these partial meshes over all nodes stitch
consistently to provide a valid global mesh. This issue is not
present in the refinement that uses a single global mesh since
there is nothing to stitch.

We refine the local mesh for each node using similar con-
ditions as in the original Delaunay refinement for surface
meshing. It includes checking a topological disk condition
as introduced in [CDRR07] and also a size condition of tri-
angles as introduced in [BO05]. However, we do not neces-
sarily insert the locally furthest Voronoi point. Instead, we
may include some other point from the global set S into the
partial set S′ that we are currently dealing with. We show
that such a strategy necessarily terminates while ensuring a
manifold condition at each point. To take care of the global
consistency of the local meshes we reprocess some of the
nodes that are in the vicinity of the inserted points. When we
start processing a node, we also augment its point set by in-
cluding points from the nodes in its vicinity. It turns out that
if these two vicinities are consistently chosen with respect to
λ which also guides the size of the triangles, we obtain the
mesh consistency.

It is important to notice that we do not keep the individ-
ual Delaunay triangulation associated with a node when it is
not being processed. We only keep the sample points and
the current mesh generated inside a node and rebuild the
Delaunay triangulation when it is processed again. This is
done to save the memory since otherwise individual Delau-
nay triangulations together may use memory space close to
or more than the global Delaunay triangulation which we
aim to avoid. Of course, this incurs some time overhead, but
the gain in memory consumption results in avoiding mem-
ory thrashes which eventually trumps over this time over-
head when the output mesh gets large. The balance between
time overhead and economic use of memory is obtained by
choosing the parameter κ appropriately which can be set a
priori for a given platform.

2.2. Initialization

We assume that the input surface M is a compact 2-manifold
without boundary. For the sake of theoretical proofs, we as-
sume it to be smooth. However, one may also consider M to
be “almost smooth" meaning that it is a piecewise smooth
surface where input dihedral angles are close to π. Almost
all ingredients that are used to prove theoretical guaran-
tees for smooth surfaces remain valid for almost smooth
surfaces [BO06, DLR05]. This is why the algorithms de-
signed for smooth surfaces also work for almost smooth sur-
faces [BO06, DLR05].

We initialize the octtree with a bounding box of M. The

submitted to Eurographics Symposium on Geometry Processing (2010)

4 T. K. Dey et al. / Localized Delaunay Refinement for Sampling and Meshing

point set S is initialized with three very close points in M
whose dual Voronoi edge intersects M. This can be done us-
ing a ray probing technique described in [BO05]. The as-
sumption is that this Voronoi edge continues to intersect the
surface throughout the algorithm meaning that the dual re-
stricted triangle persists throughout meshing. Although the-
oretically the three points need to be close compared to local
feature size, in practice, they can be chosen without estimat-
ing local feature sizes as explained in [BO05].

2.3. Node processing

A node in the octtree is subsequently split into smaller boxes
generating other nodes. The points in the current sample S
are divided by the boxes representing the leaf nodes in the
octtree. We maintain the leaf nodes that need to be processed
in a queue denoted as Q.

A node ν is processed with two actions, split or refine. A
split of ν occurs when the number of points Sν = S∩ν in it
becomes larger than a threshold κ, that is, |Sν| > κ. In a split
the node ν is divided into eight children which represent the
division of ν into eight equal boxes. Each child acquires the
subset of Sν that belongs to it and gets enqueued in Q.

In a refine, we collect a subset of points Nν ⊆ S that are
outside ν but are within a distance of 2λ from its boundary.
Here, λ is the scale parameter input by user. The choice of
the factor 2 comes from our proof. Let Rν = Nν ∪ Sν de-
note the augmented set of points for ν. We compute a mesh
comprised of the triangles in the restricted Delaunay trian-
gulation DelRν|M . Then, we refine this mesh as long as the
triangles incident to each vertex in ν are large compared to
the input parameter λ, or do not form a topological disk. Dur-
ing the refinement if the number of points in Sν grows to κ,
we invoke a split of ν. Also, during this process, other nodes
can be enqueued as we explain below.

2.4. Localized refinement

Each point p ∈ S in a node ν defines its surface star Fp as
a subcomplex in the local Delaunay triangulation DelRν. It
consists of all restricted triangles in DelRν|M incident to p
and their sub-simplices. Formally,

Fp = {σ |σ ∈ DelRν|M is either a triangle incident to p
or a sub-simplex of such a triangle}.

Checking violations. There are two conditions that we
check for the points in a node ν. If these conditions are vi-
olated we return a pair (p,q) where q is a candidate for in-
sertion and p is a point in Rν closest to q. These pairs are
used later to decide which point is to be inserted into Rν.
Before checking the two conditions, we need to make sure
that at least one Voronoi edge in VorRν intersects M. If not,
we augment Rν with the three nearby points that we inserted

during initialization. In practice, this step is rarely executed
and can be skipped.

Next, we check if there is any triangle t in DelRν|M inci-
dent to a point in p ∈ Sν which has a surface Delaunay ball
of radius more than λ. This can be determined by checking
if the dual Voronoi edge Vt intersects M in a point p∗ that is
more than λ distance away from p. Such a triangle violates
the condition that all triangles should be “small" compared
to λ. In this case we return the pair (p, p∗). When all tri-
angles have ‘small’ surface Delaunay balls, we check if Fp
for each point p ∈ Sν is a topological disk with each edge
incident to p being adjacent to exactly two triangles in Fp.
This means that we require the underlying space |Fp| to be
a topological disk with p being in the interior. If Fp is not a
topological disk, we return the pair (p, p∗) where p∗ is the
center of the largest surface Delaunay ball among all such
balls of triangles in Fp. Notice that in both violations p is
the nearest point to p∗ in Rν since p∗ belongs to the Voronoi
cell of p in VorRν. In both violations we may enqueue some
nodes for reprocessing. If none of the violations occurs, we
return a null pair.

Algorithm 1 VIOLATION(M,ν,λ)
1: If there is no triangle in DelRν|M , include three vertices

of the persistent triangle into Rν
2: Find a triangle pqr ∈ DelRν|M so that p is in ν and Vpqr

intersects M in a point p∗ where d(p, p∗) > λ
3: if found then
4: return the pair (p, p∗)
5: else
6: Find a p in ν so that Fp is not a disk
7: if found then
8: p∗ := argmaxx∈M∩Vt |t∈Fp{d(x, p)}

9: return (p, p∗)
10: end if
11: end if
12: return null

Inserting points into Rν. Let (p, p∗) denote the pair re-
turned by VIOLATION. So, p∗ is a possible candidate for
insertion. Although p∗ is locally furthest in Rν, it may not
be so in S. We check if the nearest point s ∈ S to p∗ is within
λ/8 distance. If so and s 6= p, we throw away p∗ and insert
s into Rν. Otherwise, we insert p∗ into Rν. Notice that, in
the first case, if s is inserted, it cannot already be in Rν be-
cause p is the closest point to p∗ in Rν and we explicitly
check if s 6= p. Therefore, addition of s indeed updates Rν.
In the second case, p∗ is a new point and it not only enlarges
Rν but also S. Figure 3 shows some points both inside and
outside of a node for STRINGY that are inserted during its
processing.

Reprocessing nodes. When we insert a new point s 6∈ S, we
may enqueue certain nodes for reprocessing. This is a key

submitted to Eurographics Symposium on Geometry Processing (2010)

T. K. Dey et al. / Localized Delaunay Refinement for Sampling and Meshing 5

Figure 3: Points inserted during processing a node on
STRINGY. Black points are inserted within the node and red
points are inserted outside the node.

Algorithm 2 INSERTPOINT(ν, p, p∗,λ)
1: s := argminu∈S d(p∗,u)
2: if d(p∗, s) ≤ λ/8 and s 6= p then
3: return s else return p∗.
4: end if

feature of our algorithm which, as we argue later, ensures
global consistency among meshes. We enqueue each node
ν′ 6= ν so that the new point s lies within 2λ distance of ν′.
Again, the factor 2 is derived from our proof. Figure 4 shows
some inconsistencies that exist at some point of the algo-
rithm and are ultimately removed by reprocessing nodes.

Algorithm 3 NODEENQUEUE(ν, s,λ)
1: Compute W := {ν′ 6= ν|d(s,ν′) ≤ 2λ}
2: for each ν′ ∈W do
3: enqueue(ν′,Q)
4: end for

Output mesh. When a node ν is not being processed, we
keep associated with it the subset Sν = S∩ν of sample S and
also the stars Fp with each point p∈ Sν. When we finish pro-
cessing all nodes, we output a complex formed by the union
of all surface stars over all points in S, that is, ∪p∈SFp. We
prove that ∪pFp indeed forms a manifold mesh. The main
algorithm LOCDEL is described in Algorithm 4.

3. Termination
First we observe that if LOCDEL inserts only finitely many
points, it terminates. The algorithm either splits, refines, or

Algorithm 4 LOCDEL(M,κ,λ)
1: Initialize S as described;
2: Compute a bounding box of M and enqueue it to Q;
3: while Q is not empty do
4: ν :=dequeue(Q);
5: while (p, p∗) :=VIOLATION(M,ν,λ) is not null do
6: s := INSERTPOINT(ν, p, p∗,λ)
7: Rν := Rν ∪{s};
8: if s 6∈ S then
9: S := S∪{s};

10: NODEENQUEUE(ν, s,λ)
11: end if
12: if |Sν| ≥ κ then
13: Split ν and enqueue its eight children to Q
14: end if
15: end while
16: end while
17: Return S and ∪pFp.

enqueues a node. If there are finitely many insertions, splits
and enqueue operations cannot be infinite since each such
operation requires a new point to be added to S. A refinement
of a node ν also cannot go forever since each refinement
grows Rν by a point and there are only finitely many of them
by assumption.

Now we argue that, indeed, only finitely many points are
inserted. If a point s is inserted in Rν of a node ν, it is either
an existing point, or a new point. Clearly, we need to argue
only for the case when s is a new point. In this case s is the
furthest intersection point of a Voronoi edge with M where
the Voronoi edge is dual to a triangle in the surface star Fp
for some point p ∈ Sν. If the nearest point to s in S is not p,
its distance to all existing points in S is at least λ/8. This is
ensured by step 2 of INSERTPOINT. When the nearest point
to s is p, we cannot claim this lower bound on its distance
to other points. Then, if s is inserted because of triangle size
(step 2 in VIOLATION) it is at least λ distance away from p
and all other points trivially, or if s is inserted because of disk
condition (step 6 in VIOLATION), we appeal to the following
result in [CDRR07] to claim a fixed positive lower bound.

Proposition 1 Let S be a sample of a smooth surface M.
There exists a surface dependent constant εM > 0 so that for
a point p ∈ S, if all intersection points of Voronoi edges in
Vp with M lie within εM distance of p, then restricted trian-
gles incident to p and their sub-simplices in DelS|M form a
topological disk.

We apply the above proposition to p whose surface star Fp
is not a topological disk. By Proposition 1 the point s that we
insert is at least εM away from p and hence from all other ex-
isting points since p is the nearest point to s in S. This com-
pletes the proof that all new points that are inserted main-
tain a fixed positive lower bound of min{λ/8,εM} on their

submitted to Eurographics Symposium on Geometry Processing (2010)

6 T. K. Dey et al. / Localized Delaunay Refinement for Sampling and Meshing

distances from all other existing points. A standard packing
argument shows that S is finite.

Figure 4: Inconsistencies among meshes in different nodes
(left) eventually get resolved (right) for 9HANDLETORUS.

4. Guarantees
Our goal is to establish that LOCDEL produces a valid mesh
all the time. In particular, we claim that the output is a 2-
manifold for all positive values of λ. It is also geometrically
close to the surface M relative to λ. However, if λ is suffi-
ciently small, the output mesh captures the complete topol-
ogy of M. Formally, the two guarantees are:

Theorem 1 The output mesh of LOCDEL(M,κ,λ) satisfies
the following two properties:

(i) The underlying space of the output mesh is a 2-manifold
without boundary and each point in the output is at a dis-
tance λ from M.

(ii) There exists a λ∗ > 0 so that if λ < λ∗, the output mesh
becomes isotopic to M with a Hausdorff distance O(λ2).

Proof Since LOCDEL terminates, we are guaranteed by
VIOLATION that the surface star of each point in its local
mesh is a topological disk. However, for (i) we require that
all surface stars across all points globally fit together. This
means that the following consistency condition should hold:

Consistency: In the output complex ∪pFp, a triangle abc is
in Fa if and only if it appears in Fb and Fc.

We first show the following which leads to consistency.

Claim 1 Let S be the output sample and abc be any triangle
in the output complex ∪pFp. The triangle abc belongs to the
global restricted Delaunay triangulation DelS|M .

The above claim implies that each triangle in the output
mesh is a restricted Delaunay triangle in the global restricted
Delaunay triangulation DelS|M .
To prove the claim, assume without loss of generality that
abc ∈ Fc. Consider the last time the node ν containing the
point c is processed. The triangle abc belongs to DelRν|M

when ν is finished. Also, its surface Delaunay balls have ra-
dius at most λ. Consider the global point set S when ν is
finished. We claim that at this stage abc is also a restricted
triangle in DelS|M . To see this assume to the contrary that
abc 6∈ DelS|M . It follows that there is a point s ∈ S which
lies inside a surface Delaunay ball B of abc. Since B has a
radius at most λ, the point s is within 2λ distance of c. Then,
s is also in Rν by definition since c is in ν. We reach a con-
tradiction since then abc cannot be in DelRν|M as required.
Therefore, the triangle abc is in the global restricted Delau-
nay triangulation when ν is finished.
Now we show that abc remains a restricted Delaunay trian-
gle in DelS|M afterward. Suppose not. Then, there is a new
point s ∈ S added after ν is finished which lies in the surface
Delaunay ball B of abc. Then, s is within 2λ distance of c and
hence within 2λ distance of ν. This would require that ν is
enqueued again in NODEENQUEUE. We reach a contradic-
tion since we already considered the last time ν is processed.

Claim 2 A triangle abc∈∪pFp satisfies the consistency con-
dition.

To prove the claim by contradiction, assume without loss
of generality that abc is in Fa but not in Fc. Consider the
last time the node ν containing c is processed. At that point,
if a is not present in Rν, we must have the case that a is
added into S after ν is finished. For otherwise a has to be in
Rν since d(a,c) ≤ 2λ as abc has a surface Delaunay ball of
size at most λ. It is impossible that a is added after ν is fin-
ished since insertion of a should cause ν to be reprocessed
as d(a,c)≤ 2λ. Therefore, a is in Rν when ν is processed for
the last time. The same argument applies to b as well. It fol-
lows that all vertices of abc are present when ν is processed
for the last time. The triangle abc is a restricted Delaunay
triangle in DelS|M by claim 1 and hence also in DelRν|M as
Rν ⊆ S. It follows that abc is in Fc by definition reaching a
contradiction that Fc does not contain abc.
We complete the proof of (i) by observing that the star of
each vertex in the output complex ∪pFp is a topological disk
with each edge incident to p being adjacent to exactly two
triangles. Such a complex is a triangulation of a 2-manifold
without boundary by a standard result in PL topology. The
underlying space of ∪pFp is also 2-manifold since it is em-
bedded in R

3 as a subcomplex of DelS. The remaining claim
in (i) that each point in the output is within λ distance of a
point in M follows from the fact that each output restricted
triangle is included in a surface Delaunay ball of radius at
most λ.
Now we argue for the guarantee (ii). By (i), the output com-
plex is a manifold without boundary where each triangle has
a surface Delaunay ball of radius at most λ. If λ is suffi-
ciently small, the results in [ACDL02] imply that such a
mesh is homeomorphic to the surface M. Then the claims
of isotopy and Hausdorff distance in (ii) follow from results
in [BO05].

submitted to Eurographics Symposium on Geometry Processing (2010)

T. K. Dey et al. / Localized Delaunay Refinement for Sampling and Meshing 7

λ κ #tri mem(MB) time(h:m)
0.0029 2M 2.33M 2221 7:30
0.0029 1M 2.33M 2099 1:45
0.0029 500K 2.34M 466 2:20
0.0029 250K 2.33M 421 2:30
0.0029 100K 2.33M 453 3:00
0.0029 50K 2.33M 375 3:40
0.0029 25K 2.33M 327 3:20
0.0029 10K 2.33M 414 4:40
0.0027 2M 2.69M 2625 23:55
0.0027 1M 2.69M 2101 2:20
0.0027 500K 2.70M 512 2:45
0.0027 250K 2.69M 466 3:00
0.0027 100K 2.69M 486 3:55
0.0027 50K 2.69M 406 4:25
0.0027 25K 2.69M 440 3:55
0.0027 10K 2.69M 451 5:05
0.002 2M Abort* Abort* Abort*
0.002 1M 4.91M 2098 6:30
0.002 500K 4.91M 861 7:15
0.002 250K 4.90M 1006 8:50
0.002 100K 4.91M 760 12:00
0.002 50K 4.91M 671 12:20
0.002 25K 4.91M 886 11:35
0.002 10K 4.91M 900 12:30

Table 1: Effects of varying κ on 3HOLES (M: million,
K:thousand).

5. Experiments and results
We have implemented LOCDEL using the Delaunay trian-
gulation of CGAL 3.2 [cga]. A number of experiments were
conducted on a PC with 2.0GB of 667MHz RAM, 1.5GB
swap space, and a 2.8GHz processor running with Ubuntu
9.04. The parameter λ is chosen as a factor of the largest di-
mension of the bounding box of M. In all tables we show λ
as this factor.

First we discuss how we can tune the parameter κ and
then comment on the scalability of LOCDEL. Observe that
the single node cases coincide with the standard Delaunay
refinements. In some of these cases the experiment is aborted
by the operating system due to insufficient memory. These
are indicated as Abort* in the tables. Figures 1-7 show the
results on different models.

5.1. Tuning κ

Clearly, the number of nodes depends on κ. Smaller val-
ues of κ produce larger number of nodes. Consequently, the
overhead for processing nodes increases. On the other hand
large κ increases the number of points per node requiring
more memory space. As a result when κ reaches a certain
value, the memory starts thrashing. This suggests that there
should be a value of κ for which LOCDEL performs opti-

mally. Of course, to find a value near this optimal point, one
has to run the code multiple times for multiple values of κ
which effectively wipes out the advantage of an optimal per-
formance.

Since κ regulates the memory usage, its optimal value
should mostly depend on the specific platform on which the
code is executed. This includes the memory capacity of the
machine and its management by the operating system and
the particular Delaunay triangulation code that is being em-
ployed. In other words, the optimal value should depend lit-
tle on the particular model being meshed or the particular λ
being used. In that case, for a fixed platform, we should be
able to hone in on a value of κ near the optimal by running
LOCDEL on some initial model with multiple values of κ
and then use that value for any other model later.

Our experiments confirm the above hypothesis. Table 1
shows the test results on the model 3HOLES. For three dif-
ferent values of λ, we find that κ = 1 million provides the
best result among eight other values. It means that among
all tested values, κ = 1 million generates the largest Delau-
nay triangulation that still fits into main memory avoiding
continuous memory swaps. Therefore, we determine that 1
million points per node is close to the optimal value for the
platform on which we ran the code. Notice that, different
memory capacity or different Delaunay code would proba-
bly determine a different value of κ, but, once determined,
it can be kept fixed for all models irrespective of the mesh
size.

Table 2 shows the performance of LOCDEL on a number
of models. All output meshes are large containing around 2.5
million triangles. We observe that κ = 1 million indeed pro-
vides the best result among different κ values that we tested
confirming our hypothesis. Also, notice that the qualitative
property of the output mesh remains almost the same for dif-
ferent values of κ. Figure 6 exemplifies this aspect.

5.2. Scaling
Our experimental results show that LOCDEL scales much
better than the standard Delaunay refinement which corre-
sponds to the single node case.

Single vs. multi-nodes. In our tested examples in Table 2,
we get the single node case when κ = 2 million. We ob-
serve that we obtain almost 6-10 times speed-up in the com-
putation time on this particular platform when we use the
tested optimal value of 1 million for κ compared to the sin-
gle node case. Table 3 shows some cases where the program
with κ = 2 million had to be aborted since it does not ter-
minate whereas it outputs a mesh in couple of hours when
κ = 1 million.

Varying λ. We have already indicated that λ regulates the
the size of the output mesh. Figure 2 shows how the geom-

submitted to Eurographics Symposium on Geometry Processing (2010)

8 T. K. Dey et al. / Localized Delaunay Refinement for Sampling and Meshing

model λ κ #leaf nodes #tri mem (MB) time (hr:min)
0.008 2M 1 2.58M 2680 7:25

9HANDLETORUS 0.008 1M 8 2.59M 2176 2:55
0.008 25K 232 2.59M 477 5:20
0.001 2M 1 2.43M 2642 28:15

OCTAHANDLES 0.001 1M 8 2.43M 2314 2:25
0.001 25K 176 2.43M 426 3:50
0.0033 2M 1 2.73M 2758 22:30

BRACELET3 0.0033 1M 8 2.73M 2170 2:30
0.0033 25K 288 2.73M 352 4:50
0.0015 2M 1 2.66M 2805 18:45

HOLEDRING 0.0015 1M 8 2.67M 2253 2:30
0.0015 25K 232 2.67M 479 4:50
0.0027 2M 1 2.69M 2625 23:55

3HOLES 0.0027 1M 8 2.69M 2101 2:20
0.0027 25K 176 2.69M 440 3:55
0.0022 2M 1 2.45M 2558 23:00

HOMER 0.0022 1M 8 2.46M 2222 2:30
0.0022 25K 204 2.46M 450 4:10
0.0015 2M 1 2.30M 2667 14:20

NEPTUNE 0.0015 1M 8 2.30M 2484 3:10
0.0015 25K 197 2.30M 476 4:50
0.0022 2M 1 2.38M 2769 26:05

LION 0.0022 1M 8 2.38M 2546 2:20
0.0022 25K 218 2.38M 765 4:35
0.0029 2M 1 2.33M 2479 13:00

DAVID 0.0029 1M 8 2.33M 2284 2:30
0.0029 25K 218 2.33M 472 5:20
0.0015 2M Abort* Abort* Abort* Abort*

BUDDHA 0.0015 1M 8 3.29M 2284 3:30
0.0015 25K 281 3.29M 602 6:55

Table 2: Time and memory usage for different models for single- and multi-node mesh generation with LOCDEL.

Model λ κ #tri mem(MB) time
BUDDHA 0.0015 2M 1M Abort* 3.29M Abort* 2284 Abort* 3:30
3HOLES 0.0025 2M 1M Abort* 3.14M Abort* 2104 Abort* 3:05
3HOLES 0.002 2M 1M Abort* 4.91M Abort* 2098 Abort* 6:30
BIMBA 0.001 2M 1M Abort* 5.48M Abort* 2351 Abort* 7:50
LUCY 0.0014 2M 1M Abort* 6.05M Abort* 2243 Abort* 10:15
9HANDLETORUS 0.005m 2M 1M Abort* 6.64M Abort* 2179 Abort* 20:00

Table 3: Cases with κ = 2M have to be aborted whereas the cases with κ = 1M run in few hours.

etry and topology of an input surface are progressively cap-
tured by decreasing λ. In Figure 5 we plot the time versus
the output mesh size. Clearly, it shows that LOCDEL with
the tuned value of κ = 1 million scales much better than the
standard Delaunay refinement which closely corresponds to
the case when κ = 2 million.

6. Conclusions
In this paper we showed how one can adapt the Delaunay re-
finement technique for surface meshing with only local De-
launay triangulations. By tuning a parameter κ in the algo-
rithm, one can produce large meshes of a model that would
not be possible otherwise with a single global Delaunay tri-
angulation. The parameter κ is mostly platform dependent
including the memory availability and the particular Delau-
nay code being employed. Once it is estimated with some
initial experiments, one can use the same κ for all future

submitted to Eurographics Symposium on Geometry Processing (2010)

T. K. Dey et al. / Localized Delaunay Refinement for Sampling and Meshing 9

2 3 4 5
Millions of triangles

0
5

10
15
20
25
30
35

H
ou

rs

kappa = 2M
kappa = 1M

3Holes

2 3 4 5 6 7
Millions of triangles

0
5

10
15
20
25
30
35

H
ou

rs

kappa = 2M
kappa = 1M

9HandleTorus

2 3 4 5 6
Millions of triangles

0
5

10
15
20
25
30
35

H
ou

rs

kappa = 2M
kappa = 1M

Bimba

Figure 5: Time Vs. mesh size plot for some models.

Figure 6: Varying κ on LION does not change the mesh qual-
itatively.

experiments on the same platform thereby eliminating the
need for tuning κ. The other parameter λ provides the user
the flexibility to choose the scale at which the surface is to be
meshed. The output is guaranteed to be a manifold and cap-
tures the input topology if the supplied scale is sufficiently
small. It is not hard to include the check for aspect ratio to
produce a guaranteed quality mesh in our framework. We
avoided including it in the description of LOCDEL just to
keep its essential aspects in focus. Also, it is not difficult to
observe that the technique is not tied to octtrees and can be
applied to other hierarchical space decompositions as well.

We can take advantage of the cluster structure of the sam-
ple points at termination for downstream applications. For
example, one may transmit the augmented point set Rν node
by node and the receiver may compute the individual meshes
from each cluster without worrying about consistency. A
mesh processing application can treat clusters in parallel
again without worrying about the mesh consistency.

This work brings forth some open questions. We used λ
to produce an output mesh which is almost uniform. Is it

possible to compute a mesh which is adaptive to the surface
features using localized Delaunay refinement? This will re-
quire an estimation of the feature size which itself would be
a nontrivial task under a localized framework. However, it
may be possible to let the algorithm choose adaptively the
mesh density to meet the topological disk criterion.

What about extending our framework to volume meshing?
Although most of the ideas generalize to tetrahedra refine-
ments, it is not clear at the moment how to fit everything
together.

Acknowledgments.
Most of the models used in this paper are taken from the
AIM@SHAPE repository. We thank Kuiyu Li for assist-
ing with generating some of the pictures. We acknowledge
CGAL consortium for making the Delaunay triangulation
code available for experiments. The work on this research is
partially supported by NSF grants CCF-0830467 and CCF-
0915996.

References
[ACDL02] AMENTA N., CHOI S., DEY T. K., LEEKHA N.: A

simple algorithm for homeomorphic surface reconstruction. In-
ternational Journal of Computational Geometry and Applica-
tions 12 (2002), 125–141. 6

[ACR03] AMENTA N., CHOI S., ROTE G.: Incremental construc-
tions con BRIO. In Proceedings of the 19th Annual Symposium
on Computational Geometry (2003), pp. 211–219. 1

[ACSYD05] ALLIEZ P., COHEN-STEINER D., YVINEC M.,
DESBRUN M.: Variational tetrahedral meshing. ACM Trans-
actions on Graphics 24, 3 (July 2005), 617–625. 1

[BO05] BOISSONNAT J.-D., OUDOT S.: Provably good surface
sampling and meshing of surfaces. Graphical Models 67 (2005),
405–451. 1, 2, 3, 4, 6

[BO06] BOISSONNAT J.-D., OUDOT S.: Provably good sam-
pling and meshing of Lipschitz surfaces. In Proceedings of the
22nd Annual Symposium on Computational Geometry (2006),
pp. 337–346. 1, 3

[CDES01] CHENG H.-L., DEY T. K., EDELSBRUNNER H.,
SULLIVAN J.: Dynamic skin triangulation. Discrete and Com-
putational Geometry 25 (2001), 525–568. 2

submitted to Eurographics Symposium on Geometry Processing (2010)

10 T. K. Dey et al. / Localized Delaunay Refinement for Sampling and Meshing

Figure 7: Large models with consistent meshes. LUCY, BIMBA, BUDDHA, and DAVID with 6.05M, 5.48M, 3.29M, and 2.33M
triangles respectively.

[CDR08] CHENG S.-W., DEY T. K., RAMOS E. A.: Delaunay
refinement for piecewise smooth complexes. Discrete and Com-
putational Geometry (2008). 1

[CDRR07] CHENG S.-W., DEY T., RAMOS E., RAY T.: Sam-
pling and meshing a surface with guaranteed topology and geom-
etry. SIAM Journal on Computing 37 (2007), 1199–1227. 1, 2,
3, 5

[cga] http://www.cgal.org. 7
[Che89] CHEW L. P.: Guaranteed-quality triangular meshes.

Tech. Rep. Report TR-98-983, Department of Computer Science,
Cornell University, Ithaca, New York, 1989. 1

[Dev02] DEVILLERS O.: The Delaunay hierarchy. Internat. J.
Found. Comput. Sci. 13 (2002), 163–180. 1

[DL09] DEY T. K., LEVINE J. A.: Delaunay meshing of piece-
wise smooth complexes without expensive predicates. Algo-
rithms 2 (2009), 1327–1349. 2

[DLR05] DEY T. K., LI G., RAY T.: Polygonal surface remesh-
ing with Delaunay refinement. In Proceedings of the 14th Inter-
national Meshing Roundtable (2005), pp. 343–361. 1, 3

[HMP06] HUDSON B., MILLER G., PHILLIPS T.: Sparse
voronoi refinement. In Proceedings of the 15th International
Meshing Roundtable (2006), pp. 339–356. 1

[ILSS06] ISENBURG M., LIU Y., SHEWCHUK J., SNOEYINK J.:
Streaming computation of Delaunay triangulations. ACM Trans.
Graphics 25, 3 (2006), 1049–1056. 1

[NCC04] NAVE D., CHRISOCHOIDES N., CHEW L.:
Guaranteed-quality parallel Delaunay refinement for restricted
polyhedral domains. Computational Geometry: Theory and
Applications 28 (2004), 191–215. 1

[ORY05] OUDOT S., RINEAU L., YVINEC M.: Meshing vol-
umes bounded by smooth surfaces. In Proceedings of the 14th
International Meshing Roundtable (2005), pp. 203–219. 1

[Rup95] RUPPERT J.: A Delaunay refinement algorithm for qual-
ity 2-dimensional mesh generation. Journal of Algorithms 18
(1995), 548–585. 1

[She98] SHEWCHUK J. R.: Tetrahedral mesh generation by De-

launay refinement. In Proceedings of the 14th Annual Symposium
on Computational Geometry (1998), pp. 86–95. 1

[TWAD09] TOURNOIS J., WORMSTER C., ALLIEZ P., DES-
BRUN M.: Interleaving Delaunay refinement and optimization
for practical isotroic tetrahedron mesh generation. ACM Trans.
Graphics 28 (2009). 1

[YLL∗09] YAN D.-M., LÈVY B., LIU Y., SUN F., WANG W.:
Isotropic remeshing with fast and exact computation of restricted
voronoi diagram. Computer Graphics Forum 28 (2009), 1445–
1454. 1

submitted to Eurographics Symposium on Geometry Processing (2010)

