

Instructions for use

Title Modeling of Clouds from a Single Photograph

Author(s) Dobashi, Yoshinori; Shinzo, Yusuke; Yamamoto, Tsuyoshi

Citation Computer Graphics Forum, 29(7), 2083-2090
https://doi.org/10.1111/j.1467-8659.2010.01795.x

Issue Date 2010-09

Doc URL http://hdl.handle.net/2115/47036

Rights The definitive version is available at www.interscience.wiley.com

Type article (author version)

File Information CGF29-7_2083-2090.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Pacific Graphics 2010
P. Alliez, K. Bala, and K. Zhou
(Guest Editors)

Volume 29 (2010), Number 7

Modeling of Clouds from a Single Photograph

Yoshinori Dobashi Yusuke Shinzo Tsuyoshi Yamamoto

Hokkaido University, Sapporo, Japan

Abstract
In this paper, we propose a simple method for modeling clouds from a single photograph. Our method can

synthesize three types of clouds: cirrus, altocumulus, and cumulus. We use three different representations for each
type of cloud: two-dimensional texture for cirrus, implicit functions (metaballs) for altocumulus, and volume data
for cumulus. Our method initially computes the intensity and the opacity of clouds for each pixel from an input
photograph, stored as a cloud image. For cirrus, the cloud image is the output two-dimensional texture. For each
of the other two types of cloud, three-dimensional density distributions are generated by referring to the cloud
image. Since the method is very simple, the computational cost is low. Our method can generate, within several
seconds, realistic clouds that are similar to those in the photograph.

Categories and Subject Descriptors (according to ACM CCS): I.3.m [Computer Graphics]: Miscellaneous—

1. Introduction

The realistic display of clouds is one of the important re-
search topics in computer graphics. Clouds play an impor-
tant role in creating synthetic images of outdoor scenes. In
order to display realistic clouds, the density distribution of
clouds requires to be defined. Many methods have been de-
veloped for this purpose.

There are two major approaches to modeling clouds: the
procedural approach and the physically based approach. The
procedural approach can synthesize realistic clouds with a
low computational cost [EMP∗02] . However, in order to
create the desired types of cloud, many parameters have to
be determined manually by trial and error processes. The
physically based approach, on the other hand, generates
clouds by simulating the physical process of cloud forma-
tion [DKNY08]. However, the computational cost is much
more expensive than the procedural approach.

In this paper, we propose an alternative method for the
modeling of clouds. Our method uses a single photograph
to synthesize density distribution of clouds. The goal of
our method is not to reproduce exactly the same clouds as
those in the photograph, as reconstructing three-dimensional
clouds from a single photograph is an extremely difficult
problem and is almost impossible. Instead, our method uses
the photograph as a guide to synthesize clouds that look sim-

ilar to those in the photograph. Our method can synthesize
three types of cloud: cirrus, altocumulus, and cumulus (or
cumulonimbus). Cirrus is generally thin and self-shadows
are seldom observed. Therefore, cirrus is modeled as a two-
dimensional texture. Altocumulus and cumulus possess vol-
umetric features and three-dimensional density distributions
must be generated. Since our method is very simple, the
computational cost is low, and realistic clouds can be syn-
thesized within several seconds.

2. Related Work

This section briefly discusses previous methods for model-
ing clouds. For more detailed discussion on cloud modeling
and simulation, please refer to [Har03].

Procedural modeling is the most popular approach to
modeling clouds and many methods have been proposed.
Voss used the idea of fractals for modeling clouds [Vos83].
Gardner proposed a method using textured ellipsoids for vi-
sual simulation of clouds [Gar85]. Ebert et. al. developed a
method combining metaballs and a noise function [Ebe97].
Sakas modeled clouds by using spectral synthesis [Sak93].
More recently, Schpok et al. have developed a real-time sys-
tem for the procedural modeling of clouds [SSEH03]. A
more detailed explanation of the procedural modeling of
clouds can be found in [EMP∗02]. These methods can gen-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Dobashi et al. / Modeling of Clouds from a Single Photograph

intensity

opacity
intensity

cloud image

cloud image

cloud image

cirrus cloud texture

metaballs

surface shape

input photograph

input photograph

input photograph

density distribution

density distribution

ci
rr

us
al

to
cu

m
ul

us
cu

m
ul

us

Figure 1: Overview of our cloud modeling processes.

erate realistic clouds, but many parameters are required to be
specified by trial and error.

Clouds can be generated by physically based simulation
of the cloud formation process. Kajiya and Herzen solved at-
mospheric fluid dynamics, numerically, for modeling cumu-
lonimbus clouds [KH84]. Miyazaki et al. proposed a method
for modeling various types of cloud by using the method
called a coupled-map lattice, being an extended version of
cellular automata [MYND01]. They also proposed a method
for simulating the cloud formation process by improving the
method proposed by Kajiya and Herzen [KH84]. More re-
cently, Dobashi et al. proposed a method for controlling the
simulation to generate desired shapes of clouds [DKNY08],
although the method is limited to cumuliform clouds. By us-
ing these methods, realistic clouds can be created. However,
one of the problems with these methods is that the computa-
tional cost is very high.

The most closely related method to ours is the one pro-
posed by Dobashi et al [DNYO98]. This method uses in-
frared satellite images and metaballs for modeling earth-
scale clouds. The background of the clouds in satellite im-
ages is very dark and therefore the effect of the background
intensity on the cloud intensity is negligible. However, for
the photograph taken from the ground, we need to remove
the effects of the background sky. Our method initially esti-
mates the background image of the sky for this purpose. The
similarity between our method and [DNYO98] is in the use
of metaballs. However, the previous method determines all
the parameters of the metaballs (center position, center den-
sity, and radius) by an exhaustive search algorithm, resulting
in a large computational cost. In our method, only center
densities are determined by optimization, reducing the com-
putational cost. In addition, [DNYO98] pays no attention to

the types of cloud, while we develop different methods ac-
cording to the cloud types.

For altocumulus and cumulus, we employ a geometry
based approach; the surface shapes of clouds are deter-
mined from an input photograph. The density distributions
within the shapes are then generated. Although geometry
based methods for modeling clouds have been proposed
(e.g., [BN02] [NND96]), their purpose is not to generate the
clouds from a photograph. Therefore, it would be difficult to
generate clouds that are similar to those in the photograph.
Our method is more tightly coupled to the photograph.

3. Overview of Our Method

Fig. 1 shows an overview of our method. As mentioned be-
fore, our method can generate three types of cloud: cirrus,
altocumulus, and cumulus, as shown in the figure. Although
we propose three methods for modeling these clouds, there
is a common process in all of the three methods, i.e., calcula-
tion of the cloud image. The cloud image is calculated from
the input photograph, and an intensity and an opacity of the
clouds are stored at each pixel. To calculate the cloud im-
age, our method initially creates the sky image by removing
clouds from the photograph. This is achieved by estimating
the sky colors behind the clouds. Then, the intensity and the
opacity are calculated by comparing the input photograph
with the sky image. After creating the cloud image, one of
the three methods is carried out according to the type of the
clouds in the photograph. The cloud type is specified by the
user. We assume that the camera parameters (the camera po-
sition and viewing angle) are also provided by the user.

Cirrus clouds are very thin and self-shadows are seldom
observed. Therefore, we model cirrus as a two dimensional
texture. The cloud image described above is used to create
the cirrus texture (see the top column in Fig. 1).

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Dobashi et al. / Modeling of Clouds from a Single Photograph

intensity (β) opacity (α)
cloud image

input photograph sky image

remove cloud pixels solve Poisson equation

Figure 2: Calculation of cloud image.

Altocumulus is also thin, but self-shadows are observed.
Therefore, a three-dimensional density distribution must be
defined. We use metaballs to define the density distribution,
as shown in the second column in Fig. 1. A metaball is a
sphere, inside which a field function is assigned. We use the
function proposed by Wyvill and Trotman [WT90]. Meta-
balls are often used for defining a surface of a soft object,
but our method uses them to define the density distribution
as a sum of the field functions. A metaball possesses three
parameters: a center position, a radius, and a center density.
Our method determines these parameters so that the cloud
image is approximated by the metaballs.

Cumulus clouds possess depth. Our method initially gen-
erates a surface shape of the clouds by calculating the thick-
ness at each pixel, as shown in the third row of Fig. 1. Our
method computes the surface shape by assuming that the
clouds are thicker in the center and the thinner at the bound-
ary. The density inside the shape is then generated, employ-
ing a procedural approach.

4. Calculation of Cloud Image

Fig. 2 shows the procedure for calculating the cloud image.
The first process is to create the sky image by estimating sky
colors behind the clouds in the input image. Then, the inten-
sity and the opacity of the clouds are calculated by compar-
ing the input photograph with the sky image.

4.1. Calculation of Sky Image

To create the sky image, each pixel in the input image is
roughly classified into either a cloud pixel or a sky pixel,
and the cloud pixels are removed (see Fig. 2). The sky image
is created by extending the colors of the surrounding sky
pixels into the removed cloud areas. For the classification,
we use a chroma of each pixel. Colors of clouds are generally
white (or gray) and therefore the chroma of a cloud pixel is
expected to be small. This fact allows us to identify the cloud

pixels by comparing the chroma of each pixel with the user-
specified threshold, εc. Let us denote the intensity of pixel
p of the input photograph as I(p,λ)(λ = R,G,B). Then, the
chroma of pixel p, S(p), is calculated from:

S(p) = (Imax(p)− Imin(p))/Imax(p), (1)

where,

Imax(p) = max
λ=R,G,B

I(p,λ), Imin(p) = min
λ=R,G,B

I(p,λ).

If S(p) is smaller than εc, then pixel p is labeled as a cloud
pixel.

Next, the sky image is created by interpolating the col-
ors of the cloud pixels from the surrounding sky colors. For
this interpolation, we borrow an idea from the image editing
technique, called Poisson image editing [PGB03]. i.e., we
solve the following Poisson equation for the cloud pixel pc.

ΔIsky(pc,λ) = 0, (2)

where Δ indicates the Laplacian operator and Isky(pc,λ) is
intensity at pixel pc in the sky image. The above equation
is numerically solved for only the cloud pixels, pc. In solv-
ing this equation, colors of the sky pixels neighboring the
removed cloud pixels are used as boundary conditions. This
method provides us with the smooth and seamless intensity
distribution of the sky (see Fig. 2).

4.2. Calculation of Cloud Intensity and Opacity

Before explaining the details of the calculation of the cloud
image, let us start with a discussion of the intensity of clouds.

Let us consider a situation shown in Fig. 3, where clouds
are illuminated by the sun. The intensity of light reaching
point y from the sun and scattered into direction ω is repre-
sented by:

I1(y,ω,λ) = ρ(y)g(xs,y)F(θ1)Isun(λ)

= h1(y,ω)Isun(λ),

h1(y,ω) = ρ(y)g(xs,y)F(θ1),

where λ is the wavelength, Isun the sunlight intensity, ρ the
density of clouds, F the phase function, θ1 the phase angle
between the sunlight direction and ω, and g(xs,y) the atten-
uation ratio due to cloud particles between the sun xs and
point y. Since the phase function of cloud particles is almost
independent of the wavelength of light [NND96], h1 is in-
dependent of λ. Then, the intensity of light for k(> 1)th or-
der scattering can be represented by the following recursive
equations.

Ik(x,ω,λ) =
∫

Vc

ρ(x)g(y,x)F(θk)G(y,x)Ik−1(y,ω′,λ)dy

=
∫

Vc

hk(x,ω)Ik−1(y,ω′,λ)dy,

hk(x,ω) = ρ(x)g(y,x)F(θk)G(y,x),

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Dobashi et al. / Modeling of Clouds from a Single Photograph

θ1

viewpoint

Isun Isky

x(t)
Im

t T

Icld

pixel p

screen

skysun

xa

xb
yI1

xs

Figure 3: Intensity of clouds.

where ω′ is the direction from y to x, G the form factor cal-
culated by the geometric relation between x and y, and θk the
angle between ω and ω′. Vc indicates all the points within the
cloud volume. By expanding the recursion, Ik can be rewrit-
ten as:

Ik(x,ω,λ) =
∫

· · ·
∫

hkhk−1 · · ·h1Isun(λ)dy1dy2 · · ·dyk−1.

= Hk(x,ω)Isun(λ),

Hk(x,ω) =
∫

· · ·
∫

hkhk−1 · · ·h1dy1dy2 · · ·dyk−1,

where y1,y2, · · · ,yk−1 are temporal variables for the inte-
grals. Note that, for simplicity, we omit some symbols, such
as Vc and ω′, from the above equations. The total intensity
of light at point x after multiple scatterings, Im, is then ex-
pressed by:

Im(x,ω,λ) =
∞
∑
k=1

Hk(x,ω)Isun(λ) = Hsun(x,ω)Isun(λ), (3)

where,

Hsun(x,ω) =
∞
∑
k=1

Hk(x,ω)

As shown in Eq. (3), Im can be represented by the product of
the sunlight intensity, Isun, and light transfer function, Hsun,
between the sun and point x.

The intensity of light reaching the viewpoint is obtained
by accumulating Im along the viewing ray. The light of the
sky behind the clouds also reaches the viewpoint after being
attenuated by the cloud particles. Thus, the intensity of light
reaching viewpoint through pixel p is expressed by:

Icld(p,λ) =
∫ T

0
ρ(x(t))g(x(t),xa)Im(x(t),ωv,λ)dt

+ Isky(p,λ)g(xa,xb) (4)

where xa and xb are the intersection points between viewing
ray and the clouds (see Fig. 3), T the thickness of the clouds,
ωv the direction of the viewpoint viewed from point x(t), Isky
the intensity of the sky behind the clouds. The first term on
the right indicates the intensity of clouds, and the second
term is the intensity of the light of the sky, attenuated by the

cloud particles. Next, we split Isun(λ) into its intensity, isun,
and color components, csun(λ), i.e., Isun(λ) = isuncsun(λ),
and insert Eq. (3) into Eq. (4) to obtain the following equa-
tion.

Icld(p,λ) = β(p)csun(λ)+α(p)Isky(p,λ), (5)

where,

α(p) = g(xa,xb), (6)

β(p) = isun

∫ T

0
ρ(x(t))g(x(t),xa)Hsun(x(t),ωv)dt (7)

α and β correspond to the opacity and the intensity of clouds,
respectively.

Our method computes α and β for each cloud pixel, pc,
by assuming that Icld(pc,λ) is equal to the pixel intensity of
the input image, I(p,λ). That is,

I(pc,λ) = β(pc)csun(λ)+α(pc)Isky(pc,λ) (8)

(λ = R,G,B)

In order to solve above equations in terms of α and β, we
need to know csun and Isky. For Isky, we use the sky im-
age, calculated by using the method described in Section
4.1. However, we still have five unknowns (α, β, csun(R),
csun(G), csun(B)) for each pixel. Since csun should be the
same for all the pixels, we can obtain α and β (and csun)
by solving the equations for three neighboring pixels, simul-
taneously. However, csun obtained in this way is not nec-
essarily the same for all the pixels, because of some noise
involved in the input image. So, we employ the following
two-step approach. First, for each pixel, our method calcu-
lates optimal sun color, csun(λ), that minimizes the following
function:

∑
λ=R,G,B

(
I(pc,λ)−β(pc)csun(λ)−α(pc)Isky(pc,λ)

)2
.

This minimization problem is solved by fully searching the
RGB color space. Next, the average sun color of all pixels is
calculated. By using the average sun color, α and β for each
pixel is re-calculated. α and β for each pixel are then stored
in the cloud image.

5. Modeling of Clouds

Using the cloud image obtained from the previous section,
three types of cloud (cirrus, altocumulus, and cumulus) are
generated. The following subsections describe the details of
our method for each of the cloud types.

5.1. Cirrus

As mentioned before, cirrus clouds are represented as a two-
dimensional texture using the cloud image. However, we
need to remove the effect of the perspective transformation
in the input photograph. In order to achieve this, a cloud
plane, where the clouds are assumed to exist, is interactively

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Dobashi et al. / Modeling of Clouds from a Single Photograph

(a) cloud plane. (b) cirrus cloud texture.

Figure 4: Creation of cirrus cloud texture.

specified by the user (see Fig. 4). Then, by projecting the
cloud image onto the cloud plane, the cirrus cloud texture is
created.

5.2. Altocumulus

Fig. 5 shows the procedure for modeling altocumulus. Al-
tocumulus clouds typically consist of many small cloud
cells, as shown in Fig. 5(a). The basic idea is to generate a set
of metaballs to approximate the cloud image. Our method
generates metaballs under the following assumptions. (1)
The clouds look unnatural if the thicknesses become larger
than the size of the cloud cells and (2) the thickness should
be different if the opacity (α) is different. The details of the
metaball generation process are described in the following.

First, a set of binary images Ik,B(k = 1,2, · · · ,n) are cre-
ated by using a set of thresholds for α (Fig. 5(b)). That is,
a white color is stored at pixel p of Ik,B if kΔα−Δα/2 <
α(p) ≤ (k + 1)Δα + Δα/2. Otherwise, a black color is
stored. Δα = (εα −αmin)/n, where εα and n are specified
by the user. αmin is the minimum value of α(p) amongst all
the pixels. Next, a distance transform [Jai88] is applied to
each of Ik,B and a distance image, Ik,D, is created (Fig. 5(c)).
Each pixel in Ik,D stores the distance to the nearest black
pixel. Metaballs are then generated at the locations of all
white pixels of Ik,B (Fig. 5(d)). The metaballs are placed on
the image plane at this stage. The radii of the metaballs are
set to the distance stored in the distance image Ik,D. By us-
ing the above method, the radii of the metaballs correspond
to the thicknesses of clouds and are smaller than the size of
the cloud cells. In addition, metaballs with similar radii are
generated at the neighboring pixels with similar values of α.

Next, in order to make the synthetic clouds look similar
to those in the input photograph, the center densities of the
metaballs are determined so that the cumulative density at
each pixel becomes the same as the cloud intensity β(p).
That is, the densities are determined by solving the following
minimization problem:

Q =
N

∑
p=1

(
β(p)−

M

∑
l=1

ql f (rl p)

)2

→ min, (9)

where N is the number of pixels of the cloud image, M the
number of metaballs, ql the center density of metaball l, f is

(a) cloud image (b) binary images Ik, B

(c) distance images Ik, D

(f) density distribution

(d) generating metaballs

(e) optimizing center density

Figure 5: Modeling of altocumulus.

the field function of the metaball, and rl p the distance from
the center of metaball l to pixel p.

For solving Eq. (9), we use the following simple method.
The center density of each metaball is iteratively updated by
the following equation.

q(i+1)
l = max{0,q(i)

l +κ(β(p)−
M

∑
l=1

q(i)
l f (rl p)}, (10)

where q(i)
l is the center density of metaball l at ith iteration

and κ is a user-specified constant. We use 0.01 as a value
of κ in creating the examples shown in Section 7. The iter-
ation process is terminated when |Q(i+1) −Q(i)| is smaller
than a specified threshold, where Q(i) is the value of Q using
the metaball density at ith iteration. This approach does not
always converge to an optimal solution but provides a good
solution that is sufficient for our purpose. In order to speed
up the computation, the above process is implemented by us-
ing CUDA. Fig. 5(e) shows an example of an approximated
cloud image.

Finally, with a similar method to that used for cirrus
clouds, the cloud plane is specified by the user, and the cen-
ter positions of the metaballs are projected onto the plane.
The radii of the metaballs are scaled in proportion to the dis-
tance from the viewpoint. After the projection process, a vol-
ume data is created by subdividing the bounding box of all
the metaballs and by calculating a density at each grid point
(Fig. 5(f)).

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Dobashi et al. / Modeling of Clouds from a Single Photograph

5.3. Cumulus

For modeling cumulus, the surface shape of the clouds is cal-
culated first. Next, the density distribution inside the surface
is generated.

To calculate the surface shape, we assume that the clouds
are thinner at the boundary and thicker in the center. We also
assume that the thickness of the clouds is the same if α(p) is
the same. Based on these assumptions, the surface shape is
calculated in the following way.

First, the cloud image is converted into a binary image
with a user-specified threshold. That is, if β(p) is greater
than the threshold, a white color is stored in the binary im-
age. Otherwise, a black color is stored. Next, the distance
transform is applied to the binary image and medial axes are
extracted [Jai88] (Fig. 6(a)). A medial axis is a pixel where
the distance is the local maximum. In Fig. 6(a), the colors of
the medial axes correspond to the distances: the blue color
corresponds to zero and the red color to the longest dis-
tance. We use the distances at the medial axes as the thick-
nesses at the pixels. We also set the thicknesses to zero at
the pixels where there are no clouds (i.e., β(p) = 0). The
thicknesses at other pixels are determined by propagating
the above thicknesses to other pixels. For this process, we
use the method for colorization of a gray scale image by
optimization [LLW04]. In our method, the thicknesses are
determined by minimizing the following energy function.

J(T) = ∑
p

(
T (p)− ∑

q∈A(p)
wpqT (q)

)2

, (11)

where T is thickness, p and q indicate pixel labels, and A(p)
represents a set of adjacent pixels of p. The weighting factor
wpq represents the similarity between p and q. The weight-
ing factor is defined by:

wpq ∝ exp(−(α(p)−α(q))2/(2σ2
p)), (12)

where α(p) is the opacity of the clouds, represented by Eq.
(6), and σ2

p is the variance of the opacities in A(p). We use a
GPU to solve the above minimization problem efficiently.

After the above process, the thickness of the clouds for
each pixel is obtained and we can construct the surface shape
of the clouds (Figs. 6(b) and (c)). As shown in Fig. 6(c),
we assume the cloud shape is symmetric with respect to the
image plane.

The density distribution inside the surface shape is gen-
erated by invoking the Perlin Noise [Per85]. However, the
density of clouds typically becomes thin near the boundary.
To take into account this fact, the density of clouds is gen-
erated in the following way. First, a binary volume is cre-
ated by subdividing the bounding box of the surface shape
into a regular grid. We assign a value of one to each grid
point inside the surface shape and zero to an external grid
point. Then, the three-dimensional version of the distance
transform [BTG95] is applied to the binary volume. After

(a) medial axes

(d) density distribution

(b) surface shape (front)

(c) surface shape (side)

Figure 6: Modeling of cumulus.

the distance transform, each grid point stores the distance
from the grid point to the nearest grid point outside the sur-
face shape. Next, the distance is normalized so that the max-
imum distance becomes 1. We use the product of the Perlin
noise and the normalized distance as the density at each grid
point. Fig. 6(d) shows the density distribution obtained by
the above process.

6. Parameter Tuning

This section describes the method for tuning the parameters
involved in our system.

First, to create the cloud image, the threshold εc has to be
specified for identifying cloud pixels (Section 4.1). This pa-
rameter is easily determined, since the identified cloud pixels
are displayed in real-time.

Next, the user needs to specify the cloud plane. The cam-
era parameters have also to be specified at this stage, since
they affect the perspective distortion of the plane. If the ac-
tual camera parameters are available, we can use them. Oth-
erwise, we determine them in the following way. We employ
a pin-hole camera model and assume that the upward and the
viewing directions of the camera coincide with the vertical
(z axis) and the horizontal (x axis) directions, respectively.
Then, the only unknown camera parameter is the viewing
angle. Our system allows the user to interactively specify
the viewing angle, together with the cloud plane. As for the
cloud plane, the user can specify an arbitrary direction for
the orientation of the plane. The user can also specify the
size and the vertical/horizontal positions of the cloud plane.

For modeling altocumulus, the threshold εα and the num-
ber of binary images, n, (see Section 5.2) need to be speci-
fied. εα corresponds to the maximum opacity and this deter-
mines the pixels where metaballs are placed. While the user
adjusts this parameter, pixels whose opacities are less than

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Dobashi et al. / Modeling of Clouds from a Single Photograph

Table 1: Parameter settings. "fovy" is the viewing angle of
the camera.

Figure image size fovy εc εα n
7 384×284 60◦ 0.4 N/A N/A
8 452×300 60◦ 0.27 0.95 3
9 640×327 20◦ 0.27 N/A N/A

εα are displayed in real time. Therefore, the user can easily
determine this parameter. As for the number of the binary
images, n, we determine this parameter experimentally and
find that n = 3 ∼ 5 works well for most cases.

7. Results

Figs. 7 through 9 shows three types of cloud generated
by our method. In these figures, (a) shows the input pho-
tographs. In Figs. 8 and 9, images with different viewpoints
are shown in (b) and (c). As shown in these examples, clouds
that look similar to those in the photographs are generated.
We use a desktop PC with Intel Corei7 (3.33 GHz) with
NVIDIA GeForce GTX 295 to create these examples and
the computation times were within 10 seconds.

The parameters used for the examples shown in this sec-
tion are summarized in Table 1. These parameters are de-
termined interactively, as described in Section 6. The time
spent on determining these parameters ranged from one to
three minutes. Most of the time was spent on tuning the
cloud plane and the viewing angle; it ranged from 30 sec-
onds to one minute. However, we verified that similar clouds
were generated unless an extremely unnatural cloud plane
was specified. Other parameters were determined within 30
seconds.

Fig. 10 shows two images of a synthetic scene including
these clouds, rendered with different viewpoints and sunlight
directions. Realistic images of clouds could be rendered.

8. Discussion

Our method can synthesize clouds that are similar to those
in an input photograph. However, there is a case where the
synthesized clouds are different from those that the user has
in mind. Even in such a case, we believe that the user can
create his/her desired clouds by editing the clouds generated
by our method.

An obvious limitation is that our method does not work
well in the case where multiple clouds overlap in the input
photograph. In this case, our method treats them as a sin-
gle cloud. This problem could be resolved by using multiple
photographs.

The method using a chroma for identifying cloud pixels
(see Section 4.1) works best for the photograph taken in the

(a) input photograph. (b) our result.

Figure 7: Cirrus example.

daytime, since the chroma of a cloud pixel is apparently dif-
ferent from that of a sky pixel. However, this method tends
to fail when the sky becomes dark. To address this problem,
a more sophisticated algorithm for the classification of the
cloud pixels is required. Techniques for image segmentation
could be applied [WC05] [LLW08].

Another difficult situation for our method is the case
where the intensities of clouds in the photograph are uni-
form. In this case, the opacities of the clouds calculated by
our method become uniform. Since the shape of clouds is
calculated by referring to the opacities, the thickness of the
cloud shape also tends to become uniform, resulting in an
unnatural shape of the clouds. This kind of situation occurs
when an input photograph is taken at the sunset time, where
clouds are uniformly dark.

9. Conclusion

We have proposed a method for generating clouds from
a real photograph of clouds. Our method can synthesize
three types of cloud: cirrus, altocumulus, and cumulus. Our
method firstly computes the cloud image where intensities
and opacities of the clouds are stored. For cirrus, the cloud
image is used as a 2D texture. For altocumulus, metaballs are
generated to define the 3D density distribution. For cumulus,
the surface shape of clouds is calculated and the density dis-
tributions within the shapes are generated using Perlin noise.
Our method can generate realistic clouds that are similar to
the input photograph.

One important issue that should be addressed in the near
future is that the shape of the cumulus clouds generated by
our method is symmetric with respect to the image plane.
Therefore, the clouds look unrealistic when viewed from the
side. This problem could be addressed by adding random
perturbations to the surface shapes calculated.

References

[BN02] BOUTHORS A., NEYRET F.: Modeling clouds shape. In
Proceedings of Eurographics 2004 (short papers) (Aug. 2002).

[BTG95] BITTAR E., TSINGOS N., GASCUEL M.-P.: Automatic
reconstruction of unstructured 3d data: Combining a medial axis
and implicit surfaces. Computer Graphics Forum 14, 3 (1995),
457–468.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

Dobashi et al. / Modeling of Clouds from a Single Photograph

(a) input photograph.

(b) our result.

(c) top view.

Figure 8: Altocumulus example.

(a) input photograph.

(b) our result.

(c) side view.

Figure 9: Cumulus example.

(a) daytime.

(b) evening.

Figure 10: A cloud scene.

[DKNY08] DOBASHI Y., KUSUMOTO K., NISHITA T., YA-
MAMOTO T.: Feedback control of cumuliform cloud formation
based on computational fluid dynamics. ACM Transactions on
Graphics 27, 3 (Aug. 2008), Article 94.

[DNYO98] DOBASHI Y., NISHITA T., YAMASHITA H., OKITA

T.: Using metaballs to modeling and animate clouds from satel-
lite images. The Visual Computer 15, 9 (1998), 471–482.

[Ebe97] EBERT D. S.: Volumetric modeling with implicit func-
tions: A cloud is born. In Visual Proceedings of SIGGRAPH 1997
(1997), p. 147.

[EMP∗02] EBERT D. S., MUSGRAVE F. K., PEACHEY D., PER-
LIN K., WORLEY S.: Texturing & modeling: a procedural ap-
proach. Morgan Kaufman, 2002.

[Gar85] GARDNER G. Y.: Visual simulation of clouds. Computer
Graphics (Proceedings of SIGGRAPH 1985) 19, 3 (July 1985),
297–304.

[Har03] HARRIS M. J.: Real-time Cloud Simulation and Render-
ing. University of North Carolina Technical Report TR03-040,
2003.

[Jai88] JAIN A. K.: Fundamentals of Digital Image Processing.
Prentice Hall, 1988.

[KH84] KAJIYA J. T., HERZEN B. P. V.: Ray tracing vol-
ume densities. Computer Graphics (Proceedings of SIGGRAPH
1984) 18, 3 (Aug. 1984), 165–174.

[LLW04] LEVIN A., LISCHINSKI D., WEISS Y.: Colorization
using optimization. ACM Transactions on Graphics 23, 3 (Aug.
2004), 689–694.

[LLW08] LEVIN A., LISCHINSKI D., WEISS Y.: A closed form
solution to natural image matting. IEEE Transaction on Pattern
Analysis and Machine Intelligence (TPAMI) 30, 2 (2008), 228–
242.

[MYND01] MIYAZAKI R., YOSHIDA S., NISHITA T., DOBASHI

Y.: A method for modeling clouds based on atmospheric fluid
dynamics. In Proceedings of the 9th Pacific Conference on Com-
puter Graphics and Applications (Aug. 2001), pp. 363–372.

[NND96] NISHITA T., NAKAMAE E., DOBASHI Y.: Display of
clouds taking into account multiple anisotropic scattering and sky
light. In Proceedings of ACM SIGGRAPH 1996, Annual Confer-
ence Series (1996), pp. 379–386.

[Per85] PERLIN K.: An image synthesizer. ACM SIGGRAPH
Computer Graphics 19, 3 (1985), 287–296.

[PGB03] PEREZ P., GANGNET M., BLAKE A.: Poisson image
editing. ACM Transactions on Graphics 22, 3 (July 2003), 313–
318.

[Sak93] SAKAS G.: Modeling and animating turbulent gaseous
phenomena using spectral synthesis. The Visual Computer 9, 4
(1993), 200–212.

[SSEH03] SCHPOK J., SIMONS J., EBERT D. S., HANSEN C.:
A real-time cloud modeling, rendering, and animation system. In
Proceedings of Symposium on Computer Animation 2005 (2003),
pp. 160–166.

[Vos83] VOSS R.: Fourier synthesis of gaussian fractals: 1/f
noises, landscapes, and flakes. In SIGGRAPH’83: Tutorial on
State of the Art Image Synthesis (1983), vol. 10.

[WC05] WANG J., COHEN M. F.: An iterative optimization ap-
proach for unified image segmentation and matting. In Proceed-
ings of International Conference on Computer Vision (ICCV)
(2005), vol. 2, pp. 936–943.

[WT90] WYVILL G., TROTMAN A.: Ray-tracing soft objects. In
Proceedings of CG International’90 (1990), pp. 469–476.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

