
HAL Id: hal-01498411
https://hal.science/hal-01498411

Submitted on 3 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combinatorial Bidirectional Path-Tracing for Efficient
Hybrid CPU/GPU Rendering.

Anthony Pajot, Loïc Barthe, Mathias Paulin, Pierre Poulin

To cite this version:
Anthony Pajot, Loïc Barthe, Mathias Paulin, Pierre Poulin. Combinatorial Bidirectional Path-Tracing
for Efficient Hybrid CPU/GPU Rendering.. Computer Graphics Forum, 2011, 30 (2), pp.315-324.
�10.1111/j.1467-8659.2011.01863.x�. �hal-01498411�

https://hal.science/hal-01498411
https://hal.archives-ouvertes.fr

EUROGRAPHICS 2011 / M. Chen and O. Deussen
(Guest Editors)

Volume 30 (2011), Number 2

Combinatorial Bidirectional Path-Tracing
for Efficient Hybrid CPU/GPU Rendering

Anthony Pajot1, Loïc Barthe1, Mathias Paulin1, and Pierre Poulin2

1IRIT-CNRS, Université de Toulouse, France 2LIGUM, Dept. I.R.O., Université de Montréal, Canada.

Figure 1: Images of a scene with a large dataset (758K triangles, lots of textures) featuring complex lighting conditions (glossy
reflections, caustics, strong indirect lighting, etc.) computed in respectively 50 seconds (left) and one hour (right). Standard
bidirectional path-tracing requires respectively 11 minutes and 13 hours to obtain the same results.

Abstract
This paper presents a reformulation of bidirectional path-tracing that adequately divides the algorithm into pro-
cesses efficiently executed in parallel on both the CPU and the GPU. We thus benefit from high-level optimization
techniques such as double buffering, batch processing, and asyncronous execution, as well as from the exploitation
of most of the CPU, GPU, and memory bus capabilities. Our approach, while avoiding pure GPU implementation
limitations (such as limited complexity of shaders, light or camera models, and processed scene data sets), is more
than ten times faster than standard bidirectional path-tracing implementations, leading to performance suitable
for production-oriented rendering engines.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture I.6.8 [Simulation and Modeling]: Type of
Simulation—Monte-Carlo

1. Introduction

Global illumination brings a lot of realism to computer-
generated images. Therefore, production-oriented rendering
engines use it to reach photorealism.

Algorithms to compute global illumination have to meet a
certain number of constraints in order to be seamlessly inte-
grated in a production pipeline:

• From an artist point of view, the algorithm should have

intuitive parameters, and should be able to provide inter-
active feedback as well as high quality final images.

• From a scene-design point of view, it should be able to
manage huge datasets as well as complex and flexible
shaders, various light models, and various camera mod-
els.

• From a data-management point of view, it should avoid as
much as possible precomputed data. Indeed, it is tedious
to keep these data synchronized across artists that work on
the same scene, or between the computers of a renderfarm.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

A. Pajot, L. Barthe, M. Paulin, P. Poulin / Combinatorial Bidirectional Path-Tracing

• From a computational point of view, it must be robust to
handle highly dynamic scenes and all-frequency indirect
lighting, to give the artists complete freedom on their de-
signs. For automated rendering, it must give predictable
and reproducible results in a given time frame. Ideally, it
should be easy to use on clusters, to be able to render one
image using all the ressources of a renderfarm.

Methods that are used nowadays mostly rely on
point clouds or other type of precomputed representa-
tions [KFC∗10]. As they rely on precomputed data, inter-
active feedback is not straightforward, as these data should
be recomputed each time the scene changes. Even though
being predictable and able to handle very large amount of
data, precomputed representations still have problems han-
dling highly dynamic or high-frequency indirect lighting.
Moreover, production pipelines must be adapted appropri-
ately to keep these data in sync during the production pro-
cess, and computing a single image on a cluster can be done
only once the data have been computed.

To remove all these problems, unbiased methods have
been investigated, and path-tracing based algorithms begin
to be mature enough to be successfully used in the movie
industrie [Faj10]. In addition to being potentially fully auto-
matic (thus user-friendly), unbiasedness makes these meth-
ods easy to deploy on clusters, as independent renderings
can be simply averaged to compute the final image. As they
do not require any precomputed data and do not rely on any
interpolation scheme, they also naturally handle highly dy-
namic scenes. Moreover, they use independent samples, thus
precision requirements such as a given number of samples
per pixel are easy to formulate. Finally unlike sequential
methods, the number of samples computed in a given time
can be measured so that the results are predictible and repro-
ducible when the time frame is fixed.

Nevertheless, path-tracing exhibits large variance when
high-frequency or strong indirect lighting effects such as
caustics are present in a scene, leading to visually unpleas-
ant artefacts in the rendering. To reduce these artefacts, con-
straints can be added to the indirect lighting, e.g. reduc-
ing the sharpness of glossy reflections [Faj10], or enlarging
lights. Although interactive feedback can be provided for
scenes where path-tracing has a very low variance, a large
amount of time is needed to obtain a rough preview of the
final appearance for scenes with high variance. On a more
general point of view, unbiased methods have a larger com-
putational cost than methods based on precomputed data,
which is a problem for wide acceptance.

Bidirectional path-tracing (BPT) [VG94] [LW93], has the
same advantages as path-tracing, but is much more robust
with respect to indirect lighting, providing low variance re-
sults even for complex lighting conditions. Even though
more computationally efficient than path-tracing, it remains
too slow for interactive feedback, and is still slower than
methods based on precomputed data. Recently, attempts at
making it faster by using GPU as a co-processor have been
presented in the rendering community [OMP10], however,

the proposed implementation does not allow an efficient col-
laboration of the CPU and GPU, keeping the most of the pro-
cessing charge on the CPU while the GPU remains mostly
idle.

Contribution: In this paper, we combine correlated sam-
pling and standard BPT to efficiently use both CPU and GPU
in a cooperative way (Section 3). The basic principle of BPT
is to repeatedly sample an optical path leaving from the cam-
era, and an optical path leaving from the light. Complete
paths are then created by linking together each subpath of
the camera path with each subpath of the light path. The
last vertex of each subpath are called linking vertices, and
the segment between the two linking vertices is the linking
segment. A complete path created this way contributes to
the final image if the linking vertices are mutually visible,
and if some of the energy arriving to the light linking ver-
tex is scattered to the camera path. Instead of combining two
paths, we combine sets of camera and light paths, comput-
ing the values needed for linking on the GPU. As each cam-
era path is combined with each light path, many more link-
ing segments are available, allowing us to use the GPU at its
maximum without increasing the cost of sampling the paths
(Section 4). We then interleave the CPU and GPU parts in
order to obtain an algorithm where both the CPU and GPU
are always busy (Section 5). This reformulation reduces the
processing time by a factor varying between 12 and 16 com-
pared to standard BPT (Section 6), allowing feedback in less
than a minute even for complex scenes, and the computation
of high-quality images in one hour, as shown in Figure 1.

2. Related Work

If not considering computational efficiency and GPU use,
both biased and unbiased algorithms that do not use precom-
puted data exist to produce high-quality images.

On the unbiased side, sequential methods based on
Markov-Chain Monte-Carlo [VG97, KSKAC02, CTE05,
LFCD07] have been used to improve the robustness of stan-
dard Monte-Carlo methods for very difficult scenes. Unfor-
tunately, they can be highly dependent on the starting state
of the chain, and do not provide feedback as rapidly as stan-
dard Monte-Carlo methods, since the time to cover all the
screen is typically longer. The gain that these methods bring
is most visible on very difficult scenes, but remains quite
limited for more common scenes, for which standard BPT is
highly efficient.

On the biased side, Hachisuka et al. [HOJ08,HJ09] intro-
duced progressive photon mapping and stochastic progres-
sive photon mapping, two consistent algorithms based on
photon mapping. Even though robust, efficient, and able to
produce high-quality images, being consistent instead of un-
biased prevents these algorithms to be directly usable in ren-
derfarms for single image computations. Instead, they need
to be specifically adapted to avoid artefacts in the final im-
ages.

Using both the CPU and GPU in a cooperative way can

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

A. Pajot, L. Barthe, M. Paulin, P. Poulin / Combinatorial Bidirectional Path-Tracing

provide a large gain of performance, allowing the methods
above to provide high-quality results or rough previews sig-
nificantly faster. Attempts at isolating parts of algorithms to
execute them on GPU are examined in rendering engines,
such as in luxrender [Lux10], where intersection tests are
performed on the GPU. The main problem that face devel-
opers is keeping both CPU and GPU busy all the time. In
general, the CPU is too slow to provide enough work to the
GPU. More generally, it is not easy to adapt the algorithms
presented above to efficiently use the GPU to compute inter-
mediate data, without restricting the size of the datasets nor
the complexity of the shaders. In fact, sampling, which must
be done on CPU as it involves all the dataset and the shaders,
would in general require much more time to be computed
than the GPU part, leading to a negligible gain.

3. Combinatorial Bidirectional Path-Tracing (CBPT)

3.1. Base Algorithm

In BPT-based algorithms, a camera path x = (x0, . . . ,xc) and
a light path y = (y0, . . . ,yl) are sampled. x0, . . . ,xc are called
camera vertices, y0, . . . ,yl are called light vertices. For each
vertex xi or y j located on the surface of an object, the pa-
rameters of the bidirectional scattering distribution func-
tion (BSDF) are computed using a shader tree. Complete
paths are then created by linking subpaths (x0, . . . ,xi) and
(y0, . . . ,y j), for all the possible couples (i, j). The num-
ber of segments of each complete path is i + j + 1, and
the linking segment is the segment (xi,y j). Let function
gC(x, i) give the energy transmitted by x from xi to x0, and
gL(y, j) give the energy transmitted by y from y0 to y j. The
energy emitted from y0 which arrives to x0 via the path
z = (y0, . . . ,y j,xi, . . . ,x0) is then:

gi, j(x,y) =gL(y, j)G(y j,xi)gC(x, i)× (1)

fs(y j−1→ y j→ xi)×
V (y j,xi)×
fs(y j→ xi→ xi−1)

where fs is the BSDF, V is the visibility function (1 if unoc-
cluded, 0 otherwise), and G is the geometric term.

We define the basic contribution fi, j(x,y) of such a com-
plete path as:

fi, j(x,y) =
wi, j(x,y)gi, j(x,y)

pi, j(x,y)
. (2)

pi, j(x,y) is the density probability with which the two
subpaths have been sampled, and wi, j(x,y) is the multiple
importance sampling (MIS) weight [VG95].

In our implementation, we use the direct BSDF proba-
bility density function (PDF) p to sample directions for the
camera path, and the adjoint BSDF PDF p∗ to sample direc-
tions for the light path, and the balance heuristic [VG95] to
compute the MIS weights:

wi, j(x,y) =
pi, j(x,y)

∑s,t ps,t(x,y)
(3)

where each (s, t) couple is one of the possible techniques
with which z could have been sampled. Computing this
weight requires to compute p(xi−1→ xi→ y j) and p∗(y j→
xi → xi−1) using the BSDF at xi, and p(xi → y j → y j−1)
and p∗(y j−1→ y j→ xi) using the BSDF at y j .

When either i or j are less than 1, the corresponding terms
are not based on the BSDF, but instead on the light or camera
properties. If j = −1, it means that xc is on a light, making
a complete path by itself.

The data that depend on both xi and y j has to be com-
puted per linking segment, and is the most time-consuming
task when computing the contribution of a complete path.
These data can be computed on the GPU very efficiently,
in parallel for each linking segment. Unfortunately, produc-
ing a sufficient number of linking segments would require to
sample and combine a very large number of pairs, leading to
very large CPU costs, large memory footprints both on CPU
and GPU, and very time consuming CPU-to-GPU memory
transfers.

The key idea allowing us to use both CPU and GPU effi-
ciently is to sample populations of NC camera paths and NL
light paths independently on CPU, and then combine each
camera path with each light path. This leads to the com-
bination of NC ×NL pairs of paths, and allows us to have
largely enough linking segments to benefit from the process-
ing power of GPUs without requiring larger sampling costs.
Combining all camera paths with the same light paths intro-
duces a correlation in the estimations, but does not lead to
bias in the average estimator.

In practice, we have three kernels which compute, for
each linking segment (xi,y j) in parallel:

• the visibility term V (xi,y j),
• the shading values involving the BSDF of the cam-

era point: fs(y j→ xi→ xi−1), p(xi−1→ xi→ y j), and
p∗(y j→ xi→ xi−1), if xi has an associated BSDF (i.e. it
is neither on the camera lens nor on a light),

• the shading values involving the BSDF of the light
point: fs(y j−1→ y j→ xi), p(xi→ y j→ y j−1), and
p∗(y j−1→ y j→ xi), if y j has an associated BSDF.

If xi or y j does not have an associated BSDF, the prob-
abilities (probability to have sampled the light, probability
density to have sampled the point on the light, probability
density to have sampled the direction from the camera, etc.),
and the light emission and importance emission terms are
computed on CPU, to keep the flexibility on camera and light
models that can be used.

The final contributions of a pair (x,y) can then be
split into two parts. The first part is the sum of all the
basic contributions that affect the image location inter-
sected by the first segment of x. We denote it as the
bidirectional contribution: f b(x,y) = ∑i>0, j 6=−1 fi, j(x,y) +
fc,−1(x,y) and we call bidirectional image the image
obtained by considering only the bidirectional contribu-
tions. The second part contains all the contributions ob-
tained by light-tracing, each affecting a different image

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

A. Pajot, L. Barthe, M. Paulin, P. Poulin / Combinatorial Bidirectional Path-Tracing

location: { f0,0(x,y), f0,1(x,y), . . . , f0,l(x,y)}. We call light-
tracing image the image obtained by adding all the contri-
butions from light-tracing, each multiplied by the number of
pixels Np of the final image. In our implementation, light-
tracing does not contribute to direct lighting, as it brings a
lot of variance for this type of light transport.

As a result, a step of CBPT consists in:

1. sample a camera population {x} of NC paths, and a light
population {y} of NL paths;

2. compute the combination data for these two populations
on GPU;

3. compute the contributions of each pair of paths, splatting
NC values to the bidirectional image, and splatting the
light-tracing contributions to the light-tracing image.

Note that as is, our algorithm does not directly handle mo-
tion blur, but it can be integrated in a straightforward manner
by sampling each ({x},{y}) population couple with a spe-
cific value of time, i.e. all the paths of the two populations
have the same time value, and this value is different for each
couple of populations.

3.2. Discussion

Setting NC and NL: Ideally, we would like to always be
perceptually faster than standard BPT. Perceptually faster
means computing more camera paths per second, with each
camera path being combined with NL > 1 light paths. This
leads to a similar or faster coverage of the image, with each
camera path bringing a lower-variance estimate than in stan-
dard BPT, leading to perceptually faster convergence. NC
and NL can be computed to ensure faster perceptual conver-
gence, by measuring the time tb needed by BPT to sample,
combine, and splat the contribution for a pair of paths, and
the time ts(NC,NL) needed by CBPT to perform one step. As
the combination is the most time consuming part of a step,
ts(NC,NL) is roughly constant as long as the number of pairs
P = NC×NL remains constant. Therefore, for a fixed P, an
appropriate NC value is such that

NC >
ts(P)

tb
. (4)

A lower NC value will lead to lower-variance estimate of
each path, larger value will lead to faster coverage, but also
more correlation. A side-effect of Equation (4) is that if NC,
computed using this equation, is such that NL would be < 1,
this indicates that the machine on which CBPT is running is
not fast enough to bring any advantage over standard BPT
for the chosen P.

Light-tracing: The discussion above does not take into
account light-tracing, and using Equation (4) generally gives
NL values that are small, leading to high-variance caustics.
Light-tracing does not really take advantage of the GPU
combination system, as each light subpath is combined with
only one vertex of a camera path, namely the vertex which
lies on the lens of the camera. Moreover, contributions for

different camera paths are in general very similar, or even
equal when using a pinhole camera, as all the lens vertices
are at the exact same location. We therefore choose to com-
pute light-tracing using a standard CPU-based light-tracer.

At each step of CBPT, we sample NT light paths ({ylt})
and compute their light-tracing contributions. In general,
we choose NT close to NC to get approximately the same
bidirectional/light-tracing ratio as standard BPT. This leads
to the final algorithm for a step of CBPT, presented in Algo-
rithm 1.

Algorithm 1 A complete step of CBPT.
sample({x})
sample({y})
upload({x}, {y})
gpu_comp({x}, {y})
combine({x}, {y})
sample({ylt})
compute_lt({ylt})

Correlated sampling: Correlated sampling can take sev-
eral forms, such as re-using previous paths in order to im-
prove the sampling efficiency [VG97, CTE05], or re-using
a small number of well-behaved random numbers to com-
pute different integrals [KH01]. In our method, the camera
and light paths are all sampled independently using different
random numbers, as in standard BPT. Therefore, complete
paths are sampled in a correlated way, as they are created
by linking the subpaths in all possible ways. To avoid visi-
ble correlation patterns in the final image while ensuring a
proper coverage of the image, the image-space coordinates
that are used for each camera path are generated in an ar-
ray, using a stratified scheme over the entire image, with
four samples per pixel. This array of samples is then shuf-
fled. When sampling a camera population, each path uses
the samples sequentially in the array, leading to paths that
most likely contribute to different parts of the image. There-
fore, correlation is present, but as it is spread randomly over
the image, no regular patterns appear. This array is regen-
erated each time all the samples have been used. Adaptive
sampling can be used by similarly caching a sufficient num-
ber of image coordinates that should be computed according
to the sampling scheme, and then shuffling this array of co-
ordinates.

4. Efficient Computation of Combination Data

Our algorithm requires an efficient computation of the com-
bination data on the GPU. In this section, we suppose that
for each vertex of the two populations {x} and {y}, we have
the position, the BSDF parameters, and the direction to
the previous vertex in the path. The size of this data is in
O(NC + NL). As there are typically few vertices in popula-
tions, the GPU memory requirements are very low for the
population data. Combining populations exhaustively avoids
uploading the O(NC×NL) linking segment array that would
otherwise be necessary.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

A. Pajot, L. Barthe, M. Paulin, P. Poulin / Combinatorial Bidirectional Path-Tracing

We now give some high- and low-level details on our im-
plementation. Figure 3 shows how the techniques we use are
put together.

High-level details: The computation is divided into three
main steps: visibility (blue V rectangles in Figure 3), BSDF
and PDF computations – called shading computations from
now on – for camera vertices (green C rectangles), and shad-
ing computations for light vertices (red L rectangles). For
each step, we divide the work into batches of fixed size, each
having an associated memory zone on the CPU-side mem-
ory (the batch id where results are downloaded is indicated
in the download rectangle). On the GPU-side, we use two
buffers of fixed size to store the results of the batches (repre-
sented by respectively black and white rectangles inside each
task). Using batches allows us to compute results of the cur-
rent batch while downloading results of the previous batch to
the CPU, leading to an increased efficiency. This also avoids
the need for any array of size O(NC×NL) on the GPU-side,
making the NC and NL values bounded only by the CPU-side
memory capacity. In practice, this provides more space for
the scene’s geometry that is needed for the visibility tests.

As is, some shading computations will be done even
though the linking vertices are not mutually visible. In fact,
for the shading models we use [AS00, WMLT07], introduc-
ing an array to only compute the useful shading is much less
efficient, as computing on CPU and uploading this array for
each batch takes more time than directly computing all the
shading values.

Low-level details: We use NVidia’s CUDA language
for GPU computations. The CPU-side work consists only
in synchronization, and is performed in a CUDA-specific
thread, thus not interfering with the main computational
threads. All the positions, directions, and BSDF data are
stored in linear arrays (structure-of-array organisation), that
are re-used across populations to avoid memory allocations,
and enlarged if needed. Each array is accessible through tex-
tures, because each of the values is used many times (once
for each linking segment to which a vertex belongs), and
generally in coherent ways (subsequent threads are likely to
use the same data, or nearby data).

For visibility, we use an adapted version of the radius kd-
tree GPU raytracing implementation by Segovia [Seg08],
which gives a reasonable throughput and is well suited for
individual and incoherent rays that are not stored in an ar-
ray. The rays are effectively built from the thread index idx,
by retrieving the camera and light vertices from their indices
as (idx/VL) and (idx mod VL) respectively, where VL is the
number of vertices in the light population.

The same indexing scheme is used for the camera shad-
ing computations, which makes a single BSDF processed by
consecutive threads, as illustrated by Figure 2. Each thread
handles one linking segment. This leads to a very good local-
ity in the accesses to the textures containing the BSDF pa-
rameters, as well as a very good code coherency in the BSDF
evaluation code. In fact, for most warps, the BSDF parame-
ters are the same across all the threads, the only difference

... ...

...

Figure 2: Threads organisation for the shading of camera
vertices. Each vertex is handled by blocks of VL consecutive
threads. At least (VL− 2)/32 warps execute codes with the
exact same BSDF parameters, as they all concern the same
vertex, leading to high code coherency.

Downloads

GPU V V V C

0

C

1

L

0

L

1
sync sync sync sync sync sync sync

t

0 21

Figure 3: Temporal execution of our combination system,
not temporally to scale for clarity. The meaning of each ele-
ment is described in the main text.

between consecutive threads being the directions. For light
shading computations, the indexing is reversed (i.e. all the
linking segments for one light vertex are processed in con-
secutive threads), to benefit from the same good properties
than for the camera shading. All the results are written in lin-
ear arrays indexed by the thread index, leading to coalesced
writes.

5. Implementation of CBPT

Using the combination data computation system described in
Section 4, we implement CBPT as described in Algorithm 2.
Note that population sampling and combinations are done in
parallel on all available CPU cores. The main points to note
about Algorithm 2 is that we process two couples of popula-
tions at the same time, in an interleaved way. As illustrated
by Figure 4, this allows us to perform GPU processing, CPU
processing, downloads, and uploads at the same time. As the
computation by the GPU of the combination data does not
need any upload and is the only process that performs down-
loads, there is no contention on the memory bus if the GPU
is able to perform transfers in both ways at the same time. In
Algorithm 2, combine() uses the data computed on GPU and
downloaded into the CPU memory to compute the f b(x,y)
contribution for each pair of paths, and splats it in a thread-
safe way to the final image. As the number of splatted values
is small, thread-safety even with a large number of threads
does not create a bottleneck. compute_lt() computes light-
tracing on all available CPU cores.

Timings for each task of a step are reported in Algorithm 2
for a standard scene, and production-oriented parameters.
These timings show the efficiency of our asynchronous com-
putation scheme, as the total wall-clock time needed for one

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

A. Pajot, L. Barthe, M. Paulin, P. Poulin / Combinatorial Bidirectional Path-Tracing

Downloads

GPU

Uploads

CPU S(t) S(t)

t t

data(t-1) data(t)

C(t-1) S(t+1)C(t-2)

step

S(lt)

Figure 4: Temporal execution of CBPT, not temporally to
scale for clarity. Exact timings are given in Algorithm 2. The
block labelled C contains both combine() and compute_lt().
The colors white and black for the rectangles indicate which
GPU-side buffer is used to read the population data and
store the results.

loop is 34.5ms, compared to 60.1ms if all computations had
been done synchronously. It also shows that GPU work is
done "for free", as the complete time to perform a step is
equal to the sum of the times needed by each CPU task, ig-
noring the GPU one.

Algorithm 2 CBPT algorithm, with timings of each note-
worthy element using NC = 2000, NL = 15, NT = 1500, in a
scene with 758K triangles and 1.5GB of textures. The time
spent by the GPU to compute all the results is given in "async
time". The total time needed to perform a step is 34.5ms.

for t = 0 to∞ do
sample({x}t) {time: 13.5ms}
upload_async({x}t)
sample({y}t) {time: 0.1ms}
upload_async({y}t)
sample({ylt}) {time: 10.1ms}
if t > 0 then

sync_gpu_comp(t−1) {time: 0.1ms}
end if
sync_upload(t)
gpu_comp_async(t) {async time: 25.7ms}
if t > 0 then

combine({x}t−1, {y}t−1) {time: 9.6ms}
compute_lt({ylt}) {time: 1.1ms}

end if
end for

6. Results

We now analyze the computational behavior of the combina-
tion system and CBPT. All the measures are done on an In-
tel i7 920 2.80GHz system, with an NVidia GTX480 GPU,
and 16 GB of CPU-side memory. For our tests of CBPT, we
use NC = 2000, NL = 15, and NT = 1500 for all the scenes.
These settings are not aimed at providing peak GPU perfor-
mance, but rather at providing a good compromise between
throughput of the GPU part and rendering quality. No adap-
tive sampling is used.

ring comp lights
GPU CPU ÷ GPU CPU ÷

vis 42.6 3.5 12.1 25.4 2.5 10.2
camera 266.7 11.8 22.6 281.7 15.6 18.1
light 266.5 17.3 15.4 280.2 13.0 21.6

comp monitors living
GPU CPU ÷ GPU CPU ÷

vis 25.6 2.9 8.8 32.2 2.1 15.3
camera 275.3 16.2 17.0 256.3 12.5 20.5
light 272.8 15.1 18.1 272.8 15.9 17.6

Table 1: Throughputs for visibility (vis), camera shading
(camera), and light shading (light), when using the system
described in Section 4, and when using the 4 physical cores
of our processor, plus hyper-threading. The "÷" column
gives the ratio of throughputs, corresponding to the actual
speedups. Visibility is measured in millions of visibility tests
per second, camera and light shadings are measured in mil-
lions of computations of (fs, p, p∗) tuples per second (see
Section 3 for the components of the tuple). All the measures
take all the memory transfers into account.

We use three different scenes of various complexities,
which are presented in Figure 5. We have chosen these chal-
lenging scenes for their high lighting complexity:

• The first scene, ring, is geometrically simple, but com-
posed of many glossy surfaces. It produces many sub-
tle caustics that typically lead to noticeable noise, for in-
stance on the back wall from the glossy tiles of the floor.

• The comp scene, rendered with two different lighting con-
figurations, is much more involved than the ring scene.
The lights version is lit by the ceiling lights, with indi-
rect lighting caused by specular transmission of the light
through the glass of the light fixtures. The front room and
upper parts of the back room are only indirectly lit. In
the monitors version, light comes only from the TV and
computer monitor. Note the caustics on the wall due to re-
fraction in the twisted pillars made of glass, as well as the
caustics beneath the glass table. Nearly all the non-diffuse
materials are glossy but not ideal mirrors, leading to very
blurry reflections, which is especially visible on the floor.

• The living scene is lit by six very small area lights located
on the ceiling above the table and the couch. It contains
a lot of glossy materials (especially all the wooden ob-
jects), of which very few are specular. Note the caustics
caused by the shelves on the left, and the completely indi-
rect lighting in the hallway on the right.

6.1. Combination Throughput

Table 1 gives the raw throughputs of visibility and shading
values we obtain on CPU and GPU depending on the scene,
and the speedup brought by our system. All the measures
take all the memory transfers into account. As expected, only
visibility thoughputs decrease with the scene’s size.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

A. Pajot, L. Barthe, M. Paulin, P. Poulin / Combinatorial Bidirectional Path-Tracing

ring, 7.4K triangles (2.5, 3.4, 463K) comp lights, 758K triangles (3.6, 3.2, 570K)

comp monitors, 758K triangles (3.6, 3.6, 620K) living, 400K triangles (3.7, 3.4, 620K)

Figure 5: The three scenes used to test CBPT. We indicate between parentheses the average length in segments of the sampled
camera and light paths, as well as the average number of linking edges for each couple of populations in CBPT. Note that the
average path lengths for BPT and CBPT are equal, as they use the same code. All the images have been rendered with CBPT.
No post-process has been performed except tone-mapping, as our engine produces HDR images. The top-left image has been
rendered at a resolution of 1600× 1200 pixels in 1 hour. The three others have been rendered at a resolution of 1600× 900
pixels, in 4 hours. As CBPT is based on standard Monte-Carlo methods, images at a resolution of 800× 450 for the last three
scenes can be obtained with a similar quality in 1 hour.

The shading throughput on CPU is quite sensitive to the
type of BSDFs (glossy or purely diffuse) that mostly com-
pose the paths of a certain type, explaining the gap that is
present for some scenes between the camera and light shad-
ing throughputs. This is mostly visible in comp lights be-
cause of the glass fixture surrounding the light sources. On
the other hand, the GPU throughputs are much less affected
by this. Despite the need to transfer the results back to GPU,
we achieve a 15-20× speedup in average compared to CPU
for shading only, consistently on all scenes.

The absolute timings in Table 2 give hints about the aver-
age time proportions needed by each element of the combi-
nation. These timings depend on the number of linking seg-
ments that have to be processed for each combination, which
depend on the scene.

Figure 6 illustrates the impact of batch size on perfor-
mance, for visibility and shading computations, on the ring
scene. This allows us to evaluate the impact of different
transfers/computation repartitions, and to find optimal batch
sizes for the computer we use.

For the visibility computations, even on this geometri-

cally very simple scene, the transfers are not a limiting fac-
tor, as the visibility results are packed in a very compact
form. Therefore, using batches does not make any notice-
able difference on performance as soon as the batches are
large enough. Consequently, the major advantage brought
by batches for visibility resides in the control we have on
the memory-size requirements on GPU, without much im-
pacting on performance.

For more memory-consuming results such as shading
ones, the batch size has a large impact on performance, with
the additional benefit of using less memory on the GPU. As a
matter of fact, using asynchronism brings a 1.75× speedup,
going from 160 millions to 252 millions of computations
per second when transfers are done in parallel. Note that the
optimal batch sizes are in practice only machine-dependent,
as shading computations efficiency does not depend on the
scene, and visibility computation efficiency is almost con-
stant for any batch size larger than very small values.

6.2. CBPT
To quantify the efficiency of CBPT, we count the number of
fi, j(x,y) computations performed during a complete CBPT

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

A. Pajot, L. Barthe, M. Paulin, P. Poulin / Combinatorial Bidirectional Path-Tracing

ring comp comp living
lights monitors

vis 10.9 22.5 24.4 19.3
camera 1.7 2.0 2.2 2.5
light 1.7 2.0 2.2 2.3

Table 2: Average time needed to complete each step on
GPU, for each scene, in milliseconds.

Batch size (x1000)

Shading throughputs (M/s)

Batch size (x1000)

Visibility throughputs (M/s)

34

36

38

40

42

44

46

0 200 400 600 800 1000 1200 1400

120

140

160

180

200

220

240

260

0 200 400 600 800 1000

Figure 6: Top: Visibility throughput, in millions of tests per
second, in function of the number of visibility tests to per-
form in each batch. Bottom: Shading throughput, in million
of shading tuples computation per second, in function of the
number of shading computations to perform in each batch.

step, and divide it by the time needed to complete the whole
step, including populations sampling and splatting. We call
this efficiency measure basic contributions throughput. This
allows us to have meaningful and consistent results whatever
the average path length is in each scene.

Computational efficiency: Table 3 gives the basic contri-
butions throughputs obtained using CBPT, and the speedups
compared to standard BPT. We compute these values when
using CPU-based light-tracing (in this case NT = 1500), to
get actual performance, and when not using it (NT = 0),
to get the bidirectional-only basic contributions throughput.
The CPU version of BPT uses the same code to sample
paths, and the same code to compute the fi, j(x,y) values,
except that all shading and visibility values are computed on
CPU. Both CBPT and standard BPT uniformly sample the
image, and do not use any adaptive sampling scheme.

The impact of light-tracing on throughputs is noticeable
(around 20%), but the visual impact of a high variance light-
tracing part is much more noticeable than the gain in bidi-
rectional part when setting NT to a very small value, partic-
ularly for very short rendering times. For longer rendering
times and scenes where caustics are easily captured by light-
tracing, NT can be set to a smaller value, as it will visually
converge faster than the bidirectional part.

CBPT BPT
NT = 0 NT = 1500

ring 20.9 (17.4×) 15.7 (13.1×) 1.2
comp lights 16.2 (16.9×) 12.7 (13.2×) 0.96
comp monitors 16.3 (14.8×) 13.1 (11.9×) 1.1
living 16.5 (21.7×) 12.5 (16.4×) 0.76

Table 3: Basic contributions throughput for CBPT and stan-
dard BPT, in millions of fi, j(x,y) values computed per sec-
ond, and speedup in parenthesis.

As shown by timings in Algorithm 2, our reformulation
allows us to keep both the CPU and GPU fully loaded, the
GPU computation time being masked by the CPU one. The
speedup we obtain with "production settings" is consistently
greater or equal to 12× on our test scenes. Even if our sam-
ples are correlated, the correlation is spread on all the image
by our image-sampling process. This effectively avoids the
appearance of any noticeable correlation pattern.

Visual comparison with standard BPT: Visually ob-
serving noise reduction is made easier when looking at non-
converged images, where improvements are clearly visible.
Figure 7 presents the images obtained by CBPT and BPT
after a few seconds of rendering, and after at least 4 sam-
ples per pixel have been computed by CBPT. As images
were stored every 10 seconds, it can happen that more than
4 samples per pixel were actually computed, but both BPT
and CBPT got the same computation time. The places where
the improvements are most visible are on the diffuse walls,
where light-space exploration is crucial to get low variance
results, and in the glossy reflections. Table 4 gives the ac-
tual average number of samples per pixel for the bidirec-
tional part of each image. As expected, the speedups ob-
tained are similar to the ones obtained for the basic contribu-
tions throughputs, the little difference coming from the splat-
ting, as BPT needs to splat many more values than CBPT for
a same number of pair of paths. The main information of this
table is that the images presented in Figure 5 would have re-
quired from 50 to 66 hours to be computed using standard
BPT, versus 4 hours with CBPT.

Memory usage and scalability: Table 5 gives the mem-
ory usage both on CPU and GPU of CBPT. As expected,
the size of the combination data on CPU and the popula-
tions memory size on GPU are related to the average path
length. For populations, we use a conservative allocation
scheme, reuse memory between populations, and refit mem-
ory zones regularly to keep the consumption low. This can
lead to a consequent overestimation of the actual memory
size needed, but drastically reduces the number of mem-
ory allocations, therefore providing a slight speedup. Despite
this, memory requirements remain low for all our scenes
on CPU (between 100 and 200MB), and very low on GPU
(less than 100MB). Table 5 also shows that our method han-
dles scenes much larger than the ones we used. Indeed, the
scenes’ kd-tree size are kept relatively low even for quite

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

A. Pajot, L. Barthe, M. Paulin, P. Poulin / Combinatorial Bidirectional Path-Tracing

BPT

CBPT
preview (10s) ' 4 spp (40s) preview (10s) (close-up) ' 4 spp (40s) (close-up)

BPT

CBPT
preview (30s) ' 4 spp (50s) preview (30s) (close-up) ' 4 spp (50s) (close-up)

BPT

CBPT
preview (30s) ' 4 spp (50s) preview (30s) (close-up) ' 4 spp (50s) (close-up)

BPT

CBPT
preview (20s) ' 4 spp (40s) preview (20s) (close-up) ' 4 spp (40s) (close-up)

Figure 7: Results obtained by BPT and CBPT on our test scenes, after approximately 10 seconds of actual computations, and
after CBPT has computed approximately 4 samples per pixel. Images are rendered at 800×450, except ring which is rendered
at 800× 600. Note that for all the scenes, mipmaps are lazily built when first accessed, explaining the 30 and 20 seconds of
total rendering times for the preview configuration of the comps and living scenes. The time spent building these mipmaps is
negligible for the ring scene, but takes 16 and 8 seconds in the comps and living scenes respectively, and are generally built
when sampling the first paths. This also shows that our system can be seamlessly used together with all the usual ways of
reducing the peak memory usage, as it does not impact the rendering engine architecture.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

A. Pajot, L. Barthe, M. Paulin, P. Poulin / Combinatorial Bidirectional Path-Tracing

CBPT BPT (x,y)
prev. ' 4 spp prev. ' 4 spp

ring 1.64 5.15 1.60 5.41 14.3×
comp
lights 1.05 3.99 1.38 4.44 13.5×
comp
monitors 1.36 4.12 1.61 4.77 12.9×
living 1.62 4.23 1.53 3.86 16.4×

Table 4: Overall speedup measurement: Average number of
samples computed per-pixel for the bidirectional part of the
images of Figure 7. This is equivalent to the average number
of camera paths that have contributed to each pixel. The last
column gives the ratio between CBPT and BPT of the num-
ber of pairs of paths contributing to the bidirectional part of
each pixel, which is a good measure of the actual speedup
brought by CBPT over standard BPT. For standard BPT,
each camera path is combined with one light path, there-
fore the number of pairs of paths per-pixel is equal to the
number of camera paths. For CBPT, as each camera path
is combined with NL light paths, the number of pairs is NL
times the number of camera paths per-pixel. In our tests, we
use NL = 15.

CPU GPU
pops. comb. kd-tree pops. comb.

ring 73.3 48.0 0.47 3.8 23.5
comp
lights 91.2 66.0 56.1 4.8 23.5

comp
monitors 95.0 72.3 56.1 4.8 23.5

living 60.8 60.3 58.5 5.0 23.5

Table 5: Memory usage for populations and combination
data on CPU, and memory usage for the kd-tree, the popu-
lations data (position, BSDFs parameters, etc.), and all the
batch buffers, in MB.

complex scenes (about 50MB). Therefore, scenes that con-
tain several millions of polygons fits in the GPU memory.
Moreover, the memory size of populations is negligible ex-
cept for idiosyncrasies, as even with participating media, the
paths remain short (10−20 vertices on average).

7. Conclusion

Bidirectional path-tracing is an unbiased and highly-robust
rendering algorithm, but is not well suited for GPU imple-
mentation, as it requires a lot of branching. By exhaustively
combining populations of paths instead of single paths, we
were able to divide the algorithm into two parts, each one
being well suited for either the CPU or the GPU. We main-
tain the CPU, the GPU, and the memory bus between CPU
and GPU busy simultaneously by interleaving the steps of
CBPT. The GPU part is made efficient by using high-level

optimization techniques such as double buffering and asyn-
chronism.

We have shown that CBPT is more than an order of mag-
nitude faster than standard BPT on various test scenes, with-
out affecting the size of the datasets or the flexibility of the
underlying rendering engine in terms of shaders, and models
of lights and cameras. This makes CBPT very well suited
for accelerating image computation in production-oriented
engines.

References
[AS00] ASHIKHMIN M., SHIRLEY P.: An anisotropic phong

light reflection model. Journal of Graphics Tools 5 (2000), 25–
32.

[CTE05] CLINE D., TALBOT J., EGBERT P.: Energy redistribu-
tion path-tracing. In SIGGRAPH ’05 (2005), pp. 1186–1195.

[Faj10] FAJARDO M.: Ray tracing solution in film produc-
tion rendering. http://www.graphics.cornell.edu/
~jaroslav/gicourse2010/, 2010. SIGGRAPH 2010
Course on global illumination in production rendering.

[HJ09] HACHISUKA T., JENSEN H.: Stochastic progressive pho-
ton mapping. In SIGGRAPH Asia ’09: ACM SIGGRAPH Asia
2009 papers (2009), ACM, pp. 1–8.

[HOJ08] HACHISUKA T., OGAKI S., JENSEN H.: Progressive
photon mapping. ACM Trans. Graph. 27, 5 (2008), 1–8.

[KFC∗10] KŘIVÁNEK J., FAJARDO M., CHRISTENSEN
P. H., TABELLION E., BUNNELL M., LARSSON D.,
KAPLANYAN A.: Global illumination across industries.
http://www.graphics.cornell.edu/~jaroslav/
gicourse2010/, 2010. SIGGRAPH 2010 Course on global
illumination in production rendering.

[KH01] KELLER A., HEIDRICH W.: Interleaved sampling. In
EGWR’01 (2001), pp. 269–276.

[KSKAC02] KELEMEN C., SZIRMAY-KALOS L., ANTAL G.,
CSONKA F.: A simple and robust mutation strategy for the
Metropolis light transport algorithm. In Eurographics ’02 (2002),
pp. 531–540.

[LFCD07] LAI Y.-C., FAN S., CHENNEY S., DYER C.: Pho-
torealistic image rendering with population Monte Carlo energy
redistribution. In EGSR ’07 (2007), pp. 287–296.

[Lux10] LUXRENDER: Luxrays. http://www.luxrender.
net/wiki/index.php?title=LuxRays, 2010.

[LW93] LAFORTUNE E. P., WILLEMS Y. D.: Bi-directional path
tracing. In Compugraphics ’93 (1993), pp. 145–153.

[OMP10] OMPF: Hybrid bidirectional path-tracer development
thread. http://ompf.org/forum/viewtopic.php?f=
6&t=1834, 2010.

[Seg08] SEGOVIA B.: Radius-CUDA raytracing ker-
nel. http://bouliiii.blogspot.com/2008/08/
real-time-ray-tracing-with-cuda-100.html,
2008.

[VG94] VEACH E., GUIBAS L. J.: Bidirectional estimators for
light transport. In EGWR ’94 (1994), pp. 147–162.

[VG95] VEACH E., GUIBAS L. J.: Optimally combining sam-
pling techniques for monte carlo rendering. In SIGGRAPH ’95
(1995), pp. 419–428.

[VG97] VEACH E., GUIBAS L. J.: Metropolis light transport. In
SIGGRAPH ’97 (1997), pp. 65–76.

[WMLT07] WALTER B., MARSCHNER S. R., LI H., TORRANCE
K. E.: Microfacet models for refraction through rough surfaces.
In EGSR ’07 (2007), pp. 195–206.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

http://www.graphics.cornell.edu/~jaroslav/gicourse2010/
http://www.graphics.cornell.edu/~jaroslav/gicourse2010/
http://www.graphics.cornell.edu/~jaroslav/gicourse2010/
http://www.graphics.cornell.edu/~jaroslav/gicourse2010/
http://www.luxrender.net/wiki/index.php?title=LuxRays
http://www.luxrender.net/wiki/index.php?title=LuxRays
http://ompf.org/forum/viewtopic.php?f=6&t=1834
http://ompf.org/forum/viewtopic.php?f=6&t=1834
http://bouliiii.blogspot.com/2008/08/real-time-ray-tracing-with-cuda-100.html
http://bouliiii.blogspot.com/2008/08/real-time-ray-tracing-with-cuda-100.html

