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Abstract
Systems projecting a continuous n-dimensional parameter space to a continuous m-dimensional target space play
an important role in science and engineering. If evaluating the system is expensive, however, an analysis is often
limited to a small number of sample points. The main contribution of this paper is an interactive approach to
enable a continuous analysis of a sampled parameter space with respect to multiple target values. We employ
methods from statistical learning to predict results in real-time at any user-defined point and its neighborhood. In
particular, we describe techniques to guide the user to potentially interesting parameter regions, and we visualize
the inherent uncertainty of predictions in 2D scatterplots and parallel coordinates. An evaluation describes a real-
world scenario in the application context of car engine design and reports feedback of domain experts. The results
indicate that our approach is suitable to accelerate a local sensitivity analysis of multiple target dimensions, and
to determine a sufficient local sampling density for interesting parameter regions.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Many key challenges in science and engineering can be gen-
eralized as studies of systems denoted as X → Y , where the
parameter space X is a continuous subset of R

n and the
target space Y is a continuous subset of Rm. Examples in-
clude model calculations in finance or environmental stud-
ies as well as processes in manufacturing and industrial de-
sign [TSDS96]. A general goal is to understand the relation-
ship between X and Y in both directions. Conclusions from
X to Y often refer to the sensitivity - which changes of which
parameters influence which targets in which way? Conclu-
sions from Y to X analyze which regions of the parameter
space generate particular results. For many systems, how-
ever, each evaluation at a specific point of X incurs the cost
of conducting a measurement or running a time-consuming
simulation. This explains why in practice an analysis is often
restricted to a limited number of samples.

The application background motivating the work of this
paper is the development process of car designs by means
of 1D-CFD multi-run simulations as described by Matkovic
et al. [MJJ∗05]. In this context, the parameter space com-

prises design choices of the engineers (e.g., the timing of
fuel injection) as well as conditions varying during the oper-
ation (e.g., engine speed). The target space consists of simu-
lated behavior like torque, emission rates, and fuel consump-
tion. In this application context, specific goals of an analy-
sis include the identification of statistical surrogate models
in order to approximate time-consuming physical simulation
runs in real-time for certain sub-systems of a car like the en-
gine [PBK10]. Such simplifications are necessary to enable
studies of the entire system (i.e., the car). Another important
task concerns the optimization of design choices in the con-
text of many inherently conflicting objectives [BP10]. The
figures in this paper refer to an optimization of a real-world
turbo-charged car engine (see Sec. 6.1).

Abstracting from this particular application domain and
these tasks, however, many challenges resemble those en-
countered when studying non-trivial systems in other afore-
mentioned areas. One specific challenge is the data quality.
Non-converged simulation runs, for example, generate im-
plausible data samples that must be dealt with before any fur-
ther steps. Another challenge refers to the density of sample
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points. Tasks like model identification and optimization re-
quire a sufficient density especially within particular regions
of the parameter space. Neither the sufficient density, nor the
interesting regions may be known a priori. These challenges
motivate an interactive approach that involves the knowledge
of domain experts, e.g., to assess the data quality and to lo-
cally increase the sampling density if necessary [MGJH08].

This paper describes an interactive approach to support a
local analysis of a sampled parameter space. The key idea
is to enable a continuous navigation through the parameter
space instead of being restricted to a limited number of sam-
ple points, and to provide expected results of multiple tar-
gets. To generally accomplish this in real-time, the approach
employs methods from statistical learning for predicting re-
sults at any user-defined point and its neighborhood. In order
to ensure flexibility with respect to diverse goals and tasks,
we describe both navigation and prediction as a general con-
cept for coordinating multiple views and we provide respec-
tive extensions to 2D scatterplots and parallel coordinates.

In particular, the main contributions of this paper address
issues of interactive, prediction-based local analysis:

• Providing visual guidance for an efficient navigation to
interesting parameter regions in the context of multiple
target dimensions and other application-specific criteria.

• Visualizing uncertainty with regards to a potentially in-
sufficient sampling density and inaccurate predictions.

• Evaluating the usefulness based on a real-world applica-
tion scenario and the user-feedback of domain experts.

2. Related Work

The related work comprises approaches for analyzing pa-
rameter spaces and techniques for representing uncertainty.

2.1. Analyzing Parameter Spaces
The analysis of multidimensional parameter spaces has long
been a topic of visualization research. Shaffer et al. describe
a high dimensional problem for aircraft design [SKW98]
which also characterizes the challenges of our application
domain very well. As one conclusion, Shaffer et al. postulate
“give designers a feel for objective function and constraint
sensitivity relative to the parameter space”.

Many visual approaches for studying complex systems
rely on sampling the parameter space of the system. Guo et
al., for example, sample in parameter space to identify good
linear models that fit given data [GWR09]. In the context of
engineering data, Tweedie et al. describe the Influence Ex-
plorer and the Prosection Matrix [TSDS96], which employ
cross-filtering on multiple 1D and 2D projections. For a sim-
ilar application, Matkovic et al. [MJJ∗05] use linking and
brushing in multivariate visualizations. Despite their use-
fulness, these approaches are limited to pre-computed data
samples and provide no information in between.

One solution is to increase the number of sample points

interactively during the analysis. Wright et al. [WBD00]
calculate samples on demand and monitor the progress to-
wards a preferred solution while enabling users to navigate a
maximum of six design dimensions at once. More recently,
Matkovic et al. proposed to generate new sample points by
brushing common scatterplots to support visual steering of
the simulation [MGJH08]. Their positive user feedback was
a motivation for our work. However, in their approach, the
user has to wait for the completion of time-consuming sim-
ulation runs. We intended to offer the user an approximation
of the simulation results in real-time.

Continuous versions of scatterplots [BW08] and parallel
coordinates [HW09] have been proposed to generate con-
tinuous plots of sampled data. Based on a density function,
these techniques map an n-D domain to m-D visualizations.
While useful for a global overview, other methods for pre-
dicting intermediate results are likely to be superior for a
given application. Moreover, it is not possible to infer lo-
cal details like precise values or the uncertainty of interpo-
lated data. Similar in spirit, Chan et al. proposed flow-based
scatterplots [CCM10], which use a local analysis of deriva-
tives to find local trends for sensitivity analysis. However,
flow-based scatterplots are restricted to linear regression for
approximating the partial derivatives with respect to a single
variable. Our approach supports different types of prediction
and visualizes the sensitivity of multiple variables.

Some approaches directly visualize high-dimensional
scalar functions by preserving global properties after a pro-
jection to low-dimensional space. Gerber et al. apply a seg-
mentation of the parameter space of a sampled scalar func-
tion [GBPW10]. Subsequent regression generates a low-
dimensional representation that preserves local minima and
maxima. Based on contour trees [Ree46], Weber et al. pro-
pose “Topological Landscapes” as a terrain metaphor for un-
derstanding the topological structure [WBP07]. Harvey et
al. [HW10] extended this concept to preserve the volume
of each topological component in the visualization. While
useful to provide an overview of a single function, these ap-
proaches are not suitable for a detailed sensitivity analysis
with respect to multiple target values.

Many approaches for visualizing scalar functions reduce
the number of parameters by slicing. Examples include
nested coordinate systems [FB90] and radial layouts of
slices [JN02]. HyperSlice shows all 2D orthogonal slices of
a function around an n-dimensional focal point in a matrix
layout [WL93]. Based on the same concept, HyperMoVal
validates regression models in the context of known valida-
tion data [PBK10]. This paper continues this research direc-
tion in so far as regression is used as one type of prediction
method. However, the focus of this paper is not on validat-
ing a particular model, but on using multiple models for a
continuous exploration of a sampled parameter space.

2.2. Uncertainty Visualization
An effective representation of uncertainty has been recog-
nized as important problem in visualization research [Joh04,
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SH10]. As a requirement, some researchers examined what
uncertainty is and where it originates from. In their early sur-
vey of this topic, Pang et al. [PWL97] distinguish between
acquisition, transformation, and visualization as sources
of uncertainty. Similarly, Gershon provides a domain-
independent taxonomy of imperfect information [Ger98].

Most research on uncertainty visualization has been
done in the field of geographic and scientific visualization.
Techniques include animation [Ger92], glyphs [LPSW96],
annotations [CR00], and modifying geometry [GR04].
MacEachren et al. provide a comprehensive overview of
approaches for visualizing geospatial information uncer-
tainty [MRH∗05].

For more general data, box plots have long been used
in statistics to summarize a distribution of values. There
are many extensions to box plots as surveyed by Potter et
al. [PKRJ10], who also propose a new hybrid summary plot
to represent uncertainty. Olston et al. emphasize the dis-
tinction between statistical and inherently bounded uncer-
tainty [OM02]. They argue that a technique called ambigua-
tion should be used to convey bounded uncertainty.

In our context, uncertainty originates from prediction. In
their classification, Skeels et al. describe prediction as one
of five major sources of uncertainty [SLSR10], but they do
not provide information on how to consider this aspect for
visualization. As we will discuss in Sec. 4, a visualization of
prediction-based uncertainty should take the employed pre-
diction technique into account. This helps users to identify
suitable means for reducing the uncertainty. To the best of
our knowledge, no research has compared the visualization
of uncertainty for different prediction techniques so far.

3. Parameter Space Exploration

This section describes our approach to a guided navigation
of multidimensional parameter spaces. First, we generalize
the idea of focal points to enable a pointwise navigation
and prediction. Based on this concept, Sec. 3.2 then de-
scribes techniques for parameter- and target-oriented navi-
gation guides that rely on mapping one space to the other.
We describe the techniques for 2D scatterplots and parallel
coordinates representing the sample points as these are well-
known and widely-used types of visualizations.

3.1. Pointwise Navigation and Prediction
Approaches that rely on slicing high-dimensional spaces
have established the notion of a focal point, e.g., Hyper-
Slice [WL93] and HyperMoVal [PBK10]. A focal point, de-
noted as F , is a user-defined n-tuple specifying concrete val-
ues Fi ∈ R, i ∈ {1 . . .n} for all n dimensions of the param-
eter space X . Previous approaches use F to specify axis-
orthogonal projections to low-dimensional space for visu-
alization in well-defined small multiple layouts. Our ap-
proach recognizes F as a system-wide concept for coordi-
nating multiple views which may be of different type. The
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Figure 1: (a and b) 2D scatterplots represent F as a mov-
able crosshair and the associated prediction as a point; (c)
parallel coordinates represent both as connected lines.

reason for this generalization is increased flexibility regard-
ing possible interactions and visual representations of F .

Different interaction techniques support the specification
of F within X . We discriminate global and local updates of
F . Local updates affect a subset of dimensions at a time,
while global updates define values for all dimensions of X
simultaneously. To support local updates, 2D scatterplots
projecting dimensions of X represent F as a cross-hair (see
Fig. 1a). Moving it modifies F in the two displayed dimen-
sions. Similarly, parallel coordinates draw a movable line at
the position of Fi for each axis representing a dimension of
X and connect the lines between adjacent axes (see Fig. 1c).
Global updates rely on clicking on a visual representation of
a sample point, i.e., a point in the 2D scatterplot and a line
in parallel coordinates. In case of overlapping items, we dis-
ambiguate the selection by taking the sample point which is
most similar to the existing values of F in all dimensions.

In order to predict target values, the user specifies a cer-
tain prediction technique f̂ j(X) : Rn → R, j ∈ {1 . . .m} as a
surrogate for the more complex real function f j(X) for each
of the m dimensions of the target space Y . To support multi-
ple application contexts, the user can choose between differ-
ent prediction techniques like regression models or k-nearest
neighbor estimators (see also Sec. 4). Each modification of
F instantaneously triggers an evaluation of all predictions
for the new values of F . The result is conceptually similar to
any given sample point and can thus be visualized likewise
in plots showing the target space, i.e., as a point in scatter-
plots and a line-strip in parallel coordinates (see Fig. 1b, c).
Considering the different semantics, though, we use color to
visually discriminate predictions from samples. Even with-
out extensions, the immediate feedback on Y while navigat-
ing X can significantly support a sensitivity analysis.

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



Berger, Piringer, Filzmoser & Gröller / Uncertainty-Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction

3.2. Guided Navigation
While the interaction concept as described in Sec. 3.1 is very
flexible, it has two shortcomings. First, the analysis is re-
stricted to a single point at a time, and second, the user may
easily get lost in the parameter space. To address both issues,
this section describes extensions to consider a local neigh-
borhood around F which also provides a guidance towards
specific characteristics of Y . A neighborhood around F may
either be defined with respect to X or Y . Our approach sup-
ports both options and maps the neighborhood to the respec-
tive other space in order to achieve different goals:

• Mapping X → Y indicates predicted target ranges that are
within reach by varying F (Sec. 3.2.1).

• Mapping Y → X shows the predicted sensitivities of mul-
tiple targets to changes of F (Sec. 3.2.2).

3.2.1. Mapping X → Y

The definition of a local neighborhood with respect to X is
based on a set of normalized n-dimensional variation vec-
tors. This set of vectors is denoted as V , with |Vi| ≤ r, a
user-defined radius to control the degree of locality. After
scaling all elements of V to match the extents of X , adding
F to V defines a set of variation points PV (F) around F . The
main idea is to apply prediction models to all elements of
PV (F) and to represent them like additional data items in vi-
sualizations of X as well as of Y . We use color to distinguish
PV (F) from F and from the original data and to provide in-
formation about a particular variation vector Vi. As a general
guideline, hue encodes dimensions of X while luminance is
modulated to represent the magnitude of Vi. However, details
depend on the strategy for creating V as described later.

The visualization of PV (F) indicates target ranges within
reach of F and it also enables a quick navigation to inter-
esting points. In consistence with the concept of global up-
dates of F , the user may click on any variation point to set
all dimensions of F accordingly. For overlapping data items,
points of PV (F) are preferred over items of the original data,
and similarity to F (i.e., the magnitude of the vectors) is used
for further disambiguation. Repeated updates of F enable to
explore a large number of neighborhoods within a short time.
This interaction is thus an efficient way to locally analyze a
system while steering towards certain characteristics.

The information provided for the neighborhood and the
amount of clutter largely depend on the strategy for defining
V . One may conceive multiple strategies for defining V . We
currently provide two strategies aiming at different goals.

One strategy to define V is to vary a single dimension at a
time in steps of size s, which yields a set of n ∗ (2r/s) vec-
tors in total. Due to the visual appearance, we refer to that
strategy as star sampling (see Fig. 2). Concerning the color-
ing scheme, hue is defined by the varied dimension. Positive
variations slightly blend this hue against white with increas-
ing magnitude, and negative variations against black. In 2D
scatterplots, lines connecting points provide an additional vi-
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Figure 2: Star sampling varies a single parameter at a time.
The mapping to Y shows a high local sensitivity of torque to
IVO_shift. Combustion noise mostly depends on ROI_shift.

sual cue about relations between variations. More specifi-
cally, all points are connected which are varied in the same
dimension in the order of their variation. A comparison of
the resulting trails in visualizations of X and Y provides de-
tails of the combined sensitivity of two target values with re-
spect to individual variations of all parameters. Despite this
advantage and its simplicity, star sampling suffers from two
drawbacks. First, it generates an increasing amount of clut-
ter for an increasing dimensionality of X , which limits its
scalability to higher-dimensional parameter spaces. Second,
it does not capture interactions between multiple parameters
which are a key aspect in practice.

To overcome these restrictions, we provide stochastic
sampling as an alternative strategy to define V (see Fig. 3).
We generate a user-defined number of sample points which
are equally distributed inside an n-dimensional hypersphere
around F with radius r [CDW96]. Stochastic sampling cap-
tures effects of varying multiple parameters at a time, and
scales to a high dimensionality of X . However, these advan-
tages come at the cost of losing an intuitive relationship be-
tween particular variations in X and their projections to Y .
Color helps to mitigate this problem. As the limited color
space cannot describe a variation in all n dimensions, we as-
sign each point the hue of the dimension in which Vi has
the absolute largest variation. In consistence with star sam-
pling, the sign and the magnitude of PVi(F) are indicated
by a slight blending against black or white. This coloring
scheme enables the identification of parameters with a sig-
nificant impact on Y , but cannot fully describe V . Therefore,
neither star sampling nor stochastic sampling are better in
general, but they are two alternatives with complementary
advantages and disadvantages.
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Figure 3: Stochastic sampling varies multiple parameters at
once. The distribution in Y suggests a small local impact of
EVO_shift compared to ROI_shift and Vane_p.

3.2.2. Mapping Y → X

A direct mapping from Y to X is generally not possible. This
implies that an evaluable neighborhood of F with respect to
Y still has to be defined in terms of X . Our key idea is to
visualize neighborhoods around F where predictions differ
from those at F by at most a certain constant value. We de-
fine a separate neighborhood for each dimension of Y . The
neighborhood of F with respect to the k-th dimension of Y
is defined as a contiguous region Rk ⊆ X around F where
| fk(Φ)− fk(F)|< ε ∀ Φ ∈ Rk. For visualization, the number
of variable dimensions of Rk may be smaller than n while
assuming the values of F for all other dimensions.

In our case, we visualize Rk within a 2D scatterplot pro-
jection of Xi,Xj and thus choose Rk to be two-dimensional.
Conceptually, the visualization of Rk corresponds to the area
between the isolines at f̂k(F)− ε and f̂k(F) + ε of the 2D
function obtained by slicing f̂k(F) at F for all dimensions of
X except Xi and Xj. This area indicates how Fi,Fj can vary
without changing the prediction by more than ε. Its shape
provides important information (see Fig. 4): The width in
any direction is inversely proportional to the sensitivity of
f̂k(F) with respect to combined variations of Xi,Xj in that
direction. Furthermore, an area forming a closed shape indi-
cates the presence of a local extremum close to F .

We encode a specific target dimension by the hue of its
area. Altering the luminance discriminates sub-areas where
predictions lie above or below f̂k(F). The boundary between
these sub-areas denotes the isoline of f̂k(F) at F . This is use-
ful information and explains why we do not apply a smooth
gradient in luminance. Our experience indicates that filling
the area clearly conveys what is inside. Drawing only out-
lines can be misleading in this respect.

Our goal is to convey the sensitivity with respect to mul-
tiple dimensions of Y simultaneously. A 2D scatterplot may
thus contain multiple areas. To reduce the amount of occlu-
sion, the areas are ordered by the magnitude of their maximal
gradient at F in any 2D direction within Xi,Xj. This ensures
that highly sensitive target dimensions are always visible and
it also draws thin areas on top of broader areas so that little
information is lost in general. To ensure that no information
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Figure 4: Mapping the ε neighborhood of three targets into
X shows their sensitivities to combined changes of IVO_shift
and EVO_shift. Increasing both parameters locally mini-
mizes trapped fuel but also torque.

is lost at all, additional lines outline the borders of each area.
Alternatively, the user may also manually specify an order
to focus on particular targets.

Drawing multiple areas in 2D scatterplots visualizes the
sensitivities and trade-offs between different targets with re-
spect to combined variations of two parameters. This has
proven powerful for multiple purposes (see Sec. 6), but
has two limitations concerning scalability. First, experience
shows that a practical limit of visualized target dimensions
is around five. Larger numbers are both visually and men-
tally too complex. We thus allow users to choose a subset of
target dimensions for visualization. This also enables users
to open a second plot for the same parameters showing dif-
ferent targets.

The second limitation was identified by user feedback and
refers to the amount of visual change while navigating F .
As a region Rk depends on the value of the prediction f̂k(F),
it changes whenever the user moves F . Drawing the entire
projection of Rk generates much visual change also far away
from F as the center of attention. This has been considered
very distracting when drawing multiple areas. As a conse-
quence, we decided to draw areas only within a fixed screen
space radius around F . This “spyhole” metaphor reduces the
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visual complexity and noise while providing the same infor-
mation for the neighborhood. It also emphasizes the purpose
as a local guide. A tooltip displays the absolute predictions
at the current mouse cursor and their differences relative to
the predictions of F . This supports an instantaneous exam-
ination of predictions both inside and outside the spyhole,
and provides textual detail on demand.

The reason for embedding the areas within a scatterplot is
to provide the distribution of known sample points as con-
text. This allows for setting F to any of these points by a
global update, and it also reveals the local sampling density.
However, the 2D projection to (Xi,Xj) does not convey the
real distance of a sample from F within X in all dimensions.
Therefore, we optionally support a similar concept as de-
scribed for HyperMoVal [PBK10], as we increase the trans-
parency of a sample point with increasing distance in the
remaining dimensions of X except Xi and Xj.

4. Uncertainty of Predictions

All projections from X to Y of Sec. 3.2 are based on predic-
tion methods f̂ j(F) as surrogates for the more complex real
function f j(F). Even good predictions will in general devi-
ate from the true functions. For a full picture, it is necessary
to convey this prediction uncertainty.

In our system, users may choose between prediction
methods for each target dimension. Different prediction
methods, however, have different sources of uncertainty.
Regression models typically make significant assumptions
about the structure and may thus fail to sufficiently reflect the
complexity of the respective target. Nearest-neighbor (NN)
predictors make only mild structural assumptions, but de-
pend directly on the local sampling density [HTF09]. We
therefore distinguish between NN and model-based predic-
tors and describe how uncertainty can be determined, visu-
alized and handled for these types.

4.1. Uncertainty of Nearest-Neighbor Predictors
NN predictors assign a weight wl , l ∈ {1 . . .k} ,∑k

l=1 wl =
1 to those k samples, which have the smallest normalized
distance to F in X . The predicted target at F is a weighted
sum of the target values. Weights depend on F and must be
recomputed at each update.

Assuming a well-chosen value of k based on a preceding
training, the prediction uncertainty depends on the distance
to the selected samples and their variance with regard to the
associated target values. A high variance indicates a signif-
icant local gradient. The amount of uncertainty introduced
by that gradient depends on the distribution of the samples
in X with regard to F . We thus quantify the uncertainty of an
NN predictor in terms of the weighted distribution charac-
teristics of the k nearest neighbors with regard to Y . As char-
acteristics, we compute the well-known box plot measures
minimum, maximum and weighted variants of the lower and
upper quartile as well as the median.
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Figure 5: Box plots uniformly visualize uncertainties of
model- and NN-based predictors. For POWER_PF, a wide
spread indicates a highly uncertain prediction.

4.2. Uncertainty of Model-Based Predictors
A model-based supervised prediction method uses a set of
training data to infer an internal representation, e.g., a hy-
perplane in case of linear regression. This representation en-
ables the model to predict a certain target dimension for any
point of X . Building such a model is a task on its own and
beyond the scope of this work [HTF09, PBK10].

In contrast to NN predictors, a model-based predictor is
independent of concrete data samples after its training and
validation. However, the residuals at known data points are
suitable to assess the local prediction accuracy. A local dis-
tribution of residuals characterizes both the standard devia-
tion (i.e., the average prediction error), as well as a local ten-
dency to over- or underestimate results. Both types of infor-
mation represent a specific kind of uncertainty. To compute
the distribution of residuals around F , we employ a weighted
NN prediction at F on these residuals. This obtains the sum-
mary statistics of a box plot (see Sec. 4.1). Being computed
on residuals, these measures are relative rather than absolute
values. By adding f̂ j(F), we are able to express the local
prediction accuracy as a distribution in Y .

4.3. Visual Encoding
Although the two types of predictors have different sources
of uncertainty, it can be described in terms of a distribution
within Y in both cases. We use well-known box plots to con-
vey the uncertainty for both types of predictions in visualiza-
tions representing Y (see Fig. 5). The 2D scatterplot presents
them as overlays at the predicted point while the parallel co-
ordinates visualize them as axis overlays. Wide box plots
generally represent a high uncertainty at F . For model-based
predictors, a shift to either side of the predicted result indi-
cates a local tendency to over- or under-estimation. We thus

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



Berger, Piringer, Filzmoser & Gröller / Uncertainty-Aware Exploration of Continuous Parameter Spaces Using Multivariate Prediction

TRAPPED-FUEL_MB (KNN6)

PO
W

ER
_P

F 
(K

N
N

6)

POWER_PF (KNN6)TRAPPED-FUEL_MB (KNN6)

nearest sample

(a) (b)
Figure 6: Visualizing NN-based predictors in terms of sam-
ple weights. The used samples show a high variance for
POWER_PF. The 2D scatterplot also indicates a significant
deviation from the nearest sample in X having most weight.

represent uncertainty in a uniform way, while the labels of
axes inform the user about the employed prediction method.

NN predictors directly rely on the sample data. An ad-
ditional idea is to relate their predictions to the underlying
sample points. The purpose of this visualization is to make
users aware that neighboring points in X may be distributed
all over Y (see Fig. 6) and to represent the forces that attract
the predicted value towards particular sample points.

In 2D scatterplots showing Y , lines connect the predicted
point to the k samples (Fig. 6a). For each line, its width and
the point size of the connected sample represent the relative
weight with respect to the remaining k − 1 samples. This
enables a quick identification of involved sample points and
their individual influence on the prediction.

In parallel coordinates, a histogram visualizes the distri-
bution of the k samples on the axis of each target dimension
that is predicted by a NN estimator (see Fig. 6b). The height
of each bin corresponds to the sum of the weights of sam-
ples within the bin. We decided for a binned representation
to avoid problems due to overlap in case of a narrow distri-
bution which is a frequent case for good predictions.

In case of a high uncertainty, a predicted value may be
regarded as useless (e.g., the prediction of POWER_PF in
Fig. 6). Adding samples around F can locally reduce the un-
certainty of NN-based predictions. Reducing the uncertainty
of model-based predictors is not as straightforward. Unless
it is possible to accept the uncertainty as inherent, the user
may either attempt to improve the model (e.g., re-train it for
different parameters), or switch to an NN-predictor and en-
sure a sufficient local sampling density. This second option
was also a motivation to pay special attention to NN.

5. Implementation

The described approach has been implemented within vis-
plore, a system for visual exploration based on multiple
linked visualizations. It is written in C++, uses OpenGL for
rendering and GTK+ for GUI elements.

A system-core is responsible for view coordination. The
core centrally stores prediction results and updates them
on changes of F . Clients (e.g., views) register to be no-

tified about updates of F and of prediction results. Multi-
threading ensures the responsiveness of the application dur-
ing updates and provides early visual feedback when mov-
ing F [PTMB09]. All prediction methods implement a com-
mon interface for updating and accessing results and uncer-
tainty information. Our implementation currently provides
support vector regression based on the library LIBSVM [CL]
as well as a weighted NN-based predictor. An open archi-
tecture makes adding new prediction methods or different
strategies for defining variation vectors straightforward.

6. Evaluation

We evaluate our approach on two levels. First, we present
an application scenario which describes the integration of
our approach into a typical workflow in the field of car-
engine design. Furthermore, we conducted interviews to col-
lect feedback from five experts in car engine-design, who
have been testing our approach within their domain. The
gathered insights form the second part of our evaluation.

6.1. Application Example
The goal of this example is to optimize the design of a
real-world turbo-charged car engine. There are two con-
flicting major objectives: Maximize the engine’s torque and
minimize its fuel consumption. A third minor objective is
to keep the combustion noise as low as possible. This ex-
ample focuses on the engine’s cruising mode, i.e., a load
state of about 20 % and average engine speed of 2000 ro-
tations per minute. The analysis is based on results from
1000 simulation runs which stochastically sampled a six-
dimensional parameter space. Load signal and engine speed
are operating parameters (OPs) as they vary during the
operation of the engine. The rest are design parameters
(DPs) which are specified by the engineer: Vane_p (tur-
bine vane position of the turbocharger), IVO_shift (intake-
valve opening-shift), EVO_shift (exhaust-valve opening-
shift), and ROI_shift (relative shift of the start of injection).
Support vector regression-based predictors for the targets
have been identified and validated in a preceding step.

The first goal is to identify an appropriate starting
point for the analysis. An integrated pareto optimization
(see [BP10]) selects candidate samples with respect to the
three objectives. Further refinement restricts the selection
to samples with load signals within (10,30) % and engine
speeds within (1800,2200) rpm (see Fig. 7b). The engineer
sets F to the candidate sample that is closest to the center of
the analyzed region (Fig. 7a, b).

Star sampling highlights the different impact of the DPs
regarding the two major objectives. In a 2D scatterplot for
torque and trapped fuel (Fig. 7c), the purple trail represent-
ing ROI_shift contains variation points which improve on
both. The engineer sets F to the best variation point. Updated
variations show no potential for further improving both ob-
jectives, but the trail of ROI_shift indicates the possibility to
trade a small amount of torque for a comparatively high gain
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Figure 7: Exemplary workflow. (a) Clicking a candidate sample sets F to the values shown in (b). (c) Parameter variation
reveals an improvement for torque and fuel consumption. (d) Variations at the new F indicate a possibility to trade torque
against lower trapped fuel. (e) Changing IVO_shift and ROI_shift reduces trapped fuel, keeps torque constant and slightly
increases noise. (f) Comparing the target predictions to the initial values. (g) The uncertainty box plot for torque indicates a
probable under-estimation. (h) Areas show a reasonable behavior of all targets for changing operating parameters.

regarding fuel conservation (Fig. 7d). Moreover, the vari-
ations of IVO_shift highlight an option to further increase
torque at the cost of a higher fuel consumption.

To investigate these trade-offs in more detail, a 2D scat-
terplot for ROI_shift and IVO_shift shows area guides for
torque, trapped fuel and noise (Fig. 7e). The visualization
reveals that increasing IVO_shift and decreasing ROI_shift
can reduce the fuel consumption without changing torque
at the cost of slightly higher combustion noise. The tooltip
confirms a possible 1.4 % decrease of fuel consumption, no
change in torque and a 0.3 % increase of noise. At the new
position, no reasonable further trade-offs suggest to stop the
parameter search at this point. Compared to the start sample,
a decrease of 4.3 % in fuel consumption has been achieved,
while torque and noise worsened only by 0.3 %, as shown in
the parallel coordinates of Fig. 7f.

Before simulating additional samples around F , the engi-
neer wants to ensure that the predicted values are trustwor-
thy. The box plots for noise and fuel consumption indicate
good predictions with a low uncertainty (Fig. 7g). The box

plot for torque reveals a slight tendency of the predictor to
underestimate values around F , which suggests that a simu-
lation run at F might have even better torque characteristics.

In a final step the engineer investigates the sensitivity
of the identified design with regard to changing OPs. In a
2D scatterplot for load signal and engine speed, the area
guides for torque, noise and trapped fuel indicate gradients
which are plausible and expected for the investigated engine
(Fig. 7h). This convinces the engineer to add simulated sam-
ples in the region around F in order to confirm the findings.

6.2. User feedback
According to the interviewed domain experts, the current
workflow for analyzing and optimizing engines is a com-
bination of automated methods and trial & error. The de-
sign process involves not only finding a single set of opti-
mal parameters, but also investigating its surroundings, as
slight fluctuations during production should not cause dis-
proportional performance changes. Early feedback from en-
gineers reports that the immediate prediction for pointwise
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navigation helps to convey the dynamics of the investigated
systems regarding parameter changes. In general, they con-
sider the guiding mechanisms as very helpful to quickly nav-
igate to interesting points and to get an impression of the
sensitivity of the simulated system. One engineer noted that
he prefers star sampling to stochastic sampling due to its
regular appearance which makes projections easier to inter-
pret. Other feedback motivated the spyhole metaphor for the
area-based guides (Sec. 3.2.2). The engineers regard the un-
certainty of predictions as crucial information that helps to
justify expensive additional simulation runs. NN-based pre-
diction is applied when model-based prediction is not suf-
ficiently accurate. In this case, interviewees considered the
weight visualization as helpful to assess the plausibility of
predictions in more detail than conveyed by box plots.

An interviewed domain expert emphasized that our ap-
proach has high relevance within the context of car engineer-
ing. Recent developments like hybrid-engines have multiple
complex car components interacting with each other which
introduces a high degree of freedom when defining design
parameters. Current workflows need adaptation to handle
this increased complexity. The expert thus expects the pre-
sented approach to be an important part of new workflows.

7. Discussion and Future Work

The described approach has been designed with three main
goals in mind: 1) Investigate system dynamics by analyzing
the local sensitivity of multiple target dimensions at a time,
2) examine the local precision and plausibility of predictors,
and 3) support assessments for which regions the sampling
density should be increased. The latter issue is closely re-
lated to a statistical problem known as design of experiments
(DOE). For many real-world systems, a purely statistical ap-
proach to DOE would be prohibitively complex or inaccu-
rate. We thus consider our approach as an important contri-
bution to an interactive solution. Being local by definition,
the choice of an appropriate starting point for F is crucial
for many tasks. Interaction techniques like brushing samples
and computed information like pareto frontiers [BP10] may
complement knowledge of a domain expert to identify can-
didates for starting points (see Sec. 6.1). As compared to
global approaches, a local analysis is inherently restricted to
a small region of the parameter space at a time but it enables
to display more details for that region.

Visual guides are based on predictions and may thus differ
slightly depending on the chosen prediction method. This is
one reason why we consider it important to provide differ-
ent prediction methods and let the user change the employed
method at run-time. The information about local uncertainty
may support this choice. In our implementation, the user
may enable one type of guide or uncertainty visualization
per view. For example, a scatterplot of two parameters may
show area-based guides for target dimensions, while linked
parallel coordinates provide precise prediction results and
uncertainty information for the targets.

The visual scalability of our approach is conceptually in-
dependent of the number of sample points. As discussed in
Sec. 3.2.2, we identified a practical upper limit of about five
visualized target dimensions for area-based guides in a sin-
gle plot. The scalability of mappings from X to Y (Sec. 3.2.1)
depends on the sampling strategy rather than on the dimen-
sionality of X or Y . However, the use of color to distin-
guish dimensions visually suggests a practical upper limit
of 12 simultaneously displayed dimensions for the naviga-
tion guides [War04]. Concerning computational scalability,
all mentioned prediction methods are fast enough to support
hundreds of evaluations per second. In combination with
multi-threading and the use of graphics hardware, our ap-
proach provides visual feedback in real-time.

As future work, we plan to create visual guides for other
visualizations, e.g., parallel coordinates and 3D scatterplots,
based on the general definition of the local neighborhood
Rk as described in Sec. 3.2.2. Furthermore, gradient-based
concepts could support a semantically meaningful naviga-
tion of F in all dimensions of X simultaneously. We also
intend to further evaluate our approach within other appli-
cation domains. Finally, we intend to extend our concept to
categorical parameters as well as results. Based on classi-
fication methods for prediction, categorical results require
different visualization concepts for guides and uncertainty.

8. Conclusion

This paper introduced an interactive approach to a contin-
uous analysis of a sampled parameter space. The concept
of a system-wide focal point enables a local exploration in
linked views of different type. We employ statistical meth-
ods to predict local results for multiple target dimensions in
real-time. Mapping a local neighborhood with respect to the
parameter or target space to the respective other space guides
the user to interesting target ranges and visualizes the sensi-
tivities of multiple targets to parameter changes. Embedding
these guides within 2D scatterplots or parallel coordinates
provides known sample points as important context informa-
tion. We discussed different sources of inherent uncertainties
of model-based and nearest-neighbor-based methods and de-
scribed approaches to visualize them. User feedback indi-
cates that our approach increases the confidence in gained
insights as it helps to understand the dynamics of the inves-
tigated systems and supports an assessment of an appropri-
ate sampling density. Experts in the field of car engineering
see great importance of this approach with regard to the ris-
ing complexity of new challenges within their domain. We
believe that our approach may be of general importance in
science and engineering.
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