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Abstract
Many photographs are taken in perspective. Techniques for rectifying resulting perspective distortions typically
rely on the existence of parallel lines in the scene. In scenarios where such parallel lines are hard to automatically
extract or manually annotate, the unwarping process remains a challenge. In this paper, we introduce an automatic
algorithm to rectifying images containing textures of repeated elements lying on an unknown plane. We unwrap
the input by maximizing for image self-similarity over the space of homography transformations. We map a set
of detected regional descriptors to surfaces in a transformation space, compute the intersection points among
triplets of such surfaces, and then use consensus among the projected intersection points to extract the correcting
transform. Our algorithm is global, robust, and does not require explicit or accurate detection of similar elements.
We evaluate our method on a variety of challenging textures and images. The rectified outputs are directly useful
for various tasks including texture synthesis, image completion, etc.

1. Introduction

Textured surfaces are often rich in repetitions. Photographs
of such surfaces commonly introduce various distortions due
to camera projections. Such distortions disturb metric prop-
erties, i.e., relations involving angles and lengths, misrepre-
sent repetitions present in the original scenes, and make im-
age space analysis difficult. Hence, rectifying such distorted
images is an essential first step for many computer graph-
ics and computer vision tasks. Rectified textures can then be
used for texture synthesis, image completion, etc.

Common rectification strategies require the user to manu-
ally mark an image space quadrilateral corresponding to a
world space rectangle with known aspect ratio, or to iden-
tify sets of potential parallel lines. Providing such manual
annotations can be tedious and even error prone especially
in images without dominant linear elements (see Figure 1).
Further, such a strategy only makes use of user-annotated
local information. Although, for low-rank images, a sparse
matrix based rectification [ZGLM10] can be very effective,
most of our target images do not fall in this category.

We correct images with (approximately) repeated elements,
which are coplanar in the original scene, by searching for
an allowable correcting transform that maximizes repetitions
in the output, without explicitly solving for correspondence
across the repeated image elements. Unlike existing meth-
ods, we exploit global clues across the input to produce ro-
bust results, even when the repetitions are only approximate.

Figure 1: The distorted texture (top) is automatically un-
warped (bottom) using a repetition maximizing rectifying
transform. Our algorithm does not rely on the availability
of vanishing lines or on any manual annotations.

First, we use region descriptor features, e.g., image segments
using statistical region merging [NN04], to extract candidate
regions that are potentially similar in the original scene. Un-
warping the image then amounts to searching for a transfor-
mation that adjusts the image to maximize the repetitions in
the output, while being resilient to outliers. Note that we nei-
ther require the elements to be arranged in any regular grid,
nor does the repetitions have to be exact (see Figure 1).

We map the above intuition into a computationally efficient
procedure, alternately solving for pure projective and pure
affine transforms (see also [LZ98]). Specifically, we map
line segments extracted from the regional descriptors to sur-
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Figure 2: Manual rectification is difficult in an image with no clear vanishing lines. Further, even when the user marks a
repeated element (blue quad Qd) along with a rectified base element (purple quad Qo) on the ground truth texture, solving for
rectifying transform T , such that T (Qd) = Qo, only uses local information, potentially distorting other regions. In contrast,
our algorithm globally rectifies multiple repetitions, even when the repetitions are only approximate.

faces in the respective transform domains. Solving for a rec-
tifying transform then amounts to detecting specific patterns
among the intersection points of triplets of such surfaces.
We use consensus statistics to the set of (projected) intersec-
tion points to extract the unwarping transform. We evaluate
the algorithm on a range of synthetic and real-world textures
with noise, outlier, and missing data.

1.1. Related Works. Rectification of images distorted is
important in many image analysis and texture synthesis
applications (see [ZGLM10] and references therein). The
most common image rectification method involves manu-
ally marking an image space quadrilateral corresponding to
a world space rectangle with known aspect ratio [HZ00].
Other related attempts involve detecting finite vanishing
points in the image, and searching for transforms to map the
vanishing points to infinity, thus restoring image space par-
allelism among lines that are originally parallel in the world
scene. Vanishing points of an image are detected either with
the help of user annotations, or by searching for bundles of
lines passing through a common point.

In a highly influential work, Liebowitz and Zisser-
man [LZ98] use a two-tiered approach to metric rectifica-
tion that starts with affine rectification by recovering the
vanishing line of the plane, and then achieve metric recti-
fication by enforcing constraints based on priors involving
known angles, equal angles, known length ratios of line seg-
ment groups, etc. Such methods, however, are inapplicable
for rectification of textured images without dominant linear
features or without explicit information about corresponding
points, as is the focus of our work.

Criminisi and Zisserman [CZ00] propose a rectification al-
gorithm for special regular textures, i.e., the world space
planar texture elements being arranged on a grid. The algo-
rithm first searches for vanishing points of the plane, and
then uses two one-parameter searches to estimate the de-
grees of freedom of the vanishing line. Subsequently, Clark
and Mirmehdi [CM01] detect the horizontal vanishing point
of the text plane using an extension of 2D projection pro-
files, and use them for rectification of text images. Recently,
Wu et al. [WFP10] introduce a rectification and symmetry

detection algorithm for urban facades observing that dom-
inant repetitions are often along vanishing point directions.
Chum and Matas [CM10] present an algorithm for affine rec-
tification of a plane exploiting knowledge of relative scale
changes with applications towards text rectification, detec-
tion of repetive patterns. These methods cannot be directly
extended to rectify arbitrary textures or when vanishing di-
rections are difficult to identify.

Motivated by early observations on texture gradient by Gib-
son [Gib69], researchers use distortion among texture ele-
ments to estimate local surface orientation. Usually fore-
shortening and scaling of texture elements are used to es-
timate affine transforms, and then estimate surface normals
that are subsequently integrated to produce a smooth sur-
face (see [MR97,LH05,LF06] and references therein). Such
shape-from-texture approaches assume isotropy, homogene-
ity (i.e., distance between elements and their placement pat-
tern is consistent), or reliable detection of (distorted) texture
elements — assumptions that are often violated for textures
with irregular repetitions, along with overlapping and outlier
elements. Alternately, one can search for special arrange-
ments of primitives in an image. For example, an arrange-
ment of concentric circles, or simply a collection of circles
on the world plane, maps to a set of image space ellipses,
which can then be reliably detected even in the presence
of overlaps. Based on this observation, Lourakis [Lou09]
present a rectification algorithm by optimizing for a ho-
mography that maps ellipses to coplanar circles. Park et
al. [PBCL09] propose an interesting MRF formulation to
detect deformed lattices in real-world scenes. The method,
however, deals in world-space distorting and not with cam-
era distortions as is the focus of this work.

Recently, Zhang et al. [ZGLM10] propose TILT rectification
as an elegant approach using a sparse matrix approximation
for rectification. The algorithm assumes the undistorted in-
put to have a low rank, and thus rectification amounts to
searching for an allowable transformation that minimizes the
rank of the resultant image. However, many textures do not
belong to such a ‘low-rank’ class, especially images with
outlier features, imperfect repetitions, etc. leading to unde-
sired artifacts (see Figure 3 and supplementary material).

c© 2011 The Author(s)
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Figure 3: Comparison of automatic rectification using our
algorithm and TILT [ZGLM10]. Fishes on the left and on
the right can be used for evaluating the extent of unwarping.

2. Rectification Algorithm

We present an automatic rectification algorithm for images
of scenes containing similar or repeated coplanar elements.
Due to perspective distortion, in the projected image these
similar elements appear different depending on their origi-
nal orientations and distances from the camera. Technically,
our goal is to extract a four parameter metric rectification up
to four parameter similarity ambiguity (see Section 2.1), al-
ternately optimizing for pure projective and pure affine com-
ponents. True invariants under perspective and illumination
variations, however, are difficult to extract. Hence, we do not
directly rely on feature detectors like SIFT (see Figure 15)
to extract potential repeated counterparts, but gather a set
of candidate regions using a statistical segmentation proce-
dure [NN04]. Further, we use consensus to extract the rec-
tifying transformation based on a formulation that performs
matching in the rectified domain.

Given an image I , we solve for a rectifying transform
that maximizes repetitions, while factoring out image space
translations and rotations across repetitions, i.e., we look for
the transform T ∗ in the rectifying transformation family G
such that repetition is maximized. Note that G depends on
the prior for the source of distortion, e.g., foreshortening,
wide angle distortion, etc.

One possibility is to manually identify (i) three repeated
polygon instances, e.g., rectangles or trapezoids, on the in-
put image, or (ii) one polygon on the input image and the
corresponding ground truth polygon, and rectify the image
to bring the polygons into agreement. When the differences
between neighboring elements are small, however, such a
method can be unstable and result in only locally consistent
rectification. In Figure 2, we show that even when corre-
spondence is perfect (manually provided in this example),
the rectification is unsatisfactory, especially due to approxi-
mate repetitions among the undistorted elements.

Overview. Given a distorted image, we extract a set of can-
didate congruent line segments, which are coplanar in the
world space (see Section 2.2). Our algorithm (see Figure 4)
then rectifies the distorted input by restoring congruency
among these candidate lines. Specifically, we map each line
segment to a surface in a transform space and extract the in-
tersection points between triplets of such surfaces. Reason-
ing on the patterns of such intersection points, we recover

rectifying 
transform

transform 
space

surfaces

projected
intersection

points

Figure 4: Overview of our algorithm.

the rectifying transform, alternately correcting for pure pro-
jective and pure affine components. We then generalize the
procedure to handle images with repeated elements.

2.1. Rectifying Images with Congruent Line Segments

Assume that the projected set of line segments is represented
by S := {s1, s2, . . . }. We use Euclidean length equality as
the measure of repetition for line segments, which are con-
gruent under rigid transforms in the world space. Thus, we
look for the rectifying transform that brings the maximum
number of line segments in S to equal but unknown length
d up to an ε-approximation margin. Our goal is to find the
transform that brings the largest numbers of such segments
to an (unknown) equal length.

A naı̈ve approach is to use a brute-force search over a 4-
dimensional transformation space parameterizing a rectify-
ing transform (up to a similarity ambiguity). Instead, we de-
compose the mapping into pure projective and pure affine
parts, each having two degrees of freedom (see also [LZ98]),
and alternately solve for them. One option is to use non-
linear optimization to directly solve for the free variables.
Unfortunately, we found such an approach (using Lev-
mar [Lou04]) to be unreliable and requires frequent restarts
(order of 100 restarts in our tests) in absence of a good ini-
tialization. Instead, we use the geometric structure of the
problem to recover the respective rectification components.

Pure projective transform. First, we address the case of a
single set of originally congruent line segments, say of (un-
known) length d under a pure projective transform,

P =

 1 0 0
0 1 0
l1 l2 1


with l1, l2 denoting the homogeneous parameters of the line
at infinity. Let any segment s be represented by its end points
(x1, y1) and (x2, y2), with the P -transformed version being
s′ = (x′1, y

′
1, x
′
2, y
′
2), i.e., P (s) → s′. Mapping back to

cartesian coordinates we have,

x′1 = x1
l1x1+l2y1+1

y′1 = y1
l1x1+l2y1+1

x′2 = x2
l1x2+l2y2+1

y′2 = y2
l1x2+l2y2+1

.

c© 2011 The Author(s)
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Figure 5: Given a set of line segments (left), we search for a pure projective rectifying transform that makes the segments
congruent, i.e., maps the segments to ones with equal length. (Middle) We map each segment s to a curve cP (s) in the (l1, l2)
projective parameter space using its implicit form as in Equation 1. (Right) The rectifying transform, which corresponds to the
point p∗P through which maximum number of such curves passes, is then used to rectify the input image.

Next, using the constraint that each line segment s in the
rectified image has length d, we map s to a curve cP (s) in
the (l1, l2)-plane (see Figure 5). Solving for the pure projec-
tive transform that takes the maximum number of segments
to segments of length d amounts to finding the point in the
(l1, l2)-plane that lies on the maximum number of curves
cP (si) for all si ∈ S, up to an ε-margin.

Using shorthand φ(l1, l2) := 1
l1x1+l2y1+1

and ψ(l1, l2) :=
1

l1x2+l2y2+1
, each segment s → s′, i.e., (x1, y1) →

(x′1, y
′
1) and (x2, y2) → (x′2, y

′
2) along with the condition

that the mapped segment length equals d, we get an implicit
representation of the curve cP (s) as:

d2 = (x′1 − x′2)2 + (y′1 − y′2)2

= (φx1 − ψx2)2 + (φy1 − ψy2)2

⇒ cP (s) : φ
2(x21 + y21) +ψ2(x22 + y22) (1)

−2φψ(x1x2 + y1y2) = d2,

where φ andψ represent φ(l1, l2) andψ(l1, l2), respectively.

Pure affine transform. In the case of pure affine transform
A, the solution is similar, but simpler. Let,

A =

 a b 0
0 1 0
0 0 1


be a pure affine transformation applied in the homogenous
2D space and parameterized by the variables a and b. Us-
ing the notation that a transform A maps any segment s =
(x1, y1, x2, y2) to s′ = (x′1, y

′
1, x
′
2, y
′
2), we get

x′1 = ax1 + by1 y′1 = y1

x′2 = ax2 + by2 y′2 = y2.

Similar to the pure projective case, using the condition that
the mapped segment length equals d, we get an implicit rep-
resentation of the curve cA(s) as

d2 = (x′1 − x′2)2 + (y′1 − y′2)2

= (a(x1 − x2) + b(y1 − y2))2 + (y1 − y2)2

⇒ cA(s) : a(x1 − x2) +b(y1 − y2) (2)

±
√
d2 − (y1 − y2)2 = 0.

Thus, for each segment s in the plane, the corresponding
curve cA(s) in the (a, b)-plane is a pair of lines (see Fig-
ure 6). To optimize the global measure, we search for matrix
A∗, i.e., parameters a, b, that transforms the maximum num-
ber of segments in S to the same length d, up to an ε-margin.

Multi-d optimization. Given a set of line segments S, for
each si ∈ S under pure projective transform, we have a
surface cP (s) : Q(l1, l2) = d2 in the (l1, l2, d)-space
that characterizes all the (l1, l2)-s that bring the segment si
to unknown length d using pure projection transforms (see
Equation 1). Alternately, if there are line segments origi-
nally congruent, i.e., of the same length in the undistorted
image, then their correspondingQ-surfaces must share com-
mon intersection points in the (l1, l2, d)-space. Further, if
there are multiple congruent sets of segments, say set S1

of original segment lengths d1, and set S2 of original seg-
ment length d2, then all the surfaces corresponding to the
segments in S1 will pass through (l̂1, l̂2, d1), and all the sur-
faces corresponding to the segments in S2 will pass through
(l̂1, l̂2, d2), where (l̂1, l̂2) is the pure projective rectifying
transform. Thus, for a given image, although multiple clus-
ters of congruent segments have different intersection points
in the (l1, l2, d)-space, all the intersection points have the
same projected foot-point (l̂1, l̂2) on the (l1, l2)-plane (see

spatial domain rectified image

x

y

a

b

x

y

line
arrangement
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Figure 6: (Left) Given a set of line segments, we search for a
pure affine rectifying transform. (Middle) We map each seg-
ment s to a pair of lines cA(s) in the (a, b) affine parameter
space using Equation 2. (Right) The rectifying transforms
±p∗A, which correspond to the points through which maxi-
mum number of such lines passes, are then used to rectify the
input image (the solutions are equivalent up to reflection).
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Figure 7). In case of pure affine transform, the surfaces are
simply planes (see Equation 2).

Assume that the number of the segments in each cluster Si,
which under some optimal transformation maps to segments
of unknown length di, is a constant fraction ofN , withN be-
ing the total number of line segments. Then, there are O(N3)
surface triplets, each of which intersects at a point in the
(l̂1, l̂2, d)-space with the same projected foot-print (l̂1, l̂2)
characterizing the rectifying transform. A random sampling
analysis involving Chernoff bound (cf. [MR95]) shows that
sampling only a constant number of surface triplets, com-
puting their intersection points, if any, and projecting the in-
tersections to the (l1, l2)-plane, give, with high probability, a
good approximation of the optimal (l̂1, l̂2) rectifying trans-
form. We now describe the details.

First, we prune out surface triplet intersections that have
no neighbors in the (l1, l2, d)-space within a threshold dis-
tance using a range query data structure [AMN∗94]. In this
stage, a conservative threshold is sufficient to prune out only
the clear outliers (default value included in supplementary
demo). Next, we perform another clustering in the projected
(l1, l2)-plane. Let, P denote the set of all the remaining
points in (l1, l2, d)-space, and let Pp be their projection on
the (l1, l2)-plane. Accounting for an approximation margin
δ, we have to find p∗ ∈ Pp such that the number of points
in a rectangle of side 2δ centered around p∗ is maximized.
Such a point p∗ corresponds to the pure projective trans-
form that restores congruency among the maximum number
of line segments.

The above optimization can be performed by explicitly in-
tersecting the surface triplets. However, in the pure projec-
tive case it is cumbersome to analytically express the inter-
sections of associated Q(l1, l2) surfaces. Instead, we use an
approximation to compute intersections of surface triplets
in constant time. We partition the (l1, l2)-plane into quad-
cells, and in each cell, approximate each Q(l1, l2) function
using a linear function in l1, l2. In such a cell c, the ap-
proximation Q̃c(l1, l2) is computed using a least squares
plane fit to a constant number (4 × 4 in our experiments)
of (l1, l2, Q(l1, l2)) samples in the cell. Although one can
use an error-bounded adaptive partitioning strategy, in all
our examples we found a fixed partitioning to be sufficient
(see supplementary demo). Now, given any surface triplets
{Q1, Q2, Q3}, in constant time we approximate their in-
tersection points, i.e., elements of P, using the analytic in-
tersection points between their corresponding fitted planes
{Q̃c

1, Q̃
c
2, Q̃

c
3} over each cell c in (l1, l2), if the intersection

lies in the cell c. For pure affine, the original surfaces being
simply planes, we directly solve for their intersections with-
out partitioning the (l1, l2)-plane. We project the recovered
intersection points to the (l1, l2)-plane to get point set Pp.

Next, we build an efficient range data structure [AMN∗94]
for points Pp, and for each point in Pp we count the num-
ber of points inside a rectangle of size 2δ by querying the

data structure in logarithmic time. Our approximate opti-
mum (l̂1, l̂2) is then the point with maximum numbers of
neighbors (see Figure 7). Thus, the total running time to
approximate the rectifying transform p∗ is O(N ′ logN ′),
including the time to build the range data structure, where
N ′ denotes the constant number (100 in our experiments) of
random triplets drawn from O(N3) possibilities.

Seemingly, an alternate RANSAC strategy can take a ran-
dom set of three segments, solve for rectifying transforms,
retain the best transform, and then improve the solution us-
ing a local optimization. However, our experiments indicate
the following shortcomings of the method: (i) for each triplet
of segments to recover the rectifying transform parameters
we still have to use the same transform domain approach as
described above; (ii) each of the computed rectifications uses
only three line segments and can be fragile since we allow
approximately repeated elements in the input texture (see
Figure 2); (iii) the local optimization is brittle. Instead, our
proposed algorithm involving the two stage clustering once
in the (l1, l2, d) and later in the projected (l1, l2)-spaces is
resilient to outliers without significant computational over-
head. Note that our algorithm is reminiscent of Hough trans-
form due to our transform domain analysis.

General perspective transforms. A general plane perspec-
tive transform or homography (H) can be decomposed as,
H = SAP , where S,A, P respectively denote similarity,

0 1

input image

rectified image

transformation 
space 
surfaces

projected intersection 
points

l1

l2

d

l1

l2

Figure 7: We show two pairs of similar objects before (top-
insets) and after (bottom-insets) rectification. The best recti-
fication parameters (l1, l2) transform both instances to con-
gruent ones. Line segments extracted from the input image
are mapped to surfaces in the transform space, and inter-
section points for such surface triplets are projected to the
transform parameter space. (Bottom-right) Projected points
are color coded and scaled based on local point density. The
densest region, in dark, represents parameters of the recov-
ered pure projective transform for the real-world image.

c© 2011 The Author(s)
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Figure 8: Comparison between alternating pure projective
and pure affine rectifications (2 iterations) vs. computation-
ally inefficient full rectification using 4-parameters.

pure affine, pure projective transforms [LZ98]. Thus, up to
similarity ambiguity, we have a four parameter optimization,
two each for the affine and the projective parts. One can ex-
press the congruency condition for rectifying a set of line
segments in terms of the fours parameters (and d), similar
to Equations 1 and 2, and look for a combination that maxi-
mizes the number of surfaces passing through the point. The
approach, however, is computationally inefficient as the pa-
rameter space involves four variables, resulting in a collec-
tion of hyper-surfaces in five dimensions. Instead, we use an
iterative solution, alternately optimizing for the pure projec-
tive and pure affine parts. The individual optimizations are
robust against outliers as we rely on a voting based clus-
tering approach. We found this alternating strategy to work
well in practice, stopping after a fixed number of iteration
steps, 2 in all our experiments. In Figure 8 we compare the
rectification results obtained using our full optimization vs.
alternating between pure projective and pure affine rectifica-
tions. In the full optimization, the algorithm is almost iden-
tical, except computing intersections among surface triplets
are expensive. Empirically, the full optimization, even for
30-50 lines segments, is about 15-20x slower than the alter-
nating pure projective/affine iterations. Unless stated, we use
the alternating scheme for our results.

2.2. Rectifying an Image with Repeated Content

We now describe how to extract a set of line segments S
from an image I with repeated content, such that our rectifi-
cation algorithm for a set of originally congruent line seg-
ments (Section 2.1) can be used to rectify the input im-
age. Since defining invariant features robust to large pro-
jective distortions, noise, and to outlier elements is difficult
(cf. [HO07]), we instead focus on regional descriptors and
account for outlier elements using a consensus mechanism.

We use Statistical Region Merging [NN04] (using publicly
available source code) to obtain regional segments that maps
the segmentation problem to a robust and efficient inference
problem. The algorithm is known to be resilient to noise,

distorted input regional descriptors rectified output

Figure 9: We use statistical region merging to extract re-
gional segments on an input image, and then fit an ellipse
to each extracted segment. Note that the ellipses can have
overlaps, vary in size, and also capture outlier elements.

handles occlusions, and can simultaneously capture large to
fine scale features. We least squares fit an ellipse to each such
region (see Figure 9). Let, Es = {s1, s2, . . . } denote the
major axes lengths of all such fitted ellipses. We now rectify
the line segments Es, alternately solving for pure projective
and pure affine parts, as detailed in Section 2.1. It is conceiv-
able to use other affine invariant detections (cf. [MTS∗05]).
For example, in our experiments component tree [NC06] and
MSER [MCUP02] produced comparable results.

Since major axes of ellipses are not invariant under projec-
tive transforms, we use a weak perspective assumption and
identify potential repeated elements by our two stage clus-
tering approach. Although we are not guaranteed to find the
exact optimal, recomputing the ellipses for the updated re-
gional descriptors in each iteration works well in practice
(see results and demo).

Discussion. Homography refers to a transformation, which
under perspective projection, maps a plane to another plane.

affine rectification

metric rectification

Figure 10: (Top) Our algorithm achieves affine rectification
when the input real-world scene contains coplanar repeti-
tions only under translations. Parallelism is restored, but
angle and metric relations remain distorted. (Bottom) For
scenes with repetitions under translation and rotation (left),
our algorithm produces metric rectification restoring both
angles and lengths. For visualization, we overlay lines and
arrows to highlight interesting relations.

c© 2011 The Author(s)
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Figure 11: Our rectification algorithm is robust to intensity change, noise and outliers. The base image (not shown) was
synthesized using rotated, reflected, translated copies of a dolphin icon. In each case, noise and outlier elements were added,
and the resultant image was distorted. In the corresponding rectified output, the dolphins become (near) congruent.

The process of solving for a homography to map the image
of a planar surface to a fronto-parallel view, thus removing
all in-plane projective distortions, is known as metric rectifi-
cation, except for a scale and rotational ambiguity. Such rec-
tified images allow direct measurement of quantities includ-
ing angles, lengths, and areas. Affine rectification, a more
relaxed rectification procedure, only restores parallelism re-
lations of the original scene by ensuring all vanishing points
to be at infinity.

Observation #1. A set of purely translated copies of a line
segment, transformed by a general perspective transforma-
tion (affine and pure projective), cannot be metric rectified
by finding a transformation that brings the segments to the
same length, as reasoned next: Let S be a set of translated
copies of the same segment. Since any affine transforma-
tion A preserves parallelism, A also preserves the equality
of length, i.e., A(S) also contains only translated copies of
line segments. Hence, we cannot uniquely recover the affine
part, which is ambiguous (see Figure 10; cf. [LF06]).

Observation #2. A set of congruent copies of a line seg-
ment, with at least three of the segments in general arrange-
ment, transformed by a general perspective transformation
(pure affine and pure projective), can be metric rectified by
finding a transformation that brings the segments to the same
length, as reasoned next: Due to observation #1, we only
have to show that there is no affine ambiguity in this case.
Let S be a set of segments, originally of the same length,
with at least three of them not pairwise parallel. If three
(originally) equal length segments appear in general posi-
tions in the world coordinates, the affine parameters (a, b)
for the rectifying transform (Equation 2) that bring them to
the same length is the projection of the point of intersec-
tion of three planes in the (a, b, d)-space to the (a, b)-plane.
Since the three plane equations are independent, we get a
unique (a, b, d) solution, yielding the desired affine rectifi-
cation parameterized by (a, b) (see Figure 10).

Finally, one can refine the solution using a non-linear op-
timization that explicitly searches over the 4-parameters to
restore congruence among the rectified line segments (say,
using [Lou04]). Since at this stage we already have a good
solution, such a local refinement leads to visible improve-
ments only in some cases.

3. Evaluation

We tested our method on a variety of input images and tex-
tures with varying amount of complexity and different types
of repetitions, structured or otherwise. We first tested our
method on a synthetic data set, where the ground truth data
was available for comparison. We added noise and outlier
elements to the input images, and verified the quality of the
extracted rectifying transform (see Figure 11). Although the
noise and outliers corrupt the extracted contours and resul-
tant fitted ellipses, the unwarping results remain stable due
to the consensus voting in the rectification extraction stage.
Numerically, when l1 = l2 = 1 × 10−3 for pure pro-
jective transform the recovered values are (1 × 10−3, 6 ×
10−4), (8 × 10−4, 1 × 10−3), respectively (top-row); and
when l1 = −l2 = −5 × 10−4 the recovered values are
(−6 × 10−4, 6 × 10−4), (−5 × 10−4, 8 × 10−4), respec-
tively (bottom-row).

In order to test our algorithm on synthetic textures, we ap-
plied large distortions on well known texture patterns, and
applied our algorithm (see Figure 12). In all cases, we ob-
serve that the rectification is satisfactory. As discussed, in
case of translational patterns, we observe affine ambiguity.
In most of these examples, vanishing lines are hard to detect
or even to manually annotate. Alternately, a user may mark
three of more repeated instances, but even then the rectifica-
tion results are inferior due to use of only local information
(see Figure 2), especially in presence of approximate repe-
titions. We further tested our algorithm on images with re-
peating elements (see Figure 12-bottom). Note that, in both
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distorted input rectified output distorted input rectified output

Figure 12: (Top two rows) Automatic unwarping using the proposed algorithm on various well known synthesized textures
(source: http://www.cc.gatech.edu/cpl/projects/graphcuttextures/). The textures were (synthetically) distorted by the same per-
spective transform. (Bottom) Rectification results on real-world images. See also supplementary demo and results.

cases, the elements have non-negligible depth (compared to
the size of the repeating elements) and the repetitions are
quite approximate. The rectified outputs are satisfactory in
both instances. In the chilli-pepper example, the quality of
the rectification can be judged by how well the circles have
been restored (we verified that the line segments were ex-
tracted based on the ellipses coming from the peppers). In
Figure 13 we rectify the input (complex) images, add re-
peated patterns to the images, and then re-warp the images
with the recovered projective transforms. Note that we do
not require the input images to be segmented. Please refer to
supplementary material for further examples and demo.

Performance. Our algorithm typically runs in less than half
a minute on a standard laptop (3GHz Intel processor, 2GB
RAM) for images with maximum dimension of 800 (down-
sampled if needed), including time to compute regional de-
scriptors. Most of the computation time is spent in intersect-
ing triplets of surfaces in pure projective case. The key pa-
rameter in our algorithm is the scale parameter for the extrac-

Figure 13: (Left) Input photographs, (middle) rectified with
pasted textures, (right) re-warped with distorted textures.

tion of regional descriptors. Although all our examples are
with default setting (in author implementation of [NN04]),
we can also perform a line search along the parameter, in
each case compute the rectifying transform, and then retain
the one with the best rectification based on density of points
in the transform domain (see -q option in demo).

Texture Synthesis. Traditionally, texture synthesis deals
with computationally expanding a small exemplar sample to
create a large texture image, while preserving the structural
pattern of the source image. Implicitly most existing texture
synthesis algorithms assume that the source images are recti-

synthesis without rectification synthesis with rectification

Figure 14: Texture synthesis with image quilting [EF01]
with identical parameters using unrectified exemplars (see
insets) as against the rectified exemplars (using our algo-
rithm) on the left and the right columns, respectively.

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



Aiger, Cohen-Or, Mitra / Repetition Maximization based Texture Rectification

SIFT without rectification

SIFT with rectification

before rectification after rectification

Figure 15: Our rectification algorithm reduces perspective
distortions, and can significantly improve performance of
SIFT-based correspondence detection, a critical step for im-
age processing algorithms, e.g., symmetry detection.

fied, so that the structural and statistical properties of the im-
ages can be analyzed and used for synthesis. In Figure 14 we
show image quilting [EF01] results without and with exem-
plar rectification, using same parameters for all the results.
Not surprisingly, the synthesis results on the rectified inputs,
produced by our algorithm, are superior in quality due to
the presence of a larger variety of (undistorted) patches to
choose from and piece together. The performance benefits
are expected to be comparable with most other texture syn-
thesis algorithms.

Texture Analysis. Our method rectifies inputs with re-
peated image content. In cases when the underlying tex-
tures have a regular pattern, the rectification helps expose
the repetition pattern. State-of-the-art symmetry detection
methods [LE06] rely on the availability of invariant fea-
tures to seed the search for symmetry transforms. Commonly
used critical point based features, like SIFT, are invariant
to rigid and similarity transformations but can be unstable
under perspective distortions (see Figure 15). In our algo-
rithm, we handle such feature ambiguity by using consensus
among the transform space surface intersection points, to get
a global rectification.

Note that automatic rectification of images with repeated
content naturally can help several other image processing
tasks including image completion, image denoising, and su-
perresolution that can make use of repeated data across an
image. After analyzing and manipulating the undistorted in-
put, one can re-warp the results to restore back the input per-
spective using the unwarp-mapping. In the future, we hope

input texture with marked area

completion without rectification completion with rectification

PatchMatch + 
inverse transform

Figure 16: Image completion without and with rectification.
In both cases, the marked lasso polygon region (top-left) was
filled using content aware completion via Patch-Match. Note
that without rectification, the completed region contains arti-
facts, with unnatural double fishes (highlighted), due to lack
of suitable proxies.

to explore this avenue (see Figure 16 produced using Patch-
Match [BSFG09] in Adobe c© CS5).

Limitations. Our methods have certain limitations: (i) For
example in Figure 17-top, all the pinenuts differ from each
other in the original scene, have non-negligible depth vari-
ations, and further the fitted ellipses are roughly circular,
making the extracted major-axis line segments ambiguous.
As a result, the obtained rectification is imprecise as can be
judged by the reference circular ring. (ii) When the input
has only translationally repeated elements, then the rectified

before rectification after rectification

Figure 17: (Top) Repeating elements with size comparable
with depth variations are challenging. (Bottom) Elements ar-
ranged in translational grids result in affine ambiguity in the
rectification space in absence of additional information.
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output has affine ambiguity (see Figure 17-bottom). Without
additional information this ambiguity is impossible to avoid.
(iii) As discussed, we make an approximation by working
with major axes of fitted ellipses and alternately optimiz-
ing for pure affine/projective transformation. Hence, we can-
not provide any guarantee of reaching the global optimal. In
practice, however, we did not experience this problem.

4. Conclusion

We presented an algorithm for automatic rectification of tex-
tures with repeated coplanar elements. Our algorithm maps
line segments arising out of regional descriptors to surfaces
in a transformation domain, and solves for the repetition
maximizing rectifying transformation using a consensus vot-
ing in transformation parameter space. We perform rectifi-
cation by alternately optimizing over the pure perspective
and the pure affine components. The proposed algorithm is
particularly suitable for the analysis of textures, as demon-
strated by the various examples.

Figure 18: Our algorithm can be used for rectification of
parameterized wide-angle distortion.

In the future, we want to handle other types of distortions
with low degrees of freedom — Figure 18 shows an initial
rectification result for parameterized lens distortion. In gen-
eral, for transformations with higher degrees of freedom, the
resultant surfaces in the transform domain quickly become
complex, making it challenging to efficiently compute their
intersections. Additionally, we plan to further explore other
texture and image analysis applications that can benefit from
a similar dual domain reasoning.
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