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Abstract

Realistic rendering requires computing the global illumination in the scene, and Monte Carlo integration is the
best-known method for doing that. The key to good performance is to carefully select the costly integration samples,
which is usually achieved via importance sampling. Unfortunately, visibility is difficult to factor into the impor-
tance distribution, which can greatly increase variance in highly occluded scenes with complex illumination.
In this paper, we present importance caching – a novel approach that selects those samples with a distribution that
includes visibility, while maintaining efficiency by exploiting illumination smoothness. At a sparse set of locations
in the scene, we construct and cache several types of probability distributions with respect to a set of virtual point
lights (VPLs), which notably include visibility. Each distribution type is optimized for a specific lighting condition.
For every shading point, we then borrow the distributions from nearby cached locations and use them for VPL
sampling, avoiding additional bias. A novel multiple importance sampling framework finally combines the many
estimators. In highly occluded scenes, where visibility is a major source of variance in the incident radiance, our
approach can reduce variance by more than an order of magnitude. Even in such complex scenes we can obtain
accurate and low noise previews with full global illumination in a couple of seconds on a single mid-range CPU.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing, Radiosity; G.3 [Mathematics of Computing]: Probability and Statistics—
Probabilistic algorithms (including Monte Carlo)

1. Introduction
Many rendering applications, such as architectural visual-
ization, require computing global illumination in the scene.
Solving this problem involves costly evaluation of multi-
dimensional integrals of complex functions. While the util-
ity of Monte Carlo ray tracing algorithms in such problems
has been widely demonstrated, the stochastic nature of the
approach entails a rather slow convergence. This issue can
be alleviated by using variance reduction techniques, such
as importance sampling. However, effectively capturing the
important features of the integrands of concern remains a
challenging problem, which we address in this work in the
context of virtual point light (VPL) rendering [Kel97].

To this end, the state-of-the-art unbiased importance sam-
pling methods most often construct an explicit representa-
tion of a probability density function (PDF) for sampling in-
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cident illumination. Ideally, this PDF would be the product
of the individual terms under the reflection integral. In prac-
tice, not all of these terms are known, so the PDF often in-
cludes only some of them, visibility in particular being com-
monly omitted [CJAMJ05, BGH05, WA09]. Moreover, most
importance sampling methods do not take advantage of the
fact that illumination is often piece-wise smooth over sur-
faces, and build a PDF for each shading point independently,
which can be too expensive. As an alternative, (ir)radiance
caching based approaches perform accurate lighting com-
putations at isolated points and interpolate the values in be-
tween [WRC88,KGPB05]. This aggressive interpolation can
bring large efficiency gains, alas at the cost of bias.

In this paper, we propose a method for efficient impor-
tance sampling of the incident illumination at a point. Our
approach tries to sample proportionally to the actual local
contributions of all VPLs distributed in the scene. It main-
tains efficiency by using an importance caching scheme that
exploits coherence without introducing additional bias. First,
at a sparse set of locations in the scene we evaluate accurate
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lighting, and store several types of probability distributions
derived from these evaluations. The distributions, each op-
timized for a specific lighting condition, are then used for
sampling VPL contributions at other locations. We finally
combine the many resulting estimators using a novel bilat-
eral multiple importance sampling framework that uses a
new aggressive weighting heuristic.

Our method handles direct and indirect illumination si-
multaneously, and the sampling distributions consider all
terms of the reflection integrand, including visibility. We
demonstrate that this can deliver significant variance reduc-
tion in occluded scenes with complex lighting, where visibil-
ity is often a major source of variance. Since our approach
does not introduce bias, high-quality results can be obtained
progressively with a fixed memory footprint. We also show
that a simplified version can produce highly accurate low-
noise previews interactively even in such complex scenes.

2. Related Work
The goal of global illumination algorithms is to compute the
reflected radiance Lo at every shading point, usually resort-
ing to Monte Carlo integration with PDF p:

Lo =
∫

S
B(r)L(r)G(r)V (r) dA(r)

≈ 1
N

N

∑
k=1

B(Rk)L(Rk)G(Rk)V (Rk)

p(Rk)
=

1
N

N

∑
k=1

f (Rk)

p(Rk)
,

(1)

where S is the set of all scene surface points (Rk ∈ S), includ-
ing light sources, and B, L, G, and V are the BRDF, incident
radiance, geometric, and visibility terms between the point
and Rk. If shared among all shading points, the radiance sam-
ples Rk are often called virtual point lights (VPLs) [Kel97].

Importance sampling. Ideally, we would sample with the
PDF p proportional to the integrand f . However, obtaining
such a PDF in practice is unfeasible, particularly because the
visibility function V is not given in a closed form, and/or the
incoming radiance may not be known.

The state-of-the-art importance sampling methods build
distributions that include some of the terms in f , usually the
product BL, for sampling environment [CJAMJ05,CETC06,
CAM08b] and indirect [WA09] illumination from VPLs.
Rouselle et al. [RCL∗08] include a conservative visibility
term. Importance resampling methods [BGH05,TCE05] use
approximate product distributions, and generally can handle
direct and indirect illumination simultaneously.

The photon map has been successfully used for illumi-
nation importance sampling [Jen95, Hei01, Pha05, SL06],
These methods sample ray directions from distributions de-
rived from the photons cached at nearby shading points.

All above approaches build the distribution for each shad-
ing point independently. In contrast, the distributions we use
are shared among points, and include all integrand terms.

A single distribution is often not a good match for the
whole integrand, therefore samples can be drawn from mul-

tiple distributions. Veach [Vea97] developed multiple impor-
tance sampling (MIS) as a framework for combining differ-
ent distributions in one estimator. We sample from multiple
distributions and propose a novel MIS weighting heuristic.

VPL methods. VPL rendering was introduced by Keller
[Kel97]. Some methods use adaptive clustering to render
the many VPLs necessary to handle scenes with complex
lighting. Lightcuts [WFA∗05, WABG06] compute an error-
bound pixel estimate from a cut in a VPL tree. The cut is
chosen by bounding the tree cluster contributions locally,
assuming full visibility. Hašan et al. [HPB07] compute a
global VPL clustering for the whole image that groups lights
with similar contributions, including visibility. Similarly to
our approach, Ou et al. [OP11] further refine the cluster-
ing on small surface regions in order to capture the lo-
cal VPL importance. Interactive VPL methods achieve effi-
ciency through aggressive visibility approximations and illu-
mination interpolation, coupled with an optimized GPU im-
plementation [RGK∗08, DGR∗09, REH∗11].

Importance-driven VPL generation has recently received
attention [WBS03, SIMP06, SIP07, GS10]. These methods
sample VPLs based on their total image contribution, but
do not adapt to individual locations. This is why they can
be inefficient in scenes with complex non-uniform lighting.
We use the method of Georgiev and Slusallek [GS10] as an
initial global VPL resampling step, and apply our new im-
portance sampling strategy on the resulting VPL set.

Exploiting coherence. Taking advantage of inter-
integral correlation is another way to increase render-
ing efficiency. Irradiance caching [WRC88] and radiance
caching [KGPB05, GKB09] compute precise illumination
estimates at a set of adaptively chosen locations in the
scene, and interpolate (ir)radiance at points outside this set.
Kontkanen et al. [KRK04] extend the approach to adap-
tive irradiance filtering over surfaces. These methods assume
smooth illumination, and rely on geometric features to dis-
cover discontinuities. Křivánek et al. [KBPv06] improved
the caching and extrapolation strategies of (ir)radiance
caching. However, since caching is based on adaptive super-
sampling, strong illumination features can still be missed.
This adds bias to the solution which is impossible to prevent.

On top of product importance sampling of BRDF and en-
vironment map, Clarberg et al. [CAM08a] add a control vari-
ate term that includes interpolated visibility. This reduces
noise in occluded regions, but since the sampling distribu-
tion remains unchanged, the effect of variance reduction
is limited. Finally, table-driven adaptive importance sam-
pling [CAE08] reduces variance by mixing standard impor-
tance sampling with shared importance information across
neighboring pixels. While this mixture is conservative, it still
increases variance at discontinuities, which is then clamped
in a biased way. Our method addresses this problem by sam-
pling from distributions that remain robust at discontinuities.
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3. Algorithm Overview
Sampling and integrating the incident illumination can be
too expensive to perform for each pixel individually. We
take a common approach to amortizing the path sampling
cost by sharing one set of light sub-paths among all pixel
integrals. Before rendering, we sample the light sources and
trace light paths in the scene, creating a set of virtual point
lights (VPLs) that approximate the direct and indirect radi-
ance distribution in the scene [Kel97, WFA∗05]. We addi-
tionally use the method of Georgiev and Slusallek [GS10]
for initial global VPL resampling, which equalizes the total
camera contribution of all VPLs, discarding those that are
irrelevant for the current viewpoint.

After distributing NV PL VPLs Rk with corresponding
PDFs p(Rk), rendering an image reduces to summing up the
contribution of all VPLs at every shading point x:

Lo
x ≈

NV PL

∑
k=1

Bx(Rk)Lx(Rk)Gx(Rk)Vx(Rk) =
NV PL

∑
k=1

fx(Rk), (2)

where the subscript x denotes evaluation at point x. Here,
Lx(Rk) includes the normalization factor 1/(p(Rk)NV PL).

Equation (2) can be prohibitively expensive to evaluate for
the common case where the number of VPLs is on the order
of thousands or more. Our solution is based on an unbiased
Monte Carlo estimation of the sum in Equation (2):

L̃o
x =

1
n

n

∑
m=1

fx(Rm)

px(Rm)
≈

NV PL

∑
k=1

fx(Rk)≈ Lo
x , (3)

evaluating the contribution of a small number of n� NV PL
VPLs, chosen from a probability distribution px over Rk.
Making px exactly proportional to fx can result in a zero-
variance estimate, which can be obtained with just one VPL
per pixel. This, however, can be very difficult to achieve,
especially because px has to include the visibility term, the
evaluation of which involves the costly ray casting operation.

A common approach to decreasing the distribution con-
struction cost is to exclude visibility from it [BGH05,
CJAMJ05]. Unfortunately, as Figure 1 demonstrates, doing
so in occluded scenes can destroy proportionality and lead
to dramatic variance increase. Moreover, the total rendering
time is still dominated by the distribution construction.

Following these observations, we propose a solution that
(1) samples VPLs with a distribution that accounts for visi-
bility, (2) avoids the costly distribution construction at each
shading point, and (3) remains robust at discontinuities.

3.1. Importance Caching
Our approach is based on the idea to take a set of evalu-
ated VPL contributions at one location and reuse them in
the form of importance at other locations. For each frame,
we first perform full VPL evaluation at a sparse set of surface
points I j generated by tracing random rays from the camera.
Each of these importance records (IRs) stores the contribu-
tions f j(Rk) of all VPLs Rk at its position. This set of con-

Figure 1: A scene illuminated by an environment map, with
radiance field approximated by 6000 VPLs. Using only one
VPL per pixel, chosen from a distribution proportional to
its actual contribution, would result in perfect importance
sampling, giving the exact solution (left). Excluding visibility
from the distribution leads to excessive variance (right).

tributions f j is then normalized to a probability distribution
f j for sampling VPLs at nearby shading points. f j repre-
sents the fully evaluated integrand, including visibility, and
allows for exploiting illumination coherence in an unbiased
way. Thus, instead of constructing costly and only approx-
imate distributions at each shading point, we build perfect
distributions at a small number of points – the IRs. They are
stored in an easy to build one-dimensional cumulative distri-
bution function (CDF) form. The distribution f j at each IR
provides perfect importance sampling of VPL contributions
at its associated location I j (see Figure 1).

During final rendering, at each shading point x we first
find the M nearest records I j with shortest distance accord-
ing to the metric d(x, I j) = ||x− I j||+λ

√
1−Nx ·NI j , where

Nx and NI j are the surface normals at x and I j, respectively.
Similar metrics are common in illumination interpolation
methods [WRC88], where λ, trades off the importance of
Euclidean and orientation distance. The IRs are organized in
a range-search kd-tree. Lookups are performed in a two-step
filtering approach, similar to [CAM08a]. We use M = 3 and
λ = 0.5/D, where D is the scene’s bounding box diagonal.

We use the distributions from the closest IRs for evaluat-
ing L̃o

x (Equation (3)). This way, the pre-sampling setup for
x is reduced to a nearest neighbor search. Moreover, since
choosing a VPL involves only a CDF binary search, we ef-
fectively exploit the whole importance information stored at
the IRs, but access just a small fraction of the actual data.

When reused at a spatially close location x, we can expect
that, while not perfect anymore, f j will most often be closely
proportional to fx, leading to robust importance sampling.
However, proportionality decreases at discontinuities, in turn
increasing variance. We combat this problem in two ways.

We first ensure that sampling remains robust when reusing
distributions across illumination discontinuities. In such
cases f j might assign low, and even zero, probabilities to
important VPL contributions at x. Therefore, in addition to
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Figure 2: Four illumination conditions, encountered when reusing information from importance records (IRs) I1 and I2 at shad-
ing point x. At each IR we define four distributions, designed to discover VPL contributions under a different condition. a) In the
case of smooth illumination in the local neighborhood, full contribution sampling (F) can achieve close proportionality to the
integrand. b) Unoccluded contribution sampling (U) is robust to VPL contribution changes due to varying occlusion with posi-
tion. c) Bounded contribution sampling (B) in addition discovers new contributions due to orientation changes. d) Conservative
uniform sampling (C) handles situations where the IR importance information is irrelevant at the shading point x.

this aggressive distribution, at each IR I j we build three in-
creasingly conservative distributions derived from f j that are
less likely to miss important new VPL contributions in the
vicinity of I j. We design these sampling techniques by iden-
tifying the situations that cause changes in VPL contribution
due to variations in position and orientation (Section 4).

Second, we combine the many distributions borrowed
from nearby importance records around each shading point,
such that salient information is extracted from the individual
estimates. We perform a bilateral multiple importance sam-
pling combination using a novel α-max heuristic to weight
distributions based on a specified prioritization (Section 5).

Our method does not distinguish between the different
kinds of VPLs, e.g. finite and infinite, direct and indi-
rect [WFA∗05,HPB07]. This way we effectively importance
sample the total incident illumination at the particular point.
In addition, thanks to the unbiased exploitation of coherence,
we can discard all cached data at the end of each frame,
and obtain a high-fidelity solution via progressive averaging.
Convergence is thus achieved with a fixed memory footprint.

4. Sampling Distributions
Recall that each importance record (IR) I j stores the nor-
malized local contributions f j(Rk) of all VPLs Rk. Given a
nearby shading point x, if the illumination is locally smooth,
it is likely that f j will be closely proportional to fx, leading
to robust importance sampling. However, in regions around
illumination discontinuities there can be little or no correla-
tion, which may result in excessive variance. This happens
mainly due to high-energy regions in fx not being present in
f j and consequently sampled with low probabilities.

We identify the causes for VPL contribution changes be-
tween surface points, and at each IR build four increasingly
conservative distributions. They help the sampling remain
robust when reusing importance across discontinuities.

F: Full contribution sampling. As discussed above, the
most straightforward distribution to define at each IR I j is
the normalized f j . This full contribution distribution (Fig-
ure 2a), denoted F , is our most aggressive one and also the

one with highest variance reduction potential. It can in fact
achieve perfect proportionality, e.g. on flat unoccluded dif-
fuse surfaces illuminated by distant light sources, where fx
is independent of position x. F often discovers the largest
fraction of the reflected radiance, as we show in Section 6.

U: Unoccluded contribution sampling. It sometimes hap-
pens that all I j in a region agree on the importance of a par-
ticular Rk, though inconsistently with its contribution at x. In
scenes with occlusion, these inconsistencies are often caused
by a change in the visibility function, i.e. Vx(Rk) 6= V j(Rk).
False positives (e.g. R1 in Figure 2b) increase variance but
are usually not too problematic, as their contribution at x is
zero. On the other hand, if false negatives (R2 in Figure 2b)
are sampled with low probability, variance can explode.

The unoccluded contribution distribution (U) is more con-
servative than F , and is designed to discover VPL contribu-
tions potentially missed due to occlusion. The distribution is
built from the VPL contributions at I j , but with V j(Rk) = 1,
i.e. from the unoccluded f u

j (Rk) = B j(Rk)L j(Rk)G j(Rk).
The technique is particularly robust at finding small-scale il-
lumination features, such as a bright spot produced by a thin
light beam passing through a small window (see Figure 7).

B: Bounded contribution sampling. Sometimes all I j may
falsely suggest a low contribution of Rk at x due to differ-
ences in surface orientation, i.e. Gx(Rk)> G j(Rk). Figure 2c
shows an example of such inconsistency. The actual contri-
bution fx(Rk) might in fact be small, but if sampled with a
low probability, variance can increase dramatically.

The bounded contribution distribution (B) is a conser-
vative extension of U that targets orientation-induced false
negatives. Knowing that each IR will be used in a small
neighborhood, we build the B distribution from the contribu-
tions f b

j (Rk) = B j(Rk)L j(Rk)G
max
j (Rk). Here, Gmax

j (Rk) is
the upper-bound geometric term for points inside the region
of influence of I j, computed as described in Appendix A. As
noted above,B usually finds features with a rather small con-
tribution to the outgoing radiance. It does so, however, with
high enough probabilities that avoid excessive variance.
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C: Conservative sampling. When the nearest IRs around x
are at a large distance in position and orientation, false neg-
atives can occur that F , U and B do not handle. An exam-
ple is shown in Figure 2d. Such situations are most notable
when strong illumination falls on a surface that has a small
screen-space footprint and unique orientation in its neigh-
borhood. Since no useful data can be reliably extracted from
any nearby IR, we handle such rare cases with the most con-
servative uniform sampling distribution (C) over all VPLs.

5. Bilateral Combination of Sampling Distributions
To produce a final image, at each shading point x we use
the four distributions at each of the M nearest importance
records (IRs) for VPL sampling. We combine all distribu-
tions, transforming L̃o

x (Equation (3)) into a multiple impor-
tance sampling (MIS) estimator. While MIS was originally
developed for continuous distributions, it can be shown to
work in the discrete case too. In order to avoid bias, we must
ensure that every VPL Rk is chosen with a non-zero proba-
bility, however all F , U and B can have zeros. Fortunately,
MIS does not require each distribution to be non-zero every-
where [Vea97]. Thus, including C is sufficient to guarantee
the unbiasedness of the resulting combined estimator.

Having all 4M distributions, we can construct a MIS es-
timator by choosing a weighting heuristic [Vea97]. Figure 3
shows a matrix arrangement of the distributions at the M = 3
nearest IRs around a point. As expected, the M distribu-
tions in a row, each corresponding to an IR, correlate closely,
while the four increasingly conservative distributions in each
column have different structure. Veach’s MIS heuristics are
solely based on probabilities, hence unable exploit this addi-
tional information that may hint to when particular distribu-
tions achieve closer proportionality. Choosing one of these
heuristics to weight all distributions can thus be sub-optimal.

We perform a bilateral two-stage combination of the dis-
tributions in the matrix, which uses different weighting
schemes for the rows and columns, in order to better pre-
serve the qualities of each distribution. We first construct a
MIS estimator that mixes the M distributions in each row.
This way, we conceptually collapse all columns into one.
The four distributions in this resulting column are subse-
quently combined to form the final MIS estimator.

5.1. Column Combination
The estimator that combines all M distributions in row i us-
ing a column weighting heuristic wcol

i, j reads:

L̃o
x,i =

M

∑
j=1

1
ni

ni

∑
k=1

wcol
i, j (Ri, j,k)

fx(Ri, j,k)

pi, j(Ri, j,k)
, (4)

where p1, j =F j , p2, j = U j, p3, j = B j, p4, j = C j, taking the
same number of samples ni from each distribution in row i.

Since we do not have reliable means to detect all discon-
tinuities, shadows in particular, we cannot determine which
IRs correlate most with the shading point x. Therefore, we

0.12

0.02

0.018

0.03

Figure 3: A matrix arrangement of the four distributions
at the three closest records to the red-marked point in the
left image in Figure 7. Notice the correlation among the
columns. Direct illumination VPLs are in the beginning of
the VPL list, hence the higher probabilities in the left.

avoid aggressive weighting for combining the columns j and
take the safest available heuristic – the balance heuristic:
wcol

i, j (R) = pi, j(R)/∑
M
l=1 pi,l(R).

The balance heuristic corresponds to directly sampling
from a mixture distribution: pi(R)= 1

M ∑
M
l=1 pi,l(R) [Vea97].

(In our case this can also be interpreted as importance inter-
polation at the shading point x.) To achieve this, we construct
the mixture CDF corresponding to pi implicitly while sam-
pling, during a synchronous traversal of the individual CDFs
by averaging their elements. The direct mixture sampling re-
quires M times fewer random numbers and facilitates strati-
fication. Equation (4) now simplifies to a standard estimator:

L̃o
x,i =

1
ni

ni

∑
k=1

fx(Ri,k)

pi(Ri,k)
.

5.2. Row Combination
In order to obtain the final estimator, we combine the four
row estimators L̃o

x,i using a row weighting heuristic wrow
i :

L̃o
x =

4

∑
i=1

1
ni

ni

∑
k=1

wrow
i (Ri,k)

fx(Ri,k)

pi(Ri,k)
. (5)

For wrow
i the balance heuristic is not always the best

choice. Each of the F , U , B, and C techniques is designed
to be locally the most proportional under different condi-
tions, i.e. to make the problem low-variance [Vea97]. Fig-
ure 4 left illustrates that averaging a locally proportional and
a uniform distribution can destroy the qualities of both over
the whole domain. In such cases, more aggressive heuristics
can perform better, e.g. the power or max heuristics [Vea97].
They weight techniques proportionally to their probabilities
under the assumption that higher probabilities result in lower
variance. While this approach avoids extreme variance ef-
fectively, it can still destroy local proportionality. Notice in
Figure 4 right that the uniform distribution pu has higher
probability around the borders in the middle region, yet p
alone results in a zero-variance estimator for the region.
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Figure 4: Left: The balance heuristic mixture pb ruins the
local proportionality of the aggressive distribution p to f
by averaging it with the defensive uniform distribution pu,
while still resulting in lower than optimal probabilities out-
side the peak. Right: By adaptively partitioning the domain,
the novel α-max heuristic avoids mixing, selecting the distri-
bution with closest proportionality in a user-controlled way.

The α-max heuristic. We often have additional knowledge
about the distributions, e.g. we expect a certain distribution
to achieve closer proportionality more often than others. We
have designed the α-max heuristic to exploit this knowledge:

wα
s (x) =


1, wα

i (x) = 0, for 1≤ i < s, and
ps(x)≥ max

s<i≤m
αi pi(x),

0, otherwise,

(6)

where x is sampled from ps, and each of the m distributions
pi has an associated priority index i and confidence value
αi ∈ (0;1]. Note that setting all αi = 1 gives Veach’s max
heuristic, while α1 is redundant, thus we always set it to 1.

The α-max heuristic partitions the sampling domain by
assigning distributions to those parts of the domain where
their probability is larger than all lower-priority distributions
scaled by their confidence values. This controlled partition-
ing can better preserve proportionality if we have some a-
priori information about the distributions. This can in turn
result in more effective variance reduction than the origi-
nal Veach heuristics. Figure 4 right demonstrates this, with
ordering (αp,αpu) = (1,0.2). It also illustrates how α-max
with αpu as a tradeoff parameter can be used as an alternative
to defensive importance sampling [Hes95], which also suf-
fers from mixture proportionality losses. These can be reme-
died effectively by α-max, as we also show in Section 6.

For the sampling techniques from Section 4 we use the or-
dering F , U , B, C. This prioritization follows the increasing
distribution conservativeness, setting highest priority to F .

5.3. Distribution Optimization
Veach [Vea97] argues that zero-weight heuristics waste com-
putation on samples that then get ignored. However, α-max
can actually be more computationally efficient than, e.g., the
power heuristic. Since weights are based on cheap to com-
pute sampling probabilities, we can avoid the costly fx eval-
uation by directly discarding zero-weight samples.

This observation can be further exploited to avoid gen-
erating samples that would end up being discarded in the
first place. This can be achieved by reducing the redundancy,

i.e. overlap, of the distributions. We directly modify them at
each I j as they are constructed. For every VPL Rk and pi, j
(corresponding to F j, U j, B j, C j), we multiply pi, j(Rk) by
wα

i, j(Rk) before accumulating it into its CDF. This way, we
partition the sampling domain, so that exactly one of the four
distributions at I j is non-zero for any VPL. This in turn in-
creases probabilities after re-normalization. Note that since
the optimization is performed at each record independently,
it does not eliminate all redundancies in the mixtures used
for rendering. It also slightly alters them, which is not a prob-
lem in practice, as α-max is still evaluated during rendering.

6. Results
We implemented the importance caching method in a stan-
dard ray tracer, and performed tests on a mid-range 4-core
Intel Core i7-860 CPU. The images in each comparison are
rendered in equal time of 20 sec at 1024×768 resolution.

Technique comparison. Figure 7 shows the STUDY HALL

scene illuminated by the high frequency St. Peter’s Cathedral
environment map, rendered with full global illumination us-
ing different methods. This scene allows us to test and com-
pare all sampling distributions and combination strategies, as
it synthesizes a variety of lighting conditions. These include
smooth direct and indirect illumination, small-scale illumi-
nation and geometric features, and occlusion.

The image labels in Figure 7 indicate the distributions
and weighting heuristics used. β denotes the power heuris-
tic [Vea97, p. 273] with β = 2; d – defensive importance
sampling with 0.4 uniform weight; α – the α-max heuristic
with (αF ,αU ,αB,αC) = (1,0.5,0.5,0.3) (Equation (6)).

Overall, full contribution sampling (F) performs remark-
ably well in smooth illumination regions, as it exploits any
available coherence, sampling the whole incident illumina-
tion with close proportionality, resulting in a low-variance
estimate. This proportionality, however, is ruined when mix-
ingF with other distributions. The power heuristic and espe-
cially defensive importance sampling increase variance over
α-max in such regions by 45% and 330% respectively.

When F misses important contributions, it is often due to
changes in occlusion. While C does not provide high enough
sampling probabilities, U is robust at discovering new unoc-
cluded VPLs, as seen when comparing FCα and FUCα.

The FUBCβ and FUBCα
unopt images do not use distribu-

tion optimization. As a result, B cannot robustly capture the
orientation-induced false negatives, as it is too conservative
initially. After optimization and re-normalization, the aver-
age increase in probability for F , U , B, C is respectively
0.05%, 20%, 454%, 50%. B benefits significantly mostly
due to the removed redundancies, an effect of overlap with
U (see Figure 3). The best result with low-variance smooth
regions and no spikes is then produced by FUBCα.

The benefit of including occlusion in the VPL sampling
can be seen when comparing FUBCα against UBCα which
increases variance by up to 10×. We also compare against
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resampled importance sampling (RIS), as well as against
uniform VPL sampling (i.e. C alone) which produces a sim-
ilar result to path tracing. For RIS, we first uniformly pick
S candidates at a point and shade them without visibility,
and then draw S/20 samples from the on-the-fly constructed
CDF. Even though UBCα relies on sometimes inaccurate
borrowed distributions, it is still superior to RIS, as it car-
ries importance information for all VPLs, avoiding the ini-
tial blind RIS sampling. Increasing the RIS candidate count
reduces performance without improving quality noticeably.

Figure 8 visualizes the fractional contributions of the in-
dividual distributions to the reference image in Figure 7. F
achieves close proportionality almost everywhere. As a re-
sult, it captures about 94% of the illumination. U and B dis-
cover almost all that has been missed (3% each), leaving a
very small fraction to C. Moreover, U , B and C together re-
quire 6× more samples than F due to their increasing con-
servativeness (which is slightly ameliorated by the optimiza-
tion), while having rather insignificant overall contribution.

Pre-sampling, rendering and performance. The 20-
second comparison images were rendered by progressively
averaging 3 frames, each using 2700 importance records and
8000 VPLs per frame. Table 1 summarizes the average frac-
tional time spent in different steps of FUBCα and RIS.

Numerical convergence. Figure 5 shows the ability of our
method to simultaneously handle different types of radiance
samples, as well as many light sources. It also compares
the convergence of path tracing (PT), resampled importance
sampling (RIS) and importance caching (IC) for direct and
full global illumination from environment and area lights.

The time plots (in seconds) show the root mean squared
error (RMSE). Due to the necessary geometric clamping of
indirect VPLs, the path tracer has been slightly modified so
that all three methods converge to the same biased solution
on the right. In both cases, IC consistently outperforms PT
and RIS with an average variance reduction of 9× and 4.8×
respectively for the left and 25× and 9× for the right images.

Glossy materials. Figure 6 shows three Buddha statues with
increasingly specular Phong materials, illuminated by the St.
Peter’s environment map. We compare against resampled
importance sampling (RIS) with the same configuration as
for the STUDY HALL scene, as well as to BRDF and illumi-
nation sampling combined with the power heuristic (MIS).

This is a worse case scenario for our method, due to the
lack of occlusion and less available coherence to exploit,
a result of the high frequencies in geometry, BRDFs and
illumination. We still notice that in occluded regions and
on low-to-mid frequency reflection or geometry distribu-
tions, IC outperforms the other two methods, producing very
smooth results. However, with narrow glossy BRDF lobes,
even slight orientation changes can render the importance
record (IR) data invalid at nearby shading points. In such sit-
uations the RIS and MIS algorithms perform better than IC.

Based on the above observations, we developed the fol-
lowing combination of IC and RIS. We first compute the
average “BRDF distance” between point x and its M nearest

records I j: dx = 1− 1
M ∑

M
j=1

fr(ω
o
x ,x,ω

o
j )

fr(ωo
x ,x,ωo

x)
, where ω

o and ωo de-
note an outgoing radiance direction and its reflection, respec-
tively. This metric captures orientation differences between
specular lobes, while treating the BRDFs as black boxes. If
dx is below 0.5 we compute the outgoing radiance using IC,
otherwise with RIS. The combined IC+RIS algorithm (Fig-
ure 6 top right) preserves the qualities of both IC and RIS by
adaptively detecting the better performing one at the partic-
ular shading point. Note that noise is further reduced on the
statues, as now RIS can take more samples in the given time.

High-quality preview rendering. The results in Figure 8
suggest that we can obtain a quick, highly accurate, and low-
variance solution using a small number of samples drawn
only from F . The implementation then can be simplified to
storing only one distribution at each IR, and evaluating the
α-max heuristic only w.r.t. C, effectively discarding samples
with probabilities below a constant threshold. While this in-
troduces some bias, a unique feature of our method is that,
if desired, it can be compensated for in a controlled way by
selectively including U , B and C in the sampling process.

Figure 9 demonstrates the high quality achieved in just 2
seconds (0.5 FPS) using the described method – IC Fα, on
the STUDY HALL and SPONZA scenes, compared to RIS and
PT, as well as to classic instant radiosity [Kel97]. We also
show direct importance visualization (DIV) at each shading
point, which is equivalent to irradiance interpolation. DIV
is only slightly faster than IC Fα, since the latter samples
only 4 VPLs per pixel, which now takes only about 30% of
the frame time. Although noise-free, DIV blurs away all fine
details, while instant radiosity suffers from severe aliasing.
On the other hand, RIS and PT produce very noisy images.

7. Discussion
Although our sampling framework is unbiased, the use of
VPLs incurs a small systematic error when geometric clamp-
ing is used. In addition, the assumption that the scene radi-
ance field can be well approximated by a small set of radi-
ance samples generated from the light sources becomes in-
valid in the presence of high-frequency BRDFs with glossy
inter-reflections. Handling such materials with VPLs is a
general problem, although solutions exist [KK04,HKWB09,
DKH∗10]. Additionally, the number of VPLs can be effi-
ciently increased by using a spatial hierarchy [WFA∗05].

Our implementation uses uniform distribution of ISs over
the image plane. We experimented with distributions that
adapt to geometric discontinuities. However, this caused a
decrease in IR density around sharp discontinuity regions,
e.g. shadow penumbrae, increasing variance noticeably. A
better adaptive strategy would be to utilize actual statistics
from previous frames, which we leave for future work.
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Figure 5: Top row: The STUDY HALL scene illuminated by
36 area lights and an environment map. Left: Direct illumi-
nation from St. Peter’s map. Right: Full global illumination
from a sunset map. Bottom row: total image RMSE time con-
vergence plots of path tracing (PT), resampled importance
sampling (RIS) and importance caching (IC).

Preprocess Rendering
VPL CDF Sampl. Shad. RT Other

IC 3% 14% 30% 3% 42% 8%
RIS 0% - 3% 70% 24% 3%

Table 1: Fractional time break-down for the FUBCα and
RIS images in Figure 7 rendered in 20 sec with importance
caching (IC) and resampled importance sampling (RIS).

To render a frame, our algorithm needs NV PL×NIR×4×
sizeof(float) bytes of memory, where NV PL and NIR are the
number of VPLs and importance records (IRs). For the tests
in figures 5, 6 and 7 this amounted to about 330MB. Memory
consumption can be decreased by splitting the image into
tiles which are rendered independently. Alternatively, NV PL
and/or NIR can be reduced at the cost of increasing variance.

8. Conclusions
We present importance caching – a global illumination al-
gorithm that improves importance sampling of VPL contri-
butions, while maintaining efficiency by exploiting the illu-
mination coherence in the scene. The idea is to compute ex-
act VPL contributions at a sparse set of locations, and reuse
these evaluations in the form of importance for selecting the
few most relevant VPLs at other locations. We design a set of
suitable importance distributions to ensure robustness at illu-
mination discontinues, and propose a novel α-max heuristic
to combine these distributions in a low-variance estimator.

Our algorithm is best suited to architectural visualization
of scenes with occlusion and complex non-uniform lighting,
where visibility is often a major source of variance. It can
deliver a good initial approximation in a matter of seconds

Figure 6: Glossy Buddha statues with Phong exponents,
from left to right, 10, 80, 300 on a glossy ground with expo-
nent 500, rendered in 20 sec using our importance caching
algorithm (IC), resampled importance sampling (RIS), MIS-
combined BRDF/illumination sampling (MIS), and com-
bined IC and RIS (IC+RIS). In this worst case scenario for
IC it still outperforms RIS and MIS in regions with occlusion
and/or smooth illumination, while the combined IC+RIS al-
gorithm achieves the best overall quality.

on a standard CPU, while a simplified version interactively
renders accurate high quality previews. Future work can im-
prove scalability with the number VPLs, e.g. via similarity
clustering. The algorithm will also likely benefit from a GPU
implementation, as its stages are inherently parallel.

Acknowledgements: The first author would like to thank
Vincent Pegoraro for the fruitful discussions.
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Appendix A: VPL Contribution Bounds
For the B distribution (Section 4) we need a geometric term
bound between VPL Rk and receiver points x in the neigh-
borhood of importance record (IR) I j (see Figure 10). If Rk
is infinite, we simply have Gmax

k (Rk) = cosθmin. Otherwise,

we have to compute Gmax
k (Rk) =

cos θmin cos θ
Rk
min

dmin
, for which we

also need the radius rk of the region of influence of Ik.
We bound each term individually. We estimate rk by mul-

tiplying the radius of the camera ray footprint at Ik by the
screen-space IR density. The distance bound is then dmin =
max(0,d− rk), where d = ||Rk− I j||. For θ

Rk
min we find the

maximum change ∆θ
Rk = −asin(r/d). For θmin we use a

maximum change of ∆θ = −30◦, which worked better in
our tests than the conservative θmin = 0◦.

Figure 10: Bounding the geometric term in a neighborhood
of record I j for infinite (left) and finite (right) VPLs.
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