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Abstract

The Closest Point Method (CPM) is a method for numerically solving partial differential equations (PDEs) on

arbitrary surfaces, independent of the existence of a surface parametrization. The CPM uses a closest point rep-

resentation of the surface, to solve the unmodified Cartesian version of a surface PDE in a 3D volume embedding,

using simple and well-understood techniques. In this paper we present the numerical solution of the wave equation

and the incompressible Navier-Stokes equations on surfaces via the CPM, and we demonstrate surface appear-

ance and shape variations in real-time using this method. To fully exploit the potential of the CPM, we present

a novel GPU realization of the entire CPM pipeline. We propose a surface-embedding adaptive 3D spatial grid

for efficient representation of the surface, and present a high-performance approach using CUDA for converting

surfaces given by triangulations into this representation. For real-time performance, CUDA is also used for the

numerical procedures of the CPM. For rendering the surface (and the PDE solution) directly from the closest point

representation without the need to reconstruct a triangulated surface, we present a GPU ray-casting method that

works on the adaptive 3D grid.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Simulation and Modeling]: Types of
Simulation—Parallel I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing

1. Introduction

Techniques for solving partial differential equations (PDE)
have numerous applications in physics-based simulation and
modeling, and they are frequently employed in computer
graphics for realistically simulating real-world phenomena
such as fluids or deformable solids. Most commonly, partial
differential equations over R

2 or R
3 are considered, and,

since analytical solutions only rarely exist, numerical solu-
tions using some form of spatial discretization are employed.

In computer graphics, numerical solutions of PDEs are
also used to produce effects on manifolds such as surfaces
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in R
3. Prominent examples include surface texture synthe-

sis [Tur91], texture assignment [CLB∗09], or flow simula-
tion on surfaces [Sta03]. If an isometric surface parametriza-
tion exists, a PDE defined on a surface can be transformed
into a PDE on the 2D parameter domain and solved using
standard discretizations [Sta03, LWC05, LFW07]. PDEs on
surfaces can also be solved directly using finite element dis-
cretizations on a surface triangulation [DE07]. These tech-
niques, however, rely on changing the non-parametric form
of the PDE to agree with the underlying discretization. An
alternative are so-called embedding techniques [BCOS01,
NNRW09, CLB∗09, RM08, CRT04], which lift the PDE to
a narrow band around the surface and solve a transformed
PDE on this band.

Embedding techniques are particularly attractive because
they do not rely on the existence of a low distortion
parametrization. The computation of such a parametrization
can be difficult to achieve, if not impossible, and it is not suit-
able in applications where the surface undergoes frequent
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Figure 1: Numerical simulation of fluids on complicated

surfaces via the Closest Point Method. Top: The simulation

result is rendered via rasterization and pixel shading. Bot-

tom: Raycasting the embedding computational grid allows

simulating surface displacements. At a resolution that corre-

sponds to a 5123 Cartesian grid, simulation and rendering

takes less than 100 ms per time step.

shape changes. Another advantage of embedding techniques
is that once the PDE has been lifted to the embedding 3D
space, standard numerical schemes can be used in this space
to efficiently solve the PDE.

Among the embedding techniques, the Closest Point
Method (CPM) is one of the less complicated methods in
that it only requires the existence of a closest point repre-
sentation of the surface (i.e., for any point in the embedding
space, the surface point with the least Euclidean distance is
known) and it solves completely standard PDEs—without
any metric terms—in the embedding space using common
numerical methods on a uniform Cartesian grid [RM08]. In
addition, the CPM can handle general open surfaces and sur-
faces without orientation, and, thus, is applicable even in
scenarios where the surface separates into parts.

Despite its simplicity and accuracy, however, a naïve im-
plementation of the CPM is exhaustive in memory. Such
an implementation would typically construct a full surface-
embedding Cartesian grid and pre-compute at any grid point
its closest surface point. It is clear that this severely limits the
resolution of the computational grid to be used. Furthermore,
the closest point representation remains fixed only under the
assumption that the surface does not change. In scenarios
where this is not the case, re-computing closest points can
have a severe impact on performance.

Our contribution. The primary focus of this paper is the
simulation of fluid effects on surfaces in real time using the
CPM. To achieve this, we present a fast GPU method for re-
alizing the CPM and rendering the simulation results. The
method can efficiently solve non-linear PDEs on surfaces
using a high-resolution embedding grid, and it can calcu-
late and render the resulting fields independently of the input
surface resolution. Due to the strict separation of the surface
representation and the computational grid, our method sup-
ports initial surfaces of arbitrary topology and geometric de-
tail. The method is implemented in CUDA and Direct3D10,
and all parts have been optimized to make the best possible
use of the massive parallel processing power and memory
bandwidth on current GPUs.

The particular contributions of our paper are:

• A novel CUDA method for constructing an adaptive
multiblock closest point grid representing a narrow spa-
tial band around a given triangulated surface.

• A CPM for numerically solving the wave equation and
the Navier-Stokes equations using Semi-Lagrangian ad-
vection.

• A GPU ray-caster that works directly on the adaptive clos-
est point grid and can visualize surface appearance at-
tributes and surface displacements.

Our paper is structured as follows: In Section 2 we discuss
previous work that is related to ours. The CPM is reviewed
in Section 3. Section 4 is dedicated to the efficient construc-
tion of an adaptive computational grid enclosing a triangu-
lated surface representation, and the generation of the closest
point representation. Section 5 sheds light on the numerical
solution of the second-order linear wave equation and the in-
compressible Navier-Stokes equations via the CPM. Besides
discretization aspects, the effects of the closest point exten-
sion on stability, accuracy and performance of the simula-
tion are discussed. Section 6 introduces the volume raycaster
that is used to visualize dynamic color and displacement ef-
fects independently of the surface triangulation. Section 7
presents a detailed performance analysis. The paper is con-
cluded with a discussion of the advantages and limitations of
the proposed method and some ideas for future work.

2. Related Work

An interesting surface-based problem is the simulation of
fluid dynamics on surfaces. Stam applied a modified 2D ver-
sion of his stable fluid dynamics simulation [Sta99] to the
patches of Catmull–Clark surfaces and introduced a tech-
nique to transfer information in an overlap between the
patches [Sta03]. While working well in regular areas of
the surface, the approach leads to errors at non valence-
four vertices. For techniques relying on some sort of global
parametrization similar problems can be expected at the sin-
gularities.

Several other authors directly use the vertices and edges
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of triangle meshes as a discretization and employ finite
element, finite volume, Lattice Boltzmann or related nu-
merical methods in their solvers [SY04, FZKH05, NMZ07,
ATBG08]. This however takes away some advantages of a
regular grid discretization as finite element methods are gen-
erally more complicated. Particularly on surfaces, the result-
ing algorithms may be quite difficult to implement in prac-
tice [RWP06]. Finally, if the input surface is not given as a
triangulation a costly reconstruction procedure may be re-
quired.

The interest in simulation on surfaces also resulted in
some particle based solutions. Turk [Tur91] simulated reac-
tion diffusion systems in a grid formed by particle relaxation
on a surface, with connectivity given by a Voronoi diagram.
Later, the technique was adapted to general shallow water
equations [WMT07].

Chuang and co-workers [CLB∗09] proposed a volume
embedding scheme based on B-splines as Ansatz-functions
in a hexahedral simulation grid. By restricting the basis func-
tions to a surface instead of a sub-volume, a weak form of
a surface PDE can be solved independently of the 3D sim-
ulation domain, but at the expense of explicitly clipping the
surface mesh against the simulation cells.

The Closest Point Method was introduced by Ruuth and
Merriman [RM08]. Later works presented an implicit time
stepping [MR09] and used the CPM for the evolution of level
sets [MR08] or segmentation on surfaces [TMR09]. Hong
et. al [HZQW10] applied the CPM to fire simulation on ani-
mated surfaces.

Due to the embedding used, the CPM relies on certain
properties of distance transforms, such as smoothness of
properties close to the surface. Jones [JBS06] provides an
excellent survey of these properties.

An additional topic related to our method is the GPU vox-
elization of triangle meshes. While earlier work employed
the fixed function, 2D rasterization and blending stages for
this task [ED08], recently Schwarz and Seidel [SS10], and
Pantaleoni [Pan11] demonstrated the superior efficiency of
the CUDA parallel programming API for constructing a
solid volume from a surface mesh. Building upon these
works we will demonstrate the efficient construction of a
multiblock closest point grid.

3. The Closest Point Method

As mentioned above, the CPM is an embedding method
where computations are performed in an embedding space
surrounding the surface (typically a 3D volume) in such a
way that the results are consistent with the solution of a sur-
face partial differential equation. The main principle needed
for this to be true is that of “equivalence of gradients”: the
intrinsic surface gradient ∇Su of a surface function u agrees
on the surface with the standard Cartesian gradient of a vol-
ume function v, provided v is the closest point extension of

u [RM08]. Intuitively this is because the closest point exten-
sion v(x) = u(cp(x)) is constant in the normal direction to
the surface so the change in v must be tangent to the surface.
Here, cp(x) denotes the surface point closest to the point x.
A second principle applies in a similar fashion to surface di-
vergence operators [RM08]. The two principles can be com-
bined to handle many other differential operators including
the Laplace–Beltrami operator.

To build a numerical method on these ideas, consider a
prototype problem describing the evolution of some attribute
u on a surface

ut = f (∇su)

where f is a general nonlinear function and ∇su is the intrin-
sic surface gradient. Suppose at some fixed time t we have a
solution vt defined over the volume which is constant in the
normal direction to the surface. We can move the solution
forward in time by one step of size ∆t using a forward Euler
discretization. This evolution phase requires us to evaluate
the right-hand side at time t and by the principles mentioned
above, this is exactly the same (for points on the surface) as
evaluating f (∇vt) in the volume:

ṽ
t+1 := v

t +∆t f (∇v
t).

The new solution ṽt+1 might not be constant in the normal
direction so we then perform a second extension phase, a
closest point extension which projects values off of the sur-
face into the surrounding volume to obtain a solution vt+1

which is constant in the normal direction:

v
t+1(x) := ṽ

t+1(cp(x)), for each point x.

To obtain values at cp(x), which does not have to coincide
with a grid sample xG in the discrete case, higher-order in-
terpolation is used. We then repeat these two phases over and
over to advance the solution in time. Several properties make
the Closest Point Method simple and effective:

• In the embedding volume, simple well-understood finite
difference schemes can be applied to evaluate f (∇v).

• Posing the PDE in the embedding volume is easy: in our
example, the nonlinear function f is unchanged in the vol-
ume calcuation and we simply replace intrinsic differen-
tial operators with their standard Cartesian counterparts.
There are no metric terms to deal with.

• In the extension phase, we need the closest point for each
grid point in our embedding volume. This is the only ge-
ometry representation of the surface that is needed and
it is a very general representation: allowing arbitrary co-
dimension and non-orientable surfaces for example.

• Without effects on the accuracy, the computation can be
performed on a narrow band enveloping the surface. No
artificial boundary conditions need to be applied at the
edges thereby.

• The accuracy of the method is well-understood and de-
pends on the accuracy of the time-stepping scheme, the
finite difference scheme and the interpolation scheme.
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Figure 3: Overview of the different GPU buffers that are created to facilitate an efficient realization of the CPM.

thread computes the triangle’s axis aligned bounding box—
enlarged about the width of the computational band—and
computes the blocks that are intersected by this box. Since
testing against the bounding box can result in false positives,
i.e., blocks that are intersected by the bounding box but not
the computational band, an additional test of the blocks is
performed to prune as many of them as possible: For ev-
ery intersected block, the thread calculates the distance from
the block center to the triangle and skips the block if its
bounding sphere does not intersect the triangle’s computa-
tional band. By writing a 1 into block-index-buffer at the po-
sitions of the remaining blocks, these blocks are marked as
intersected. Because all threads write the same value, a syn-
chronization of the write operations is not necessary in this
case.

At the end of stage 1, each thread writes the number in-
dicating how many blocks are intersected by the triangle
to a temporary buffer—blocks-per-triangle—in global GPU
memory. Finally, an exclusive parallel prefix sum [Har07] is
computed in-place over block-index-buffer and blocks-per-

triangle. At the positions that were marked, the block-index-

buffer now contains the relative positions of the respective
block in the sequence of marked blocks.

Stage 2: Since the prefix sum operation also calculates the
total number of marked blocks, the closest-point-buffer can
be allocated in GPU memory. Then, a CUDA kernel with
one thread per entry in block-index-buffer is executed. The i-
th thread reads the index value val from the buffer at position
i and compares it to the value that is stored at position i+1.
If both values are different, the thread writes the value i into
the compacted-block-index-buffer at position val.

Stage 3: We start by allocating the expanded-tri-buffer in
GPU global memory using the size indicated by the prefix

sum over blocks-per-triangle. The elements of this buffer are
pairs of triangle-block indices, and for each triangle these
pairs are written in succession into the buffer. Since the par-
allel scan operation also gives the starting positions of each
set of triangle-block pairs in expanded-tri-buffer, a CUDA
kernel with one thread per triangle is executed to first build
these sets in shared memory—including the computation of
intersected blocks as described before—and then to write
them into the buffer at the starting positions (see the first
occurrence of expanded-tri-buffer in Figure 3). In the same
kernel, we use CUDA’s atomicAdd operation to fill a buffer
triangles-per-block, which stores for every marked block the
number of triangles it intersects.

In a second pass, expanded-tri-buffer is sorted w.r.t. the
block ID using the CUDA radix sort [Har07], and a prefix
sum over triangles-per-block is calculated. From the content
of the resulting buffers the indices of all triangles contribut-
ing to the closest point representation for a particular block
can be determined.

4.3. Closest Point Computation

For each of the cells in closest-point-buffer, which are
uniquely defined by the block they belong to and their rela-
tive position in the sequence of cells of this block, the point
on the surface that is closest to the cell’s center has to be
computed (we will call these centers the grid vertices from
now on). The parallel CUDA implementation we propose is
optimized to reduce global memory operations by perform-
ing a block-wise closest point computation in shared mem-
ory, and writing the results en block into global memory.

The CUDA kernel to compute the closest point repre-
sentation executes one warp of CUDA threads per grid
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5.2. Embedding PDE

To compute the solution for the next time step, we run one
CUDA thread per grid vertex inside the evolution band.
For each term of the embedding PDE we choose an ad-
equate evolution strategy. The embedding of terms of the
PDE involving spatial differential operators up to order two
is found by replacing surface gradients, surface divergences
and Laplace–Beltrami operators with their standard Carte-
sian counterparts in R

3. The discretization can then be done
via regular finite differences. The charming property of CPM
in this case is that information is automatically propagated
only in tangential directions along the surface. If we have an
existing discretization for the problem of choice in R

3, we
can reuse it without modification.

5.3. Closest Point Extension

The closest point extension is performed by one CUDA
thread per grid point in the extension band. We retrieve the
grid point’s closest point on the surface and resample the
respective attribute at this position using an interpolation
scheme. The value at the grid point is then replaced by the
interpolated value, thereby creating a field that is constant in
normal directions to the surface. The kind of interpolation is
important and influences stability, quality and performance
of the whole simulation.

A stable interpolation scheme is especially important
when dealing with non-smooth surfaces. While the funda-
mental assumptions of the CPM are true only for smooth
surfaces, it is certainly desirable to also handle C0 surfaces
(like in Figure 6 bottom). However, the closest point field
for a C0 surface can contain discontinuities even close to the
surface. Through the closest point extension, this results in
discontinuities also in the simulation attributes.

Figure 6: Top: With linear interpolation (left) the simulation

shows artificial diffusion and loses energy. Both problems

are not present with WENO4 interpolation (right). Bottom:

While the CPM generally requires the surface to be smooth,

with clamped WENO interpolation it also delivers reason-

able results for C0 surfaces.

Linear interpolation is computationally cheap and fulfills
the convex hull property, which guarantees stability of the in-
terpolation even if the field is discontinuous. Unfortunately,
at least for second-order PDE problems, linear interpola-
tion is not accurate enough for the CPM to ensure consis-
tency [RM08]. At any rate and in practice, linear interpola-
tion introduces a high amount of artificial numerical diffu-
sion, which manifests in a loss of energy in physics simula-
tions (cp. Figure 6 top).

In the work of Macdonald and Ruuth [MR08], weighted
essentially non-oscillatory (WENO) interpolation was pre-
sented. In smooth areas it is of higher order, which pre-
vents numerical diffusion. As with most polynomial inter-
polations, stability can be critical near discontinuities where
the polynomials overshoot the values in the stencil. To re-
duce this effect, the WENO algorithm calculates a weight
for several candidate polynomial interpolants and takes a
weighted sum of each interpolant. If a particular candidate is
highly oscillatory in a given region it is assigned a very small
weight. By this means oscillations are minimized in those ar-
eas, as is the formal order-of-accuracy. In the unlikely—yet
unfortunately practically relevant—case that all polynomi-
als oscillate, the WENO interpolation can still overshoot. To
preserve stability in this event, we clamp the interpolation
result to the minimum and maximum values in the stencil.

The desired interpolation order dictates the size of the
stencil and thereby the bandwidth requirements. We use the
WENO4 interpolation scheme which is built on quadratic
candidate interpolants and recovers tri-cubic interpolation in
smooth regions (tri-quadratic otherwise) using 64 entries in
the stencil. It is sufficiently accurate for the CPM and we
find it to be fast enough for an interactive application.

5.4. Wave equation

The wave equation is the classical example of a hyperbolic
equation:

∂2u

∂t2 = c
2
∇

2
S u

In our case u represents the height of an elastic surface over
time t for a given wave speed c. Note that this is the surface-
PDE version of the equation, which means that we can inter-
pret u as the height above some original surface S. Because
the right-hand side involves only the Laplace-Beltrami oper-
ator, we can simply replace it with the Cartesian Laplace op-
erator to retrieve the embedding PDE for the CPM. We then
obtain a discretization for a 3D Cartesian grid with spacing
∆x and regular time intervals of length ∆t by substituting the
second order derivatives on both sides of the equation with
finite differences. For each grid point (i, j,k) this leads to:

ũt+1
i, j,k −2ut

i, j,k +ut−1
i, j,k

∆t2 =
c2

∆x2

(

u
t
i+1, j,k +u

t
i−1, j,k

+u
t
i, j+1,k +u

t
i, j−1,k +u

t
i, j,k+1 +u

t
i, j,k−1 −6u

t
i, j,k

)
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therefore examine the grid points xi, i = 0,1, . . . in a small
stencil around xG and calculate a vector di = xi − cp(xi) for
each of them. We accumulate the differences in the vector
dn

S as follows:

d
0
S = d0

d
i+1
S = d

i
S +

{

di+1 if di+1 ·d
i
S >= 0

−di+1 otherwise

The negation is necessary to account for grid points on dif-
ferent sides of the surface. A surface normal is then retrieved
by normalization of dS. Note that the resulting normal points
to the side of the surface on which the first off-surface vertex
in the stencil lies. In practice, we find using 8 points around
xG works well.

In fluid mechanics, the pressure term −
1
ρ∇S p is often

used within a projection method [CM00] to ensure that the
resulting velocity field fulfills the incompressibility equa-
tion ∇S · u = 0. Conceptually, this is achieved by applying
a Hodge decomposition to the velocity field, which splits it
into a divergence-free field and a curl-free field. The latter
one can either be dismissed or it can be used for vorticity
confinement [Sta99].

We determine a p that lets 1
ρ∇S p reproduce the curl-free

part, such that after the subtraction only the divergence-free
part is left. At every time step, this ultimately requires to
calculate the divergence of the current velocity and solving
a surface Poisson problem of the form ∇S ·∇S p =∇S ·u to
retrieve the desired pressure. Treating this Poisson equation
with an artificial time iteration and the explicit CPM would
require a closest point extension after each step, which
makes this approach quite costly. Another option would be
applying the implicit CPM [MR09], either to an artificial
time iteration or directly to the Poisson problem.

We choose a cheaper computational approach where we
apply the closest point extension only to the right-hand side
of the equation, and we replace the left-hand side with the
simpler Cartesian Laplacian. Then, we solve the linear sys-
tem with the conjugate gradients method. While this may
not enforce incompressibility to a high order of accuracy,
in practice it gives visually plausible results if we choose a
Neumann boundary condition for the values outside the evo-
lution band and reuse the pressure from the last time step as
the initial guess. After the pressure update, a closest point
extension must also be applied to the velocity field itself to
prepare it for the next time step.

In order to visualize the fluid flow we introduce an addi-
tional, final sub-step in which the advection of a mass-less,
colored dye through the velocity field is simulated. The dye
is transported through the flow by the same advection oper-
ator u ·∇S that is used for the velocity. The only difference
is that the dye is represented by three scalar fields—one for
each rgb color channel—as such the operator does not in-
clude a projection onto the tangent plane.

6. Rendering

For rendering the simulated fluid effects on the surface we
use Direct3D 10, and we make use of CUDA’s interoperabil-
ity functions to access the respective GPU memory resources
within both APIs. If the surface is given as a triangle mesh
and the simulated quantities are used to modulate its color,
the mesh is rendered via polygon rasterization. The coordi-
nates of the triangle vertices in the embedding 3D domain
are interpolated by the rasterizer and then a pixel shader is
employed, to retrieve values from the simulation buffers us-
ing trilinear interpolation. Figure 8 (left) demonstrates such
a rendering with flat shading to show the triangulation, and
in Figure 1 (top) Phong shading was used to realize a smooth
look of the surface.

Figure 8: Navier-Stokes simulation on a Möbius strip; a

non-orientable manifold. Left: Rendering with rasterization

and flat shading to emphasize the triangle mesh serving as

the original surface description. Right: Same simulation as

left, but now rendered via raycasting and using the red ink

as a displacement on both sides of the surface.

6.1. Volume Raycasting

If the initial surface is not given as a polygon mesh, for in-
stance if it is given by a point set representation or an implicit
surface description, or if the simulated quantities should be
used to modulate the geometry of the surface, rasterization
cannot be used any more. To overcome this problem, we
present a GPU method that renders the surface directly from
the sparse closest point volume representation, regardless of
the initial surface representation.

A first approach is to perform exact voxel ray-casting of
the closest point volume in a DDA-like fashion [Bre65]. The
voxels correspond to the closest point cells, and the constant
voxel attributes are given by the simulation values at the cell
vertices. The rays of sight first traverse the grid of blocks
until a marked block is hit. Then, the block’s location in the
closest-point-buffer is retrieved and traversal is continued on
the cells inside. Traversal is stopped if a voxel is hit that
contains the closest surface point stored at this voxel, and
the voxel attribute is used as pixel color.
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While the proposed technique can visualize a piece-wise
(per voxel) constant distribution of attributes across a sur-
face, it does not allow rendering a smooth distribution. This
is achieved by interpolating the distances of the cell vertices
to their closest surface points and performing an exact inter-
section test between the rays and the zero crossings in the
reconstructed field.

Since the CPM is based solely on the existence of an un-

signed distance transform, the zero crossings cannot be cal-
culated exactly, and the intersection test comes down to find-
ing the points along the rays where the distance between the
sample position and the trilinearly interpolated closest point
is below a given ε. At this point, the simulation attributes are
retrieved via trilinear interpolation, too. To simulate smooth
shading, per-pixel normals are calculated at each intersec-
tion point by normalizing the vector between the point and
the closest surface point.

6.2. Rendering Surface Displacements

In addition to using the closest point representation for ren-
dering the original surface, we can also use it to for simulat-
ing surface displacements that are given, for instance, by the
simulation values at the grid vertices (see Figures 1 bottom,
and 8 right). After interpolating the closest point cp(xR) at a
sample position xR on a ray, the simulation value h(cp(xR))
at this point is interpolated and compared to the distance be-
tween cp(xR) and xR. As Figure 9 shows, a hit is detected if
the distance value is smaller than the interpolated attribute
value. The figure also shows, that the interpolation of clos-
est points from different parts of the surface can lead to off-
surface points. We take care of this case by comparing the
bounding box of the closest points to the interpolation cell.
The normal of the displaced surface is calculated from the
original surface normal and the gradient of the attribute field.
Since the gradient is tangent to the surface because of the
CPM, it can be used in turn to disturb the surface normal ap-
propriately. The maximum displacement is supposed to not
exceed the width of the computational band. This constraint
can be abandoned, however, by using an enlarged displace-
ment band, where the grid vertices outside the computational
band store only their closest points but no attributes.

The proposed rendering approach displaces the surface
equally on both of its sides. For orientable surfaces it is also
possible to distinguish the two half-spaces in order to dis-
place in just one direction or to use negative displacements.
For non-orientable surfaces the view-direction can be used
to introduce an artificial orientation. Despite of being view-
dependent, however, this approach has the additional prob-
lem that it results in artifacts at the silhouettes, where the
orientation flips. We therefore recommend to treat both sides
equally in this case.

Figure 9: Bottom left: Intersection of a ray (purple) with a

displaced surface (black). At the red ray sample, the interpo-

lation of closest points on the original surface (blue) results

in an off-surface point. At the green ray sample, an intersec-

tion with the displaced surface was found, as the distance

to the closest point equals the interpolated height value. Top

right: The normal of the original surface (blue arrows) com-

bined with the gradient of the height value (dotted arrow)

leads to the normal of the displaced surface (black arrow).

7. Performance Analysis

To validate the efficiency of the proposed method for simu-
lating and rendering fluid effects on surfaces, we have per-
formed a number of experiments using surface models and
simulation grids at different resolutions. In all of our exper-
iments, a block size of b = 4 was used. We found this size
to give the best performance compared to smaller (tighter
fit of the adaptive simulation grid to the surface but increas-
ing number of indirections to access adjacent grid cells) and
larger (increasing memory and computation requirements)
blocks. All measurements were performed on a 2.4 GHz
Core 2 Duo processor and an NVIDIA GeForce GTX 480
graphics card with 1536 MB local video memory. A detailed
memory and performance statistic of the GPU CPM for fluid
simulation is given in Table 1. Here, numbers separated by a
slash refer to the simulation using the wave equation with
linear interpolation and the Navier-Stokes equations with
WENO4 interpolation, respectively. All timings are given
in milliseconds and rendering was always performed on a
1K ×1K viewport.

For each model, the first column lists the name and num-
ber of triangles, while the second column gives the resolu-
tion of the uniform Cartesian grid to which the simulation
resolution corresponds. The third column lists the number
of closest points within the computational band. The dif-
ferences are due to differently sized computational bands
that are dictated by the respective numerical stencils of the
wave equation (bandwidth with linear interpolation: 2.4∆x)
and the Navier-Stokes equations (bandwidth with WENO4
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interpolation: 5.7∆x). The forth column gives the memory
that is required for solving the equations on the GPU via
the CPM. The higher memory consumption of the Navier-
Stokes simulation is due to the larger computational band
and the additional buffers that are required to store the simu-
lation quantities. The times required to build the closest point
representation are given in the fifth column. Here it is im-
portant to note that more than 75% of the time is always
required by the closest points computation, meaning that the
grid construction on the GPU consumes only a small por-
tion of this time. It can further be seen that the GPU memory
requirements mainly depend on the resolution of the simula-
tion grid, while on the other hand, the time for constructing
the grid is strongly dependent on the number of triangles.

The following four columns list the simulation times us-
ing linear and WENO4 interpolation in the closest point ex-
tension for the wave equation and the Navier-Stokes equa-
tions. As expected, WENO4 interpolation increases the over-
all simulation times significantly due to its larger computa-
tional stencil, and the enlarged computational band thereof.
The Navier-Stokes simulation uses the respective interpo-
lation type in three separate closest point extensions (di-
vergence, velocity, ink) and two advection passes (velocity,
ink). It can be observed that solving the pressure Poisson
equation is the most expensive operation (~75% of the total
time) as long as linear interpolation is used. With WENO4
interpolation, however, these ratios turn into the opposite:
Most of the time is now spent on interpolations in the advec-
tion (~50%) and extension kernels (~40%).

The last three columns show the rendering times for ras-
terization, voxel-based surface raycasting, and raycasting
with surface displacements. The timings refer to the ren-
dering of a WENO4 wave simulation. In the last column a
computational band of width 8∆x was used to allow simu-
lating large surface displacements. As expected, rasterizing
the triangle mesh on the GPU leads to the highest frame
rates. Direct surface raycasting is between 1.2 to 5 times
slower, but still delivers highly interactive frame rates. Ray-
casting with smooth displacements, which allows simulat-
ing dynamic surface modifications, also delivers interactive
frame rates even for the computational grids with the highest
resolution. This is quite remarkable since much larger clos-
est point and simulation buffers are used.

7.1. Surface Deformations

The timing statistics indicate that the creation of an adaptive
closest point grid for the CPM is possible at high rates even
for large triangular meshes. This is an important step towards
a real-time CPM for simulating deformations of the sur-
face itself. In the following we demonstrate mesh smoothing
based on the Laplace operator [Tau95] via the GPU CPM as
a first example (see Fig. 10).

Each smoothing step thereby consists of three opera-
tions: Firstly, we create an discrete, adaptive closest point

Figure 10: Laplacian mesh smoothing using the CPM. Left:

Flat shaded, distorted Bunny model. Right: The model after

15 smoothing steps (64ms each) using a grid resolution of

256.

field as described. Secondly, we apply the Laplace-Beltrami
operator—discretized with the standard Laplace operator on
the embedding Cartesian grid—to the closest point field.
At every point on the surface the resulting vector field is
directed towards the mean of the point’s neighborhood on
the surface. Thirdly, we interpolate the discrete field using
WENO4 at every vertex position of the mesh and move each
vertex into this direction.

8. Conclusion and Future Work

We have presented a real-time method for simulating fluid
effects on surfaces using the CPM. To achieve this, we have
developed a fast GPU method for realizing the CPM and ren-
dering the simulation results as dynamic color or displace-
ment effects. The method can efficiently solve non-linear
PDEs on surfaces using a high-resolution embedding grid,
and it can calculate and render the resulting fields indepen-
dently of the resolution and topology of the input geometry.

The proposed method opens a number of future research
directions. In particular, we would like to adopt the CPM for
real-time effects on animated surfaces. So far, we are able
to construct an adaptive embedding grid for the deforming
surface in every frame. Further research is necessary, how-
ever, to define a CPM for PDEs on deforming surfaces and
to develop an efficient solution for the frame-to-frame infor-
mation flow. Due to the independence of the CPM and our
rendering technique from the original surface representation,
such a method would also allow simulating complex defor-
mations of the surface itself.

From a numerical point of view we are most interested
in exploring how multigrid schemes can be employed to
speed up the simulation on the embedding grid. This re-
quires pursuing research on the construction of a multigrid
closest point representation that can accurately approximate
the surface at ever coarser scales. By integrating such a con-
struction into approaches that can create a coarse grid hier-
archy independently of the complexity of the object’s shape
[LPR∗09,DGW11], good approximation quality and conver-
gence rates can be expected even for complicated surfaces.
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Table 1: Performance statistics for fluid simulation and rendering on the GPU via the CPM.
Grid Generation Wave Equation Navier-Stokes Rendering

Mesh Res. # Closest Points GPU Memory Time linear WENO4 linear WENO4 Rastization Raycasting Displ.
Möbius
(Figure 8)
3,385∆

64 34k / 48K 1MB / 4MB 6.1ms / 9.5ms 2.0ms 2.1ms 3.7ms 20ms 1.3ms 3.8ms 20ms
128 77k / 184k 4MB / 18MB 6.4ms / 10ms 2.1ms 4.1ms 7.5ms 65ms 1.3ms 4.3ms 23ms
256 303k / 721k 18MB / 73MB 7.4ms / 12ms 2.3ms 15ms 23ms 237ms 1.4ms 5.5ms 31ms
512 1.2M / 2.9M 82MB / 297MB 12ms / 21ms 5.1ms 54ms 85ms 909ms 1.7ms 8.4ms 48ms

Bunny
(Figure 1)
69,451∆

64 41k / 80k 2MB / 7MB 29ms / 84ms 2.2ms 3.0ms 4.0ms 28ms 1.4ms 3.3ms 15ms
128 177k / 374k 9MB / 35MB 32ms / 86ms 2.4ms 9.0ms 13ms 118ms 1.4ms 4.0ms 24ms
256 733k / 1.6Mk 41MB / 159MB 34ms / 90ms 3.6ms 34ms 51ms 529ms 1.4ms 5.7ms 35ms
512 3.0M / 6.8M 178MB / 679MB 49ms / 117ms 11ms 136ms 222ms 2174ms 1.7ms 8.6ms 52ms

Armadillo
(Figure 1)
345,944∆

64 28k / 58k 1MB / 5MB 117ms / 377ms 2.0ms 2.7ms 3.4ms 18ms 2.5ms 3.0ms 16ms
128 123k / 258k 6MB / 25MB 118ms / 380ms 2.1ms 6.1ms 9.5ms 80ms 2.5ms 3.7ms 20ms
256 513k / 1.1M 29MB / 110MB 120ms / 384ms 2.9ms 25ms 38ms 370ms 2.5ms 4.6ms 28ms
512 2.0M / 4.8M 129MB / 477MB 135ms / 404ms 8.6ms 100ms 157ms 1667ms 2.6ms 5.9ms 45ms
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