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Abstract

We present a new data structure for object space partitioning that can be represented completely implicitly. The
bounds of each node in the tree structure are recreated at run-time from the scene objects contained therein. By
applying a presorting procedure to the geometry, only a known fraction of the geometry is needed to locate the
bounding planes of any node. We evaluate the impact of the implicit bounding plane representation and compare
our algorithm to a classic bounding volume hierarchy. Though the representation is completely implicit, we still

achieve interactive frame rates on commodity hardware.

This is the author version of the paper. The definitive version is available at diglib.eg.orgq.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing 1.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data

structures and data types

1. Introduction

Driven by consumer demands, progress in general purpose
processors (CPU) and graphics processing hardware (GPU)
aims at ever-increasing rendering realism and scene com-
plexity. To ensure interactivity suitable acceleration data
structures (ADS) are needed. Common applications of ADS
include ray tracing, culling, nearest neighbor searches, and
collision detection.

With increased scene detail and complexity, available
on-board memory resources can become a bottleneck. If
a model and its ADS do not fit into main memory, slow
disk I/0O performance dominates rendering time [WDSO0S,
YLMO6]. Unfortunately, ADS are often a major factor in
overall memory consumption, requiring typically between
ten to twenty percent additional memory, with even higher
values reported [LYTMOS8]. Savings can spare the need for
out-of-core rendering and make memory available for more
geometry, textures, etc.

The main contribution of our paper is an implicit repre-
sentation of a complete object space partitioning (OSP) that
requires no memory at all. The core idea is to presort the
geometry, access the portion that spans each node directly
and reconstruct the bounding planes on the fly. Going all the
way, wWe can remove any memory requirement by represent-
ing the hierarchy as a heap, resulting in an OSP that requires
no memory at all: it is represented completely implicit by

triangle order. It is easy to parallelize and well suited for
many-core processors. A resorting is only necessary if the
geometry changes, no rebuilt is necessary if only the view-
point or lights are moved. We additionally present a parallel
construction technique, demonstrating that our approach is
applicable to fully dynamic scenes rendered at interactive
frame rates.

The paper is structured as follows: We review previous
work (Section 2) before describing our implicit bounding
plane representation (Section 3). We go on to present the
completely implicit representation of the ADS and how to
remove remaining memory requirements (Section 4). Fi-
nally, we present a statistical evaluation of our approach for
several test scenes (Section 5) and conclude with a critical
discussion of our approach (Section 6).

2. Previous Work

Ray tracing is widely used in different variations for high-
quality rendering due to its physically-motivated light-
transport simulation [PH10]. The computational demands
can be alleviated through acceleration data structures which
exclude most scene objects from intersection testing. A good
survey can be found in [WMG*09]. These ADS have a
non-negligible memory requirement. Generally, OSP sche-
mes are less memory demanding than spatial subdivision
[WKO06,GPSS07], as each primitive is referenced only once.
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Here, we will concentrate on further memory reduction tech-
niques for OSP. Our approach is inspired by multidimen-
sional nearest neighbor search structures [Sam05], where
primitive references in inner nodes can be used for early
pruning of subtrees.

Hybrid BVHs Many OSP schemes are derivations of the
classic bounding slab hierarchy by Kay and Kajiya [KK86].
The most common derivation is a standard Bounding Vol-
ume Hierarchy (BVH) with axis-aligned bounding boxes
(AABB) consisting of six bounding planes per node per-
pendicular to the world coordinate axes. Such a BVH is a
common acceleration data structure for rendering [KK86,
WMG™09]. When an intersection query between a ray and
the scene is started, the hierarchy is traversed in a top-down
fashion. If one of the nodes is missed, the whole subtree can
be skipped. One common way to reduce the number of nodes
is to use a higher branching factor [DHKO0S8, EG08], but this
often comes at the cost of reduced performance.

Memory efficiency of hybrid approaches is achieved by
storing only a subset of the bounding planes. Several au-
thors proposed to remove half of the bounding planes due
to the observation that the twelve planes of the children of a
node always share six sides with their parent [Kar07, FD09,
EW11]. By saving the active ray interval, a hit or miss can be
conservatively estimated with even less planes. This hybrid
BVH was developed independently by several researchers
[Zac02, WKO06, ZU06, WMS06, HHHPS06]. Zachmann et
al. [Zac02] proposed a single bounding plane approach for
collision detection with oriented bounding boxes. A similar
representation but with axis-aligned bounding planes and a
fast global construction heuristic was used by Wichter and
Keller [WKO06]. Woop et al. [WMS06] showed a hardware
implementation of a similar structure which uses two op-
posing bounding planes per node, called B-KD tree. The
DE-Tree by Zuniga and Uhlmann [ZU06] shows similarities
with the B-KD tree but uses wide object isolation to keep
larger objects higher in the hierarchy plus a higher branch-
ing factor. Havran et al. [HHHPS06] adapted a version of
the SKD-tree by Ooi et al. [OSDMS87] and extended them
to incorporate different node types in order to improve effi-
ciency. Our approach shows similarities to these hybrid tech-
niques in that we can also use only a subset of the usual
six bounding planes. In contrast, we derive the position of
the bounding planes directly from the contained geometry
of each node instead of saving it explicitly.

Memory Reduction Techniques Mahovsky and Wyvill
[MWO06] investigated a hierarchical encoding scheme for
BVHs reducing the storage requirements by 63%-75% at
the cost of decreased performance. A similar approach was
taken by Cline et al. [CSE06] compressing a node to 12
bytes combined with a higher branching factor. Segovia and
Ernst [SE10] follow Mahovsky’s approach, but additionally
save the BVH in clusters to reduce the byte count of child

node references. Bauszat ef al. [BEM10] reduced the mem-
ory requirements down to one single bit per node, but per-
formance drops naturally. Additionally, both use a two-level
BVH using uncompressed nodes for the top levels. The idea
of a two-level BVH was previously presented by Lauterbach
et al. [LYTMO8]. At the lower levels, triangle strips of up
to 256 triangles are encoded in an implicit SKD-tree where
the vertices encode the bounds. Unfortunately, duplication
of vertices may be necessary to create a valid SKD-tree.
Kim et al. [KBK*10] build upon this two-level approach
and additionally introduce tree templates to reduce the num-
ber of necessary child pointers. Wichter and Keller [WKO07]
proposed a new termination criterion for spatial subdivision
schemes and use a fixed memory footprint, but rendering ef-
ficiency quickly deteriorates if less than five bytes per scene
primitive are used.

Recently, Keller and Wéchter [KWO09] filed a patent for
an algorithm using a completely implicit OSP and a spa-
tial subdivision scheme. The idea is based on a divide-and-
conquer approach. In each traversal step they first compute
the bounding box for the current primitives of the object.
In the next step, the active rays that intersect the box are
computed. The primitives are partitioned into two sets ac-
cording to a chosen splitting plane. The algorithm is then
recursively called for the active rays and the new partition.
If the number of primitives is below a certain threshold the
active rays are directly tested for intersection. Unfortunately,
no performance statistics are available for this approach. A
very similar technique based on a spatial subdivision scheme
mentioned in [KW09] was proposed by Mora [Morl1]. In-
stead of computing bounding boxes, the space of the cur-
rent node is subdivided and all active rays and active prim-
itives are tested against it. If only primary rays are traced
these algorithms have an almost perfect time to image as
only those parts of the hierarchy are created which are ac-
tually traversed. Occluded parts are left unpartitioned. The
implicit reconstruction has to be repeated for each ray batch.
According to Mora [Morl11] an efficient GPU implementa-
tion poses difficulties and has not yet been further investi-
gated. Our approach nicely benefits from the parallelism and
computational power of current GPUs both in construction
as well as rendering.

3. Implicit Bounding Plane Representation

We seek to obtain interactive rendering performance with-
out the usage of any additional memory. The first step we
take is to introduce an implicit bounding plane representa-
tion. Our main observation here is that each bounding plane
of a node in a BVH is defined by at least one scene primi-
tive. In cases of polygons the plane is defined by a polygon
vertex; for B-splines, by a control point; or by a bounding
volume if instancing is used. For simplicity of explanation,
we will concentrate on scenes solely composed of triangles.

Instead of saving each bounding plane of a node n; ex-
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Figure 1: 2D example partitioning: The bounding boxes of
the hierarchy are solely described by the vertices of the tri-
angles. Only an array of triangles (/) and an array of offsets
for the left child node is saved (I;).

plicitly, we save the scene primitives spanning 7; in the inner
nodes. Using min/max operations on the bounds of the con-
tained primitives, the AABB of each node can be recreated
during traversal from only the six bounding triangles. As we
keep primitives in inner and leaf nodes, the bounds of the
child nodes do not necessarily share a common bounding
plane, but the enclosing property of BVHs is still guaran-
teed, see Figure 1 for a 2D example. All six primitives are
contiguously mapped to memory and each such chunk is pre-
sorted so that the ordering in the triangle array corresponds
to the ordering of the nodes in the BVH. In cases where a sin-
gle triangle spans more than one bounding plane of a node,
e.g. triangle 4 and 7 in Figure 1, less than six triangles are
required to represent the bounds. To keep the memory layout
consistent we pad the node with the second closest triangle
to the respective bounding plane of the same subtree.

Using a structure of arrays representation, we have two ar-
rays, one containing the geometric information of the prim-
itives, Ip, and one containing the child node indices /.. As-
suming the root node to have index 0, the index of the first
bounding triangle p; is derived from the child node index
n; by p; = n; - b, where b is the number of bounding trian-
gles per node. The original node index is used for storing the
child pointer in /c.

Hybrid BVHs conservatively estimate the AABB of a
node by saving less than the standard six bounding planes
and using an active ray interval. Following these approaches,
we can choose an arbitrary number of bounding planes to
represent a node. For current standard (graphics) processors
two opposing bounding planes per node seem to be the best
choice in our setting, similar to [WMS06,ZU06], see evalu-
ation in Section 5. In the following, our description refers to
the two triangle version. The single 4 byte child node index
then encodes the following information: The lower two bits
indicate the bounding axis that is spanned by the triangles
(00: x, 01: y, 10: z) or whether it is a leaf node (case 11). We
always use opposing bounding planes, therefore, the bound-
ing axis is the axis perpendicular to the bounding planes. As

we map the left and right child next to each other in mem-
ory, the remaining 30 bits are used as the offset for the left
child node only. For the leaf nodes, we use three bits to en-
code the number of triangles additionally contained in the
node. During construction we ensure that only an even num-
ber of additional triangles is available in each leaf node as
this allows us to encode up to fourteen additional primitives.
Note that the count can be zero. The residual 27 bits encode
the according offset into the triangle array which resides in
memory right after all bounding triangles of the hierarchy.
By sorting the children of each node according to their extent
along the bounding axis we can incorporate ordered traver-
sal [WBSO07] based on the ray direction.

3.1. Ray Intersection

Intersecting a ray with our implicit bounding plane repre-
sentation is equivalent to a hybrid BVH traversal with an
additional reconstruction and triangle intersection step. In
each traversal step, we first compute the offset p; of the first
bounding triangle which is derived from the current traver-
sal index n; and we reconstruct the bounding planes. For
this, we load only the data required for the current bounding
axis, i.e. one float for each vertex of the two bounding trian-
gles. After reconstructing and testing the minimum bound-
ing plane, we test the maximum plane only if we found a
valid intersection. If the intersection of a ray with the bound-
ing planes is outside the active ray interval the subtree is
skipped. Otherwise, the active ray interval is updated and the
two bounding triangles are tested for intersection. Finally,
we fetch the leaf node bits to test whether we reached a leaf
node. Traversal either continues with the child nodes or in
case of a leaf node the additional triangles are tested.

The chance of a hit with the bounding triangles in the first
levels of the hierarchy is usually very low. It seems therefore
beneficial to first test against the AABB of each triangle be-
fore testing it directly. Therefore, we could first reconstruct
and test against the remaining bounding planes of each trian-
gle along the current bounding axis. The vertex data of each
further axis would only be loaded one axis at a time if the
triangle was not already rejected beforehand. Only if a valid
intersection for the complete AABB of the triangle is found
the triangle itself would be tested. Even though this reduces
the theoretical bandwidth requirements and the number of
triangle intersections drops by approximately 50%, no real
speed-up was experienced with the processor architectures
we tested due to higher register pressure. However, this can
be beneficial for future processor generations. We therefore
test the triangles directly if the node is hit.

3.2. Construction

Most top-down BVH construction schemes can be directly
applied to our representation. The only difference is an ad-
ditional search step to find the bounding triangles span-
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ning each node. These are excluded from further partition-
ing steps. Finding the bounding triangles requires a single
scan over the active partition per node. The overall com-
plexity is then O(nlogn), with n being the number of primi-
tives. During construction and evaluation of the surface area
heuristic (SAH) [MB90] it is important to keep in mind
that a two-plane representation reduces the bounding vol-
ume only along a single dimension in each subdivision step.
The bounding triangles are always chosen based on the parti-
tioning axis of the parent node, as we can expect the largest
surface reduction along this axis. We call the partitioning
axis the axis along which the triangles are subdivided into
two new partitions and passed on to the child nodes.

4. Complete Implicit Representation

In the following we present changes that remove any explicit
memory storage for the ADS. We remove the necessity for
the bounding axis bits by using round-robin for choosing
the axis, i.e. xyzxyz..., depending on the depth in the tree.
In order to be able to compute the children for any node,
we enforce the hierarchy to be a complete, left-balanced
tree arranged in breadth-first order. This allows us to index
it like a heap without explicitly saving any pointers or in-
dices [CSEO06]. For any implicit node n; its children are in-
dexed with kn; +m where k is the branching factor. In our
case k =2, and m € {1,...,k} denotes the first child node,
the second child and so on. By enforcing the hierarchy to
be a complete tree, the leaf node property can be directly
derived from the index, i.e. if the child index is larger than
the number of implicit nodes in the scene a leaf has been
reached. The last non-leaf node might have only one child
instead of two, Figure 2, as we only require the number of
triangles in the scene to be even. In case of an odd number
of triangles, the last one is replicated. We do not save any
additional triangles in the leaf nodes, instead each primitive
is a bounding primitive in some node of the hierarchy. Un-
fortunately, the compulsion of a complete tree forces us to
use an object median split technique during construction.

4.1. Ray Intersection

Intersecting a ray with the completely implicit representation
is similar to the approach in Section 3.1 with few exceptions.
Instead of testing for a leaf node, the current node traversal
index is compared to the total number of nodes in the scene.
Traversal is terminated if the index is larger. Otherwise, the
child indices are computed and traversal continues.

4.2. Construction

The restrictions on the completely implicit BVH open up
the possibility for a parallel construction technique suitable
for multiprocessor architectures. The hierarchy is built top-
down and all nodes of one level are processed in parallel. In
contrast to other approaches, parallelism in the upper nodes

Implicit Tree Structure
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Figure 2: 2D Example of the complete implicit object par-
titioning with three levels: The triangle arrangement im-
plicitly describes a hierarchy. The bounds of each node are
spanned by exactly two triangles. Left: Representation of
the resulting bounding planes. The first and third level are
bounded along the x-axis, the second level along the y-axis
due to the round-robin scheme employed. The triangle index
is colored according to the bounds the triangle represents.
Top right: The scene triangles implicitly represent a com-
plete binary tree of bounding planes. Bottom right: Repre-
sentation in memory. Note that beyond the triangles, no ad-
ditional memory is used.

of the hierarchy is not enforced on a per node basis but
threads operate across node boundaries, as will be described
in the following.

As the bounding and partitioning axes are chosen in a
round-robin fashion, see Section 4, all nodes of the same
level in the hierarchy need to partition their enclosed prim-
itives along the same axis. The partitioning axis is always
equal to the bounding axis of the next hierarchy level. The
structure of the hierarchy is already known due to the re-
quired left-balanced tree. We make use of an additional node
index array / saving the currently active node a triangle
might belong to and a split list § in which the starting in-
dex and the size of each active partition are saved.

The basic algorithm, as shown in Figure 3, consists of
four main steps for each level of the hierarchy. In the first
step, all triangles and their according node indices are sorted
along the current bounding axis. Then a stable sort using the
node indices as keys is applied. While the first step sorts the
triangles according to their spatial position, the second sort
partitions the triangles according to their current node index
without changing their respective order. This puts the mini-
mum bounding triangles at the correct positions and allows
for a direct partitioning of the active nodes for further sub-
divions. We then search for the maximum bounding triangle
in each split and swap it to the second position in the split.
We update the node indices for the next iteration (details are
given below), remove the old splits, as they are already pro-
cessed, and emit new splits for each node of the next level.
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axis = 0;
S =1{ (0,n) }; // Split list
I =4{0,0,0,...,0}; // Index list

parallel_construction(triangles, S, I,axis);

void parallel_construction(triangles, splits,
I, axis){
for all levels of the hierarchy{
lexicographicalSort (triangles, S[0][0],
I, axis);

if (lastLevelreached) { return; }
maximumTriangleSearch (triangles, S, axis);
updateIndices (I, S);
createNewSplitsFromOld (S) ;
axis = (axis + 1) % 3;

}}

Figure 3: Pseudo-Code of the parallel construction scheme
for the completely implicit representation.

The process is repeated until no split contains more than two
triangles. We do not sort the triangles and indices directly but
rather utilize a permutation array for efficiency. The memory
requirement for the parallel construction is O(n) as we need
one integer per triangle plus the split list, which is of the size
n/4 at most.

The following describes the construction process in more
detail for reimplementation. We start with a single split at
index 0 with a size n equal to the number of scene primi-
tives and initialize / to zeros. The algorithm then loops over
all |log,(n/2)| + 1 levels of the hierarchy. In each loop we
first apply the lexicographical sort to all triangles, i.e. sort
them according to their spatial position and then a stable
sort on the node indices is applied. Already finalized trian-
gles in front of the first split are excluded. The sort swaps
already finished nodes to the front and sorts all triangles of
the same node along the bounding axis. The remaining tri-
angles in each node are split into its two child nodes where
each child already has the minimum triangle at the correct
position. Next, we search for the bounding triangle of the
maximum bound in the remainder of the child triangles and
swap it with the second position in each split. We can use a
simple swap operation instead of shifting the triangles over
to the end of the split since we only required the triangles to
be sorted for the actual split operation. As long as the aver-
age over all splits of a given level holds more than 4 trian-
gles, we assign averageTrianglesPerSplit / 4 threads to each
split. Since for the maximum search each thread will find its
own maximum, we use atomic compare and swap (atomic-
CAS) functions in case a new maximum was found to ensure
the overall maximum is found. The threads are assigned in
reverse order per split to minimize the warp serialization due
to the atomic operations. As soon as the average number of
triangles per split falls down to 4 triangles, we only use a

single thread per split and can therefore switch to a kernel
without atomic operations.

For each split the algorithm now updates the node in-
dex values. The first two indices of each open split S;
are assigned a value of idx = finalized + i where
finalized = 2! —1 is the number of already correctly cre-
ated nodes. i is the index of the split in the split list and Iv]
the current level of the hierarchy. The value of the other tri-
angles in a split are set to 2 idx + 1 for their respective splits
which is the index of the left child. We use the same thread
distribution for each split as described in the last paragraph
for parallelism.

We remove the active splits and insert new splits for the
left and right child nodes into the queue if they contain two
or more triangles. Let numSplits be the number of the old
open splits, pos; the starting position of the i split and num;
its size. The size numy, and numg, for the new splits is chosen
in a way to guarantee a left-balanced, complete tree.

num;
half; = > :
H = |log2 (half)]

numg = 2 ((2”*1 — 1) + max (0, half, — 325~ — 3))
num;, = num; — 2 — numg (D
where H is the depth of the tree.

The positions of the new left and right splits resulting
from pos; are computed by

pos; = pos; +2(numSplits — i)
posg = pos; + numy, (@3

The computed positions of the splits are already at the po-
sitions that are needed affer the next lexicographical sort.
Finally, the bounding axis is incremented to the next level.

This procedure automatically builds a breadth-first tree.
An example for the first three levels of a scene with twelve
triangles is given in Figure 4.

5. Results

We evaluate our presented algorithm on several scenes with
varying complexity, including ones with high triangle count
(THAT STATUE), teapot-in-a-stadium problems (FAIRY),
largely differing scene primitives (CRYTEK SPONZA), ani-
mation (FAIRY, BREAKING LION) and problematic scenes
for object median cut (VENICE and CRYTEK SPONZA), or
combinations of these scene attributes. To evaluate the influ-
ence of the implicit bounding plane representation we show
results for both the Implicit Object Space Partitioning with
4 bytes (IOSP-4) and the complete implicit representation
(I0SP-0). We also implemented a hybrid version that saves
the top-levels as uncompressed BVH nodes using a SAH
builder where each leaf points towards a separate IOSP-0
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Figure 4: Example of the first three levels in the parallel hier-
archy creation process for the completely implicit represen-
tation. The spatial arrangement of the triangles according to
the construction is shown in Figure 2.

(2-Lvl IOSP). We analyze and discuss our optimizations,
bandwidth considerations, incoherent rays as encountered in
global illumination simulations, construction performance,
as well as the two-level approach for increased performance.

We have produced both a CPU variant and a GPU imple-
mentation using NVIDIA CUDA. All statistics were mea-
sured on a system with an Intel Core 17-2600 with 3.4 GHz,
16GB RAM, and an NVIDIA GeForce GTX 580 with 3GB
of memory, running on a 64-bit Windows system. All results
are produced at a resolution of 1024 x 768 pixels if not stated
otherwise.

For a general comparison, if appropriate, we make use
of a BVH implementation using the surface area heuris-
tic - BVH(SAH) - and using an object median split -
BVH(OMS). In accordance with [Wal07] we use a binning
approach with ten bins during construction for evaluation of
the SAH. We impose a minimum triangle count of four tri-
angles per leaf node. The same strategy was used for our
IOSP-4 and 2-Lvl IOSP. The associated statistics are given
in Table 5.

Number of Bounding Triangles We first verified our
choice of using only two boundary triangles by comparing
performance for different numbers of bounding triangles for
the IOSP-0. For one bounding triangle we follow the ap-
proach of [EWMOS8] where the single bound encodes the
half-space in which the geometry resides. We extend the
round-robin scheme so that for the first three levels the max-
imum bounds are saved for the left child nodes (respectively
the minimum bounds for the right children) and the mini-
mum bounds for the next three levels (respectively the max-
imum bounds for the right children). For the six triangles
case, a complete AABB is reconstructed in each traversal

step. For current standard (graphics) processors, choosing
two bounding triangles per node resulted in the best per-
formance in our test scenes, Table 1. This may change in
future hardware with larger cache lines or higher costs per
memory access compared to the computational power. Using
less bounding triangles per node would require empty nodes
for efficiency [WKO06], while using more causes a too high
computational load on current processors. In the following
experiments, we always used the version with two bounding
triangles.

Scene 1 2 6 1 2 6

(CPU) (CPU) (CPU)| (GPU) (GPU) (GPU)
Breaking Lion | 0.629s 0.489s 0.639s| 0.094s 0.077s 0.060s
Crytek Sponza | 1.972s 1.614s 7.383s| 0.144s 0.085s 0.268s

Fairy 1.710s 1.077s 1.996s| 0.131s 0.060s 0.104s
Robot Girl 0.969s 0.718s 0.922s| 0.083s 0.045s 0.050s
Thai Statue 0.819s 0.383s 0.933s| 0.153s 0.050s 0.103s
Venice 3.068s 2.102s 3.694s| 0.248s 0.164s 0.176s

Table 1: Evaluation of the influence of bounding triangles
per node for primary rays. CPU and GPU traversal time in
seconds are given.

Bandwidth Considerations We measured the bandwidth
requirements assuming a perfect memory access and tracing
one ray after the other, i.e. no caching is assumed, each tested
bounding box of a BVH is assumed to be 32 bytes in size,
each tested triangle is counted as 36 bytes (nine float values
for the three vertices). Additional data like texture coordi-
nates, normals etc. are not included, as these are accessed
only in the shading step, which is the same for all tested
approaches. Statistics are given in Table 5.

Compared to the BVH(SAH) the theoretical bandwidth
increases by a factor of 2.77 to 8.35 with 5.03 on average for
the IOSP-0, 1.49 to 2.04 with 1.78 on average for the IOSP-
4, and a factor of 1.09 to 3.05 with 1.69 on average for a two-
level IOSP-0 with 15 uncompressed top-levels. In practice
the values will vary depending on the hardware capabilities,
like cacheline size and traversal technique used.

Incoherent Rays One of the main advantages of ray tracing
is that it can employ secondary rays to compute effects such
as global illumination, soft shadows, reflection or refraction.
The incoherency of these rays, especially in Monte-Carlo
simulations, poses problems on the efficiency of ray trac-
ers due to incoherent memory access and diverging traversal
paths, especially on a highly parallel processor as the GPU.
Table 2 shows the results of our test scenes rendered with up
to three light bounces. One ray path per pixel is created using
pure random sampling over the pixel domain and the hemi-
sphere domain (to increase incoherency) and one shadow ray
is traced for each light source at each path vertex.
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Scene (#B) BVH(SAH) 10SP-4 IOSP-0
Breaking Lion 1 69.391  39.322  19.181
Crytek Sponza 1 32.319 12.788 2.844
Fairy 1 61.280  29.127 5.761
Robot Girl 1 85.020  49.152  19.784
Thai Statue 1 73.156  21.845  11.523
Venice 1 41.391 18.614 3.456
Breaking Lion 3 93437  56.510  26.963
Crytek Sponza 3 25.233 9.180 1.405
Fairy 3 62915  29.677 4.575
Robot Girl 3 106.63  63.550  28.468
Thai Statue 3 88.612 29263  15.271
Venice 3 41.665  18.559 3.299

Table 2: Influence of the number of bounces (#B) in a path
tracing simulation according to the number of bounces on
the GPU. Numbers are given in million rays per second.
Computations include ray generation, traversal, shading and
texturing. The first three scenes contain 2 light sources each,
while the latter three contain 1 light source.

Scene 1 Thread/Tri 1 Thread/Split ~ Adaptive
Fairy 0.603s 0.284s 0.159s
Breaking Lion >10s 1.533s 0.226s

Table 3: Comparison of the construction times using one
thread per triangle for all levels of the hierarchy (1 Thread-
/Tri), one thread per split (1 Thread/Split) for all levels and
our adaptive approach that uses multiple threads per split.

Animations For animated and dynamic scenes not only
traversal performance but also construction times are of im-
portance. Here, we analyze our construction technique for
the IOSP-0 from Section 4.2. All experiments were con-
ducted directly on the GPU. In a straightforward implemen-
tation we would simply assign a single thread to each split at
all levels. However, this does not create enough parallelism
at the top levels of the hierarchy. An alternative is to assign
one thread to each triangle and search for the split that this
triangle falls into. Obviously, this will cause issues at the
lower levels of the hierarchy as the number of splits to search
for doubles for each level. In Figure 3, we show a compar-
ison of construction timings between creating the hierarchy
using one thread per triangle, one thread per split and our
adaptive approach. In the adaptive approach we assign mul-
tiple threads to each split, so that the average number of tri-
angles per thread is limited to the same value at all levels
of the hierarchy. Naturally, this will revert to one thread per
split at the bottommost levels of the hierarchy. Our adaptive
approach reduces construction time for the animated scenes
up to 85% compared against the straightforward implemen-
tation, Table 3.

Figure 5 illustrates the construction performance in detail
for each level. Our algorithm shows a virtually constant con-

ms

8,0 M emit new
splits

W update
indices

W maximum
search

0,0 sort

012 3 456 7 8 9 1011 12 13 14 15 16 level

7,0

Figure 5: In order to evaluate our parallel construction algo-
rithm, we show the time taken by the different steps of our
construction per level for the animated scene FAIRY consist-
ing of 174k triangles. The timings include the lexicograph-
ical sort (blue), updating the node indices (green), creating
the new splits (violet) and the search for the maximum trian-
gle (red).
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Figure 6: Comparison of render times using different num-
bers of levels for the uncompressed BVH.

struction time per level. About 95% of the construction time
is used by the lexicographical sort for which we used the
CUDA Thrust library.

Two-level approach Representing the important top-levels
of the hierarchy in an uncompressed BVH format and us-
ing the compressed representation for the lower levels is an
established technique to provide a convenient trade-off be-
tween performance and memory requirements for several
compression schemes [LYTMO08, LGS*09, SE10, BEM10,
PL10, GPM11]. We analyzed the influence of the ratio be-
tween uncompressed levels and compressed levels in terms
of ray tracing performance in Figure 6. For 15 uncompressed
levels the memory requirements are only up to 1MB for our
2-Lvl IOSP while performance is between 23-74% for the
CPU and 48-93% for the GPU compared to the BVH(SAH),
depending on scene complexity, Table 5. The two-level ap-
proach works best for non-uniform triangle distributions. For
the THAI STATUE a median cut in the upper levels is of sim-
ilar quality compared to a cut based on the SAH, therefore
only a relatively small speed-up is achieved.

Comparison to other memory reduction techniques In
the following we compare our technique to more sophis-
ticated techniques than a standard BVH. Reusing shared
bounding planes [Kar07,FD09,EW11] reduces memory and
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Scene Ours Ours Ours [Morl1]
(CPU) (CPU) (GPU) (CPU)
Single Packets Single Packets

Fairy 0.60 14.28 10.4 6.8

Thai Statue ~ 2.35 3.37 12.05 1.28

Table 4: Comparison to [Mor11]. Resolution is 1024 x 1024,
only primary rays are traced and simple eye shading used.
Frames per second are reported. Single = Single raytracing.
Packets = Packet tracing.

bandwidth requirements in a BVH by 43-50% and 35-38%,
respectively, without a negative influence on the rendering
times [FD09]. The bounding interval hierarchy [WKO06] per-
forms up to par to an optimized BVH or kd-tree but the mem-
ory requirements are only ten bytes on average with a care-
ful implementation (69% reduction). If memory reductions
of 50% to 70% are sufficient, these techniques allow for per-
formance similar to a BVH.

In table 4 we compare our technique with the divide-and-
conquer (DAC) approach by Mora et al. [Mor11] which also
does not require to save any acceleration data structure. The
resolution was set to 1024 x 1024 pixels and only primary
rays were traced. We chose the FAIRY and THAI STATUE
scene as they provide the best insights into the strength and
weaknesses of both approaches. Please note that the compar-
ison has to be done carefully as the processor architectures
differ. In [Morl1] an Intel-core 2 duo E6850 with 3 GHz
was used while we use a Core i7-2600 with 3.4 GHz. Also
note that the DAC uses conic packets for primary rays re-
sulting in an additional speed-up of factor 1.3 — 3.8 depend-
ing on the scene (speed-up taken from Figure 8 in [Morl11]).
As expected DAC achieves better performance on the CPU
for smaller scenes, probably due to the spatial median split
employed which provides drastically better clipping quality
than the object median split required by our technique. For
larger scenes the overhead due to the triangle streaming in
the DAC approach becomes more apparent. Our technique
can be easily ported to the GPU where we achieve speed-
ups between a factor of 1.5 and 9.4 compared to DAC. No
packet tracing was used in our GPU timings which would
further increase performance, especially since packets are
more robust to non-optimal subdivision schemes in terms of
performance.

6. Discussion and Conclusion

In this paper we have presented a complete implicit ob-
ject space partitioning scheme which is easy to parallelize
and therefore well suited for many-core processors. We have
shown that the bounding planes of a hierarchical acceleration
data structure can efficiently be represented and accessed by
geometry presorting. Our IOSP-0 approach is statically rep-
resented by the underlying geometry and must be created
only once per timestep of an animation, independent of the

viewpoint or lighting condition which is an important differ-
ence to previous implicit ADS approaches. If memory is the
limiting factor, our approach can be a useful alternative to
classic acceleration data structures.

Implicit acceleration data structures have only recently
gained a higher attention in the rendering community. There-
fore, several limitations still exist and its applicability on cur-
rent hardware may be limited but we see good prospects for
further research. The object median cut partitioning scheme
proposed for the complete implicit representation is known
to be inferior to other tree structures [Wic08], but is cur-
rently a necessity for the implicit child index computation
and the main reason for the reduced performance in the
CRYTEK SPONZA and VENICE scene. Finding a solution for
an implicit representation with an arbitrary splitting scheme
is an open problem. For comparable performance to state-
of-the-art techniques, integration of spatial splits [SFD09]
would be a necessity but the requirement for multiple object
references seems problematic for an implicit representation.
Another fruitful direction might be to investigate if spatial
partitioning schemes can be implicitly represented without
a lazy evaluation scheme. We plan to delve further in this
direction. As most object space partitioning schemes our ap-
proach suffers from the same drawbacks when encountering
a mixture of small and large primitives in a scene. Larger
primitives are kept higher in the hierarchy in our approaches
which is generally beneficial for some scenes [ZU06,1H11]
but incorporating early split clipping [EG07] is an important
challenge for future work and improved performance. Cur-
rently, we investigated only triangles as the basic primitive
though other scene representations are possible as well in
theory. Our focus is on ray intersections with the scene, but
collision detection is another possible application of OSP.
However, AABB are usually not the bounding volume of
choice for this task and a direct application of our approach
is difficult due to the triangles in the inner nodes of the hi-
erarchy. Our approach should also benefit from a fast mesh
compression technique possibly decreasing the overall band-
width requirements [RKBO06]. A dedicated hardware imple-
mentation of our IOSP-0 is also a promising direction, as
the main ingredients are a sorting procedure and triangle
intersections. Both can be efficiently implemented in hard-
ware [KWO05, WMSO06].
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Method

Nr

Ny

R

BW/frame Mem

Scene - Breaking Lion - 1,604,054 triangles, 96.331 MB of memory used for geometry

BVH(SAH) 26,577k 5,678k  35.747 Mrays/s 0.983 GB 33.524 MB
BVH(OMS) 58,942k 10,384k 18.289 Mrays/s 2.105 GB 33.554 MB
10SP-4 29,503k 32,975k 20.696 Mrays/s 1.469 GB 2.694 MB
I0SP-0 59,435k 62,471k  10.213 Mrays/s 2.725 GB 0MB
2-Lvl IOSP (15) 28,624k 13,087k 23.831 Mrays/s 1.067 GB 1.001 MB

Scene - Crytek Sponza - 279,163 triangles, 19.587 MB of memory used for geometry

BVH(SAH) 80,626k 6,814k  41.391 Mrays/s 2.631 GB 5.608 MB
BVH(OMS) 289,334k 37,531k 11.398 Mrays/s 9.881 GB 5.283 MB
10SP-4 77,406k 85,146k  26.214 Mrays/s 3.819 GB 0.471 MB
I0SP-0 260,178k 278,989k 9.252 Mrays/s  12.051 GB 0 MB
2-LvlIOSP (15) 128,160k 49,780k  27.778 Mrays/s 4.643 GB 0.535 MB

Scene - Fairy - 174,117 triangles, 12.365 MB of memory used for geometry

BVH(SAH) 47,680k 5,349k 56.174 Mrays/s 1.600 GB 3.577T MB
BVH(OMS) 191,754k 22,226k 20.165 Mrays/s 6.460 GB 4.194 MB
10SP-4 58,461k 66,259k  32.768 Mrays/s 2.936 GB 0.294 MB
I0SP-0 186,332k 194,406k  13.107 Mrays/s 8.510 GB 0 MB
2-Lvl IOSP (15) 52,533k 9,973k 46.875 Mrays/s 1.738 GB 0.582 MB

Scene - Robot Girl - 1,010,054 triangles, 60.653 MB of memory used for geometry

BVH(SAH) 25,693k 2,832k  71.494 Mrays/s 0.861 GB 21.625 MB
BVH(OMS) 143,301k 27,639k  18.289 Mrays/s 5.197 GB 16.777 MB
10SP-4 39,033k 42,496k  39.322 Mrays/s 1.910 GB 1.710 MB
I0SP-0 114,559k 119,955k  17.476 Mrays/s 5.242 GB 0MB
2-Lvl IOSP (15) 32,457k 14,857k 46.875 Mrays/s 1.206 GB 0.513 MB

Scene - Thai Statue - 10.000.002 triangles, 640.002 MB of memory used for geometry

BVH(SAH) 21,031k 3,708k  65.536 Mrays/s 0.751 GB  212.332 MB
BVH(OMS) 57,481k 5,607k 37.449 Mrays/s 1.901 GB  237.348 MB
10SP-4 29,663k 35,532k 26.214 Mrays/s 1.536 GB 16.792 MB
I0SP-0 51,519k 52,454k  15.729 Mrays/s 2.324 GB 0 MB
2-Lvl IOSP (15) 57,723k 36,169k  27.778 Mrays/s 2.293 GB 0.520 MB

Scene - Venice - 2.447.208 triangles, 192.161 MB of memory used for geometry

BVH(SAH) 46,617k 5,477k 39.332 Mrays/s 1.573 GB 49.473 MB
BVH(OMS) 314,809k 39,094k 8.278 Mrays/s  10.693 GB 55.957 MB
10SP-4 66,098k 71,579k 21.845 Mrays/s 3.229 GB 4.130 MB
I0SP-0 285,213k 302,466k 4.795 Mrays/s  13.136 GB 0MB
2-Lvl IOSP (15) 73,191k 34,957k 22.059 Mrays/s 2.754 GB 0.938 MB

Table 5: Comparison of our proposed techniques (IOSP-4, IOSP-0 and 2-1vl IOSP (with 15 uncompressed top-levels) with a
SAH-BVH (BVH(SAH)) and an object median Split BVH (BVH(OMS)). Measurements have been made on an Intel Core
17-2600 with 3.4 GHz, 16GB RAM, and an NVIDIA GeForce GTX 580. Resolution is 1024 x 768 pixels. N7 is the number
of tested nodes in total, N is the number of ray-object intersections in total, R is the number of traversed rays in millions per
second on the GPU excluding the construction step, including ray generation, traversal, simple shading and texturing. Only
primary rays are considered. BW/frame is the minimal necessary data throughput (bandwidth) based on the number of node
and triangle intersections. Mem is the memory usage of only the acceleration data structures in megabytes.
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