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Abstract: This article presents a damage detection
method for prestressed reinforced concrete (PRC) ele-
ments based on free vibration tests and nonlinear damp-
ing identification. Integrated static and dynamic exper-
iments were carried out on three precast PRC beam
specimens. The static loading induced different levels
of damage to the beams. At each damage level, impul-
sive loading was applied to the beams and the free vi-
bration response was measured. The dynamic response
data were processed using different methods including
the multi-input multi-output (MIMO) curve fitting and
the Hilbert transform techniques. A strong correlation is
observed between the level of concrete damage (cracks)
and the amount of nonlinear energy dissipation that can
be modeled by means of quadratic damping. The non-
linear damping can be extracted from the free vibration
response for each vibration mode. The proposed method
is suited for quality control when manufacturing precast
PRC members, and can be further extended for in situ
detection of damage in concrete structures under ambi-
ent vibration.
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1 INTRODUCTION

Over the past 30 years, damage detection from changes
in structural dynamic parameters has received increas-
ing attention in aerospace, mechanical, and civil engi-
neering sectors (e.g., Cawley and Adams, 1979; Hunt
et al., 1990; Jiang and Adeli, 2005, 2007, 2008a, 2008b;
Adeli and Jiang, 2006; Pakrashi et al., 2007; Jiang et al.,
2007; Park et al., 2007; Moaveni et al., 2008; Sohn et al.,
2008; Carden and Brownjohn, 2008; He et al., 2008; Psi-
moulis and Stiros, 2008; Li and Wu, 2008; Ni et al.,
2008). Many techniques based on experimental modal
analysis have been developed: they revolve around
the fact that changes in physical properties cause de-
tectable changes in modal parameters (including natu-
ral frequencies, mode shapes, modal damping), namely,
the eigen-properties. In practice, the problem of dam-
age detection is usually translated into identification of
change in the modal parameters based on structural dy-
namic response measurement.

There are many remaining issues that make
vibration-based damage identification difficult to
implement in practice, particularly in civil engineering
structures, which are usually complex with nonlinear
behaviors of materials, uncertainties associated with
boundary conditions, considerable sizes, and high
damping. It is not always possible to conduct dynamic
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tests that provide a complete set of measurements
to allow satisfactory modal extraction. Many of the
proposed damage identification techniques require an
undamaged baseline of the structure, which is usually
difficult to obtain for real civil engineering structures.
The work performed at the Los Alamos National
Laboratory in the United States allowed researchers
to compare the dynamic response before and after the
introduction of different levels of damage (Farrar and
Jauregui, 1998a, 1998b). Methods for locating damage
without explicit reference to the undamaged state have
also been proposed in the literature (Stubbs and Kim,
1996).

However, the frequency-domain linear techniques
based on modal parameter extraction are not always
sufficient to identify structural damage, because of the
inelastic response and nonlinear damping of the struc-
ture associated with the damage. For this reason, Doe-
bling et al. (1996) suggested a time-domain method to
directly analyze time histories for indications of dam-
age. Feng (2007) and Soyoz and Feng (2008) success-
fully identified, located, and quantified damage based
on a nonlinear, time-domain extended Kalman filtering
method.

In this study, the authors developed, through theo-
retical and experimental investigations, a damage de-
tection method based on free vibration tests and non-
linear damping analysis. The original aim was for the
quality control of the production of prestressed rein-
forced concrete (PRC) elements, which was motivated
by the problem that the presence of cracking disqualifies
a PRC product, reducing its serviceability performances
and durability (Modena et al., 1998). Most of the exper-
imental work originally focused on a single hollow-core
floor panel, and the method was applied before and af-
ter controlled damage to the specimen (Modena et al.,
1999; Sonda, 1999; Zonta, 2000). The experiments suf-
fered from some limitations such as a limited number of
tests, control of boundary conditions, a limited number
of measuring points, and a lack of systematic analysis of
the dynamic response related to the presence of dam-
age, such as the frequency splitting (Zonta and Modena,
2001).

To overcome these limitations, new tests were per-
formed in this study on three precast PRC beam ele-
ments characterized by different prestress levels used in
practice, under controlled experimental environments
in terms of boundary conditions and excitation sources.
This study focuses on structural damping (that is not
widely studied for damage detection in literature) and
its change with regard to increase of damage, by means
of not only classical linear damping model, but also non-
linear damping model calibrated with the measured vi-
bration time histories. An unequivocal, but inexpress-

Table 1
Prestressing loads and strains for the three beam specimens

Prestressing load εprestress −inf

(kN) (%)

Beam A 912 −0.023
Beam B 1,172 −0.034
Beam C 1,563 −0.041

ible in closed form, relationship was observed between
the appearances of nonlinear damping and the presence
and entity of damage. This article presents the damage
detection method through an experimental study on the
three precast PRC beams. This method can be extended
for localizing the damage on precast beams, which is re-
ported in Franchetti (2004), but not discussed in this ar-
ticle. This method can be also applied for in situ damage
detection in concrete structures, as presented in Friz-
zarin et al. (2008).

2 TEST PROGRAM

Three precast PRC beams were fabricated and static
and dynamic loading tests were carried out. Differ-
ent levels of damage were induced to the specimens.

2.1 Description of test beams

Three 7.3-m long PRC beams with a rectangular cross-
section were designed, as shown in Table 1. The di-
mensions of these beams are shown in Figure 1. The
total mass of each beam was m = 4,161 kg and the re-
inforced concrete density is ρ = 2,500 kg/m3, neglecting
the steel contribution. The reinforcement ratios of the
beams were of 0.13% for ordinary reinforcement and of
0.2%, 0.26 %, and 0.35%, respectively, for tendons of
beams A, B, and C, respectively.

To avoid the coupling effect between the horizon-
tal and vertical bending modes, a width of 0.38 m was
chosen that differed from the height of 0.60 m. Rein-
forcement ratios are considered to be within a realistic
range. By carefully choosing materials and designing the
decompression loading, a large range of cracking and
beam failures were obtained.

2.2 Static and dynamic tests

Integrated static and dynamic tests were conducted on
the three beam specimens. The loading procedure is
shown in Table 2. Table 3 shows the main outcomes
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Fig. 1. Geometry of beam specimens.

Table 2
Testing procedure for each beam

Stage Activity Damage state

1 Dynamic measurement D0
2 Loading until decompression at the

lower side (D1)
3 Unloading
4 Dynamic measurement D1
5 Loading until the opening of a

crack at the lower side (D2)
6 Unloading
7 Dynamic measurement D2
8 Loading until failure (state D3)
9 Unloading

10 Dynamic measurement D3

of loading tests for beam C. Damage was progressively
induced to each of the beams by applying an asym-
metrical static load with increasing monotonic inten-
sity at one-third span, that is, 2.43 m from the closer

Table 3
Main outcomes of loading tests (beam C)

Beam C

Prestress at the lower side σprestress inf = −14.70 MPa

Load step D1-C D2-C D3-C
Design load (kN) (KN) FD 196.72 265.87 500
Test load (kN) (KN) FD−test 193.49 278.55 619
Deflection at the mid-span free of the

bearing settlement (mm)
(mm) fLVDT− 2 4.94 7.43 Not available

Deflection at the 1/3 span free of the
bearing settlement (mm)

(mm) fLVDT− 1 4.97 7.36 Not available

Average strain of the lower side of the
beam

(%) εav 0.0358 0.052 Not available

Residual opening of the crack after
unloading (DD1–8)

(mm) δ r Not available 0.00616 Not available

edge, as shown in Figure 2. The beam was simply sup-
ported on two bearings at the ends. After each static
load step, the static load was removed and dynamic
testing was conducted using impulsive loading. Conse-
quently, the dynamic characteristics of the test beams
were obtained for the undamaged state D0 and each of
the damaged states. As an example, the damage con-
dition state D3 for beam C is shown in a photo in
Figure 3. It is noted that dynamic loading was per-
formed at different boundary conditions to avoid the
influence of poorly defined boundary conditions on
the identified modal parameters. For the dynamic test-
ing, the beam was hung by two flexible springs, as
shown in Figure 4, resulting in a much lower rigid-
body first-mode rigid-body frequency than those of
the elastic modes (approximately 1/10). Springs were
anchored close to the beam ends. In this way, the
rigid-body mode, which is entirely determined by its
mass and the supporting springs, had a negligible ef-
fect on the elastic modes that were used for damage
detection.



580 Franchetti, Modena & Feng

JACK
 RDB R 60/38 BEAM

912,5

7300

912,5912,5 912,5912,5912,5 912,5 912,5

3650

7300

24301220

6
0

0
3

8
0

7300

2430

STATIC LOAD TESTS - INSTRUMENTS SET-UP - BOTTOM VIEW

LOAD AXIS

DD1 - 9

10

LVDT 4 LVDT 2 LVDT 3LVDT 1

ENLARGEMENT x 5

12203650

101010

DD1 - 7 DD1 - 5

DD1 - 8 DD1 - 6

473

PLAN - TOP VIEW

ELEVATION

3
8

0

Fig. 2. Plan and elevation views showing accelerometer, excitation locations, and instrument setup (dimensions in mm).
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Fig. 3. Progressive cracks opening at increasing load (beam A [D3]).

Fig. 4. Accelerometers in the first (left) and second (right)
configurations.

The dynamic exciting force was hand generated by
means of an impulse hammer, whose tip was chosen
to generate a free decay response containing frequency
components up to 250 Hz. Dynamic forces were redun-

dantly applied at four points (two at mid-span and two
at the end section) to excite all symmetric and antisym-
metric vertical bending and torsional modes. The posi-
tions of the excitation were represented by the black ar-
rows in Figures 5 and 6. The exciting forces were applied
perpendicular to the beam axis in the X (transverse) and
Y (vertical) direction. Figure 7a shows the time history
of a typical impulsive loading, whereas Figure 7b shows
a typical response acceleration.

To improve the measurement accuracy and identify
as many modal shapes as possible, the accelerometers
were set up in two different acquisition configurations
without changing the position of the three accelerome-
ters at mid-span. Figures 5 and 6 show the two configu-
rations of the accelerometers represented by numbered
circles. As a result, for each sensor configuration, a to-
tal of 16 responses are recorded including five vertical
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Fig. 5. Setup of the accelerometers in the first configuration.

Fig. 6. Setup of the accelerometers in the second
configuration.

accelerations (one at the mid-span as reference), 10 hor-
izontal accelerations (two at mid-span as reference),
and the input load.

In total, 15,630 time histories were acquired for the
dynamic test. For each beam, time histories were ac-
quired under two sensor configurations, four damage
levels, and four impulse excitation positions. Each exci-
tation was repeated at least 10 times. The sampling fre-
quency of the data acquisition was fs = 2,000 Hz. For
each time history, 16,384 (= 214) data points were used,
so the acquisition time ta was 8.192 seconds.

Fig. 7. Typical impulse loading time history (a) and acceleration responses time histories (b).

The first part of the analysis concerned the extraction
of the classical modal parameters including the natural
frequencies and mode shapes of the PRC beams in four
different damage states: undamaged state D0, decom-
pression D1, first crack D2, and failure D3 that reached
the maximum compressive strength of concrete. The
methods for extracting modal parameters can be found
extensively in literature (e.g., Ren and De Roeck, 2002a,
2002b; Kim and Stubbs, 2003). More details on these
tests can be found in Franchetti (2004) and Franchetti
et al. (2004). This article focuses on damping analysis
for damage detection.

3 MODAL DAMPING IDENTIFICATION

Based on the previous research on PRC elements
(Sonda, 1999; Zonta, 2000) in which modal parameters
were extracted by different techniques and compared,
this study adopts the multi-degree-of-freedom (MDOF)
curve fitting and the Hilbert transform methods. Modal
parameters were, first, identified by the multi-input
multi-output (MIMO) curve fitting of the experimen-
tal frequency response functions (FRFs). In partic-
ular, a visual program (LabviewTM, 2000) was used
(Lanaro, 2002), which is capable of considering FRFs
of a MDOF system simultaneously for different impulse
forces (Sonda, 1999).

The damping results identified for the Y (vertical)
bending and torsional modes for beam C are reported
in Table 4 and in Figure 8, together with the corre-
sponding natural frequencies. The damping results for
the X (horizontal) bending modes appeared to be less
sensitive to damage in comparison to the damping ex-
tracted from fitting of vertical and torsional modes.
As an example, the identification results for beam C
are presented in Table 5 and Figure 9. The modal
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Table 4
Summary of modal damping for Y-bending modes and torsional mode of beam C

Damage state

D1 D2 D3
D0

Natural Damping Damping Increase Damping Increase Damping Increase
Beam C frequencies (Hz) ratio ξ (%) ratio ξ (%) (%) ratio ξ (%) (%) ratio ξ (%) (%)

First Y-bending mode 44.89 0.3642 0.3821 4.91 0.4101 12.60 0.4284 17.63
Second Y-bending mode 110.50 0.8593 0.7879 −8.3 0.6203 −27.81 1.0485 22.01
Third Y-bending mode 221.34 0.4780 0.4930 3.14 0.7686 60.79 1.6185 238.60
First torsional mode 142.33 0.2776 0.3684 32.71 0.3573 28.71 0.5523 98.96
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Fig. 8. Modal damping trend, beam C: Y-bending modes (a) and I torsional mode (b).

Table 5
Summary of modal damping for X-bending modes of beam C

Damage level

D1 D2 D3
D0

Natural Damping Damping Increase Damping Increase Damping Increase
Beam C frequencies (Hz) rate ξ (%) rate ξ (%) (%) rate ξ (%) (%) rate ξ (%) (%)

First X-bending mode 28.73 0.3282 0.2838 −13.53 0.2810 −14.38 0.3889 18.49
Second X-bending mode 77.53 0.1000 0.5728 472.8 0.5312 431.20 0.500 400.00
Third X-bending mode 149.80 0.3776 0.3753 −0.61 0.3823 1.24 0.1250 −66.90

damping ratios identified by MIMO curve fitting of the
FRFs apparently were sensitive to damage state D3
only.

An alternative modal extraction method was applied,
which consists of evaluating the decay in the oscilla-
tion amplitude by using modal filtering and the Hilbert
transform (Feldman, 1994, 1997; Worden and Tomlin-
son, 2001). The method can therefore be used, in the
narrow frequency bandwidth, for each of the single-
degree-of-freedom (SDOF) systems. After uncoupling
the other degrees of freedom components by applying
the band-pass filter, and short-time Fourier transform, a

new signal representing one degree of freedom, referred
to as the complex analytical signal, was generated. It is
noted that this method can be used only if frequencies
are uncoupled and the behavior is linear.

The procedure was implemented in a visual pro-
gramming platform (Franchetti, 2004). Because the first
mode (rigid body) was sufficiently uncoupled due to
the highly flexible supporting springs, band-pass filter-
ing was applied only to separate the elastic models of
the beam.

From the newly generated free decay signal repre-
senting each degree of freedom, damping coefficient ξ
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Fig. 9. Modal damping trend (X-bending modes, beam C).

was calculated by exponential fit with the analytical sig-
nal given by

g(t) = βe−ξωt (1)

where t is the time and β is a constant. The frequency
of the particular individual mode ω is directly obtained
from the phase (Franchetti, 2004).

Here, linear viscous damping was assumed for both
damaged and undamaged beams. In other words, the
amplitude of the response to the impulsive excitation
follows the exponential decay. Modal damping ratios
vary greatly after concrete cracking, particularly for
the bending modes. As shown in Table 6, the two
different techniques, the MIMO curve fitting and the
Hilbert transform, lead to slightly different damping
values.

From the damping identification results, it is observed
that modal damping ratios increased significantly when
the specimens were damaged. In particular, the damp-
ing of the Y-bending mode more than doubled when the
specimen experienced state D3 damage.

On the other hand, as the variation of modal damp-
ing can be interpreted as a variation of the energy
dissipative mechanism in the zone of the cracks, the
viscous equivalent modal damping may not be a rea-
sonable approximation. In fact, there are many causes
of energy dissipation such as hysteresis loops that
occur in the postcracking compression state (CEB

Table 6
Identified damping ratios for Y-bending mode of beam C

Damping rate ξ (%)

MDOF curve fitting Hilbert transform (average)

Beam C D0 D1 D2 D3 D0 D1 D2 D3

First Y-bending mode 0.3642 0.3821 0.4101 0.4284 0.4268 0.4385 0.4111 0.5138
Second Y-bending mode 0.8593 0.7879 0.6203 1.0485 1.056 n. a. n. a. n. a.

210, 1991; Alleruzzo et al., 1997), and the fric-
tion between steel rebar and concrete (Dieterle and
Bachmann, 1981). Therefore, a more detailed study of
the energy dissipative mechanisms was further investi-
gated in this study, as presented below.

4 DAMPING BEHAVIOR OF REINFORCED
CONCRETE BEAMS

Material damping in reinforced concrete elements in
the quasi-elastic range (without yielding of reinforce-
ment) shows special features due mainly to cracking
(Mahrenholtz and Bachmann, 1991). With no cracking
in an ordinary or prestressed concrete structure, mate-
rial damping can be assumed as pure viscous damping.
The damping ratio is essentially constant and is equal to
0.7–10% for uncracked reinforced concrete, and 0.4%
to 0.7% for uncracked prestressed concrete (Swamy,
1971; Dieterle and Bachmann, 1981; Mahrenholtz and
Bachmann, 1991).

In a cracked state in reinforced concrete elements,
damping occurs due to two kinds of energy dissipation
mechanism (Mahrenholtz and Bachmann, 1991):

• nearly pure viscous damping in concrete in the un-
cracked compression zone; and

• nearly pure friction damping due to friction between
concrete and reinforcing steel in the cracked tension
zone.

For ordinary reinforced concrete, interpretative mod-
els of the damping mechanism exist (Dieterle and Bach-
mann, 1981). The equivalent damping of a cracked
beam results from the simple sum, in terms of energy,
of the viscous damping and friction damping.

In particular, it was observed that damping strongly
depends on the stress intensity for general concrete
structures. Damping is low for a low stress intensity cor-
responding to an uncracked state. The equivalent damp-
ing ratio increases during crack formation; damping is
high in the final crack state, but still with relatively low
stress intensity. After cracking, with further increase of
the stress intensity, damping ratio decreases rapidly to
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Fig. 10. Hysteretic dashpot (left) and restoring force (right)
relative to an oscillator with Coulomb friction damping.

Fig. 11. Viscous dashpot (left) and restoring force relative to
an oscillator viscous damped (right).

values that can be smaller than in the initial uncracked
state (Mahrenholtz and Bachmann, 1991).

However, this is not the case in PRC, as proved in the
following sections. In fact, when the load is removed,
the crack closes and the section is compressed. There-
fore, the reinforced concrete model (Dieterle and Bach-
mann, 1981) cannot be applied to PRC elements, espe-
cially where there are stresses under decompression, be-
cause the model is based on the fundamental hypothesis
that, in the cracked section, the tension is only transmit-
ted by the steel.

4.1 SDOF oscillator with Coulomb friction

The combined model with a purely viscous damping
and purely friction models was proposed in Modena
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Fig. 12. Free response of a Coulomb friction-damped oscillator (left) and purely viscous-damped oscillator (right).

Fig. 13. Combined damping model.

et al. (1999), Sonda (1999), and Zonta (2000). The pres-
ence of the friction in an SDOF system can be repre-
sented by a hysteretic dashpot as shown in Figure 10.
The Coulomb friction force F has a constant amplitude
FC and its sign depends only on the direction of motion:

F = −FC
ẋ
|ẋ| (2)

where ẋ is the velocity of motion. Figure 10 also shows a
typical hysteretic cycle for a friction-damped oscillator.

On the other hand, the presence of the pure viscous
damping in an SDOF system can be represented by a
viscous dashpot as shown in Figure 11. The free re-
sponse of a Coulomb friction-damped oscillator and a
viscously damped oscillator are depicted in Figure 12.
The envelopes of the free responses are

a(t) = a0 − 2
π

ω
FC

k
t for Coulomb friction damping

(3)

a (t) = a0e−ξ ·ω·t for viscous damping (4)

where a0 is the initial amplitude and ω is the circular
frequency.

The damping behavior of a cracked RC structure can
be described by a friction–viscous combined damping
model, as presented in Figure 13. Therefore, the equa-
tion of motion of the combined system becomes
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m · ẍ + c · ẋ + FC
ẋ
|ẋ| + k · x = 0 (5)

or mass normalized as

ẍ + 2ωξ ẋ + ω2xlim
ẋ
|ẋ| + ω2x = 0 (6)

where m is the mass, k is the stiffness, c is the viscous
damping coefficient, and the limit displacement is de-
fined as

xlim = FC

k
(7)

as xlim represents the limit displacement in the static
equilibrium.

An exact solution to this problem can be found by
a step-by-step integration of the equation of motion.
A sufficiently accurate approximation for practical pur-
poses was obtained (Modena et al., 1999; Sonda, 1999;
Zonta, 2000) by calculating the energy dissipated by the
friction force 
Efrict and viscous damping force 
Evisc

and equating these to the loss of the total mechanical
energy 
Em (Den Hartog, 1985):


Em = 
Evisc + 
Ef rict (8)

The energy loss was computed by assuming a sinu-
soidal response:

x(t) = a(t) sin(ωt) (9)

With harmonic motion, the large elastic and inertia
forces are harmonic and only the small damping force
causes a deviation from harmonic motion.

The dissipated energy per cycle is


Evisc =
∫

−F(ẋ) dx =
∫ T

0
cẋ

dx
dt

dt = πcωa2
0 (10)


Ef rict =
∫

−F(ẋ) dx = 4FCa0 (11)

Therefore, from Equation (6), the amplitude of the
oscillation, at an arbitrary time t, can be obtained as
(Modena et al., 1999; Sonda, 1999; Zonta, 2000)

a(t) = (a0 + a f ) · e−ξ ·ω·t − a f (12)

where a0 is the initial amplitude and

a f = 2
π · ξ

· xlim (13)

Equation (12) shows how the amplitude decay in the
combined damping model is still exponential, tending
not to zero but to –af as seen in Figure 14. The figure
also shows the comparison of this approximated expres-
sion and the numerical solution of the exact differential
equation.
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Fig. 14. Free vibration response of combined damped
oscillator.
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Fig. 15. Measured time history of free vibration of the
undamaged beam A (D0).

4.2 Comparison with experimental observations

First, analytical responses of the free vibration of the
beams were computed using the pure viscous damping
model and compared with the experimental results. The
best fitting of the analytical amplitudes to the experi-
mental ones was performed to determine the optimal
damping ratio ξ = 0.00414. Using the identified damp-
ing ratio, analytical free vibration responses were com-
puted. Figures 15 and 16, respectively, show the mea-
sured free vibration time history, and the comparison
of the analytical and experimental amplitude envelopes,
in the first Y-bending frequency of the vertical accel-
eration at the mid-span of undamaged beam A (under
D0). Similar results are shown in Figures 17 and 18 for
the damaged beam A (under D3) in which the optimal
damping ratio was identified as ξ = 0.00601.

It is observed that the pure viscous damping model,
that is, the exponential fitting, describes the undam-
aged beam (D0) very well, as shown in Figure 16.
However, for the damaged beam, the viscous damp-
ing model is rather imprecise as demonstrated in Figure
18. Furthermore, in the logarithmic scale, the measured
free vibration amplitude envelope is convex for the
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Fig. 16. Exponential fit of free vibration amplitude.
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Fig. 17. Measured time history of free vibration of the
damaged beam A (D3).

Exponential fit - Beam A - D3

0.001

0.010

0.100

1.000

0.00 0.50 1.00 1.50 2.00

time (s)

a
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Decay envelope

Exponential fit

Fig. 18. Exponential fit of free vibration amplitude.

damaged beam, whereas the exponential fit is a straight
line, and even the viscous–friction combined model
Equation (12) is concave, not convex. Therefore, the
combined viscous–friction damping model is not capa-
ble of adequately modeling the damaged beam either.
Similar observations were made for all the three beams
tested in this study. Therefore, an alternative friction
damping model was proposed in this study for describ-

Fig. 19. Combined damping model.

ing the energy dissipation mechanism in damaged PRC
beams.

4.3 Proposed quadratic damping model

The proposed model combines pure viscous damping
with a polynomial damping, as illustrated in Figure 19.
The most common form of a polynomial damping force
is quadratic:

Fd = −d · ẋ · |ẋ| (14)

where d is constant and the absolute value of the veloc-
ity is introduced to ensure that the force is always op-
posed to the velocity. This damping model is commonly
used in fluid dynamics, when describing fluid flowing
through an orifice or around a slender member. The
free vibration responses and the damping forces com-
puted using a pure quadratic damping model, in com-
parison with those using a quadratic and viscous com-
bined damping model, are respectively shown in Figures
20 and 21.

Similar to Equation (9), the dissipated energy per cy-
cle is assumed as


Equadr =
∫

−Fd(ẋ) dx =
∫ T

0
dẋ |ẋ| dx

dt
dt = 8

3
da3

0ω
2

(15)

The equation of motion of the quadratic and viscous
combined system becomes

mẍ + cẋ + dẋ |ẋ| + kx = 0 (16)

The loss of mechanical energy per cycle must be equal
to the total dissipated energy, as shown in Equation (8).
The loss of mechanical energy per cycle is (this time
considering a instead of a0, because the balance is not
yet integrated in time)

1
2

ka2 − 1
2

k(a + 
a)2 = −ka
a − 1
2

k(
a)2 ∼= −ka
a

(17)
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Fig. 20. Free vibration responses of a quadratic-damped (left) and a combined quadratic viscous-damped (right) oscillator.
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Fig. 21. Damping force of a quadratic-damped (left) and a combined quadratic viscous-damped (right) oscillator.

where the amplitude of oscillation a > 0 and its variation

a < 0 are functions of time. In this case, the expression
becomes

−ka
a = πcωa2 + 8
3

da3ω2 ⇒ −k
a

= πcωa + 8
3

da2ω2 (18)

This equation can be normalized as follows

−ω2
a = π2ξω2a + 8
3
δa2ω2 ⇒ −
a = π2ξa + 8

3
δa2

(19)

where

δ = d
m

(20)

is defined as quadratic damping factor.
Dividing each member for 
t = T = 2π/.ω, one can

obtain the same balance in terms of power:

−
a

t

= ξωa + 4
3π

δωa2 (21)

Taking the limit, the following relation is derived

−da
dt

= ξωa + 4
3π

δωa2 (22)

Defining

ξω = c1 (23)

4
3π

δω = c2 (24)

the previous expression then simplifies to

da
dt

= −
(

ξωa + 4
3π

δωa2
)

= −a(c1 + c2a) (25)

By separating the variables

da
c1a + c2a2

= −dt (26)

and integrating both of the terms∫ a

a0

da
c1a + c2a2

= −
∫ t

0
dt (27)

[
log

(
a

c1 + c2a

)]∣∣∣∣
a

a0

= −c1t (28)

a
c1 + c2a

c1 + c2a0

a0
= e−c1t (29)

and, finally

a (t) = (a0c1) · e−c1·t

c1 + a0c2 (1 − e−c1·t )
(30)
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If c2 = 0 (with pure viscous damping) the exact solu-
tion is

a (t) = a0 · e−c1·t = a0 · e−ξωt (31)

The proposed model deals with quadratic damping.
However, the mathematical expression for nonlinear
damping could be substituted by an equivalent one (e.g.,
Fd = −d · ẋ3 with obvious changes in the formulation).

4.4 Experimental validation

In general, the proposed combined damping model
characterizes the energy dissipation by the two param-
eters: the viscous damping ratio ξ , and the quadratic
damping factor δ. They were identified from the best fit-
ting of the measured free vibration amplitudes of the
three beams, using Equation (30) with c1 and c2 as vari-
ables. It is referred to as nonlinear fitting, versus the ex-
ponential fitting as shown in Section 4.2. Furthermore,
ξ and δ can be identified using Equations (23) and (24).

A modal band-pass filter was used to process the mea-
sured free vibration signals to obtain a mono-frequency
free vibration, as described earlier. The Levenberg–
Marquardt fitting method was applied to identify the
optimal values of c1 and c2 in LabviewTM (2000) and fur-
thermore identify the viscous damping ratio ξ and the
quadratic damping factor δ. Figures 22 and 23 show the
best fitting between the analytical and the experimental
free vibration amplitudes of beam A at mid-span in the
vertical direction in the first Y-bending frequency un-
der damage states D0 and D3. The optimal values are
identified as ξ = 0.004124 and δ = 0.002730/m for the
undamaged beam, and ξ = 0.004868 and δ = 0.1009/m
for the damaged beam (D3). It is observed that the de-
cay in the measured free vibration amplitude is modeled
very well by Equation (30) for both the undamaged and
the damaged states.
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Fig. 22. Nonlinear fit of free vibration amplitude of beam A
(D0).
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Fig. 23. Nonlinear fit of free vibration amplitude of beam A
(D3).

Fig. 24. Comparison of normalized quadratic damping
factors under different damage states.

It is observed that the quadratic damping is insignif-
icant in the undamaged beams but increases as the
beams suffer damage. A correlation is observed be-
tween the damage state and the amount of the quadratic
damping factor, as shown in Figure 24 and following.
Figure 24 plots the quadratic damping factor under each
damage state normalized by the undamaged factor for
beams A, B, and C. It is observed that the quadratic
damping increases as the damage becomes more
severe.

Figures 25–27 compare the value of the viscous damp-
ing ratio identified though best fitting of the pure
viscous damping model (referred to as linear damping
ratio herewith) with the values of ξ and δ identified us-
ing the quadratic–viscous combined nonlinear model. It
is observed that the damping ratio in the linear model
does not change with the level of damage, whereas the
quadratic damping factor in the combined nonlinear
model correlates well with the level of damage.

Figure 28 shows that the amount of nonlinear damp-
ing increases as the damage level increases in different
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Fig. 25. Comparison between linear and nonlinear damping
models for beam A.

Fig. 26. Comparison between linear and nonlinear damping
models for beam B.

Fig. 27. Comparison between linear and nonlinear damping
models for beam C.

ways for the three different prestressing loads in the
three beams.

It is clear that the introduction of damage produces
a local variation of the energy dissipative mechanism
that can be described by a notable increase in the value

Index δ/δD0 for damage states D0-D1-D2
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Fig. 28. Normalized quadratic damping factors for different
damage states expressed by measured strains.

of such a parameter as δ. The increase in the damage
level appears to cause growth in internal microcracks
or concrete-steel debonds resulting in increasing nonlin-
earity. The examination of such a mechanism at a micro
level is beyond the scope of this article.

5 CONCLUSIONS

This article presents a damage identification method
for precast PRC structural members based on damping
analysis and identification of free vibration responses.
Through an experimental study on the three PRC beam
specimens damaged to different levels, it was demon-
strated that a nonlinear quadratic damping factor pro-
posed by the authors well represented the actual energy
dissipation mechanism in PRC members associated with
the different levels of damage. The quadratic damping
factor is much more sensitive to the presence of damage
than the viscous damping ratio, and thus can be effec-
tively used for damage identification purposes.

The damping identification method presented in this
article is particularly suited for quality control and as-
surance of PRC beams during their manufacturing pro-
cess, because a free vibration test is easy to perform.
The technique described in this article is based on the
analysis of a free vibration signal, which limits its field
application because of the difficulty in obtaining a free
vibration response of a structure. The authors are work-
ing to expand this method for in situ damage detec-
tion of concrete structures based on ambient vibration
measurement.
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