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ABSTRACT  

This paper proposes a Nonlinear Complementarity Problem (NCP) formulation for the 

risk-aversive stochastic transit assignment problem in which in-vehicle travel time, waiting 

time, capacity and the effect of congestion are considered as stochastic variables 

simultaneously and both their means and variances are incorporated into the formulation. A 

new congestion model is developed and captured in the proposed NCP formulation to account 

for different effects of on-board passengers and passengers waiting at stops. A 

reliability-based user equilibrium condition is also defined based on the proposed generalized 

concept of travel time budget referred to as effective travel cost, and is captured in the 

formulation. A column generation based algorithm is proposed to solve the NCP formulation. 

A survey was conducted to validate that the degree of risk aversion of transit passengers 

affects their route choices. Numerical studies were performed to demonstrate the problem and 

the effectiveness of the proposed algorithm. The results also show that underestimating the 

congestion effect and ignoring the risk aversion behavior can overestimate the patronage of 

transit service, which have profound implications on the profit of the operators involved and 

the development of transit network design models. 
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 1  INTRODUCTION 

Transit assignment problems have received considerable attention over the past two 

decades. Some of the earliest work in the area of transit assignment can be traced to Dial 

(1967), Fearnside and Draper (1971) and Le Clercq (1972) in which the shortest path is 

computed after accounting for the waiting time at transit stops. However, the assumptions on 

fixed in-vehicle travel cost and expected travel time are very simplistic. Moreover, their 

models cannot deal with the route choice behavior of passengers at a transit stop shared by 

several competitive transit lines, often referred to as the common line problem. 

Chriqui and Robillard (1975) are the first to deal with the common line problem by 

proposing the idea of the attractive set of transit lines between two consecutive stops as a 

subset of transit lines, which minimizes the passengers’ expected travel time. The assignment 

of bus passengers was done proportionally to the nominal frequency of each common line. 

Following this, Spiess (1984) introduced the idea of strategy, which is a choice of an 

attractive set of lines at each boarding point. Later, using the idea of strategy, Nguyen and 

Pallottino (1988) presented a graph theoretic framework under the context of a hyperpath 

problem. Spiess and Florian (1989) proposed a linear programming formulation to determine 

the optimal strategy in a transit network. They assumed that the passengers will select a set of 

attractive lines and board the first arriving vehicle, thereby, minimizing the expected trip time.  

Congestion related to overcrowded vehicles and stops is one of the key issues 

hampering the performance of transit systems in reality. This issue was also considered in 

parallel with the common line problem. For example, Nguyen and Pallottino (1988) 

considered the effect of congestion in the hyperpath model that they developed. Apart from 

introducing the concept of transit route and effective frequency, De Cea and Fernández (1993) 

also dealt with the effects of congestion at bus stops and aboard the transit vehicles. Cominetti 

and Correa (2001) investigated the network equilibrium model with congestion, in which 
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congestion affects both the waiting time and flow distribution. A queue-theoretic approach 

was adopted to model the congestion effects. 

The concepts of deterministic user equilibrium (DUE) and stochastic user equilibrium 

(SUE) adopted in road networks have been introduced to transit assignment since late 1980’s. 

The concept of DUE was first introduced to transit assignment by Nguyen and Pallottino 

(1988). Subsequently, many DUE transit assignment models were developed (e.g., Spiess and 

Florian, 1989; De Cea and Fernández, 1993; Cominetti and Correa, 2001; Cepeda et al., 

2006). However, these models assumed that the passengers have perfect knowledge about the 

network condition, which may not be realistic. Lam et al. (1999) utilized the idea of SUE to 

solve the transit assignment problem with capacity constraints in which passengers are 

assumed to select the lowest perceived travel cost routes. Lam et al. (2002) further proposed a 

SUE transit assignment model with congestion under the assumptions of the frequency on 

each transit line to be dependent on the vehicle dwelling time at each station and constant 

in-vehicle travel time. Lei and Chen (2004) also considered the SUE transit assignment with 

elastic demand and capacity constraint. They developed an algorithm based on the penalty 

function method to solve the problem. 

The above DUE and SUE models were developed based on the approach of Chriqui 

and Robillard (1975), which is commonly referred to as the frequency-based approach. 

Although this approach ignores the detailed departure/arrival times, the frequency-based 

models are more computationally efficient and can handle larger transit networks. Such an 

approach is suitable for strategic and long term planning of large transit networks. However, 

according to Schmöcker et al. (2008), frequency-based approach cannot take into account the 

changing demand over time, the peak loading on transit vehicles and different levels of 

overcrowding at stations during the peak hours. Moreover, the departure time adjustments 

over days cannot be considered. Therefore, dynamic transit models (e.g., Poon et al., 2004; 
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Schmöcker et al., 2008; Teklu, 2008; Sumalee et al., 2009) have been developed in the last 

decade.  

Another aspect is that existing frequency-based models only consider mean waiting 

time and constant in-vehicle travel time but ignore the variabilities of the capacity and 

congestion. Moreover, these frequency-based models consider the mean trip time in 

determining the route choice of passengers and the influence of trip time variance in their 

route choice has not received much attention. Indeed, empirical studies like Abdel-Aty et al. 

(1997) and Jackson and Jucker (1982) pointed out that travel time variability plays a major 

role in influencing the trip makers' route choice behavior. Uncertain travel time causes trip 

makers including passengers to make a trade-off between travel cost and its uncertainty (Yin 

et al., 2004). Such behavior is considered in traffic assignment (e.g., Bell and Cassir, 2002; 

Sumalee et al., 2006) but to our best knowledge, this behavior has not received much 

attention in transit assignment. Moreover, in-vehicle travel time can be uncertain for buses 

and mini-buses as the in-vehicle travel time depends on both recurrent and non-recurrent 

congestion. 

In a view to address these issues, we propose a stochastic approach to the 

frequency-based transit assignment problem that takes the variabilities of in-vehicle travel 

time, waiting time, congestion and capacity into account. These factors are modeled as 

random variables and both their means and variances are incorporated in the modeling 

framework so that both the network uncertainty and the risk aversion behavior of passengers 

can be captured. We define the reliability-based user equilibrium conditions based on the 

proposed generalized concept of travel time budget referred to as effective travel cost and 

formulate the transit assignment problem as a Nonlinear Complementarity Problem (NCP). A 

column generation based solution method is developed to solve the NCP formulation. Survey 

and numerical studies are carried out to validate the degree of risk aversion of transit 
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passengers affecting their route choices, and to demonstrate the problem and the effectiveness 

of the proposed solution method, respectively. The results also show that underestimating the 

congestion effect and ignoring the risk aversion behavior can overestimate the patronage of 

transit service, which have important implications on the profit of the operators involved and 

the development of transit network design models. Compared with the frequency-based transit 

assignment literature, the contributions of this paper include:  

1) proposing a more realistic transit assignment formulation that  

 considers both demand and supply uncertainties,  

 captures risk-aversion behavior of passengers, and variabilities of in-vehicle travel 

time, waiting time, and congestion, 

 has at least one solution, and  

 can separately model different effects of on-board passengers and passengers waiting 

at stops on congestion cost.  

2) developing an efficient solution method for the model that can apply to a realistic 

network, and 

3) generalizing the concept of travel time budget to effective travel cost.  

The rest of the paper is organized as follows. Section 2 describes the problem 

formulation. Section 3 depicts the solution method. Section 4 provides survey and numerical 

studies. Finally, Section 5 gives concluding remarks and identifies directions for future 

research. 

 

2  PROBLEM FORMULATION 

2.1 Network Representation, Definitions, and Assumptions 

A transit network generally consists of a set of transit lines and stations (nodes) where 

passengers can board, alight or change vehicles. A transit line can be described by the 
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frequency of the vehicles (i.e. the number of vehicles of a transit line going across a 

screenline in a unit of time) and the vehicle types (e.g. bus or underground train). Note that in 

this paper the walk links will not be distinguished from the transit lines because it may be 

replaced by a transit line with a zero waiting time (very high service frequency). Different 

transit lines may run parallel for part of their itineraries with some stations in common. A line 

segment is a portion of any transit line between two consecutive stations of its itinerary and is 

characterized with a travel time and a frequency. A transit route is any path that a transit 

passenger can follow on the transit network in order to travel between any two nodes. 

Generally, it will be identified by a sequence of nodes, the first node being the origin of the 

trip, the final node being the destination and all the intermediate nodes being the transfer 

points. The portion of a route between two consecutive nodes is called route section, which is 

associated with a set of attractive lines or common lines. The set of attractive lines is assumed 

to be known and can be determined via the method in De Cea and Fernández (1993). Without 

loss of generality, a transit network can also be represented by a set of nodes and route 

sections.  

For illustrative purposes, we adopt the network in De Cea and Fernández (1993) as an 

example. Figure 1 represents a transit network in terms of lines, while Figure 2 shows the 

same network coded by route sections. Table 1 illustrates the itinerary of the transit network 

in terms of transit routes, route sections and transfer nodes. In the example network shown, 

there is one origin-destination (OD) pair A-B, which is connected by four paths or routes. The 

four paths are formed by four different lines, each with different travel times and frequencies. 

For example, (25/10) on transit line L1 going from A to B, denotes a travel time of 25 minutes 

and a frequency of 10 buses/hour. We assume that a passenger waiting at a transfer node 

considers an attractive set of lines before boarding and knows the mean and variance of travel 

time of each line. The travel demand between each OD pair in the network is assumed to be 
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elastic. We also assume that a passenger selects the transit route that minimizes his/her 

effective travel cost discussed later as opposed to selecting the one that minimizes his/her 

travel time as in De Cea and Fernández (1993). Stochastic vehicle headways with the same 

distribution function are assumed for vehicles servicing different lines. However, the 

difference in vehicle headway traversing different lines could be achieved by varying the 

parameters of the distribution function. 

Figure 1: Transit network representation using transit lines 

Figure 2: Transit network representation using route sections 

 

Table 1: Transit routes and route sections 

OD pairs   Transit Route   Route Sections (Transit Lines)  Nodes 
 1   S1(L1)   A,B  
 2   S5(L2), S4(L3,L4)   A,Y,B  
 3   S2(L2), S3(L2,L3), S4(L3,L4)  A,X,Y,B  

 A-B  

 4   S2(L2), S6(L3)   A,X,B  
 

In this paper, we consider a general transit network = ( , )G    when formulating 

the problem, where   refers to the set of nodes and   refers to the set of route sections 

A X Y B

S1(L1)

S3(L2,L3)

S6(L3)

S4(L3,L4)S2(L2)

S5(L2)

L2 (6/10)

L3 (4/4)

A X Y B

L1 (25/10)

L4 (10/20)

L3 (4/4)

L2 (7/10)
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(links). The transit network has many paths and OD pairs. The set of OD pairs is denoted by 

  and the set of paths between OD pair w  is denoted by w . 

 

2.2 Effective Frequency 

To model the effect of in-vehicle congestion in a transit network, we adopt a similar idea of 

effective frequency introduced by De Cea and Fernádez (1993). In a transit network 

constrained by its capacity, there is a positive probability that a transit vehicle arriving at a 

stop is full. Hence, passengers have to wait for the next arriving transit vehicle and this causes 

the frequency of the line at that particular stop to be effectively reduced from the passengers' 

point of view. This reduced line frequency is called effective frequency. In an ideal case, 

when there is no congestion, the effective frequency will be equal to its line frequency.  

Mathematically, the effective frequency can be expressed as:  

 = ,  , ,l
s s

l
sl

f l A s

f


 

    


   (1) 

where l
sf   is the effective frequency of line l  on route section s . lf  is the frequency of 

line l .   is a positive parameter. l
s  is the additional waiting time for line l  at stop ( )i s , 

the origin node of route section s , due to in-vehicle congestion. sA  is the set of attractive 

lines associated with route section s .  

 The first term in the denominator in (1) is the waiting time under no in-vehicle 

congestion.   in this term is used to model the effect of different perceptions of waiting 

time and headway distributions (Spiess and Florian, 1989).  When the unit of frequency is 

vehicles/hour and that of waiting time is minutes and when there is no perception error, the 

case 60   min/hr corresponds to an exponential distribution of headways with mean 
60

lf
 



 9

minutes and the case 30   min/hr approximates a constant headway of 
60

lf
 minutes. The 

first term plus the second term l
s  in the denominator in (1) gives the total waiting time 

under in-vehicle congestion.   divided by this sum gives the effective frequency. This 

derivation is in parallel to the case that frequency equals   divided by waiting time.  One 

may notice that effective frequency depends on both route section and line, because the 

demand for service depends on both line and route section (or stop location). This contrasts to 

line frequency, which is the characteristic of a line, and is only line-specific. 

In this paper, the additional waiting time for line l  is expressed as:  

 = , , ,

m

ill l
s sl

v
l A s

K
 

 
    

 
  (2) 

where lK  is the capacity of line l . ilv  is the number of passengers per hour boarding line 

l  before the origin node ( )i s  of route section s  and alighting after node ( )i s . 
l  and 

m  are positive calibration parameters. The fraction 
il

l

v

K
 in (2) is interpreted as the 

occupancy rate, which is a measure of in-vehicle congestion. When the occupancy rate 

increases, the additional waiting time increases. Moreover, for a given occupancy rate, larger 

values of m  and l  mean that more passengers are willing to wait at the bus stop for the 

next arriving vehicle, leading to higher additional waiting time.  

 The capacity lK  of line l  in Eq. (2) is given by:  

 = ,  , ,l l
sK f k l A s      (3) 

where k  is the capacity of a transit vehicle and is assumed to be constant for all the vehicles 

servicing different routes for simplicity although there is no conceptual difficulty to 

generalize to the situation that different routes have different vehicle capacities. 
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2.3 Individual Cost Components 

The cost on route section s , sC , is described by three random variables:  

  = ,    s T s W s sC T X s      ,   (4) 

where sT  is the in-vehicle travel time on route section s . sX  is the waiting time for the 

first arrived vehicle on route section s  that is not full. s  is the additional waiting time on 

route section s  due to insufficient capacity. T  and W  are values of in-vehicle travel 

time and waiting time respectively. This section describes these individual cost components. 

 

2.3.1 In-vehicle Travel Time 

Let l
sT , the in-vehicle travel time for line l  on route section s , be a random variable. Then, 

the in-vehicle travel time on route section s  can be found using the relation  

 = ,    

l l
s s

l As
s l

s
l As

f T

T s
f







 





�. (5) 

Effectively, Eq. (5) calculates the weighted average of in-vehicle travel times. The expected 

in-vehicle travel time can be obtained by taking expectation on both sides of Eq. (5):  

 

[ ]

[ ] = ,    .

l l
s s

l As
s l

s
l As

f E T

E T s
f







 





� (6) 

Assume the in-vehicle travel times of different lines are independent. The variance of 

in-vehicle travel time can then be found by:  

 

 2

2

[ ]

[ ] = ,    .

l l
s s

l As
s

l
s

l As

f Var T

Var T s

f







 
 

  
 




  (7) 
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In practice, in-vehicle travel times between different line sections and between different lines 

sharing the same route section are not likely to be independent. When these in-vehicle travel 

times are highly correlated, covariance terms must be added to Eq. (7) to improve the 

accuracy of modeling. 

 

2.3.2 Waiting Time for the First Arrived Vehicle  

The waiting time distribution for the arrival of the first vehicle that is not full can be derived 

from the headway distribution of transit vehicles as discussed in Spiess and Florian (1989) but 

here we incorporate the concept of effective frequency in determining the mean and variance 

of waiting time for the first arrived vehicles. Assuming that passengers arrive at bus stops 

randomly, the waiting time distribution for line l  on route section s  can be determined by:  

 

0

[1 ( )]
( ) = ,  , ,

[1 ( )]

l
l s
s s

l
s

H x
g x l A s

H t dt



   


  (8) 

where ( )l
sH x  is the cumulative distribution of the interarrival times (or headways) and the 

detailed derivation for this equation can be found in Larson and Odoni (1981) and Kulkarni 

(1995). By definition, the cumulative distribution function of waiting time for line l  on route 

section s , denoted by ( )l
sG x , can then be obtained as:  

 
0

( ) = { } ( ) ,  , ,
xl l l

s s s sG x P X x g t dt l A s        (9) 

where l
sX  is the waiting time for line sl A .  

Using Eqs. (8) and (9), we can determine the mean and variance of waiting time for a 

particular line l  on route section s  and those for route section s  based on the assumed 

distribution of vehicle headway. While there are many distributions (e.g., triangular or 

uniform distributions) that can be assumed for vehicle headway to derive the analytical 

formula for the mean and variance, for the purpose of illustration, we assume the headway for 
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line l  on route section s  to be exponentially distributed with mean / l
sf  . Hence, we have:  

 ( ) = 1 ,  , .

l
sf xl

s sH x e l A s



      (10) 

Substituting Eq. (10) into Eq. (8) and then substituting the resulting expression into Eq. (9), 

we get:  

 ( ) = 1 ,  , ,

l
sf xl

s sG x e l A s



      (11) 

which means that the waiting time of line l on route section s is exponentially distributed with 

mean / l
sf  . 

 The mean and variance of waiting time on route section s can be deduced from Eq. 

(11). For a positive value   and a cumulative distribution function ( )
sXF x  for the waiting 

time sX  on route section s , the moments of sX  is given by:  

 1

0
[ ] = {1 ( )} ,  .

ss XE X t F t dt s 
        (12) 

Based on Eq. (12), the first and second moments of sX can be obtained as follows: 

 
0

[ ] = {1 ( )} ,  
ss XE X F t dt s


    , and

 
 (13) 

 2

0
[ ] = 2 {1 ( )} ,  .

ss XE X t F t dt s


     (14) 

Assuming that the waiting time on each line l  of route section s  to be independent of each 

other, the brace terms in Eqs. (13) and (14) can be expressed as: 

 1 ( ) ( ) = ( )
s

l
X s s

l As

F x P X x P X x


    = {1 ( )},  .l
s

l As

G x s


     (15) 

Then, the first and second moments can be simplified by putting Eqs. (11) and (15) into both 

Eqs. (13) and (14) as follows: 

 
0

[ ] = {1 ( )}l
s s

l As

E X G t dt




 = ,  ,
l

s
l As

s
f





 




 

and (16) 
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2

0
[ ] = 2 {1 ( )}l

s s
l As

E X t G t dt





2

2

2
= ,  

( )l
s

l As

s
f





 


 .

 

 (17) 

Since the variance of sX  can be determined by: 

 2 2[ ] = [ ] ( [ ]) ,  s s sVar X E X E X s   , (18) 

we can substitute Eqs. (16) and (17) into Eq. (18) to get: 

 

2

2
( ) = ,  .

( )s l
s

l As

Var X s
f





 


   (19) 

 

2.3.3 Additional Waiting Time due to Congestion 

The mean and variance of additional waiting time due to congestion (or congestion cost 

expressed as waiting time equivalent) are derived from the proposed congestion function, 

which is more general than the one proposed by De Cea and Fernádez (1993). The congestion 

function for route section s  is expressed as: 

 
ˆ

= ,

n
s

s s
s s

s

aV aV bV
s

K
 

  
  

 
 , (20) 

where ,a b , s , and n  are calibration parameters. sK  is the capacity of route section s. sV  

is the flow or number of passengers per hour on route section s . sV  is the total number of 

passengers per hour boarding at node ( )i s  but the passengers will not transfer to another 

lines and finish their trips at the destination node of route section s. ŝV  is the number of 

passengers per hour boarding lines belonging to route section s before ( )i s  and alighting 

after ( )i s .  

 ˆ
s sV V  in Eq. (20) represents the passenger flow that compete with sV  for the 

capacities of the same set of lines.  Unlike the congestion function proposed by De Cea and 

Fernádez, the proposed congestion function takes into account the number of passengers per 
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hour s
sV V  waiting and boarding at stops, because some passengers may not be able to get 

into a bus due to too many passengers waiting at the stops. a  and b  in Eq. (20) are used to 

model different impacts of various  flows to congestion cost (expressed as waiting time 

equivalent), as the congestion cost due to waiting at stops may be higher than that due to 

in-vehicle congestion. Normally, we set b  to be equal to 1. The numerator in Eq. (20) can be 

interpreted as generalized occupancy. 

The route section flow

 
sV

 

in Eq. (20) can be obtained once all route flows on the 

route section are known:

 
 = ,    w

s sr r
w r w

V b y s
 

  
 

�, (21)  

where w
ry  is the flow on route r between OD pair w . srb  is the route-section route 

incidence indicator, which equals 1 if route section s  is a part of route r , and equals 0 

otherwise. 

The competing flows sV  and ŝV  in Eq. (20) are respectively calculated as follows: 

 ,  
s ls

r
s l

l A r S

V v s
 

      , and  (22) 

 ˆ ,  
s ls

r
s l

l A r S

V v s
 

    ,  (23) 

where 
l
sv  is the number of passengers per hour on line l on route section s. lsS   is the set of 

route sections going out from node ( )i s  and containing line l  but excludes route section s . 

lsS  is the set of route sections containing line l  with their origin nodes before ( )i s  and 

their destination nodes after ( )i s . Assuming that the passengers board the first arrived transit 

vehicles, the line section flow l
sv  in Eqs. (22) and (23) can be found by: 

 

 = ,    , .
l

l s
s s sj

s
j As

f
v V l A s

f



   


   (24) 
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The route section capacity sK  in Eq. (20) is defined as: 

 ,  s
s

k
K s

h


   ,  (25) 

where   is a conversion factor, and sh  is the headway of transit vehicles on route section s. 

If the unit for headway is minutes and that for the capacity of a line is passengers per hour, 

then the conversion factor,   = 60 min/hr.  

 Since headway is a random variable, the capacity is also a random variable 

according to Eq. (25) and hence the additional waiting time due to congestion is also a 

random variable according to Eq. (20).  Substituting Eq. (25) into Eq. (20), and taking 

expectation and variance on both sides of the resulting expression, we get:  

 

ˆ
= [( ) ],  

n
s

s ns
s s s

aV aV bV
E E h s

k
 


       
 

 , and  (26) 

 

2

2
ˆ

= [( ) ],  

n
s

s ns
s s s

aV aV bV
Var Var h s

k
 


       
 

 , respectively. (27) 

Since the headway for line l  on route section s  is exponentially distributed with 

mean / l
sf   (i.e.,  / , ,l l

s sh Exp f l s   ), according to the property of superposition of 

Poisson processes,  / ,s sh Exp f s   , where  

 ,  
s

l
s s

l A

f f s


     .  (28) 

The expected value and variance of ( )n
sh  can then be found by:  

 

1

0
[( ) ] = = ! ,  ,

s
nf

tn n
s

s

E h n t e dt n s
f

 
   

   
   and  (29) 
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 

2 2

2

2 1

0

2

2

[( ) ] = [( ) ] ( [( ) ]) ,  

= 2 ! ,  

(2 )! ( !) ,  .

n n n
s s s

nfs tn

s

n

s

Var h E h E h s

n t e dt n s
f

n n s
f

 




 

  

  
       

 
     









  (30) 

Substituting Eqs. (29) and (30) into Eqs. (26) and (27) respectively, we obtain the 

expected value and variance of the additional waiting time due to congestion on route section 

s  as shown below:  

 

ˆ( )
= ! ,  ,

n
s

s s
s s

s

aV aV bV
E n s

kf

 


         


 

and  (31) 

 

2

2 2
ˆ( )

= ((2 )! ( !) ) ,  .

n
s

s s
s s

s

aV aV bV
Var n n s

kf

 


          
   (32) 

 

2.4 Effective Travel Cost 

The variabilities associated with the in-vehicle travel time and waiting time, coupled with the 

effect of congestion cause variability in route travel time. Due to this, passengers cannot 

determine the exact trip time for their journeys. The variability in route travel time is 

countered by early departures to allow for additional time to avoid late arrivals. This 

additional time is included by the passengers while planning their trips, and is referred to as 

travel time margin. This travel time margin plus the expected trip time is known as travel time 

budget (Lo et al., 2006). However, this concept does not consider the fact that the monetary 

value of in-vehicle travel time differs from that of the waiting time. Hence, this paper 

proposes the concept of effective travel cost (or travel cost budget), which generalizes the 

concept of travel time budget by considering trip travel cost (including in-vehicle travel time 

cost and waiting time cost) instead of trip travel time. Mathematically, the effective travel cost 

on a particular route can be formulated as:  
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 = [ ] , , ,w w
r r r wE E C M r w       (33) 

where w
rE  is the effective travel cost of route r  between OD pair w . w

rC  is the trip travel 

cost on route r  connecting OD pair w . rM  is the travel cost margin of passengers using 

route r . 

The travel cost margin rM  is expressed in terms of the standard deviation of trip 

travel cost: 

 ( ), ,w
r r wM Var C r w     , (34) 

where   is a parameter.. Similar to Lo et al. (2006), the parameter   can formally relate 

to the probability   that the actual trip travel cost is not greater than effective travel cost:  

 { = [ ] ( )} = ,w w w w
r r r rP C E E C Var C    (35) 

By Central limit theorem, a probability distribution tends to be a normal distribution when the 

sample size is large enough. Hence, it is reasonable to assume that w
rC  is normally 

distributed, and the random variable w
rC  can be normalized as shown below:  

 
[ ]

= .
( )

w w
r r

w
r

C E C
P

Var C
 

   
  

 (36) 

Let 
[ ]

=
( )

w w
r r

wC wr
r

C E C
Z

Var C


 denote the standard normal variate of w

rC  and hence Eq. 

(36) can be written as:  

 ( ) = .wCr
P Z    (37) 

The parameter   in (34) and hence   in (37) can then be interpreted as the degree of risk 

aversion of passengers. A higher value of   means that the passenger is more risk-aversive 

and is willing to have a higher probability of the trip travel cost not greater than the effective 

travel cost. Thus, the values of    and   totally depend on the individual's appetite for 
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risk aversion. These values also depend on the purpose of the trip. A more important trip will 

lead to a higher   value and hence a higher   value. 

The route costs in Eqs. (33)
 

and (34) are related to route section costs as follows:
 

 = ,  ,w
r sr s w

s S

C b C r w


      . (38) 

Assume the variances of route costs are independent of each other. We can take expectation 

and variance on both sides of Eq. (38) to get the following respectively:
 

 [ ] = [ ],  ,w
r sr s w

s S

E C b E C r w


      , and (39) 

  2
[ ] = [ ] = [ ],  ,w

r sr s sr s w
s S s S

Var C b Var C b Var C r w
 

       . (40) 

The effective travel cost on route r between OD pair w can then be obtained by substituting 

Eqs. (34), (39), and (40) into Eq. (33): 

 [ ] [ ],  ,w
r sr s sr s w

s S s S

E b E C b Var C r w
 

         . (41) 

The mean and variance of route section cost in (41) can be found by: 

  [ ] = [ ] [ ] ,s T s W s W sE C E T E X E    
 

and
 
 (42) 

 2 2 2[ ] = [ ] [ ] [ ],s T s W s W sVar C Var T Var X Var      (43) 

which are obtained by taking expectation and variance on both sides of Eq. (4) respectively. 

The effective route travel cost w
rE  can then be expressed in terms of individual components 

of route section costs: 

  

 2 2 2

[ ] [ ]

         [ ] [ ] [ ] ,  , .

w
r sr T s W s W s

s S

sr T s W s W s w
s S

E b E T E X E

b Var T Var X Var r w

   

    





  

      



  �
 (44) 

 

2.5  Nonlinear Complementarity Problem Formulation 

Assuming that all the passengers choose the routes with minimum effective travel cost, we 
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define the reliability-based user equilibrium as follows:  

Reliability-based user equilibrium: The transit network is said to be at 

reliability-based user equilibrium, if, for each OD pair, the effective travel costs on used 

routes are equal to each other and are not greater than those on unused routes. 

The reliability-based user equilibrium as defined above can mathematically be stated 

as follows:  

 
= , > 0,

 ,  , ,
, = 0,

w
w w r
r ww

w r

u y
E r w

u y


   


   (45) 

where wu  is the equilibrium effective travel cost over all the routes that connect OD pair 

w  and w
ry  is the passenger flow on route ,wr w   . The nonlinear 

complementarity conditions for the routes on the network, based on those in Eq. (45) can be 

stated as follows:    

 0,  , ,w
r w wE u r w        and (46) 

 ( ) = 0, , .w w
r r w wy E u r w       (47) 

Apart from the nonlinear complementarity conditions, the following flow conservation and  

non-negativity constraints for route flows also form a part of the formulation:  

 = ,    ,w
r w

r w

y q w


 


  (48) 

 0,   ,w
r wy r w      . (49) 

 In this study, the demand in (48) is assumed to be elastic, and the following linear 

decreasing function is adopted for the purpose of analysis: 

 0 ,    ,w w wq q u w      (50) 

where 0q  is the maximum or potential demand and w  is the slope of the demand function 

of OD pair w .  

The reliability-based transit assignment problem can be formulated as a Nonlinear 
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Complementarity Problem (NCP): to find = [ ]w
ry Y 0  such that  

 ( ) ,  ( ) 0,T F Y 0 Y F Y   (51) 

where the mapping function 
0

( ) .

w
r

rw w
r

w

q y

E



 
 

  
 
 


F Y


 w

rE  is defined by (1)-(3), (6), (7), 

(16), (19)-(24), (28), (31), (32), and (44).   

The NCP (51) can be reformulated as a variational inequality (VI) problem (see 

Nagurney, 1999): to find = [ ]w
ryY  such that  

 * *( )( ) 0, .T     F Y Y Y Y   (52) 

where   is the solution set.  The superscript * refers to Y  that satisfies (45). According 

to Nagurney (1999), a solution exists to (52) when ( )TF Y  is continuous with respect to Y  

and the solution set is bounded and closed (i.e., compact). In addition, the solution is unique 

when ( )TF Y  is strictly monotonic with respect to Y . Clearly, the solution set is compact in 

this problem. It is because the flow cannot be greater than demand and hence the solution set 

must be bounded by a sphere with radius equal to the largest demand of all OD pairs. 

Moreover, ( )TF Y  is continuous with respect to Y  as all the functions involved for 

calculating w
rE  and 

0
w
r

r w

w

q y




 


are continuous of w
ry . Therefore, a solution exists to this VI 

problem and hence to the NCP formulation as well. However, the monotonic requirement in 

this problem may not be satisfied, leading to the possibility of having multiple route flow 

solutions. 

 

3  SOLUTION METHOD 

The NCP formulation is path-based, which cannot be reformulated into a link-based 
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formulation because the standard deviation of the travel time on a path is path-specific and not 

equal to the sum of the standard deviations of the link travel times on that path. Therefore, we 

need to develop solution methods to handle the path-based formulation directly. For realistic 

networks, there are many paths and hence the path set and the number of path flow variables 

are very large. Enumerating all the paths in advance is very time-consuming but not all paths 

will be used at optimality. Moreover, handling too many variables will increase the 

computation time and computer storage may be a problem. Therefore, we develop a path 

generation algorithm to avoid the computationally intensive path enumeration and develop a 

data structure to store path flow variables with non-zero values only.  

The proposed path generation algorithm is based on the algorithm in Chen et al. 

(2001) which is used to solve traffic equilibrium problem with path-specific tolls. A 

subroutine is developed to identify the lowest effective travel cost path in each major 

iteration. This subroutine uses a k-shortest path algorithm to find k lowest mean travel cost 

paths. Their travel cost variances and effective travel costs are then computed and the lowest 

effective travel cost path for each OD pair is identified. This path will then be added to the 

path set if the path has not been included yet. The algorithm also utilizes the self-adaptive 

projection and contraction algorithm proposed by Chen et al. (2001) to solve the NCP with 

the updated path set.  

There are two main differences between the proposed algorithm and the one proposed 

by Chen et al. (2001). First, column dropping is not used to ensure the convergence of the 

algorithm under the general monotone mapping  assumption for ( )TF Y . Second, the path 

specific travel cost margins are functions of route flows but path specific tolls are not. 

Therefore, one subroutine is required to calculate the path-specific travel cost margins and 

effective travel cost in each iteration.  

The detailed algorithmic steps are described as follows: 
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Step 1. Initialization 

 Initialize parameters: terminating threshold 0.    

 Set main iteration counter 0m  . 

 Perform incremental assignment to generate an initial set of paths: ( ),w m w   , 

where ( )w m  is the path set of OD pair w in iteration m.  

 Set flows on initial set of paths to be zero. 

Step 2. Column Generation 

 Increase main iteration counter: 1m m  . 

 Update the mean and variance of route section costs. 

 Identify the lowest effective travel cost paths:  

- determine the k – lowest mean route travel cost paths. 

- calculate the variances of effective travel costs and then the path-specific travel 

cost margins of all the k – lowest mean route travel cost paths. 

- obtain the effective path travel costs on all the k – lowest mean route travel 

cost paths. 

- identify the path  wp m  with the lowest effective travel cost.  

Step 3. Convergence 

 If the NCP’s error bound 
0

( 1),
max max 0,

w

w
r

rw w w
r r

r m w
w

q y

G y y 



    

  
  

     
  

  




 
, then 

terminate. Otherwise, update the path set:  ( ) ( 1)w
w wm p m m     if 

  ( 1),w
wp m m w     , and go to Step 4. 
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Step 4. Equilibration 

 Use the self-adaptive projection and contraction algorithm to solve the NCP using the 

path set ( ),w m w   . 

 Return to Step 2. 

The convergence of this solution method depends on whether the self-adaptive 

projection and contraction algorithm can solve the NCP in each iteration, because in the worst 

case, all paths are included in the path set and the solution method becomes handling the 

original NCP. If ( )TF Y  is monotone, the proposed solution method can guarantee 

convergence. 

 

4  SURVEY AND NUMERICAL STUDIES 

Three studies were carried out. The first one is to validate that the degree of risk aversion of 

transit passengers affects their route choices. The second one is to illustrate the properties of 

the problem and the last one is to illustrate the effectiveness of the algorithm. 

 

Example 1: Validation on transit route choice behavior  

To validate that the degree of risk aversion of passengers affects transit route choice, we 

conducted a survey with a sample size of 50 people in June 2009 in Singapore. Other than 

collecting some basic information on the respondents, the survey asked the respondents their 

choices from two given alternatives in each of the 6 different scenarios. Alterative 1 gives a 

usual trip time of 30 minutes in all scenarios whereas alternative 2 gives a lower usual trip 

time of 20 minutes but the possible delay increases from scenarios (a) to (f). This survey 

setting is similar to the one in Jackson and Jucker (1982) except that this survey focuses only 

on the transit services given. The details of the second part of the questionnaire are given in 

the Appendix, and the results are reported in Figure 3a.  
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Select 
alternative 2 in 
all scenarios

8%

Select 
alternative 1 in 
all scenarios

8%

Irrational 
response

10%

Select 
alternative 2 in 

the first few 
scenarios and 

then select 
alternative 1 in 
other scenarios

74%

 

Select 
alternative 2 in 

the first scenario 
only
11%

Select 
alternative 2 in 

the first two 
scenarios only

30%

Select 
alternative 2 in 
the first three 

scenarios only
34%

Select 
alternative 2 in 

the first four 
scenarios only

22%

Select 
alternative 2 in 

the first five 
scenarios only

3%

 

Figure 3: Survey result 

10% of the respondents gave irrational answers and their answers were ignored. From the 

remaining respondents, we find that all the respondents have different degrees of risk 

aversion. 8% of them are risk-aversive and always select alternative 1. 8% of them are 

risk-neutral and always select the route with lower mean travel time regardless of delay or 

variance of travel time. All other respondents selected routes by making a tradeoff between 

3a) 

3b) 
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the mean and variance of route travel time. These 74% respondents are further divided into 5 

classes as shown in Figure 3b. From this figure, most of the people select alternative 2 in the 

first two scenarios. The   value for these people is between 1.17 and 2, and is estimated 

based on the method in Jackson and Jucker (1982). Overall, the survey shows that the degree 

of risk-aversion highly affects the transit route choice. The implication is that ignoring this 

risk averseness in transit assignment can wrongly estimate the transit flow pattern and hence 

the level of service of each transit line.   

 

Example 2: Properties of the problem 

Table 2: Travel time and variance for line segments 

  l
st     1

1t     2
2t    2

3t    3
3t    3

4t    4
4t    2

5t    3
6t   

Travel Time (min)  25    7    6   4   4  10  13   8  
Variance (min 2 )   3   12   12   8  18 22 35 14 

 

To illustrate the properties of the problem clearly, we adopt the small network shown 

in Figures 1 and 2. The basic route section data related to the network is given in Table 2, 

which is similar to the one presented in De Cea and Fernández (1993). All transit lines are 

assumed to be served by the single-deck bus, Mercedes Benz O 405, which is currently 

operated in Singapore to serve the entire network. This particular bus has a seating capacity of 

47 passengers and standing capacity of 38 passengers. Hence, the total capacity of the transit 

vehicle is 85 passengers. The headway is assumed to be exponentially distributed with mean 

1/ l
sf . The value of in-vehicle travel time is SGD 18.27 per hour, which is estimated by the 

average monthly salary of SGD 3977 for the year 2008 (Ministry of Manpower, Singapore, 

2009a) and the average weekly paid working hour rate (including overtime) of SGD 50.1 for 

the same year (Ministry of Manpower, Singapore, 2009b). The value of waiting time is set to 

be twice as that of in-vehicle time, based on the two values suggested by the US Department 
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of Transportation and the recommendation by the UK Department of Transport (Victoria 

Transport Policy Institute, 2009).  We also set 4,m n  1,l  0.1s  , 1a b  , 

60    min/hr, 95%  , and 1w   unless otherwise specified.  

The effects of potential demand, degree of risk aversion and congestion parameter 

value on route flows and route choice were studied using Table 3, which shows the results 

obtained for four different cases using the proposed solution method with 310   and 

5k  . Case 1 is the base case and others differ from the base case by having one different 

parameter value. From Table 3, we can see that the reliability-based user equilibrium 

conditions are satisfied in all cases – all used routes have equal and minimal effective travel 

cost. However, these routes have different means and variances in each of the cost 

components. 

 
Table 3:  Route flows and route costs under different degrees of risk aversion, 

congestion parameter values and potential demand 

In-vehicle Travel 
Time (min) 

Waiting Time 
(min) 

Additional 
Waiting Time due 
to Congestion 
(min)  

  Case 
   
Path 

Path 
Flow 

Effective 
Travel 
Cost Mean Variance Mean Variance Mean Variance 

1 1089.4 23.6 25.0 3.0 6.0 36.0 1.3 30.3
2 886.9 23.6 22.0 50.8 8.5 42.3 0.7 8.9
3 0.0 28.4 21.4 34.1 13.4 65.9 1.1 11.4

1: n = 3, 
99%, =

0 2000q   
4 0.0 41.3 15.0 26.0 21.0 261.0 0.7 8.8
1 380.1 19.9 25.0 3.0 6.0 36.0 0.1 0.1
2 0.0 22.4 22.0 50.8 8.5 42.3 0.0 0.0
3 0.0 26.1 21.4 34.1 12.8 60.6 0.0 0.0

2: n = 3, 
99%, =

0q  400  
4 0.0 40.5 15.0 26.0 21.0 261.0 0.0 0.0

 1 1980.0 20.0 25.0 3.0 6.0 36.0 0.2 0.1
2 0.0 22.4 22.0 50.8 8.5 42.3 0.0 0.0
3 0.0 26.1 21.4 34.1 12.8 60.6 0.0 0.0

3: n = 1, 
99%, =

0 2000q   
4 0.0 40.5 15.0 26.0 21.0 261.0 0.0 0.0
1 1171.3 12.2 25.0 3.0 6.0 36.0 1.6 46.8
2 816.4 12.2 22.0 50.8 8.5 42.3 0.6 5.4
3 0.0 15.1 21.4 34.1 13.2 64.4 0.8 6.6

4: n = 3, 
, = 50%

0 2000q   
4 0.0 17.7 15.0 26.0 21.0 261.0 0.5 5.4

 

By comparing cases 1 and 2 in Table 3, we can observe that equilibrium effective 



 27

travel cost increases with increasing potential demand. Moreover, similar patterns can be 

observed for the means and variances of additional waiting time due to congestion. As 

potential demand increases, travel demand increases and causes the vehicles to operate at full 

capacity. Therefore, the means and variances of additional waiting time due to congestion 

increase, which directly influences the mean and variance of equilibrium effective travel cost. 

Since the equilibrium cost is higher, more routes are feasible and hence the size of the set of 

used routes increases.  

By comparing cases 1 and 3 in Table 3, we can see that a higher value of congestion 

parameter, n, results in a higher mean and variance of additional waiting time due to 

congestion. More importantly, the set of used routes and the patronage of each line are highly 

affected by any change in the value of the congestion parameter n. In particular, when n = 1, 

there is no flow on route 2 and hence no patronage on transit lines L2, L3 and L4. Moreover, 

all passengers will take L1. However, when n = 3, the patronage of L1 is reduced by about 

half. The implication is that underestimating additional waiting time due to congestion can 

overestimate the patronage, which could have an adverse effect on the revenue and hence the 

profit.  

By comparing cases 1 and 4 in Table 3, we can conclude that the equilibrium effective 

travel cost and the congestion level (reflected by the mean and variance of the additional 

waiting time due to congestion) are affected by the degree of risk aversion of passengers 

(reflected by the probability   expressed as a percentage). More importantly, the degree of 

risk aversion of passengers has a major influence in determining the route flow pattern and 

hence the patronage of transit lines. In particular, we find that path 1 attracts about 7.5% less 

passengers when = 99%  than when = 50%  because path 1 has a higher travel cost 

variability than path 2 but this variability is only considered by the highly risk-aversive 

passenger with their = 99% . This finding means that the patronage of line 1 would be 
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overestimated by 7.5 % if the risk aversion of passengers were not considered. This 

overestimation would have a profound impact on the revenue and hence the profit obtained 

from transit line L1. The private L1 service operator would lose money in the worst case if the 

operator set the fare by assuming that passengers ignored the variability of travel time while 

making their decisions.   

To illustrate the effects of the value of the congestion parameter n  and potential 

demand on the equilibrium effective travel cost, we varied n  from 1 to 3, and for each value 

of n, we varied the potential demand from 400 to 2000 passengers/hour. Experimental runs 

were also carried out for three different cases of   - 99%, 95% and 50%. By doing so, we 

can take into account the individual's degree of risk aversion. The results are plotted in 

Figures 4 and 5. From these figures, we can see that the equilibrium effective travel cost is 

monotonically increasing with potential demand under various values of n  and   (or  ). 

As potential demand increases, the travel cost variability increases (as shown in Table 3), and 

hence travel cost margin and equilibrium effective travel cost increase. In addition, as   

increases, so do  , travel cost margin and equilibrium effective travel cost. However, in both 

figures, not all the curves are smooth, because the used path set is changing with potential 

demand.  A kink can be observed at the boundary of potential demand, say 1200 

passengers/hour for n = 3, where slightly increasing the potential demand increases the size of 

the used path set by at least one. 

In order to study the effect of vehicle frequency on equilibrium effective travel cost, 

computational runs were carried out for three different scenarios. The first one is called the 

base scenario (denoted as b), which is studied with the same set of frequencies, the same 

potential demand and the same congestion parameter value as case 1 in table 3. All 

frequencies are reduced by 2 in the second scenario (denoted as b-2) and increased by 2 in the 

third scenario (denoted as b+2). The analysis was carried out for passengers with the three 
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risk aversion behaviors as before. The results are plotted in Figure 6, which shows that the 

changes in the frequencies under various risk aversion behaviors have a strong influence on 

the equilibrium effective travel cost. As each of the frequencies increases, there is a sharp 

reduction in the equilibrium effective travel cost and the reason behind this is that lower 

frequency results in higher mean and variance of waiting times. 
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Figure 4: Equilibrium effective travel cost for various values of potential demand and 

congestion parameter 
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Figure 5: Equilibrium effective travel cost for various values of potential demand and degrees 

of risk aversion of passengers 
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Figure 6: Influence of frequency on equilibrium effective travel cost under various degrees of 

risk aversion of passengers 
 

Example 3 Effectiveness of the algorithm 

To illustrate the effectiveness of the algorithm and its application to real networks, a 

larger network as shown in Figure 7 is used.  The developed network is based on the 

Singapore bus network but only includes major stops and major services offered by Singapore 

Bus Services (SBS) Transit Limited. This network has 21 nodes, 19 lines and 19 OD pairs. 

The shaded nodes are origin or destination nodes. The corresponding network coded by route 

sections has 59 links. This network, we believe, captures all essential features of a large 

network including multiple OD pairs and many transit routes between each OD pair.  

We consider the mean peak-hour frequency of each service as shown in the SBS 

Transit Limited webpage. The mean   value is estimated from the survey discussed in 

Example 1 and is found to be equal to 1.31. We do not have the actual demand data to 

calibrate the demand model. Therefore, we assume a potential demand pattern based on the 

given line capacity during the peak period, and carried out a sensitivity study on potential 

demand and the slope of the demand function. The values for remaining parameters follow 

those in the previous example. 
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Notations       
AK Ang Mo Kio  EU Eunos  M Marsiling 
BB Bukit Batok  FS Fullerton Square  OR Orchard 
BL Boon Lay  HF Harbour Front  PU Punggol 
CA Changi Airport   HO Houngang  SG Sembawang 
CK Choa Chu Kang  HP Haw Par Villa  T Tampines 
CL Clementi  JE Jurong East  TH Thomson 
DG Dhoby Ghaut  L Lavender  WL Woodlands 

Figure 7: Simplified Singapore bus network 

 

Table 4 demand sensitivity on solution speed 

 

Table 5: The effect of the slope of the linear demand function on solution speed 

  

Demand factor df  1 2 3 4 5 6
Number of major iterations 17 22 16 171 215 477
CPU time (seconds) 4.66 6.23 4.44 52.81 66.56 105.88

 Slope w  1 2 3 4 5 6
 Number of major iterations 215 32 34 61 111 168
 CPU time (seconds) 66.56 9.44 10.38 17.88 35.41 50.41
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The proposed solution algorithm was coded in FORTRAN 90, and ran in a computer with an 

Intel Core Duo T2500 2.2GHz CPU, and a 1GB RAM. Table 4 shows the computation times 

required and the number of major iterations performed under different demand patterns, 

assuming 1w  . df  is the demand factor which is used to scale up the potential demand of 

each OD pair in the base case. As you can see, a higher demand factor results in a longer 

computation time, meaning that a higher travel demand requires more computation time. This 

may be because a higher travel demand leads to more used paths and more interaction 

between different OD pairs, and hence reduces the speed of the convergence. Table 5 shows 

the effect of the slope of the demand function on the computation speed. In general, the slope 

greatly affects the convergence speed but we cannot conclude whether a large slope can 

reduce or improve the speed.  
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Figure 8: Errors over iteration 

 

Figure 8 shows the convergence plot when 1w   and 5df  . As revealed in this 

figure, the error G  decreases over iteration on average but does not decrease monotonically 

probably because the mapping function in the NCP is not monotone with respect to path flow. 
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Indeed, the mathematical properties of this mapping function deserve a deep investigation 

because they have important implications on developing a convergent and efficient solution 

method for solving the proposed NCP formulation. We leave this to future studies. 

 

5  CONCLUSIONS 

In this paper, an NCP model is proposed for the reliability-based stochastic transit assignment 

problem. Compared with the frequency-based transit assignment model, the contribution of 

this paper is to propose a more realistic transit assignment model that  

 considers both demand and supply uncertainties,  

 captures risk-aversion behavior of passengers, and variabilities of in-vehicle travel 

time, waiting time, and congestion, 

 can incorporate the proposed concept of travel cost budget, which is more general than 

the concept of travel time budget, 

 has at least one solution,  

 can separately model different effects of on-board passengers and passengers waiting 

at stops on congestion cost, and  

 can be efficiently solved by the proposed column generation based solution method 

which can be applied to a realistic network.  

 Survey and numerical studies were also performed to validate the risk-aversion 

behavior of passengers, and to illustrate the properties of the problem and effectiveness of the 

proposed solution method. The results show that underestimating the congestion effect and 

ignoring the risk aversion behavior can overestimate the patronage of transit service. These 

findings have important implications on the profit of the operators involved and the 

development of transit network design models. The proposed model can be included in the 

transit network design model to determine the optimal service frequency and fare structure. 
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The proposed NCP model has been formulated for single-class passengers. Moreover, 

the perception errors on travel time and waiting time have not been considered yet. Based on 

the formulation proposed, it is not difficult to extend the formulation to consider the 

perception error, the distribution of the value of time and multiple user classes. This is left to 

future studies. Furthermore, the assumption of exponential headway distribution is realistic to 

the transit stops without dynamic passenger information systems but may not be realistic to 

the stops with these systems. According to Nökel and Wekeck (2009), the dynamic passenger 

information systems give simultaneously the consecutive departure times for all lines serving 

a stop. There is no stochasticity involved in waiting time. The passengers can select the lines 

to minimize the sum of waiting time and in-vehicle travel time. The passengers do not need to 

board on the first arriving vehicle with sufficient capacity as assumed in this paper. This user 

behavior can be incorporated in our proposed framework in the future to correctly estimate 

the flow pattern and performance of the transit networks having such systems at some transit 

stops. A validation study can also be performed to test whether the extended approach can 

replicate the observed situation when the ridership data is available. In addition, the 

mathematical properties of the mapping function should be investigated in order to develop a 

convergent algorithm under a looser convergent requirement. Finally, based on the proposed 

framework, one can develop a transit network design model that captures risk-aversion 

behavior of passengers and develop a solution method based on heuristics such as tabu search 

(e.g., Fan and Machemehl, 2008), genetic algorithms (Ng et al., 2009), and ant colony 

heuristics (e.g., Vitins and Axhausen, 2009) for the network design model. 

 



 35

REFERENCES 

 

Abdel-Aty, M. A., Kitamura, R. & Jovanis, P. P. (1997), Using stated preference data for 

studying the effect of advanced traffic information on drivers' route choice, 

Transportation Research Part C, 5(1), 39-50. 

Bell, M. G. H. & Cassir, C. (2002), Risk-averse user equilibrium traffic assignment: An 

application of game theory, Transportation Research Part B, 36(8), 671-681. 

Cepeda, M., Corninetti, R., & Florian, M. (2006), A frequency-based assignment model for 

congested transit networks with strict capacity constraints: characterization and 

computation of equilibria, Transportation Research Part B, 40(6), 437-459. 

Chen, A., Lo, H.K., & Yang, H. (2001), A self-adaptive projection and contraction algorithm 

for the traffic assignment problem with path-specific costs. European Journal of 

Operational Research, 135(1), 27-41. 

Chriqui, C. and Robillard, P. (1975) Common Bus Lines. Transportation Science, 9, 115-121. 

Cominetti, R. & Correa, J. (2001), Common-lines and passenger assignment in congested 

transit networks, Transportation Science, 35(3), 250-267. 

Dial, R.B., (1967), Transit pathfinder algorithms. Highway Research Record 205, 67–85.  

De Cea, J. & Fernández, E. (1993), Transit assignment for congested public transport 

systems: An equilibrium model, Transportation Science, 27(2), 133-147. 

Fan, W. & Machemehl, R. B. (2008), Tabu search strategies for the public transportation 

network optimizations with variable transit demand, Computer-Aided Civil and 

Infrastructure Engineering, 23(7), 502-520. 

Fearnside, K. & Draper, D. P. (1971), Public transport assignment-a new approach, Traffic 

Engineering Control, 12, 298-299. 

Jackson, W. B. & Jucker, J. V. (1982), An empirical study of travel time variability and travel 



 36

choice behavior, Transportation Science, 16(4), 460-475. 

Kulkarni, V.G. (1995), Modeling and Analysis of Stochastic Systems. Chapman & Hall. 

London. 

Lam, W. H. K., Gao, Z. Y., Chan, K. S., & Yang, H. (1999), A stochastic user equilibrium 

assignment model for congested transit networks, Transportation Research Part B, 

33(5), 351-368. 

Lam, W. H. K., Zhou, J., & Sheng, Z. H. (2002), A capacity restraint transit assignment with 

elastic line frequency, Transportation Research Part B, 36(10), 919-938. 

Larson, R. C. & Odoni, A. R. (1981), Urban Operation Research (available at 

http://web.mit.edu/urban_or_book/www/book/index.html).  

Le Clercq, F. (1972), A public transport assignment model, Traffic Engineering Control, 13, 

91-96. 

Lei, Q. S. & Chen, J. (2004), An algorithm for transit assignment with elastic demand under 

capacity constraint, Proceedings of the 5th  World Congress on Intelligent Control and 

Automation (WCICA), pp. 5245- 5247. 

Lo, H. K., Luo, X. W., & Siu, B. W. Y. (2006), Degradable transport network: Travel time 

budget of travelers with heterogeneous risk aversion, Transportation Research Part B, 

40(9), 792-806.  

Ministry of Manpower, Singapore (2009a), Ministry of Manpower |  Earnings and Wages 

<http://www.mom.gov.sg/publish/momportal/en/communities/others/mrsd/statistics/Ear

nings_and_Wages.html> (accessed on 28 June 2009). 

Ministry of Manpower, Singapore (2009b), Ministry of Manpower |  Hour worked 

<http://www.mom.gov.sg/publish/momportal/en/communities/others/mrsd/statistics/Ho

urs_Worked.html > (accessed on 28 June 2009). 

Nagurney, A. (1999), Network Economics: A Variational Inequality Approach, Kluwer 



 37

Academic Publishers. Norwell, Massachusetts, USA. 

Ng, M. W., Lin, D. Y., & Waller, S. T. (2009), Optimal long-term infrastructure maintenance 

planning accounting for traffic dynamics, Computer-Aided Civil and Infrastructure 

Engineering, 24 (7), 459-469.      

Nguyen, S. & Pallottino, S. (1988), Equilibrium traffic assignment for large scale transit 

networks, European Journal of Operational Research, 37(2), 176-186. 

Nökel, K. & Wekeck, S. (2009). Boarding and alighting in frequency-based transit 

assignment. Paper presented at 88th Annual Transportation Research Board Meeting, 

Washington D.C., January 2009. 

Poon, M. H., Wong, S. C., & Tong, C. O. (2004), A dynamic schedule-based model for 

congested transit networks, Transportation Research Part B, 38(4), 343-368. 

Schmöcker, J., Bell, M.G.H. & Kurauchi, F. (2008), A quasi-dynamic capacity constrained 

frequency-based transit assignment model, Transportation Research Part B, (42)10, 

925-945. 

Spiess, H. (1984) Contributions a La Theorie Et Aux Outils De Planification Des Reseaux De 

Transport Urbain. Drpartement d'informatique et de recherché operationelle. Universite 

de Montreal. 

Spiess, H. & Florian, M. (1989), Optimal strategies: A new assignment model for transit 

networks, Transportation Research Part B, 23(2), 83-102. 

Sumalee, A., Watling, D. P., & Nakayama, S. (2006), Reliable network design problem: the 

case with uncertain demand and total travel time reliability, Transportation Research 

Record, 1964, 81-90. 

Sumalee, A., Tan, Z.J., Lam, W.H.K. (2009), Dynamic stochastic transit assignment with 

explicit seat allocation model, Transportation Research Part B, 43(8-9), 895-912. 

Teklu, F. (2008), A stochastic process approach for frequency-based transit assignment with 



 38

strict capacity constraints, Networks and Spatial Economics, 8(2), 225-240.  

Victoria Transport Policy Institute (2009), Transportation Cost and Benefit Analysis II – 

Travel Time Costs<www.vtpi.org/tca/tca0502.pdf > (access on 26 June 2009). 

Vitins, B. J. & Axhausen, K. W. (2009), Optimization of large transport networks using the 

ant colony heuristic, Computer-Aided Civil and Infrastructure Engineering, 24(1), 1-14. 

Yin, Y., Lam, W. H. K., & Ieda, H. (2004), New technology and the modelling of risk taking 

behaviour in congested road networks, Transportation Research Part C, 12 (3-4), 

171-192. 

 

APPENDIX: SURVEY QUESTION 

Suppose you are a passenger going to A from B. Assume there are two bus lines (alternatives 

1 and 2) connecting A and B. All the characteristics (fare, comfort, frequency, etc.) of the two 

bus lines are the same except the travel time (i.e., usual time) and possible delay in each 

scenario (a) to (f) shown in the table below. Please select one alternative for each scenario. 

 

        Paired Comparison for Determining a Respondent’s Indifference Point 
                             Alternative 1  Alternative 2      

(a) Usual time:            30 minutes  20 minutes 
Possible delays:           None   5 minutes once a week 

(b) Usual time:            30 minutes  20 minutes 
Possible delays:           None   10 minutes once a week 

(c) Usual time:            30 minutes  20 minutes 
Possible delays:           None   15 minutes once a week 

(d) Usual time:            30 minutes  20 minutes 
Possible delays:           None   20 minutes once a week 

(e) Usual time:            30 minutes  20 minutes 
Possible delays:           None   25 minutes once a week 

(f) Usual time:            30 minutes  20 minutes 
Possible delays:           None   30 minutes once a week 
 

 


