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Abstract: The modeling of in-service behavior is of first
importance when reassessing complex structures like har-
bor structures and when performing risk analysis. To this
aim, the monitoring of structures allows assessment of
the level of loading and to provide more realistic mod-
els for mechanical behavior or input values for their pa-
rameters. Moreover, for complex structures and due to
building hazards, a stochastic modeling is needed to rep-
resent the large scatter of measured quantities. In this ar-
ticle, a step-by-step procedure for structural identifica-
tion is presented. A decomposition of random variables
on Polynomial Chaos is selected and it is shown to rep-
resent better the basic variables in comparison to pre-
selected distribution functions, when considering maxi-
mum likelihood estimate. The decomposed variables are
used for a stochastic analysis to be further updated with
available monitoring data. The model can be used to fol-
low the structure behavior during in-service or extreme
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conditions and to perform a reliability analysis. The pro-
posed procedure will be carried out by using available
data from the monitoring of a pile-supported wharf in
the Port of Nantes, in France, but it can be generalized to
similar monitored structures.

1 INTRODUCTION

The optimization of Inspection-Maintenance-Repara-
tion of structures in coastal areas is still an actual
challenge. In fact, harbors include a set of heteroge-
neous structures due to their different building periods
and manufacturing conceptions with a great variabil-
ity during design and construction phases (Boéro et al.,
2009a, 2009b). Monitoring is the only way to understand
both complex interaction mechanisms, as soil-structure
interaction (Sundaravadivelu et al., 1999; Donahue
et al., 2005), and real in-service structural behavior that
is greatly influenced by building conditions and set-
tlements that are expected to make the current and
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the theoretical behaviors different (Martin and Bell,
1999; Del Grosso, 2000; Vallone and Giammarinaro,
2007). Port facilities and wharfs in particular, are sub-
jected to complex loads (ship berthing and mooring,
tidal cycles, embankment and wind actions on cranes
and ships). A procedure of identification of random
variables from structural monitoring in view of updating
future reliability studies is proposed here by using real
data collected from the monitoring of a pile-supported
wharf.

Frequently used since the 1980s, pile-supported
wharfs are made up of a reinforced concrete platform
supported by a network of metallic-driven piles filled
up with concrete; these structures are leaned against a
backfill by means of a vertical reinforced concrete back-
wharf wall and they are anchored behind in the em-
bankment by sloped steel tie-rods. Anchoring rods in
a pile-supported container wharf are identified as crit-
ical elements for two main reasons: first, their behav-
ior is very sensitive to building conditions and second,
they support a great part of horizontal loading due to
ships mooring or wind loading on lift-cranes. Moreover,
there exists no technique to inspect them in the soil.
Therefore, a probabilistic modeling of their behavior is
needed for structural reliability and risk analysis dur-
ing in-service conditions. Monitoring is considered as a
proficient tool to suggest less complex but more suitable
probabilistic models of these structural elements.

Only a few papers are available in the literature on
this field. Most of them suggest monitoring a single or
few cross-sections assuming that the scatter with space
is low (Delattre and Mespoulhe, 1999; Gattermann et
al., 2001; Marten et al., 2004; Moerman et al., 2005). Del
Grosso et al. (2000) propose a spatially distributed mon-
itoring of a pier but also in this latter example, no statis-
tical analysis and probabilistic modeling are available.

After discussing the main assumptions for the prob-
abilistic modeling, the work aims to perform stochas-
tic finite element analysis for a typical pile-supported
wharf. A comparison between the 3D and 2D mechan-
ical finite models is briefly presented. The identifica-
tion of mechanical random variables of the models from
monitoring data is performed (Beck and Arnold, 1977).
As an alternative to the step-by-step inverse identifi-
cation of basic variables based on the simplex algo-
rithm (Nelder and Mead, 1965) assuming the probabil-
ity density function as known, a new method based on
Polynomial Chaos (PC) identification is suggested here
(Perrin et al., 2007; Adeli and Jiang, 2009). The proce-
dure is applied on real data from the monitoring of two
pile-supported wharfs in Nantes harbor instrumented in
30% of typical cross-sections. The monitoring of the first
wharf has been already described and discussed by the
authors (Yáñez-Godoy et al., 2008b). The instrumenta-

tion installed on passive anchoring rods of the second
wharf and the available data are described in this article.
After that, the collected data are analyzed and a mod-
eling of the stochastic process of tie-rod loading is sug-
gested. A comparison of the results from the two wharfs
is also briefly addressed.

2 MAIN ASSUMPTIONS FOR STOCHASTIC
MODELING FROM TIME SERIES

2.1 Available data from monitored structures

For the past decade, control of structural behavior
through Non-Destructive Testing (NDT) or monitor-
ing has underlined the need of developing data pro-
cessing algorithms and structural computation methods.
The time histories from a structural monitoring can be
classified into three categories:

1. Time series describing the progression of ag-
ing phenomena like chloride ingress in concrete
and/or crack propagation.

2. Time series measuring the strain affected by non-
periodic loading like wind and truck loading.

3. Time series measuring the strain due to cyclic load-
ing like temperature, tide, or waves.

This article focuses on data obtained from the latter
category during the so-called training period that means
before in-service conditions and aging mechanisms oc-
cur. Moreover, when similar structural elements, placed
at a given location xi are monitored (beams [Lanata and
Schoefs, 2010] or tie-rods [Yáñez-Godoy et al., 2008b]),
and subjected to the same loading, a statistical study of
their loading F(xi, tj, θ l) can be performed, where tj de-
notes the instant time and θ l the event that represents
mainly the hazard during building works and density of
the nearby ground. Finally, when structural elements in
the soil (sheet-piles, piles, rods) are considered, cyclic
variation of the water level modifies the ground gran-
ular structure with time, that is, the composition of the
material. Thus, each loading at time tj can be considered
as the loading on the same element in other ground con-
ditions. With this assumption and an abuse of notation,
F(xi, tj, θ l) can be replaced by F(xi, θ). This assumption
is built after more than 8 years of data analysis from four
wharfs (Yáñez-Godoy et al., 2008b).

2.2 Mechanical modeling

The aim of the mechanical modeling is to provide a
transfer function M between the measured loading
F(xi, θ) and the response of each structural element in
terms of random variables to be further updated. Let us
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denote with k(xi, θ) the vector of the set of random me-
chanical parameters for the mechanical relationship M
and Fr(xi) the boundary conditions expressed in terms
of deterministic external loadings for each loading con-
dition. Thus, Equation (1) states the stochastic problem
to be solved

M(k(xi , θ), Fr (xi )) = F(xi , θ) (1)

where k(xi, θ) is the unknown random variable and F(xi,
θ) is known only through its realizations F(xi, θ l). When
a unique random variable k(θ) is able to describe the
behavior of each structural element, Equation (1) sim-
plifies

M(k(θ), Fr (xi )) = F(xi , θ) (2)

The aim of the mechanical modeling is to obtain a set
of realizations k(θ l) by knowing F(xi, θ l).

3 PROBABILISTIC MODELING USING
POLYNOMIAL CHAOS

3.1 Formulation of the identification problem

When the distribution function of the random variable
k(θ) does not follow a predefined probability density
function and the input uncertainties are large, proba-
bilistic uncertainty quantification methods need to be
used to propagate uncertainty from model inputs to out-
puts (Moaveni et al., 2009). The probabilistic model-
ing is also very useful when the identification procedure
from a database has to be standardized.

Two broad classes of uncertainties can be defined:
epistemic or reducible uncertainties that stem from lack
of knowledge or data and aleatory or irreducible un-
certainties, related to the inherent randomness of the
process (Matthies, 2007). The epistemic uncertainty can
be assessed using knowledge or probabilistic represen-
tations. The knowledge representation includes, for ex-
ample, fuzzy set theories (Adeli and Jiang, 2006), inter-
val analysis (Muhanna et al., 2007), or evidence theory
(Bae et al., 2004), while the probabilistic representation
assesses the uncertainty from a Bayesian point of view
(Igusa et al., 2002; Cheung and Beck, 2010). The most
appropriate mathematical representation of aleatory
uncertainty is the probabilistic framework when the
given information is perfect and complete, for exam-
ple, by using random variables or stochastic processes.
To this purpose, the Monte Carlo approach can be em-
ployed but it is computationally expensive and is only
used as the last resort. The sensitivity method is a more
economical approach, based on the moments of sam-
ples, but it is less robust and depends strongly on the

modeling assumptions. One popular technique is the
perturbation method where all the stochastic quantities
are expanded around their mean via Taylor series. This
approach, however, is limited to small perturbations
and does not readily provide information on high-order
statistics of the response. Another approach is based
on expanding the inverse of the stochastic operator in
a Neumann series, but this too is limited to small fluc-
tuations, and even combinations with the Monte Carlo
method seem to result in computationally prohibitive
algorithms for complex systems.

A more effective approach pioneered by Ghanem
and Spanos (2003) in the context of finite elements for
solid mechanics is based on a spectral representation of
the uncertainty. This allows high-order representation,
not just first-order as in most perturbation-based meth-
ods, at high computational efficiency. It is based on the
theory of homogeneous chaos. PC methods employ the
PC expansion, which is a global polynomial expansion
in probability space in terms of independent random
variables and deterministic coefficients. The fundamen-
tal concept on which PC decompositions are based is to
regard uncertainty as generating a new dimension and
the solution as being dependent on this dimension. A
convergent expansion along the new dimension is then
sought in terms of a set of orthogonal basis functions,
whose coefficients can be used to quantify and charac-
terize the uncertainty. The motivation behind PC ap-
proaches includes its suitability to models expressed in
terms of partial differential equations, the ability to deal
with situations exhibiting steep nonlinear dependence
of the solution on random model data, and the promise
of obtaining efficient and accurate estimates of uncer-
tainty. In addition, such information is provided in a
format that permits it to be readily used to probe the
dependence of specific observables on particular com-
ponents of the input data and to design experiments in
order to better calibrate or test the validity of postu-
lated models. Finally, reliability analyses can easily be
performed on the basis of the representation of random
variables with PC decomposition.

3.2 Variable identification by using PC representation

Let us consider a random sample {k(θl)}M
l=1 of a me-

chanical parameter k with M values. To systematize the
identification of the random variable k(θ), a representa-
tion with PC decomposition is chosen. The selected es-
timator of fitting is the maximum likelihood (Desceliers
et al., 2007). The purpose of this procedure is to iden-
tify the coefficients ki of the one-dimensional PC de-
composition for the random variable k(θ) from M sam-
ples noted by {k(θl)}M

l=1. The chaos decomposition of the
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random variable is written as

k(θ) = k(ξ(θ)) =
p∑

i=0

ki hi (ξ(θ)) (3)

where p is the order of the PC decomposition, ξ (θ) the
Gaussian germ, that is, a standardized normal variable,
and hi the Hermite polynomial of degree i.

By using the maximum likelihood method, coeffi-
cients ki are the solution of the optimization problem

κ = argmaxL(κ)
κ

(4)

where κ is the vector of coefficients ki (κ = [k0, . . . , kp] ∈
R

p) with dimension (p + 1), and L is the likelihood func-
tion

L(κ) =
M∏

l=1

pk(k(θl); κ) (5)

where M is the size of the sample of k(θ) (see Section
7.3, �m = 85) and pk(k(θl); κ) is the probability density
function of the variable k(θ) depending on the set of PC
coefficients. This probability is estimated by using a sin-
gle kernel smoothing method from 106 points that gives
a good estimate with respect to the available memory of
the computer.

3.3 Algorithm for solving the optimization problem

As the likelihood function in Equation (5) takes very
fair values very close to the numerical precision, the op-
timization problem in Equation (4) is modified into

κ = argmin
κ

(−Log(L(κ))) (6)

To systematize the algorithm, Desceliers et al. (2007)
suggest reducing the optimization problem by stating
conditions (Ghanem and Spanos, 2003)⎧⎪⎪⎨

⎪⎪⎩
k0 = μk

Var(k(ξ(θ))) =
p∑

i=1

k2
i = σ 2

k

(7)

where μk and σ k are, respectively, the statistical average
and standard deviation of variable k(θ), computed from
the experimental sample of k(θ) in Section 7.3. The first
condition reduces the number of unknown PC coeffi-
cients to p and the second one allows searching other co-
efficients on a hypersphere in R

p with radius σ k. More-
over, by denoting with k∗

i the ratio ki/σ k, the second
condition of Equation (7) becomes

p∑
i=1

(k∗
i )2 = 1 (8)

This new condition allows searching p coefficients
[k∗

1, . . . k∗
i , . . . , k∗

p] on a hypersphere with radius 1. This
last condition is interesting for the optimization pro-
cess. A two-step flowchart optimization is considered
for solving Equation (6) by knowing condition (7).

1. A first localization of the minimum of −Log(L(κ))
is found through Monte Carlo simulations (size
100 and 1,000, respectively, for PC of order 2 and
3).

2. Starting from this point, the simplex method pro-
posed by Nelder and Mead (1965) is used. Lagaris
et al. (1998) have demonstrated that the method
has very good convergence rates in low-dimension
spaces.

This process allows avoiding a pseudoconvergence
around maximum values. It is possible to parameterize
the hypersphere by using angular parameters to local-
ize the minimum of the likelihood function, as shown
in Section 7.4.

4 DESCRIPTION OF THE MONITORED WHARF

4.1 Structural description

The structure under study is the extension of the tim-
ber terminal of Cheviré, the station 4, named Cheviré-4
wharf in the following. The Cheviré-4 wharf is located
downstream from the Cheviré bridge near Nantes city
(west of France), in a fluvial ambiance, in the left strand
of the river Loire. It is 180 m long and 34.50 m wide.
The wharf is planned to receive ships, maximum 225-
m long and 9.10-m draught. The collaboration with the
Port Authority of Nantes Saint-Nazaire (PANSN) per-
mitted the survey of the structure.

The construction of the wharf spread out over 1 year
and 2 months, from October 2002 to December 2003.
The wharf has been built from the upstream to the
downstream direction. The construction phases include:
preliminary works, the driving of the piles, the driving of
the sheet-pile wall, concreting the back-wharf wall and
inside the piles, installing the prefabricated elements
of the platform, concreting the platform, implement-
ing and compacting the backfill, laying down the rods
following the advancement of the backfill, banking up,
ending works, and fittings. The platform is assumed to
be waterproof due to the realized drainage system, so
that rainfall does not modify the water level in the em-
bankment.

The Cheviré-4 wharf is built on a network of 198
driven-metallic piles filled up with concrete in the up-
per side, about 33 m long and with an outside diame-
ter of 711, 762, or 863 mm depending on their position.
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Fig. 1. Cross-section of the wharf.

Capitals destined to center the load on the piles are
placed on the head of each pile. A 0.35-m high concrete
deck is put down on a network of 1.35-m high reinforced
concrete T-shape beams, themselves supported by the
piles. The wharf is anchored by 37 passive-sloped tie-
rods, steel cylinders (75 mm diameter and 15 m long),
behind every line of piles. These tie-rods are anchored
in the back-wharf wall (2.20 m high) by means of a con-
necting rod, and at the other end in a reinforced con-
crete anchoring plate, 2.6 m high and wide and 0.5 m
thick. Behind the back-wharf wall, a vertical 9-m high
sheet-pile wall prevents the leakage of the small parti-
cles from the backfill; this curtain is linked to the back-
wharf wall at its crest. The back-wharf wall is crossed by
drainage channels at a height of 6.7 m (level indicated
in marine cards spot height M.C.; the zero of the ma-
rine cards corresponds to the level of the lowest possible
theoretical tide). A sketch of a typical cross-section and
main elements is presented in Figure 1. Each element
plays a specific role in the behavior of the pile-supported
wharf in a functional context.

4.2 Design criteria and main assumptions: need
for instrumentation for a better understanding

Only quasi-static behavior was considered for the de-
sign of the wharf. Loading conditions include: (1) verti-
cal loading coming from the own weight of the structure,
the cranes and the service loading and (2) horizontal
loading coming from the embankment loading on the
back-wharf wall, the variations of water level, the ship
berthing, the ship mooring and the wind actions on the
cranes.

For the design under horizontal loading, these types
of wharfs are usually modeled by means of a 2D struc-
ture similar to a porch (in a cross-section such as repre-
sented in Figure 1). In this way, lateral elastic reactions
of the different ground layers on the piles are sketched

by a series of springs and the supports of the piles
are modeled with toggle joints, supposed to be as per-
fect embeddings or elastic embeddings (Ananthanathan
et al., 2000). Then, displacements, deformations, and
stresses in the piles and in different points of the plat-
form are computed. The above modeling leads to ob-
taining global stiffness for each corresponding row of
piles; immediately afterward, these rigidities are mod-
eled like elastic supports of an infinitely rigid beam
that is analyzed for different horizontal loading situa-
tions. That allows determining the transversal reactions
of each row of piles for each loading situation.

The main usual hypotheses come from expert crite-
ria and from studies of uncertainty accomplished during
the preparation of the European semiprobabilistic code
called Eurocode 7 (Magnan, 2006) and related to the
new seismic design codes (Nozu et al., 2004; Madhuri
et al., 2007). Experts’ opinion on design of wharfs leads
to several statements: (1) the tie-rods are prestressed
and they are loaded by the platform depending on the
platform deformation only and (2) immediately after
construction, loadings on the vertical reinforced con-
crete anchoring plate embedded inside the bank are suf-
ficient to assume that the passive earth pressure is to-
tally acting, so that the limit state is reached. More de-
tails are reported in Verdure (2004).

The article is focused on loading where hazards and
uncertainties play the most important role, that is hori-
zontal loading and especially the loading acting from the
bank to the river. In fact, this latter loading is the source
of the most sensitive damages in structures, particularly
the relative displacement between the platform and the
embankment that leads to cracks in the pavement. Ac-
cording to the analyzed loading conditions, tie-rods and
lateral capability of the piles are highly loaded. Accom-
plished studies in Magnan (2006) have shown a great
variance reduction on piles lateral loading due to the
great stiffness of the platform: hazards on pile behavior,
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that are assumed to be without any correlation, are then
slightly transferred. Also, the variance of earth pressure
loading is reduced or even cancelled due to the high in-
ertia of the back-wharf wall (Verdure et al., 2005). On
the other hand, a great hazard still lies on the computa-
tion of the tie-rods behavior. That is why a monitoring
of the tie-rods has been carried out during the construc-
tion of the wharf.

4.3 Monitoring setup

A monitoring strategy has been achieved, which aims
to: (1) follow the global behavior of the wharf within
the next 5 years after the construction to set up mod-
els for the prediction of the behavior evolution in time;
(2) base the maintenance policy on a better under-
standing of the in-service behavior; (3) find the main
variables that influence the behavior; and (4) perform
reliability analysis during extreme events (storms) for
in-service structures (Yáñez-Godoy et al., 2006). A
complete description of this strategy and its application
to four wharfs is available in Schoefs et al. (2004).

The objective being the understanding of the wharf
behavior under horizontal loading—actions of the em-
bankment, ship berthing and wind action on the
cranes—it was decided to monitor the tie-rods for
two reasons: they are the most sensitive elements of
the wharf and they are no longer accessible after the
construction. Additional information like the displace-
ments of the wharf, the tide level, and the underground
water level in the embankment are available also after
the construction.

The wharf has been instrumented on 12 tie-rods (reg-
ularly distributed along the length of the wharf, see
Figure 2) to follow the normal load in the rods cross-
section. To this purpose, electrical strain gauges have
been mounted in full bridge and bonded to the rods with
a high-temperature epoxy resin used for sensors manu-

facturing; the gauges are linked to a Campbell Scien-
tific CR10X data logger (Campbell Scientific Inc., Lo-
gan, UT). The wiring of strain gauges in a full bridge
ensures a temperature self-compensation. The system
also ensures the corrosion protection of the rods. The
instrumented rods are identified using the letter “R”
with their longitudinal abscissa position x in meters. By
convention, x = 0 denotes the upstream extremity of the
wharf.

In addition, three piezometers, two at the ends and
one in the middle wharf, are implanted behind the back-
wharf wall (until a depth of about 6 m) and linked to the
data logger, to measure the underground water level in
the embankment (Figure 2). As another wharf is con-
nected at the upstream side, piezometers at abscissa 0
and 80 give the same measurements of water level. For
this reason, in the following only these two piezome-
ters will be considered for characterizing the water level
without the boundary effects that affect the piezometer
at abscissa 175.

Finally, a tidal gauge (controlled by the PANSN)
measures the real tide level every 5 minutes; the tidal
gauge is located about 1 km downstream from the
Cheviré bridge. These measurements allow taking into
account the overcrests, due to the air pressure, the rate
of the river flow, and the wind action during the data
processing.

5 DATA ANALYSIS, STOCHASTIC MODELING,
AND POSTPROCESSING

5.1 Available data

The aim of the data processing phase is the character-
ization of the behavior of the set “Soil-Rod-Anchoring
Plate” called SRAP in the following. The main steps are:
(1) data collection provided by the monitoring devices,
(2) analysis of the rough data and understanding of their

Fig. 2. Plan view of the installed instrumentation.
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physical meaning, and (3) data processing to highlight
significant correlations. A first analysis of data and the
comparison with another wharf is available in Yáñez-
Godoy (2008) and Yáñez-Godoy et al. (2008b). Some
considerations on the results from both wharfs will be
addressed at the end of this article.

The measurement campaigns are scheduled every
30 minutes, ensuring to follow the tide effects without
involving a too important storage capacity (the current
capacity permits storage of about 3 months of data). The
rough signals stored by the acquisition system provide
the local physical measurements, which are electric volt-
ages. A classical preprocessing of the measurements is
necessary to have the normal load in the monitored tie-
rods (Yáñez-Godoy, 2008).

Time series collected from each instrumented tie-rod
are available from 2003 to 2005. Measurements stored
in 2003 are relative to the construction steps. In this ar-
ticle, an interval of 2 years from January 2004 to Octo-
ber 2005 is analyzed, during which no changes in the be-
havior of the wharf have been observed (Yáñez-Godoy
et al., 2008b).

5.2 Reduction of stochastic complexity: ergodicity

To characterize the SRAP behavior, the random load
normal to the cross-section in tie-rods at position xi and
instant time tj, F(xi, tj, θ) is considered. Measurements
from sensors are the discrete realizations F(xi, tj, θ l) of
this time-dependent stochastic process. As no changes
of the behavior of the wharf were observed during the
monitoring period under study, the stochastic process of
the loading variation is assumed to be stationary and er-
godic with time. The identification of the marginal dis-
tribution of the stochastic process F(xi, tj, θ) (marginal
with respect to time) has to be addressed. Measure-
ments at different instant times of this process are then
considered as events of a stochastic process with respect
to space only. With an abuse of notation, this stochas-
tic process will be denoted by F(xi, θ) in the following.
It follows that each realization F(xi, θ l) of this variable
comes from a measurement at a given time.

To simplify the future treatments of data and the
identification of variables, F is written as the summation
of a permanent deterministic external loading Fr with a
variable loading due to environment and ships actions
Fe

F(xi , θ) = Fr (xi ) + Fe(xi , θ) (9)

Note that Fr(xi) represents the permanent load mea-
sured at the abscissa xi due to the pressure of the em-
bankment on the wharf FR only, and Fe(xi, θ) is the com-
ponent of the loading due to the tide level denoted TL:

in fact, data presented here refer to the period of nonex-
ploitation (no ships action) and they can be considered
as representative of the loading due to tide levels only.
This is due to the displacement u(xi) of the wharf from
the equilibrium position under the load FTL. This value
is strongly dependent on the tie-rods stiffness k(xi, θ),
so that it can be simplified as Fe(xi , θ) = k(xi , θ)u(xi ).
This decomposition avoids the resolution of an inverse
stochastic problem with a huge number of parameters
and variables.

Note that a linear behavior of tie-rods is hypothesized
here: this assumption is reasonable due to the small dis-
placements of the wharf. In the following, the mechani-
cal behavior of all the tie-rods is considered to be char-
acterized by the same random variable k(θ). As a matter
of fact, this parameter is variable for each tie-rod due to
both construction uncertainties (laying down of the tie-
rods) and natural hazard of the embankment (Verdure,
2004; Yáñez-Godoy, 2008). This assumption means that
even if the initial loading of tie-rods strongly depends
on the construction conditions, the variation of loading
after few months and tide cycles does not depend on the
tie-rod position. Then Equation (9) can be simplified as

F(xi , θ) = Fr (xi ) + k(θ)u(xi ) (10)

Finally, the transfer function of Equation (2) can be
detailed as follows

M(k(θ), Fr (xi )) = Fr (xi ) + k(θ)u(xi ) (11)

5.3 Use of periodic measured loading for identification

The periodic variation of the tide level is used as a nat-
ural cyclic loading on the wharf. During a falling tide,
the loading on the wharf that is in the tie-rods, is in-
creasing. The decreasing of water level in the river dur-
ing a half cycle of tide is defined as �H(�H = Hmax −
Hmin). The water levels Hmax and Hmin are measured at
time instants tmin and tmax, respectively, that represent
the beginning and the end of a half cycle of tide. In the
following, falling tides where the maximum level of wa-
ter Hmax = H(tmin) induces the minimum loading in the
tie-rods will be considered.

The sensitivity of normal load �F(�F = F(xi ,

tmax, θl) − F(xi , tmin, θl)) to a given decrement of wa-
ter �H(θ l) allows characterizing the SRAP behavior
from Equation (11). Yáñez-Godoy (2008) has shown
that the sensitivity scatter in time upon the set of in-
strumented rods is very fair for high levels of loading
that occur during high-tide levels (CMAR1 >80). Ac-
cording to the Tides Annual,2 CMAR values vary in
the following way: 115 for mean higher high water, 95
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Fig. 3. Variation of the measured normal load �F in the
tie-rod R0 in relation to water-level variation of the river

Loire �H for a falling tide (CMAR = 42, 69, 100).

for mean high water, 70 for mean tide level, 45 and 35
for mean low water. Figure 3 represents the variation
of the sensitivity with time (number of the weeks in
2004) for a given tie-rod (R0) and three different co-
efficients CMAR (42, 69, 100). These three coefficients
are selected because they are representative of differ-
ent loading condition, approximately corresponding to
mean low water values, mean tide level and mean high
water, respectively. In addition, the selection is related
to the number of available measurements inside each
CMAR value. A high scatter is observed for CMAR =
42, while the SRAP seems to reach a stable behavior
when the loading variation increases. The aim of the
article is to provide a probabilistic model for reliabil-
ity analysis of wharfs during extreme events like storms
that occur mainly in winter when CMAR are higher.
As a consequence, in the following, the SRAP behav-
ior will be more deeply investigated for high CMAR
only. Regarding the low tide levels, when phenomena
seem to be more complex, �H is probably no more suf-
ficient to explain the loading variation in tie-rods. For
lower CMAR, another transfer function M (Equation
(2)) should be selected to take into account additional
parameters.

Under these conditions, the relationship between
�F(xi, θ) and the variation of the level of water �H(θ)
is linear. Figure 4 shows the trend of normal load in sev-
eral tie-rods during a falling tide having CMAR = 100.
In the following and to simplify the data analysis, the
relationship between �F(xi, θ) and the variation of the
level of water �H(θ) is assumed to be approximately
constant on a certain range R�H . To identify the corre-
sponding ranges, values of the coefficients CMAR from

Fig. 4. Variation of the measured normal load �F in the
tie-rods Ri in relation to water-level variation of the river

Loire �H for a falling tide (CMAR = 100).

Fig. 5. Variation of the measured normal load in the tie-rods
Ri versus water-level variation of the river Loire during

falling tides (CMAR from 95 to 111).

95 to 111 are selected.3 Figure 5 shows the plot of �F
versus �H for the whole set of instrumented tie-rods
during high tide levels in the period from January 2004
to October 2005. Ranges R�H are identified using the
criteria that the mean variation inside the range is less
than 10%. This value is selected by using a least squares
method. Values of �F(R�H) are given in Table 1.

5.4 Data postprocessing

Let us consider the variable loading variation for each
R�H during high tides. Figure 6 shows that there
is a small variation of the expectation of �F along
the wharf. To cancel this effect on the expectation
�F(xi |R�H) of the random variable �F(xi , θ |R�H), a
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Table 1
Constant values of �F in each range R�H

Range �F(R�H) [kN] R�H : Range of �H[m]

1 32 [4.00; 4.60]
2 38 [4.61; 5.10]
3 43 [5.11; 5.40]
4 55 [5.41; 6.00]

Fig. 6. Variation of the measured loads in the tie-rods along
the wharf according to a range of the water-level variation of

the river Loire during high-coefficient falling tides
(R�H = [4 m; 4.6 m]).

postprocessing of the samples is performed. This ob-
served bias is probably due to the fair size of samples
and the error of measurement, which is around 10 kN.

The spatial average of the expectation �F(xi |R�H)
for a given R�H and n instrumented tie-rods can
be written as 1

n

∑n
i=1 �F(xi |R�H). Note that it equals

�F(R�H) in Table 1. For example, for the first range
of interval �H, it assumes the value 32 kN.

�F(R�H) = 1
n

n∑
i=1

�F(xi |R�H)

∼= 1
n

n∑
i=1

E(�F(xi , θ |R�H)) (12)

By denoting with �F∗(xi , θ |R�H) the centered ran-
dom variable associated to �F(xi , θ |R�H), �F(xi ,

θ |R�H) is redefined by replacing �F(xi |R�H) with
�F(R�H) as follows

�F(xi , θ |R�H) ∼= �F∗(xi , θ |R�H) + �F(R�H) (13)

Figure 7 shows realizations of this filtered �F(xi ,

θ |R�H) for R�H = [4 m; 4.6 m] during high tides.

Fig. 7. Variation of the filtered measured loads in the tie-rods
along the wharf according to an interval of the water-level
variation of the river Loire during high-coefficient falling

tides (R�H = [4 m; 4.6 m]).

6 MECHANICAL MODELING

Two mechanical models have been developed to rep-
resent the spatial behavior of the wharf under the ac-
tion of horizontal loading: the first one is based on a 3D
finite-element meshing and the second one is an equiv-
alent 2D model.

6.1 Tridimensional model

The 3D model is represented in Figure 8. The follow-
ing elements are selected to take into account the main
constitutive elements of the structure: (1) network of
reinforced concrete T-shape beams, modeled by bar
elements; a tensile stress as a result of the applied domi-
nant load is assumed, while the bending stiffness is in-
cluded in the bending capacity of the deck; (2) rein-
forced concrete deck, modeled by shell elements; its
tensile load stiffness (in �ex, �ey plane) is close to the
real one and its bending stiffness (�ex- and �ey-axis) takes
into account the contribution of the network of rein-
forced concrete T-shape beams, of the berthing beam
and of the back-wharf wall; (3) berthing beam, mod-
eled by bar elements; (4) back-wharf wall, modeled by
shell elements; (5) piles, modeled by beams with Win-
kler model for taking the soil–pile interaction into ac-
count; and (6) tie-rods, modeled by bar elements, rods
are supposed to be simply supported on the back-wharf
wall, while the other end can be subjected to given
displacements.

The 3D model allows changing the level of complex-
ity to be considered in the modeling and evaluating the
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Fig. 8. Geometry of the 3D model.

role of every element. The proposed model has the fol-
lowing levels of complexity:

1. For the 3D finite element model of the deck,
the percentages of the relative stiffness for �ez-axis
bending are assumed to be the 31% for the slab
(deck), the 6% for the beams network, and the
63% for the berthing beam and the back-wharf
wall.

2. For the pile modeling, the following percentages of
stiffness for �ex-axis bending for each row of piles
and rods are obtained: 50% for the tie-rods and
5%, 2%, 8%, 8%, and 27% for the Rows 1 to 5, re-
spectively (see Figure 8). Concerning the relative
stiffness, Row 5 is loaded by 54% of the horizon-
tal loading on the network piles, while Row 1 has a
notable increase of stiffness regarding Row 2 due
to the presence of a net of beams of variable sec-
tion placed between these two rows; these beams
are distributed alternately along the wharf, they
are loaded by the forces coming from the cylin-
drical defenses on the berthing beam and they are

supported by piles of great inertia. The effect of
stiffness for �ey-axis bending is negligible.

6.2 Simplified beam model for simulations
(bidimensional model)

The 3D model presented in the previous section is con-
sidered as the reference model, but a simpler model
is chosen for further analysis to decrease computa-
tion time. Reliability of the wharf subjected to extreme
events is to be evaluated. As the structure has a great
stiffness, displacements are very low also during ex-
treme events and a linear model is considered suffi-
ciently reliable (Yáñez-Godoy et al., 2008c). The 2D
model is based on Timoshenko beam theory (see Fig-
ure 9) and it is used as M model in Equation (11). The
parameters of this simplified model are identified from
the 3D model. Results are:

1. The platform is modeled by a Timoshenko beam
with bending stiffness 1.53 × 1014 N/m2 and shear
stiffness 9.91 × 1010 N.

Fig. 9. Equivalent Timoshenko beam model (simplified 2D model).
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2. Each row of piles in the horizontal plane (�ex and
�ey) is modeled by an �ey-axis spring with stiffness
58.54 and 73.17 MN/m; the latter value corre-
sponds to the rows where beams of variable section
mentioned in the previous section exist. Stiffness
values are retrieved from the 3D model consider-
ing all the elastic linear structural elements, except
the tie-rod.

3. Tie-rods are modeled by bar elements.

The simplified model allows taking into account the
shear effects, which come from ship mooring or trans-
verse crane loading due to the wind in further studies.
On the other hand, this model also allows following the
mechanical behavior of the wharf and accomplishing
simulations with probabilistic purposes.

7 IDENTIFICATION OF THE OVERALL
“SOIL-ROD-ANCHORING PLATE” STIFFNESS

7.1 Steps of the flowchart

To identify the variable k(θ |R�H) representing the tie-
rods stiffness, three steps are considered:

1. First step: estimation of the variation of deter-
ministic embankment loading during a falling tide,
called tide loading �FTL(R�H), by knowing the
filtered random loads �F(xi , θ |R�H) in tie-rods
from Equation (13). Equation (11) is used for
solving the 2D model by replacing Fr (xi ) by
�FTL(R�H) and assuming a deterministic stiffness
value kd for the random variable k(θ). Here, M
is the linear elastic model of the beam and the
springs.

2. Second step: computing events k(θ |R�H) by know-
ing �FTL(R�H) and �F(xi , θ |R�H).

3. Third step: identification of the distribution of
k(θ |R�H) by using PC expansion (see the follow-
ing Section 7.3).

Note that the first step is needed because of the lack
of knowledge on the earth pressure loading (Schoefs
et al., 2004; Yáñez-Godoy et al., 2008b). The determinis-
tic value of kd is assumed to be 61.9 MN/m: it is a reason-
able mean value because it corresponds to the stiffness
of a tie-rod perfectly embedded in the anchoring plate
without surrounding soil. In fact, the presence of soil
tends to increase the stiffness while the possible elastic
displacement of the anchoring plate decreases this stiff-
ness.

7.2 First step: estimation of the tide loading

Following the flowchart detailed in subsection 7.1, the
tide loading �FTL(R�H) is computed by inverse analy-

sis. The corresponding optimization problem is given by
the least squares method

�FTL(R�H) = argmin
�F TL

(
n∑

i=1

(�Fc(xi ,�FTL(R�H), kd)

−�F(R�H))2

)
(14)

where �Fc(xi ,�FTL(R�H), kd) is the variation of load-
ing in the tie-rod at abscissa xi resulting from a compu-
tation with the deterministic 2D model (see Section 6.2)
using a tide loading �FTL(R�H) and kd equal to 61.9
MN/m; values of �F(R�H) are given in Table 1. Note
that the sample of realizations in each range R�H has
quite the same size m, so that the random variable under
study can be considered as uniformly distributed. Equa-
tion (14) is solved using a simplex method (Nelder and
Mead, 1965). Applying this approach for the four ranges
r of R�H , the following four values of �FTL(R�H) are
obtained: 64, 77, 87, and 111 kN.

7.3 Second step: building of the sample for k

For a given R�H and by knowing �FTL(R�H) com-
puted from Equation (14) and the filtered sample of
�F(xi , θ |R�H) deduced from Equation (13), each event
k(θl |R�H) is solution of the following optimization
problem

k(θl |R�H) = argmin
k

(
n∑

i=1

(�F(xi , θl |R�H)

−�Fc(xi ,�FTL(R�H), k))2

)
(15)

where �Fc(xi ,�FTL(R�H), k) is the variation of load-
ing in tie-rod of abscissa xi resulting from a finite el-
ement computation of displacement ui with the deter-
ministic 2D model having stiffness k.

The set of events for k(θ |R�H) is thus deduced from
the solution of m inversed problem, where m is the size
of the samples of �F(xi , θ |R�H) – (m ≈ 20). This prob-
lem is solved by using the same simplex algorithm as
above.

The probability distribution of the variable k(θ) is
assessed using all events k(θl |R�H), as each coefficient
range R�H has the same probability of occurrence (uni-
formly distributed). Figure 10 shows the probability
distribution histogram of k(θ). The two first statistical
moments μk and σ k are, respectively, 61.2 MN/m and
9.1 MN/m.

7.4 Third step: identification using PC decomposition

As the probabilistic analysis of the input variable
k(θ) has shown that its distribution does not follow a
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Fig. 10. Probability distribution histogram of k.

predefined probability density function and the input
uncertainties are large, the PC decomposition is chosen
for the identification of the random variable k(θ).

Let us first consider a PC of order 2. Figure 11a illus-
trates the variations of −Log(L(κ)) on the circle with
radius 1. The following parameterization of the hyper-
sphere is adopted by introducing the angular parameter
φ {

k∗
1 = cos(φ)

k∗
2 = sin(φ)

with φ ∈ [0; 2π ] (16)

The function −Log(L(φ)) is reported in Figure 11b
where the minimum of the likelihood function can
be localized by using the random search algorithm.

The solution of the optimization problem is not unique
(Figure 11b): three different locations of the solution
are observed, two on the boundary and one in the cen-
ter of the function, around φ = 3. The three values are
all mathematical solutions of the problem and they give
the same representation of the random variable. As the
minimum values on the boundaries are not guaranteed
to be the real localization of the minimum, they are dis-
carded and only the central minimum is considered. In
addition, the central minimum can assume two opposite
values, due to the symmetric distribution of the germ
ξ and to the symmetry of Hermite polynomials. By the
way, both values are physically reasonable because they
refer to the same minimum location. In other terms,
from Equation (6), if φ is solution, π − φ is also solu-
tion. For example, the following sets of PC coefficients
lead to the two statistically identical random variables

k(θ) = μk + σk(k∗
1 h1(ξ) + k∗

2 h2(ξ))

k(θ) = μk + σk(−k∗
1 h1(ξ) + k∗

2 h2(ξ))

Let us now consider a PC of order 3. To parameterize
the hypersphere, two angular parameters θ and φ can be
introduced⎧⎪⎨
⎪⎩

k∗
1 = cos(θ) cos(φ)

k∗
2 = cos(θ) sin(φ)

k∗
3 = sin(θ)

with θ ∈
[
−π

2
;
π

2

]
and φ ∈ [−π ; π ]

(17)

Figure 12 illustrates the function −Log(L(θ ; φ)) and
its isocontour. The figure shows where the minimum of
the likelihood function is localized. As for the order 2,

Fig. 11. Variations of −Log(L(κ)). (a) With the couple (k∗
1 ; k∗

2 ). (b) With the angular parameter φ.
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Fig. 12. Function −Log(L(θ ; φ)).

Table 2
PC coefficients solution of the optimization problem

PC order k∗
i [MN/m] −Log(L(κ)) ki [MN/m]

1 120.11 k0 = 61.2
k∗

1 = 1 k1 = 9.1
2 [118.73; 118.89] k0 = 61.2

k∗
1 ∈ [−0.9981; −0.9965] k1 ∈ [−9.0699; −9.0554]

k∗
2 ∈ [0.0621; 0.0833] k2 ∈ [0.5647; 0.7570]

3 [117.02; 117.22] k0 = 61.2
k∗

1 ∈ [−0.9860; −0.9741] k1 ∈ [−8.9600; −8.8522]
k∗

2 ∈ [0.0651; 0.0937] k2 ∈ [0.5916; 0.8512]
k∗

3 ∈ [−0.2077; −0.1419] k3 ∈ [−1.8876; −1.2899]

the solutions on the boundary are not considered. In this
case, the solutions of the optimization problem are four.
In fact, if (θ ; φ) is a solution, (θ ; π − φ), (θ ; − φ), and
(−θ ; φ) are solutions too.

Particular solutions k∗
i and ki are given in Table 2 as

well as the relative 95% confidence intervals. Note that
the interval of confidence is a probability due to the flat
shape of the likelihood function. In addition, the mean
and standard deviation of k(ξ(θ)) are identical to those
computed in Section 7.3 from the statistical distribu-
tion. The interest of this method based on PC decom-
position comes from the fact that complex distributions
are fitted without a priori knowledge on the probabil-
ity density functions and that the variables are in the
appropriate format for stochastic finite element compu-
tations. Thus, the authors have estimated the reliability
of wharfs in various conditions (storms, corrosion) on
the basis of this modeling (Yáñez-Godoy et al., 2008a,
2008c).

The probability density functions of the obtained
PC decompositions are plotted in Figure 13a; they

show convenient fittings of the statistical distribution
of k. Also, several predefined probability density func-
tions (normal, lognormal, and Gumbel laws) have
been tested and reported in Figure 13b. Finally, Ta-
ble 3 shows a comparison between all the minimum
of the likelihood functions obtained from the different
approaches.

8 ROBUSTNESS OF THE PROPOSED
PROCEDURE

This article has presented the complexity of wharf build-
ing and behavior. The strategy of the long-term mon-
itoring, which aims to characterize the behavior under
horizontal loading, has also been addressed. The anal-
ysis of data has allowed modeling the stochastic field
of variation of loading during a tide assuming ergod-
icity with time. Furthermore, a mechanical modeling
has been addressed to find a relationship between ex-
ternal loading and measured normal loads in tie-rods.
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Fig. 13. Statistical distribution of k for the Cheviré wharf. (a) Fitting with a polynomial chaos. (b) Fitting with several
predefined probability density functions.

Table 3
Minimum of the likelihood functions for several fittings

Fitting Minimum of the likelihood function

PC 1st order 120.11
PC 2nd order 118.81
PC 3rd order 117.12
Normal pdf 120.14
Lognormal pdf 118.73
Gumbel pdf 135.43

Note: pdf, probability density function.

A step-by-step inverse analysis has been performed to
identify the parameters of the distribution, using the as-
sumption that the stiffness of the “Soil-Rod-Anchoring
Plate” could be modeled by a unique random variable,
spatially independent.

An original identification procedure has been sug-
gested: it is based both on maximum likelihood esti-
mate and on the one-dimensional PC decomposition.
This method avoids assuming a prior distribution func-
tion and helps to systematize the identification from a
database. Finally, this method provides a format suit-
able for direct stochastic finite element analysis. It
is useful for reliability updating (Yáñez-Godoy et al.,
2008c) or prediction of probability of failure in time
(Yáñez-Godoy et al., 2008a).

The robustness and the generality of the proposed
analysis are demonstrated through the application to
other complex structures, when a mechanical model and
data from a structural monitoring are available. In the
following, a synthesis of the results obtained from an-
other monitored wharf (TMDC-4) located in Nantes
harbor, not far from the Cheviré wharf is presented as

an example. Both wharfs are very similar structures but
they differ by the technological anchoring device. In
the case of TMDC-4, tie-rods are fastened to the back-
wharf wall by a ball-joint; during the laying down of the
tie-rods, this anchorage device can present a gap δ0 that
leads to very light loads in case of wharf displacement.
The same number of tie-rods are instrumented but for
TMDC-4 a couple of vibrating wire strain gauges have
been used for each tie-rod. Both monitoring setups have
shown a small evolution in time of the medium-term
load variations in the tie-rods, due to the embankment
loading and the in-service conditions and to the seasonal
cycles of the tide. The analysis of the spatial load vari-
ation has shown an important scatter from a tie-rod to
another that differs a lot from the theoretical hypoth-
esis assumed at the design stage. The comparison of
the results has shown that the sensitivity of the tie-rods
to the tide along the TMDC-4 wharf is more marked
than for the Cheviré wharf because of different fasten-
ing devices. The analysis of the TMDC-4 quay has to
take into account also this additional source of uncer-
tainty, so that an additional random variable δ0(xi, θ),
representing the laying down of each tie-rod, has been
considered in the mechanical model. The two random
variables k(xi, θ) and δ0(xi, θ) are considered as inde-
pendents and they are identified with the proposed in-
verse method by using the short-term and the medium-
term behaviors, respectively. The mechanical stiffness
of the loaded tie-rods in similar structures with different
technological anchoring devices is of the same order, so
to confirm the reliability of the measurements systems.
Finally, a first-order, second-order, and third-order PC
are considered for the decomposition analysis. A com-
parison of the resulting probability distribution of k(xi,
θ) from both wharfs is possible. Figure 14 shows that a
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Fig. 14. Statistical distribution of k for the TMDC-4 wharf.

third-order PC allows catching the trend of the bimodal
probability histogram obtained for the stiffness random
variable on the TMDC-4 wharf.

Figures 13a and 14 allow discussion about the order
of the PC decomposition. The identification procedure
does not allow a detailed analysis of the queues of the
distribution due to the scarcity of the available experi-
mental samples. This article is mainly focused on catch-
ing at least the global trend of the probability distribu-
tion and the peaks of the histograms. PC of first order
gives a bad fitting of the histogram, in particular when a
bimodal distribution is required, because it is very close
to the normal distribution centered on the mean exper-
imental value. PC of second order is still insufficient to
catch the good trend because it is substantially like the
PC of first order for the Cheviré wharf and it is able to
describe just the first peak for the TMDC-4 wharf. Fi-
nally, the PC of third order gives a good representation
of the global distribution and better catches the peaks
also for the bimodal distribution. The PC of third order
has been considered good enough for the goals of this
article. In addition, other works have already demon-
strated a good convergence when a third-order decom-
position is chosen (Schoefs et al., 2009). The consider-
ation of the stochastic model uncertainties associated
to limited data could improve the results in compari-
son with the study of higher PC orders. As a conse-
quence, further developments will be addressed to in-
troduce model uncertainties on the PC decomposition
of first, second, and third order (Ghanem and Doostan,
2006).
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NOTES

1. In France, the oscillation amplitude of semidiurnal
tide is associated with a coefficient named tide co-
efficient CMAR (french acronym for coefficient de
marée).

2. The Tides Annual is published by PANSN and it in-
cludes nearby ports: Saint-Nazaire, Donges, Corde-
mais, Le Pellerin, and Nantes.

3. Note that coefficients CMAR higher than 100 occur
rarely and few data are available.
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