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Abstract
Geographically Weighted Regression (GWR) is a method of spatial statistical
analysis used to explore geographical differences in the effect of one or more
predictor variables upon a response variable. However, as a form of local analysis,
it does not scale well to (especially) large data sets because of the repeated pro-
cesses of fitting and then comparing multiple regression surfaces. A solution is to
make use of developing grid infrastructures, such as that provided by the National
Grid Service (NGS) in the UK, treating GWR as an “embarrassing parallel”
problem and building on existing software platforms to provide a bridge between
an open source implementation of GWR (in R) and the grid system. To demon-
strate the approach, we apply it to a case study of participation in Higher Edu-
cation, using GWR to detect spatial variation in social, cultural and demographic
indicators of participation.
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1 Introduction

Geographically Weighted Regression (GWR) is a method of statistical regression that
allows modelled relationships to vary across geographical space (Fotheringham et al.
2002). The technique has been demonstrated successfully in a variety of applications,
including health (Nakaya et al. 2005), housing (Bitter et al. 2007), education (Fother-
ingham et al. 2001), regional economics (Huang and Leung 2002) and environmental
applications (Brunsdon et al. 2001).

A constraint on the use of GWR is that its computational requirements grow
exponentially with the length of the data set. This is an example of the “big n”
problem described by Finley et al. (2009, p. 2874) where “. . . fitting involves matrix
decompositions whose complexity increases as O(n3) in the number of locations, n.”
This problem can create a trade-off between the size (the geographical extent) of the
study and the level of detail (the data resolution) required. For example, high resolu-
tion micro-data can be aggregated into fewer and coarser geographical units that are
faster to process but lose geographical detail. Alternatively, the data can be partitioned
into smaller sub-regions and analysed separately but may induce boundary and other
zoning effects by doing so. A third and more desirable option is to overcome the
computational problems through parallel implementation of the GWR software using
grid or distributed computing (Foster and Kesselman 1999). That is the approach we
demonstrate here.

The potential of high performance computing to enable spatially detailed methods
of data analysis has long been recognised by those operating across the boundaries
of geographical and computational science. Perhaps the most well known work was
that undertaken by Stan Openshaw and colleagues, initially at the University of New-
castle and then at the Centre for Computational Geography at Leeds University, espe-
cially their pioneering “Geographical Analysis Machine” (GAM) (Openshaw et al.
1987).

GAM worked by passing a moving window across a study region, repeatedly
testing for unusual clusters of a particular feature – in the most famous study, clusters
of childhood leukaemia, some of which were found in proximity to a nuclear power
station. It was an early example of automated and exploratory spatial data analysis
made possible by three broad trends. First, the increased availability of high perfor-
mance “super computers”. Second, the proliferation of digital data with point (i.e. x,
y) geocoding. Third, the recognition within quantitative geography of the need to
move away from statistical techniques that ‘smooth over’ geographical variation to
using more geographically attuned forms of local statistics revealing spatial patterns
within data.

Those trends have continued. Computers are ever more powerful. Data have propa-
gated in ways that were hard to imagine 20 years earlier with historically unprecedented
access, via digital archives or online portals, to the products of new data gathering and
geocoding (such as developments in GPS, remote sensing, surveillance and micro-
marketing). Spatial statistics have developed and evolved in fields such as geostatistics
and spatial econometrics.

What is new is the development of “E-social science”, whereby multi processor
computer resources are (in principle) available to academic communities for
computationally-intensive analyses of large datasets. In the UK, E-social science is led
and promoted by the National Centre for E-social Science (NCeSS) and by the National
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Grid Service (NGS), the latter of which aims “to provide coherent electronic access for
UK researchers to all computational- and data-based resources and facilities required to
carry out their research, independent of resource or researcher location” (see http://www.
grid-support.ac.uk for additional details). In other words, they provide access to distrib-
uted computing.

E-social science is a fledgling and multidisciplinary research field that offers new
opportunities for geographical and statistical research. Writing about its prospects for
geocomputation, Martin (2005) identified four essential research issues for E-social
science. They were: (1) automated data mining; (2) visualization of spatial data uncer-
tainty; (3) incorporation of an explicitly spatial dimension into simulation modelling;
and (4) neighbourhood classification from multi-source distributed datasets.

Missing from Martin’s list but incorporating elements of data mining, spatial data
uncertainty, and spatial data modelling is the potential of E-social science to lead and
bring together a whole toolkit of spatial statistical methods in a common but distributed
computing environment, within which the analysis of large geographical datasets may be
undertaken at ease. This article is a first step in realising such potential, reporting on how
one method of spatial analysis, Geographically Weighed Regression (GWR), was imple-
mented within the distributed computing infrastructure provided by the NGS, and
reflecting on the limitations of the “grid-enabled” approach.

In the article, we present the rationale for grid-enabling GWR, present a case study
of its use looking at participation in Higher Education in England, identify some
unresolved issues, and consider why problems in future development might warrant a
change of direction. We begin with a discussion of GWR, exploring why, as a method of
local spatial statistical analysis, its implementation as a grid service provides a bench-
mark for other methods of spatial analysis.

2 GWR as a Method of Local Spatial Statistical Analysis

The theory of Geographically Weighted Regression (GWR) and its foundations in more
conventional methods of regression analysis are developed in detail by Fotheringham
et al. (2002). They are well summarised by Nakaya (2008).

Here it is sufficient to note that GWR is a method of exploratory data analysis that
allows the user to reveal geographical variations in the relationships between a dependent
variable and one or more predictor variables. Whereas traditional methods of regression
analysis are essentially non-geographical, assuming, for example, that the model’s residu-
als are independent of each other and that the modelled relationships are stationary
across geographical space, GWR begins with the opposite view, anticipating spatial
dependency but also spatial variation. It is a model of spatial heterogeneity.

In particular, GWR begins with the expectation that the predictor variables will vary
continuously and spatially in respect to their effects upon the dependent variable. The
relationships therefore are assumed to be non-stationary. In this way, a regression
equation of the form:

ˆ . . .y = + + + +β β β β0 1 1 2 2x x xk k [1]

becomes
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with the coefficients for each of the predictor variables now assumed to vary from point
i to the next across the two-dimensional geographical space defined by the grid coordi-
nates (u, v) (or coordinates on a sphere).

The change of perspective means GWR can be used to explore and detect geographi-
cally localised deviations from more broadly expected, that is, “global” trends. GWR
also provides statistical explanation about why those local variations exist and where
they are statistically significant. In short, GWR generates empirical evidence for where
spatial patterning exists – evidence that may validate prior expectations and theory, or
raise further questions about the processes and structures operating within the research-
er’s chosen study region (especially where they invalidate the assumption of residual
independence underpinning traditional regression).

Most importantly for this article, GWR is emblematic of other methods of local
spatial statistical analysis in at least six regards.

First, its use can be exploratory, used to detect geographical variations and differ-
ences. The underlying epistemology is that “geography matters” (or, at least, that it
might, and that it might should be examined).

Second, and following from the first, GWR is used for data that are geocoded with
point coordinates in a two-dimensional geographic space. Based on those coordinates, a
search window (a kernel) is centred on, and passes sequentially from one (fit) point to the
next across the study region.1 As it does so, local statistics are generated. For GWR these
are the results of fitting distance weighted regression models. Data points that are outside
the search window are weighted as zero. In effect, then, the search window defines a
series of spatial subsets of the data.

Third, the statistical analysis around each fit point is undertaken independently of
the others. The result for one location does not affect the result for another: they are
separate analyses. Consequently, the order of analysing the fit points is irrelevant. In
every case, the underlying algorithm or sequence of commands used to analyse the data
remains the same. In this way, GWR can be likened to a constant function into which
only the weights attached to the data change from one function call to the next. The
order in which the sets of data are passed to the function does not matter.

However, and fourthly, the way the search window is defined does matter. Spatial
statistics characteristically place a search window, or kernel, over contiguous sub-regions
of the study area, fixing the size of the search window (the radius of the kernel) or
holding constant the number of observations in each subset (which accommodates
variations in the underlying population density). The size of the search window or kernel
is often described as the “bandwidth”.

Larger bandwidths contain more data. The size of the bandwidth must therefore
affect the results. This, classically, is the modifiable areal unit problem (MAUP), which
includes the issue of scale. If the bandwidth covers too great an area then it risks missing
or “smoothing out” important local variations in the attribute data and in their rela-
tionships; too small, and the potential for errant data to adversely affect the results is
high. It is a balance between precision and accuracy (also, standard error and bias). As
a consequence, either the bandwidth should be defined a priori with a value that has
some theoretical justification or, more usually and consistent with the exploratory nature
of the analysis, a process of calibration is required, using a cross-validation or other
optimisation procedure to determine the bandwidth’s spatial extent.

46 R Harris, A Singleton, D Grose, C Brunsdon and P Longley

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(1)



Fifth, having analysed the fit points separately, the results are pooled and compared.
For types of hot spot” analysis this could be a comparison of the local means and
standard deviations against each other or against the global values for the entire study
region (each a form of t-test). For GWR, the regression coefficients calculated at each of
the point locations are examined for evidence of spatial variation. A simple way to do
this is to summarise the distribution of the coefficients using quantiles and to identify
those parameters of the model with the greatest interquartile range. This is the procedure
incorporated in the desktop GWR software available from the National Centre for
Geocomputation, National University of Ireland, Maynooth. Later in this article we will
also use a form of quantile comparison but with deciles, reflecting the greater amount of
data and not wishing to cut too much from the tails of the distribution.

Sixth, GWR does not scale well, taking considerable time to complete for (not
especially) large data sets. Unfortunately, this delay conflicts with the exploratory nature
of the analysis and the idea that the user is able, in some sense, to “interact” with the
data, learning things of it and drawing out interesting patterns and trends. For example,
based on trials using a data set of n = 100,000 point locations (and five predictor
variables) we estimate it would take two weeks or more to complete the analysis using
an open source implementation of GWR (the spgwr package, see below). To the best of
our knowledge, the largest dataset for which GWR previously has been published was of
size n = 12,493 (this being the house price study of London reported in Fotheringham
et al. (2002)).

Yet, despite the similarities – summarised in Table 1 – there is a key difference
between GWR and many other forms of local spatial statistical analysis that adds to the
scaling problem: it fits weighted regression surfaces, many of them! This process of
repeated regression – and, specifically, the fact that the bandwidth must be optimised –
is the main reason why GWR is so computationally demanding and time consuming, and
more so than most other techniques. It is also the reason why GWR provides a bench-
mark for other forms of spatial statistical analysis. If GWR can be enabled to run in
reasonable time on large data sets within a grid environment, then computationally
simpler methods will run faster still. Usefully, GWR offers a proof of concept for other
spatial statistical analyses.

3 Grid-enabling GWR

In the preceding section we identified the problem of using GWR with large data sets:
it does not scale well to a large n. Here we outline a solution, taking advantage of the
fact that one set of weights and the data can be analysed independently of the others.
The independence allows for simple parallelisation of the method, for “grid-enabling”
GWR.

To elaborate, consider a dataset of length n, where n is the number of rows and is
equal to about 105. Assume that each of the rows represents a point location and that the
locally weighted regression coefficients will be estimated at each of those locations. That
implies 105 distance weighted regression surfaces need to be fitted and, because of the
distance weighting, an n ¥ n distance matrix be calculated (giving the distances between
each pair of points).

To reduce the computational burden, a heuristic could be sought, taking advantage
of the fact that points located a long way apart are unlikely ever to be found in the same
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search window and therefore the distance between them is not required. Whilst poten-
tially true, this is difficult to confirm in advance of the bandwidth calibration and, in any
case, offers only marginal savings in terms of the overall computational load. Unfortu-
nately, the main bottleneck for GWR is not the derivation of the distance matrix but the
regression fittings. The matrix decompositions involved are of the order n3 to calculate,
whereas the distance matrix is of the order n2.

Worse, unless the bandwidth can be specified a priori then there are actually more
than n regression surfaces to fit. The actual number is n ¥ m, where m is the number of
iterations required to optimise the bandwidth and is of unknown value until the opti-
misation is completed. If m is found to be in the range from 101 to 102 (which is usual)
then there could be as many as 107 regression surfaces to fit, requiring in the order of 1021

calculations to complete.
The solution is to distribute those calculations across multiple processors. To under-

stand how to do this, begin by considering an implementation of GWR on a single
processor machine. Assuming the distance matrix has been calculated, a logical way of
proceeding with the analysis is to take an initial bandwidth, fit the regression surface at

Table 1 Six similarities between GWR and other methods of local spatial statistical
analysis, suggesting why “grid-enabling” GWR provides a benchmark for other
(simpler) methods

Characteristic Explanation

1 Exploratory Used to detect geographical variations and
differences

2 Operates using point data Observations are analysed based on their
location in a two-dimensional grid space

3 A form of local analysis.
The data around any
one location can be
analysed independently
of other locations

The method is characterised by repeat testing
– sets of weighted data are created and
analysed in sequence. The order in which
the sets are analysed does not matter.

4 Affected by the MAUP The bandwidth defines the number of
subsets and the data they contain, and so
directly affects the end results. Some
calibration or optimisation of the
bandwidth usually is desirable.

5 Comparative The results obtained around each point
are pooled and compared to look for
variations across the study region.

6 Scaling issues The time taken to complete the analysis rises
exponentially with the length (n) of the
dataset. This especially is a problem for
GWR because of the repeat fitting of
regression surfaces.
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location 1, then move on to location 2, then 3, 4 and so on until the nth location. At this
stage, the bandwidth would be changed, and the entire sequence repeated m times, until
the bandwidth has been optimised.

Recall, however, that the locations could be sequenced in any order because the
results are independent. It follows that if there are two processors available then the data
can be analysed two locations at a time (and in any order). If there are three processors
available, then three locations can be considered concurrently; the logic extends in the
same way to the total number of processors available for the analysis (a number that we
shall denote as k).

In this regard, GWR is an “embarrassingly parallel” process. Parallel, because the
data can be sent to separate processors and analysed simultaneously. Embarrassing,
meaning simple, because the processes do not interact: each set of data is analysed
independently of the others, only afterwards are the results pooled and compared. In
broad terms, the time, t, taken to complete the GWR analysis will be inversely propor-
tional to k. Therefore, a doubling of k leads to a halving of t. The way to scale GWR to
large datasets is to have multiple processors available to work on the analysis. This
precisely is what a grid infrastructure offers.

Furthermore, the use of parallelisation applies not only to the optimisation of the
bandwidth but also to the derivation of the distance matrix. This is because an n ¥ n
matrix can be split into n rows (vectors), each of size 1 ¥ n. Consequently, a first
processor can calculate the distance from location 1 to all the other points whilst,
simultaneously, a second processor is calculating the distance from location 2 to all
others, and so forth. Once each row has been calculated separately the complete n ¥ n
finally can be assembled. Again, the time required to calculate the matrix will be inversely
proportional to k. We ignore the possibility of further halving t on the basis that the
distance from 1 to 2 is the same as from 2 to 1 (etc.) because we wish to avoid
communication between the processes or storing too much information within a memory
(see below).

In fact, the two processes of calculating the distance matrix and of fitting a distance
weighted regression model can be combined as a single function operating independently
on each of the processors available. The first processor receives a copy of the data,
calculates the distances from location 1 to all others and then fits the regression model on
the basis of some starting bandwidth. The second processor also receives a copy of the
data, calculates the distances from location 2 and fits the regression model using the same
bandwidth. The third processor does the same for the third location, and so forth. When
all the locations have been analysed, the results are pooled and an assessment made to see
if an optimal bandwidth has been achieved. If not, then the function call is repeated but
with a different bandwidth value.

Reading the above again carefully will reveal an apparent inefficiency. Observe that
the function calculates both the distance matrix and the regression surfaces each time it
is called. Changing the bandwidth requires the regression surfaces to be refitted (because
their distance weighting has changed) but why recalculate the distance matrix when the
distances between the points have not changed? And why do so a total of
m times?

The answer concerns the definition of efficiency. An algorithm for use in a highly
distributed computing environment needs to consider not just processor availability but
also memory, persistence of data, and bandwidth. Consider, first, the resource required to
store a full distance matrix in memory. For a data set consisting of 100,000 points, the
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memory requirement is more than 18 GB (assuming four bytes of memory are required
to represent a floating point number). By contrast, if each processor holds only the
distance from a specific data point to each of the others, then the memory requirement
is 1/k th of the matrix (approximately 180 MB if k = 100).2

Next consider data persistence. Although in principle the distance matrix could be
calculated just once for the bandwidth optimisation, in practice there is no guarantee
within a truly distributed environment that the same hardware will be used for every
iteration. This means that unless it is recalculated, the distance matrix will have to be
stored by the system controlling the optimisation process. This is possible but not
desirable because of potential limitations regarding the bandwidth of the communication
paths between the systems within the distributed environment. Even for large datasets, if
there are sufficient processors available, then it typically takes less time to recalculate the
distance matrices at each iteration than to broadcast each distance matrix to the asso-
ciated computer node. In general, uncertainty regarding memory and bandwidth restric-
tions means it is more sensible to discard and recalculate the matrix with each iteration
of the bandwidth optimisation than to try and retain it.

4 Implementing Grid-enabled GWR in R

An objective of the NCeSS-funded research upon which this article draws was to create
a way of grid-enabling GWR that is as interoperable as possible with existing software.
To achieve this, we built on a library for running the GWR computing and statistical
package, R (http://cran.r-project.org/). This is the spgwr library, developed by Bivand and
Yu (see http://cran.r-project.org/web/packages/spgwr/index.html and Bivand et al. (2008)
for additional details), that provides functions for calibrating the bandwidth and for
calculating the geographically weighted regression parameters.

A part of the reason for choosing R is that it is open source and freely available.
A second was that a previous NCeSS project called SABRE in R had involved the
Lancaster University Centre for e-Science developing a parallel implementation of
SABRE (a program for the statistical analysis of binary, ordinal and count recurrent
events) as R Objects. That project had used middleware called GROWL “to provide
user friendly access to GRID resources for applications accessible from desktop com-
puters” (see http://www.ncess.ac.uk/research/quantitative/cqess/growl/ for additional
details).

Using GROWL technology, a package was developed that allows GWR to be run on
a desktop PC using the existing spgwr library but for which the actual data processing
occurs remotely on the National Grid infrastructure. The package was entitled multiR
and is actually a client/server system that provides a means of submitting a group of tasks
for processing on multiple and remote systems. These systems could be processors on a
local high performance cluster, a Condor pool or, in the case of the research, the NGS.
The multiR client interface is distributed as a package for R and its usage is similar to that
of the standard R function. The idea of multiR is to provide a means of invoking an R
function multiple times and with varying arguments, where the result of the function is
evaluated on multiple processors. By doing so, R becomes a programming environment
for course grained parallel processing.

Figure 1 outlines the principle of multiR and its three tier architecture. Clients use R
to define the function and use multiR to submit a job to the multiR server. The multiR
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server then delegates these tasks to whatever resources it can employ, managing the
interface between the user’s computer and the NGS.

In addition to multiR, the accompanying spgwr.dist library contains the functions
required for grid-enabled GWR (dist is an abbreviation of distributed). A typical session
in R begins as:

> library(spgwr.dist)
# loads the spgwr.dist and multiR packages
> session <- multiR.session(“stats-grid.hpc.lancs.ac.uk”,
“50000”,
+ “~/mycertificate.p12”, “~/multiR.CA.pem ”)
# identifies the user’s security credentials to use the NGS and
also the multiR server

The analysis then continues in a way similar to using the spgwr packgage. Where, in
spgwr, the bandwidth for GWR is calculated on the user’s desktop using a function of
the form:

> bandwidth = ggwr.sel(y~x, attribute_data, georeferences)

for the grid-enabled version we use:

> bandwidth = ggwr.sel.dist(session, y~x, attribute_data,
georeferences, max.processors)

Similarly, where the model is fitted in spgwr using:

> gwr.model = ggwr(y~x, attribute_data, georeferences,
bandwidth)

It is fitted in spgwr.dist using:

> gwr.model = ggwr.dist(session, y~x, attribute_data,
georeferences, bandwidth, max.processors)

The only difference from the user’s perspective is that the additional parameter
“session” contains the information required to connect to the multiR server – including
the user’s security credentials – and the parameter “max.processors” specifies a
maximum number of processors the GWR analysis should run on.

Figure 1 The three tier client/server architecture employed by multiR
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5 Modelling Participation in Higher Education in England

In order to demonstrate the use of grid-enabled GWR, a dataset was selected of a size
that would be time-consuming to analyse using conventional GWR software. This
comprised neighbourhood data at the Lower Super Output Area scale (average total
population of 1,500 people), most of which was from the education domain of the 2007
Index of Multiple Deprivation (Noble et al. 2008), see Table 2, below.

The response variable for the analysis is higher education participation rates for the
whole of England (defined in Table 2). Interest in this variable arises from the current
Labour Government’s desire to raise the participation of traditionally underrepresented
groups within UK Higher Education Institutes (HEIs), linking to a target for 50% of
young adults to be in Higher Education by 2010 (the current rate is about 43%). In turn,
the HEIs are required to have access agreements, bursaries and widening participation
schemes to support such rises, and government funding is provided to institutions
specifically for widening participation initiatives.

Whilst much research has been undertaken looking at socio-spatial inequalities and
unequal patterns of access into UK HEIs, (see, for examples, Archer et al. (2003), Reay
et al. (2005), and Batey et al. (1999)), still the National Audit Office has reported that:

Table 2 Modelling participation in Higher Education in England: The choice of variables
and how they are derived

Data Numerator/Denominator Source

Y Higher education
participation

Successful entrants under 21 in UCAS
data, for 2002–2005/Census population
aged 14–17 years. The natural log of
this value is used in the model to
counter a positive skew.

2007 Index of
Multiple
Deprivation

X1 No qualifications Adults aged 25–54 in the area with no
qualifications or with qualifications
below NVQ Level 2, for 2001/All
adults aged 25–54.

2007 Index of
Multiple
Deprivation

X2 No post 16
qualifications

Those aged 17 still receiving Child
Benefit in 2006/Those aged 15
receiving Child Benefit in 2004.

2007 Index of
Multiple
Deprivation

X3 Average KS4 Points Total score of pupils taking KS4 in 2004
and 2005 in maintained schools from
the NPD/All pupils in their final year
of compulsory schooling in
maintained schools for 2004 and 2005
from PLASC.

2007 Index of
Multiple
Deprivation

X4 Four or more cars Four or more cars in household/total
households

2001 Census

X5 Asian Total Indian, Pakistani, Bangladeshi
people/total people

2001 Census
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Not enough is known about the extent to which disadvantaged groups are
under-represented in higher education, or what measures to widen participation
are most effective. The Department and the Funding Council need to secure
better data on participation, for example by social class or disability. They could
tailor provision more closely to people’s circumstances, such as where they live
and when they can study.

Comptroller and Auditor General (2008)

In particular, little research has been conducted into the spatial variability of the
factors that are known to influence higher education participation rates, perhaps with the
exceptions of Batey et al. (1999) and Singleton and Longley (2009). It is an area of study
where grid-enabled GWR can usefully be applied.

The explanatory variables in Table 2 are not exhaustive but were chosen to represent
those factors identified in the literature as affecting differential higher education partici-
pation rates. Three of the variables relate to various aspects of educational attainment
within residential neighbourhoods, including the proportion of the population without
qualifications, the proportion of the population without post 16 qualifications, and the
level of Key Stage 4 attainment (a measure of educational achievement at the end of the
period of compulsory schooling). Of these, the proportion of the population without
qualifications reflects how those people living in areas of low educational attainment are
less likely to have been supported throughout their educational careers and also less
likely to have associations with others with experience of higher education. Burnhill et al.
(1990) illustrate this as an important link to non-participation in higher education by
demonstrating a strong association between parental education, specifically to higher
education level, and the probability that their children attend higher education.

The variables no post 16 qualifications and average Key Stage 4 points represent the
underlying potential for areas to supply qualified candidates eligible for higher education.
Possessing a post 16 qualification is usually a minimum requirement for entry to most
courses of higher education and low attainment in general has been found to be a further
factor affecting participation in higher education across numerous previous studies
(Vernon et al. 2002, Gillchrist et al. 2003). Participation in higher education is more
likely to occur in higher income families for a variety of reasons such as attitude to debt
(Callender and Jackson 2005). However, income information is not collected on the
decennial censuses, and as such, surrogate measures are often used. One such substitute
for income is car ownership (Dargay 2001); however, it is expected that this variable will
demonstrate geographical instability, most specifically in metropolitan areas where alter-
nate transportation is more appropriate (Longley and Toban 2004).

The final variable included in the model is related to ethnicity, known to be associ-
ated with differential rates of higher education participation (Modood and Acland 1998,
Reay et al. 2001) and school attainment (Hamnett et al. 2007).

Prior to the geographically weighted regression, a global ordinary least squares
regression was fitted of the form of Equation (1) and with n = 31,378 observations. Each
is a Lower Level Super Output Area (LLSOA, a Census zone). The results are shown in
Table 3. The model has an adjusted R2 of 0.73 and all the predictor variables are
significant at a confidence exceeding 95% (not surprisingly, given the size of n).

We expect the global model to conceal geographical variation in the effects of each
predictor variable on entry into Higher Education. Evidence that it will do so is found by
producing a Moran plot of the residuals from the regression model with their spatially
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lagged equivalents (generated using a first order contiguity matrix). What we find is an
overall pattern of positive spatial autocorrelation where a positive residual for one census
zone is surrounded by positive residuals for its neighbours, and negative neighbours
surround a negative residual, yet also with exceptions to the overall trend. This is shown
in Figure 2 for a random sample of the residual data (the sample being used to help limit
the over-plotting that occurs with all 31,378 observations).

Therefore, a GWR model was fitted, using the grid enabled system described earlier,
a Gaussian weighting scheme and an adaptive kernel. The optimal bandwidth was found
to be that containing the 97 nearest neighbours to the geographical centroid at the centre
of each LLSOA. The shape of the kernel is therefore Gaussian to the 97th neighbour.
Beyond that points will have a weight of zero.

The results of the GWR model are summarised in Table 4. The first column gives the
global regression coefficient for each of the predictor variables, repeated from Table 3.
The remaining columns indicate how that coefficient varies across the study region. For
example, ‘on average’, a percentage point increase in the percentage of adults without a
qualification (X1) will lead to a 0.030 point reduction on the intake variable. This is the
median value in Table 3 and, reassuringly, is similar to the global value. Across the study
region, though, the complete set of 31,378 fitted beta values ranges from a minimum of
-0.047 to a maximum of -0.014. Focusing on the first and ninth deciles of the distri-
bution, the values range from -0.036 to -0.023. The intequartile range (IQR) is also
given; in this case it is equal to 0.006.

Looking at Table 4, the varying effect of the car ownership variable is evident.
Comparing the coefficient at the first decile (b = 0.011) with the coefficient at the ninth
decile (b = 0.040) implies that high car ownership is associated with a rate of participa-
tion in higher education that is almost four times greater in some places than others. This
variation is driven by a “London effect”: 63% of the 3,089 fit points with a coefficient
in or above the ninth decile – those with the strongest relationship between high car
ownership and participation in higher education – are in Greater London; less than 3%
of the 3,025 points with a coefficient at or beneath the first decile are. What this is
revealing is the concentration of high wealth within the London region and how that
wealth provides direct and indirect pathways into Higher Education.

Still with reference to Table 4, an interesting variable is that indicating an Asian
ethnic category: it ranges from being negative to positive in its effect upon the rate of
University participation. Figure 3 maps the distribution of those beta values, revealing

Table 3 Results for the global model

b
Standard
error t value

Significant at a
95% level?

(Intercept) 3.620 0.0213 170.2 Yes
X1: No Qualifications -0.027 0.0002 -152.5 Yes
X2: No Post 16 Qualifications -0.002 0.0001 -15.1 Yes
X3: Average KS4 attainment 0.003 0.0002 52.6 Yes
X4: Four or more cars 0.018 0.0005 35.9 Yes
X5: Asian 0.012 0.0002 68.1 Yes
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some distinct regional and sub-regional differences. However, it would be erroneous to
assume that each of these beta values is significant in a statistical sense. Indeed, only the
minority (31% of the 31,378 fit points) are significant at a t-value of two or above (none
of the negative coefficients is significant at t = -2 or below). Those points where the
relationship is significant are shown in Figure 4 and are strongly clustered in the urban
industrial conurbations, reflecting the manufacturing geography of the England in the
mid 20th century and patterns of immigration.

A notable exception is the cluster found in the South West region of the map, in
Cornwall. This cluster is located around Falmouth, an historic but still a cargo port. It
is also the location of the Combined Universities in Cornwall where more than £60
million has been invested in providing new academic facilities in one of the most remote
parts of the country.

6 Conclusions

In this article we have outlined a technical and reasonably “user friendly” solution that
permits GWR to be applied to relatively large data sets, here modelling participation

Figure 2 A Moran plot suggesting evidence of positive spatial autocorrelation in the
residuals from the global regression model. A random sample of 10% of the data is
plotted
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rates in Higher Education in England. Unfortunately the solution is not a panacea; we
end by describing some of the further issues and problems that are raised by it, including
a dependency on what is more centralised than it is distributed computing.

A first issue is practical. The speed-up in applying GWR to large data sets is
proportional to the number of processors (nodes) available for use on the grid system.
The system used for the analysis here was the North West Grid, based at Lancaster
and with over 100 nodes (http://www.nw-grid.ac.uk/). Assuming all were available for
our exclusive use, that reduces the time taken to complete the analysis by the order of
102 – to an hour or two to complete. That is fast but hardly offers the sort of rapid

Figure 3 Illustrating the spatial variation in the local (GWR) coefficients for the indicator
of Asian ethnicity
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interaction with data that exploratory spatial data analysis aspires to. Moreover, it
presumes that the user has access to the grid system, which in turn requires the user
to be an academic involved in research in the United Kingdom. If they are, they can
apply in the first instance via http://www.grid-support.ac.uk/ to obtain a grid user’s
certificate and to initiate a process of security checking, requiring the production of
photo ID to a local administrator, and also a review of the research purpose behind the
application. This all takes time, and though it may be necessary for the purpose of
secure system administration, it will be off-putting to a more casual but potentially
interested user.

Figure 4 Showing where the indicator of Asian ethnicity is related significantly to the
Higher Education participation rate (t � 2)
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The second issue is technical. Figure 3 of this article was based on t-scores, mapping
only those fit points where the relationship between the indicator of Asian ethnicity and
the rate of participation in Higher Education was deemed significant. Those t-scores were
not calculated using grid GWR but using bespoke code to fit local and weighted
regression surfaces in desktop R. The reason for this is that R resides in the computer’s
memory and is limited to about 2 GB for 32-bit Windows. The hat matrix required by
R’s spgwr library to obtain the local measures of significance more directly will exceed
this memory limit for a large data set. As Bivand et al. (2008, p. 10) note, “R may not
be suitable for the analysis of massive data sets, because data being analysed is held in
memory.” That is a general problem that we encounter.

A third issue is how to interpret the GWR model. Increasing the amount of obser-
vations input into the analysis raises the prospect of discovering complex geographical
patterning. The problem is that all is not held constant as the effect of one predictor
on the response variable changes over space. For a model with many independent
variables, as one changes in its effect, so the others may be changing too in complex
ways. Uses of GWR can be exploratory – examining for geographical differences – and
also diagnostic, checking the assumption of spatial stationarity underpinning tradi-
tional (OLS) regression analysis is valid. For a more confirmatory approach that seeks
to verify or to falsify a theoretical model, it may be better to model departures from
a general model and to see how those departures vary spatially, as opposed to fitting
many independent but localised regression models and then comparing their coeffi-
cients. The former is more the perspective of multilevel modelling and of spatial econo-
metrics, the latter of GWR and of local spatial statistical analysis more generally. Yet,
even for the former GWR has a role to play: it may be used to calibrate the general
models and the specifications of spatial dependency, of spatial autocorrelation that
they employ. Commonly they are based on questionable assumptions of neighbour-
hood, defined, for example, by first order contiguity. GWR can be used in tandem with
these other approaches to provide a better understanding of the spatial structure con-
tained within the data.

Fourthly, and related to the above, grid-enabled GWR raises our aspirations of how
to model that spatial structure. Ultimately GWR employs a single specification of spatial
autocorrelation – the bandwidth value, whether defined by nearest neighbours or by
physical distance. There is no particular reason that this should be the same everywhere
and it could be regionalised. That it is not is for practical reasons: to do so requires a
greater computational power that only now is available. However, there will always be
a trade-off between a generally applicable model that lacks specific detail, and one that
appears more attuned to geographical difference but is overly calibrated on one particu-
lar data set (and the error and uncertainties that it contains). A challenge of developing
new computational tools to better reveal the spatial patterning of the social, economic or
natural landscape and to better understand the processes causing that patterning is to
know when to stop, to discern when the study has become overly idiographic.

For now, we have demonstrated the successful application of GWR within a grid
infrastructure and, having done so, have provided a benchmark for other methods of
local spatial statistical analysis. Unfortunately our ending is not a happy one. Despite the
talk of distributed computing, the computing infrastructure behind e-science in the UK is,
in fact, located in only a few institutions. The idea may be to “plug in” and use their
services (for free) but this is far removed from their realities of research funding and the
pressure on Universities to generate income streams. Specifically, there is no guarantee the

Grid-enabling Geographically Weighted Regression 59

© 2010 Blackwell Publishing Ltd
Transactions in GIS, 2010, 14(1)



service will continue to be funded and, in the case of the multiR server, it has been
withdrawn, at least for now. Nevertheless, the package remains available at http://e-
science.lancs.ac.uk/multiR/ where there is potential for development for use on Condoor
pools and other local networks.
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Notes

1 The fit points need not be the same as the data points. Though they often are, GWR can also
be used to interpolate values at locations where data have not been collected.

2 The problem of memory requirement may pass, in time, with technological development.
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