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Abstract

We obtain the following upper bounds for the eigenvalues of the matrix
A†A. For any a in the interval [0, 2] let

caj =
I∑

i=1

|Aij |a,

rai =
J∑

j=1

|Aij |2−a,

and ca and ra the maxima of the caj and rai, respectively. Then no eigenvalue
of the matrix A†A exceeds the maximum of

J∑
j=1

caj |Aij |2−a,

over all i, nor the maximum of

I∑
i=1

rai|Aij |a,

over all j. Therefore, no eigenvalue of A†A exceeds cara.
Using these bounds, it follows that, for the matrix G with entries

Gij = Aij
√

αi

√
βj ,
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no eigenvalue of G†G exceeds one, provided that, for some a in the interval
[0, 2], we have

αi ≤ r−1
ai ,

and
βj ≤ c−1

aj .

Using this result, we obtain convergence theorems for several iterative algo-
rithms for solving the problem Ax = b, including the CAV, BICAV, CARP1,
SART, SIRT, and the block-iterative DROP and SART methods.

This article will appear in International Transactions in Operations Re-
search, in 2009.

1 Introduction and Notation

We are concerned here with iterative methods for solving, at least approximately, the

system of I linear equations in J unknowns symbolized by Ax = b. In the applications

of interest to us, such as medical imaging, both I and J are quite large, making the use

of iterative methods the only feasible approach. It is also typical of such applications

that the matrix A is sparse, that is, has relatively few non-zero entries. Therefore,

iterative methods that exploit this sparseness to accelerate convergence are of special

interest to us.

The algebraic reconstruction technique (ART) of Gordon, et al. [12] is a sequential

method; at each step only one equation is used. The current vector xk−1 is projected

orthogonally onto the hyperplane corresponding to that single equation, to obtain the

next iterate xk. The iterative step of the ART is

xk
j = xk−1

j + Aij

(
bi − (Axk−1)i∑J

t=1 |Ait|2

)
, (1.1)

where i = k(mod I). The sequence {xk} converges to the solution closest to x0 in the

consistent case, but only converges subsequentially to a limit cycle in the inconsistent

case.

Cimmino’s method [10] is a simultaneous method, in which all the equations are

used at each step. The current vector xk−1 is projected orthogonally onto each of the

hyperplanes and these projections are averaged to obtain the next iterate xk. The

iterative step of Cimmino’s method is

xk
j =

1

I

I∑
i=1

(
xk−1

j + Aij

(
bi − (Axk−1)i∑J

t=1 |Ait|2

))
,

which can also be written as

xk
j = xk−1

j +
I∑

i=1

Aij

(
bi − (Axk−1)i

I
∑J

t=1 |Ait|2

)
. (1.2)

2



Landweber’s iterative scheme [16](see also [3, 4, 5] with

xk = xk−1 + B†(d−Bxk−1), (1.3)

converges to the least-squares solution of Bx = d closest to x0, provided that the

largest singular value of B does not exceed one. If we let B be the matrix with

entries

Bij = Aij/

√√√√I
J∑

t=1

|Ait|2,

and define

di = bi/

√√√√I
J∑

t=1

|Ait|2,

then, since the trace of the matrix BB† is one, convergence of Cimmino’s method

follows. However, using the trace in this way to estimate the largest singular value

of a matrix usually results in an estimate that is far too large, particularly when A

is large and sparse, and therefore in an iterative algorithm with unnecessarily small

step sizes.

The appearance of the term

I
J∑

t=1

|Ait|2

in the denominator of Equation (1.2) suggested to Censor et al. [8] that, when A is

sparse, this denominator might be replaced with

J∑
t=1

st|Ait|2,

where st denotes the number of non-zero entries in the tth column of A. The resulting

iterative method is the component-averaging (CAV) iteration. Convergence of the

CAV method was established by showing that no singular value of the matrix B

exceeds one, where B has the entries

Bij = Aij/

√√√√ J∑
t=1

st|Ait|2.

In this paper we extend a result of van der Sluis and van der Vorst [18] to obtain

upper bounds on the eigenvalues of the matrix A†A; as a corollary, we have that no

eigenvalue of A†A exceeds the maximum of the numbers

pi =
J∑

t=1

st|Ait|2.
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Convergence of CAV then follows, as does convergence of several other methods,

including the ART, Landweber’s method, the SART [1], the block-iterative CAV

(BICAV) [9], the CARP1 method of Gordon and Gordon [13], and a block-iterative

variant of CARP1 obtained from the DROP method of Censor et al. [7]. Convergence

of most of these methods was also established in [15], using a unifying framework of

a block-iterative Landweber algorithm, but without deriving upper bounds for the

largest eigenvalue of a general A†A.

For a positive integer N with 1 ≤ N ≤ I, we let B1, ..., BN be not necessarily

disjoint subsets of the set {i = 1, ..., I}; the subsets Bn are called blocks. We then let

An be the matrix and bn the vector obtained from A and b, respectively, by removing

all the rows except for those whose index i is in the set Bn. For each n, we let snt be

the number of non-zero entries in the tth column of the matrix An, sn the maximum

of the snt, s the maximum of the st, and Ln = ρ(A†
nAn) be the spectral radius, or

largest eigenvalue, of the matrix A†
nAn, with L = ρ(A†A). We denote by Ai the ith

row of the matrix A, and by νi the length of Ai, so that

ν2
i =

J∑
j=1

|Aij|2.

2 Some Upper Bounds for L

For the iterative algorithms we shall consider here, having a good upper bound for

the largest eigenvalue of the matrix A†A is important. In the applications of interest,

principally medical image processing, the matrix A is large; even calculating A†A, not

to mention computing eigenvalues, is prohibitively expensive. In addition, the matrix

A is typically sparse, but A†A will not be, in general. In this section we present upper

bounds for L that are particularly useful when A is sparse and do not require the

calculation of A†A.

In [18] van der Sluis and van der Vorst show that certain rescaling of the matrix

A results in none of the eigenvalues of A†A exceeding one. A modification of their

proof leads to upper bounds on the eigenvalues of the original A†A. For any a in the

interval [0, 2] let

caj = caj(A) =
I∑

i=1

|Aij|a,

rai = rai(A) =
J∑

j=1

|Aij|2−a,
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and ca and ra the maxima of the caj and rai, respectively. We prove the following

theorem.

Theorem 2.1 For any a in the interval [0, 2], no eigenvalue of the matrix A†A ex-

ceeds the maximum of
J∑

j=1

caj|Aij|2−a,

over all i, nor the maximum of
I∑

i=1

rai|Aij|a,

over all j. Therefore, no eigenvalue of A†A exceeds cara.

Proof: Let A†Av = λv, and let w = Av. Then we have

‖A†w‖2 = λ‖w‖2.

Applying Cauchy’s Inequality, we obtain

∣∣∣ I∑
i=1

Aijwi

∣∣∣2 ≤ ( I∑
i=1

|Aij|a/2|Aij|1−a/2|wi|
)2

≤
( I∑

i=1

|Aij|a
)( I∑

i=1

|Aij|2−a|wi|2
)
.

Therefore,

‖A†w‖2 ≤
J∑

j=1

(
caj(

I∑
i=1

|Aij|2−a|wi|2)
)

=
I∑

i=1

( J∑
j=1

caj|Aij|2−a
)
|wi|2

≤ max
i

( J∑
j=1

caj|Aij|2−a
)
‖w‖2.

The remaining two assertions follow in similar fashion.

The following corollary is central to our discussion.

Corollary 2.1 For each i = 1, 2, ..., I, let

pi =
J∑

j=1

sj|Aij|2,

and let p be the maximum of the pi. Then L ≤ p.

Proof: Take a = 0. Then, using the convention that 00 = 0, we have c0j = sj.
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Corollary 2.2 Selecting a = 1, we have

L = ‖A‖2
2 ≤ ‖A‖1‖A‖∞ = c1r1.

Corollary 2.3 Selecting a = 2, we have

L = ‖A‖2
2 ≤ ‖A‖2

F ,

where ‖A‖F denotes the Frobenius norm of A, which is the Euclidean norm of the

vectorized A.

Corollary 2.4 Let G be the matrix with entries

Gij = Aij

√
αi

√
βj,

where

αi ≤
( J∑

j=1

sjβj|Aij|2
)−1

,

for all i. Then ρ(G†G) ≤ 1.

Proof: We have
J∑

j=1

sj|Gij|2 = αi

J∑
j=1

sjβj|Aij|2 ≤ 1,

for all i. The result follows from Corollary 2.1.

Corollary 2.5 If
∑J

j=1 sj|Aij|2 ≤ 1 for all i, then L ≤ 1.

Corollary 2.6 If 0 < γi ≤ p−1
i for all i, then the matrix B with entries Bij =

√
γiAij

has ρ(B†B) ≤ 1.

Proof: We have
J∑

j=1

sj|Bij|2 = γi

J∑
j=1

sj|Aij|2 = γipi ≤ 1.

Therefore, ρ(B†B) ≤ 1, according to the theorem.

Corollary 2.7 ([2]; [17], Th. 4.2) If
∑J

j=1 |Aij|2 = 1 for each i, then L ≤ s.

Proof: For all i we have

pi =
J∑

j=1

sj|Aij|2 ≤ s
J∑

j=1

|Aij|2 = s.

Therefore,

L ≤ p ≤ s.
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Corollary 2.8 If, for some a in the interval [0, 2], we have

αi ≤ r−1
ai , (2.1)

for each i, and

βj ≤ c−1
aj , (2.2)

for each j, then, for the matrix G with entries

Gij = Aij

√
αi

√
βj,

no eigenvalue of G†G exceeds one.

Proof: We calculate caj(G) and rai(G) and find that

caj(G) ≤
(

max
i

α
a/2
i

)
β

a/2
j

I∑
i=1

|Aij|a =
(

max
i

α
a/2
i

)
β

a/2
j caj(A),

and

rai(G) ≤
(

max
j

β
1−a/2
j

)
α

1−a/2
i rai(A).

Therefore, applying the inequalities (2.1) and (2.2), we have

caj(G)rai(G) ≤ 1,

for all i and j. Consequently, ρ(G†G) ≤ 1.

The next theorem ([2]) provides another upper bound for L that is useful when

A is sparse. For each i and j, we let eij = 1, if Aij is not zero, and eij = 0, if Aij = 0.

Let 0 < νi =
√∑J

j=1 |Aij|2, σj =
∑I

i=1 eijν
2
i , and σ be the maximum of the σj.

Theorem 2.2 ([2]) No eigenvalue of A†A exceeds σ.

Proof: Let A†Av = cv, for some non-zero vector v and scalar c. With w = Av, we

have

w†AA†w = cw†w.

Then ∣∣∣ I∑
i=1

Aijwi

∣∣∣2 =
∣∣∣ I∑

i=1

Aijeijνi
wi

νi

∣∣∣2 ≤ ( I∑
i=1

|Aij|2
|wi|2

ν2
i

)( I∑
i=1

ν2
i eij

)

=
( I∑

i=1

|Aij|2
|wi|2

ν2
i

)
σj ≤ σ

( I∑
i=1

|Aij|2
|wi|2

ν2
i

)
.

Therefore, we have

cw†w = w†AA†w =
J∑

j=1

∣∣∣ I∑
i=1

Aijwi

∣∣∣2 ≤ σ
J∑

j=1

( I∑
i=1

|Aij|2
|wi|2

ν2
i

)
= σ

I∑
i=1

|wi|2 = σw†w.

We conclude that c ≤ σ.
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Corollary 2.9 Let the rows of A have Euclidean length one. Then no eigenvalue of

A†A exceeds the maximum number of non-zero entries in any column of A.

Proof: We have ν2
i =

∑J
j=1 |Aij|2 = 1, for each i, so that σj = sj is the number of

non-zero entries in the jth column of A, and σ = s is the maximum of the σj.

When the rows of A have length one, it is easy to see that L ≤ I, so the choice

of γ = 1
I

in the Landweber algorithm, which gives Cimmino’s algorithm [10], is

acceptable, although perhaps much too small.

The proof of Theorem 2.2 is based on results presented by Arnold Lent in infor-

mal discussions with Gabor Herman, Yair Censor, Rob Lewitt and me at MIPG in

Philadelphia in the late 1990’s.

3 The Basic Convergence Theorem

The following theorem is a basic convergence result concerning block-iterative algo-

rithms.

Theorem 3.1 Let Ln ≤ 1, for n = 1, 2, ..., N . If the system Ax = b is consistent,

then, for any starting vector x0, and with n = n(k) = k(mod N) and λk ∈ [ε, 2 − ε]

for all k, the sequence {xk} with iterative step

xk = xk−1 + λkA
†
n(bn − Anx

k−1) (3.1)

converges to the solution of Ax = b for which ‖x− x0‖ is minimized.

We begin with the following lemma.

Lemma 3.1 Let T be any (not necessarily linear) operator on RJ , and S = I − T ,

where I denotes the identity operator. Then, for any x and y, we have

‖x− y‖2 − ‖Tx− Ty‖2 = 2〈Sx− Sy, x− y〉 − ‖Sx− Sy‖2. (3.2)

The proof is a simple calculation and we omit it here.

Proof of Theorem 3.1: Let Az = b. Applying Equation (3.2) to the operator

Tx = x + λkA
†
n(bn − Anx),

we obtain

‖z − xk−1‖2 − ‖z − xk‖2 = 2λk‖bn − Anx
k−1‖2 − λ2

k‖A†
nb

n − A†
nAnx

k−1‖2. (3.3)
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Since Ln ≤ 1, it follows that

‖A†
nb

n − A†
nAnx

k−1‖2 ≤ ‖bn − Anx
k−1‖2.

Therefore,

‖z − xk−1‖2 − ‖z − xk‖2 ≥ (2λk − λ2
k)‖bn − Anx

k−1‖2,

from which we draw several conclusions:

• the sequence {‖z − xk‖} is decreasing;

• the sequence {‖bn − Anx
k−1‖} converges to zero.

In addition, for fixed n = 1, ..., N and m →∞,

• the sequence {‖bn − Anx
mN+n−1‖} converges to zero;

• the sequence {xmN+n} is bounded.

Let x∗,1 be a cluster point of the sequence {xmN+1}; then there is subsequence

{xmrN+1} converging to x∗,1. The sequence {xmrN+2} is also bounded, and we

select a cluster point x∗,2. Continuing in this fashion, we obtain cluster points

x∗,n, for n = 1, ..., N . From the conclusions reached previously, we can show that

x∗,n = x∗,n+1 = x∗, for n = 1, 2, ..., N − 1, and Ax∗ = b. Replacing the generic

solution x̂ with the solution x∗, we see that the sequence {‖x∗ − xk‖} is decreasing.

But, subsequences of this sequence converge to zero, so the entire sequence converges

to zero, and so xk → x∗.

Now we show that x∗ is the solution of Ax = b that minimizes ‖x − x0‖. Since

xk − xk−1 is in the range of A† for all k, so is x∗− x0, from which it follows that x∗ is

the solution minimizing ‖x− x0‖. Another way to get this result is to use Equation

(3.3). Since the right side of Equation (3.3) is independent of the choice of solution,

so is the left side. Summing both sides over the index k reveals that the difference

‖x− x0‖2 − ‖x− x∗‖2

is independent of the choice of solution. Consequently, minimizing ‖x− x0‖ over all

solutions x is equivalent to minimizing ‖x − x∗‖ over all solutions x; the solution to

the latter problem is clearly x = x∗.

4 Simultaneous Iterative Algorithms

In this section we apply the previous theorems to obtain convergence of several si-

multaneous iterative algorithms for linear systems.
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4.1 The General Simultaneous Iterative Scheme

In this section we are concerned with simultaneous iterative algorithms having the

following iterative step:

xk
j = xk−1

j + λk

I∑
i=1

γijAij(bi − (Axk−1)i), (4.1)

with λk ∈ [ε, 1] and the choices of the parameters γij that guarantee convergence.

Although we cannot prove convergence for this most general iterative scheme, we are

able to prove the following theorems for the separable case of γij = αiβj.

Theorem 4.1 If, for some a in the interval [0, 2], we have

αi ≤ r−1
ai , (4.2)

for each i, and

βj ≤ c−1
aj , (4.3)

for each j, then the sequence {xk} given by Equation (4.1) converges to the minimizer

of the proximity function
I∑

i=1

αi|bi − (Ax)i|2

for which
J∑

j=1

β−1
j |xj − x0

j |2

is minimized.

Proof: For each i and j, let

Gij =
√

αi

√
βjAij,

zj = xj/
√

βj,

and

di =
√

αibi.

Then Ax = b if and only if Gz = d. From Corollary 2.8 we have that ρ(G†G) ≤ 1.

Convergence then follows from Theorem 3.1.
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Corollary 4.1 Let γij = αiβj, for positive αi and βj. If

αi ≤
( J∑

j=1

sjβj|Aij|2
)−1

, (4.4)

for each i, then the sequence {xk} in (4.1) converges to the minimizer of the proximity

function
I∑

i=1

αi|bi − (Ax)i|2

for which
J∑

j=1

β−1
j |xj − x0

j |2

is minimized.

Proof: We know from Corollary 2.4 that ρ(G†G) ≤ 1.

4.2 Some Convergence Results

We obtain convergence for several known algorithms as corollaries to the previous

theorems.

The SIRT Algorithm:

Corollary 4.2 ([18]) For some a in the interval [0, 2] let αi = r−1
ai and βj = c−1

aj .

Then the sequence {xk} in (4.1) converges to the minimizer of the proximity function

I∑
i=1

αi|bi − (Ax)i|2

for which
J∑

j=1

β−1
j |xj − x0

j |2

is minimized.

For the case of a = 1, the iterative step becomes

xk
j = xk−1

j +
I∑

i=1

(
Aij(bi − (Axk−1)i)

(
∑J

t=1 |Ait|)(
∑I

m=1 |Amj|)

)
,

which was considered in [14]. The SART algorithm [1] is a special case, in which it

is assumed that Aij ≥ 0, for all i and j.

The CAV Algorithm:
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Corollary 4.3 If βj = 1 and αi satisfies

0 < αi ≤
( J∑

j=1

sj|Aij|2
)−1

,

for each i, then the algorithm with the iterative step

xk = xk−1 + λk

I∑
i=1

αi(bi − (Axk−1)i)A
†
i (4.5)

converges to the minimizer of

I∑
i=1

αi|bi − (Axk−1)i|2

for which ‖x− x0‖ is minimized.

When

αi =
( J∑

j=1

sj|Aij|2
)−1

,

for each i, this is the relaxed component-averaging (CAV) method of Censor et al. [8].

The Landweber Algorithm: When βj = 1 and αi = α for all i and j, we have the

relaxed Landweber algorithm. The convergence condition in Equation (2.1) becomes

α ≤
( J∑

j=1

sj|Aij|2
)−1

= p−1
i

for all i, so α ≤ p−1 suffices for convergence. Actually, the sequence {xk} converges

to the minimizer of ‖Ax − b‖ for which the distance ‖x − x0‖ is minimized, for any

starting vector x0, when 0 < α < 1/L. Easily obtained estimates of L are usually

over-estimates, resulting in overly conservative choices of α. For example, if A is first

normalized so that
∑J

j=1 |Aij|2 = 1 for each i, then the trace of A†A equals I, which

tells us that L ≤ I. But this estimate, which is the one used in Cimmino’s method

[10], is far too large when A is sparse.

The Simultaneous DROP Algorithm:

Corollary 4.4 Let 0 < wi ≤ 1,

αi = wiν
−2
i = wi

( J∑
j=1

|Aij|2
)−1

12



and βj = s−1
j , for each i and j. Then the simultaneous algorithm with the iterative

step

xk
j = xk−1

j + λk

I∑
i=1

(
wiAij(bi − (Axk−1)i)

sjν2
i

)
, (4.6)

converges to the minimizer of the function

I∑
i=1

∣∣∣∣∣wi(bi − (Ax)i)

νi

∣∣∣∣∣
2

for which the function
J∑

j=1

sj|xj − x0
j |2

is minimized.

For wi = 1, this is the CARP1 algorithm of [13] (see also [11, 8, 9]). The simultaneous

DROP algorithm of [7] requires only that the weights wi be positive, but dividing each

wi by their maximum, maxi{wi}, while multiplying each λk by the same maximum,

gives weights in the interval (0, 1]. For convergence of their algorithm, we need to

replace the condition λk ≤ 2− ε with λk ≤ 2−ε
maxi{wi} .

The denominator in CAV is
J∑

t=1

st|Ait|2,

while that in CARP1 is

sj

J∑
t=1

|Ait|2.

It was reported in [13] that the two methods differed only slightly in the simulated

cases studied.

5 Block-iterative Algorithms

The methods discussed in the previous section are simultaneous, that is, all the equa-

tions are employed at each step of the iteration. We turn now to block-iterative

methods, which employ only some of the equations at each step. When the parame-

ters are appropriately chosen, block-iterative methods can be significantly faster than

simultaneous ones.
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5.1 The Block-Iterative Landweber Algorithm

For a given set of blocks, the block-iterative Landweber algorithm has the following

iterative step: with n = k(mod N),

xk = xk−1 + γnA
†
n(bn − Anx

k−1). (5.1)

The sequence {xk} converges to the solution of Ax = b that minimizes ‖x − x0‖,
whenever the system Ax = b has solutions, provided that the parameters γn satisfy

the inequalities 0 < γn < 1/Ln. This follows from Theorem 3.1 by replacing the

matrices An with
√

γnAn and the vectors bn with
√

γnb
n.

If the rows of the matrices An are normalized to have length one, then we know

that Ln ≤ sn. Therefore, we can use parameters γn that satisfy

0 < γn ≤
(
sn

J∑
j=1

|Aij|2
)−1

, (5.2)

for each i ∈ Bn.

5.2 The BICAV Algorithm

We can extend the block-iterative Landweber algorithm as follows: let n = k(mod N)

and

xk = xk−1 + λk

∑
i∈Bn

γi(bi − (Axk−1)i)A
†
i . (5.3)

It follows from Theorem 2.1 that, in the consistent case, the sequence {xk} converges

to the solution of Ax = b that minimizes ‖x−x0‖, provided that, for each n and each

i ∈ Bn, we have

γi ≤
( J∑

j=1

snj|Aij|2
)−1

.

The BICAV algorithm [9] uses

γi =
( J∑

j=1

snj|Aij|2
)−1

.

The iterative step of BICAV is

xk = xk−1 + λk

∑
i∈Bn

(
bi − (Axk−1)i∑J

t=1 snt|Ait|2

)
A†

i . (5.4)
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5.3 A Block-Iterative CARP1

The obvious way to obtain a block-iterative version of CARP1 would be to replace

the denominator term

sj

J∑
t=1

|Ait|2

with

snj

J∑
t=1

|Ait|2.

However, this is problematic, since we cannot redefine the vector of unknowns using

zj = xj
√

snj, since this varies with n. In [7], this issue is resolved by taking τj to be

not less than the maximum of the snj, and using the denominator

τj

J∑
t=1

|Ait|2 = τjν
2
i .

A similar device is used in [15] to obtain a convergent block-iterative version of SART.

The iterative step of DROP is

xk
j = xk−1

j + λk

∑
i∈Bn

(
Aij

(bi − (Axk−1)i)

τjν2
i

)
. (5.5)

Convergence of the DROP (diagonally-relaxed orthogonal projection) iteration fol-

lows from their Theorem 11. We obtain convergence as a corollary of our previous

results.

The change of variables is zj = xj
√

τj, for each j. Using our eigenvalue bounds,

it is easy to show that the matrices Cn with entries

(Cn)ij =

(
Aij√
τjνi

)
,

for all i ∈ Bn and all j, have ρ(C†
nCn) ≤ 1. The resulting iterative scheme, which is

equivalent to Equation (5.5), then converges, whenever Ax = b is consistent, to the

solution minimizing the proximity function

I∑
i=1

∣∣∣∣∣bi − (Ax)i

νi

∣∣∣∣∣
2

for which the function
J∑

j=1

τj|xj − x0
j |2

is minimized.
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