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Abstract

We describe a complex water distribution problem as a bi-criteria
fair division problem over time with network constraints: we aim at
distributing water fairly in a reliable and cost-efficient manner. The
problem involves both the optimization of the pump operational sched-
ules, as well as strategic planning. Complex rules establish energy fares
depending on the daytime and the contractual issues of the pump fa-
cility. The problem is illustrated for the region of Kabylia, Algeria.
We discuss the relevance and implementation of different solution con-
cepts in this context, showing various alternatives which improve upon
current management procedures.

Keywords: Water distribution, Fair division, Cost efficiency, Bi-criteria
optimization, Pump scheduling.

1 Introduction

This study presents a real water distribution case in a rural area within
the region of Kabylia, Algeria, supported by the Spanish Cooperation and
Development Agency. Initially, the problem may be described as a rela-
tively standard water distribution problem, with water coming from various
wells, with several intermediate water deposits and pumping stations and
consumption taking place in villages, with a very disperse population. How-
ever, specially in the summer, when less water is available and population
is almost doubled, there is a considerable water scarcity, which is aggra-
vated by significant water losses in the network. Unfortunately, the current



management system in place seems to privilege some villages, in that water
scarcity tends to affect certain villages for too long periods of time, and
this has caused political unrest. A second feature of interest in this problem
stems from the cultural traditions in the region. Traditionally, the Kabylians
have preferred to live up in the mountains, and this creates important en-
gineering problems, with a very high proportion of water distribution costs
due to electricity consumption in pumping the water.

In a former paper, Udias et al. (2011), we performed a detailed data
and design analysis of the current network. The inclusion of new pipes,
tank sizing and placing, and pump operational scheduling were considered
as design variables. We essentially concluded that the problem was not
one of water availability but it was mainly produced by water losses, in-
cluding water thefts, and inappropriate distribution schedules. Thus, unless
willing to introduce important infrastructure investments, there was a need
to distribute water in a much more equitable and economical fashion. We
initially dealt with this bi-criteria problem in two phases, assuming a lexico-
graphic approach, see e.g. Yu et al. (1985), as the first objective (maximize
equity) seems much more important to the current management than the
second one (minimize cost). Note that, as usual with water systems, see e.g
de Neufville et al. (1971) or Walski et al. (1987), we face a multi-objective
problem.

Therefore, in the first phase, we aim at determining an equitable water
distribution schedule for the region, taking into account various distribution
constraints. Somehow, equity is in the eye of the beholder. Indeed, our
initial aim was to implement an objective function, required by the water
distributors, which reflected the need that all inhabitants would receive the
same volume of water. However, upon reflection, we realized that we could
implement several other objective functions, many of them available from
the bargaining literature, see e.g. Raiffa et al. (2007). The problem may
be viewed, thus, as a fair division problem with network constraints: we
need to divide fairly a good (the available water over a period of time), and
distribute it efficiently. See Brams and Taylor (1996) for an introduction to
fair division. There are also connections with the bankruptcy problem, see
Aumann and Maschler (1985), although we need to operate over time with
network constraints, as main differences.

Once we have obtained a fair scheme, which is, we insist, the most im-
portant objective by far for the management, we try to implement it in the
less costly way, taking into account the time varying costs of pumping water,
because of changes in electricity fares according to a daily schedule. This
problem may be formulated as a mixed linear-integer optimization model.



In this way, we identify the tradeoffs between the total pumping cost and
the satisfaction of water demand in the Kabylia water distribution system.

The structure of the paper is as follows. First, we formulate in Section 2
the problem as presented by the water company, with an objective function
aimed at providing the same amount of water to each inhabitant. We then
provide a discussion of several other potential objective functions, which
might be used to obtain equitable water distribution schedules, and discuss
their pros and cons. Once with our equitable schedule, we discuss in Section
3 how to provide it in the most cost effective manner. We discuss then how
to generate Pareto efficient schedules which improve upon the lexicographic
schedules identified and facilitate a powerful management tool to the water
distributor. We illustrate these issues in Section 4 with our motivating
case referring to the region of Kabylia, presenting the results of our multi-
objective analysis. We end up with a discussion.

2 Equitable Water Distribution

Water distribution problems may be described in relatively simple terms, see
e.g. Soncini-Sessa et al. (2007). We have a number of water sources, usually
wells and reservoirs, which together provide the water offer. We also have a
number of water consumption points, which, depending on the granularity
of the problem, might refer to houses or villages. We aim at satisfying water
demand, given the water offer, taking into account a number of physical and
engineering constraints, reflecting the structure of the distribution network,
typically with intermediate deposits and pumping stations.

It could be the case that, given the demand, the offer and the distribution
network features, we are not able to satisfy completely the demand, and we,
thus, look for ways of making this unsatisfied demand as balanced as possible
among consumers. We call this problem equitable water distribution. Figure
1 provides a simple scheme to which we shall refer later on, which reflects
the structure of the problem used in Section 4 with only wells as source
points and deposits as intermediate points.

2.1 Decision Variables and Constraints

We shall consider the operation of the water distribution system over a time
T. The operating time will be designated ¢, with ¢t € {1,2,...,7}. Assume
there are IV, source points, designated by 7 € P; Ny intermediate points,
designated by j € D; N, consumption points, designated by k € V; N¢ well
pumps (pumping water from the source point ¢ to the network), designated
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Figure 1: Water distribution network

by w € W!, i € P; and, finally, N? station pumps (pumping water from the
initial pump station j to the deposits), designated by s € &7, j € D. At
each time ¢:

e We define integer variables I and I! to describe the state of the

pumps,
It 1, if the pump w € W', i € P is functioning at time ¢,
v 0, otherwise,

and similarly for It,s € 87, j € D.

e We decide to extract a volume of water eﬁ from the i-th source point,
with 0 < eﬁ < 6§, where €§ > (0 is the maximum water extraction
capacity from the i-th source point at time ¢.

e The water stored at the j-th intermediate point is wj», with 0 < w§ <
wj, where w; > 0 is the maximum water storage at j. Note, though,
that the cost of supplying water from storages is always cheaper than
pumping it from aquifers. We should, however, be careful as we could
be tempted to extract too much water from the deposits, rendering



them impossible to be refilled for the next period. We must ensure
that jeopardizing the supplies for the future, in exchange for a short-
term gain, will not occur. To do so, we should impose an operational
constraint on each deposit, requiring them to have a minimum pre-
scribed water level @; > 0 at the beginning of each period, leading
actually to the constraint

w; < wh < wj. (1)

We decide to derive a volume of water x;?j from the i-th source point
towards the j-th intermediate point, with

0 < a5 < i, (2)

being ¢;; the maximum water flow capacity for the conduction between
the source point ¢ and the intermediate point j.

The capacities @, of the N,, well pumps do not vary with time. Thus,
the following condition must hold

dali= > Il,-Qu, YieP, VL (3)

j€D weW?

We decide to release a volume of water y§ ) from the intermediate point
j towards the intermediate point j’, with

0< y§j’ <& (4)
being &;;s the maximum water flow capacity between j and j'.

The capacities Qs of the N station pumps do not vary with time.
Thus, the following condition must hold

oyl => I1-Q. VieD, VL. (5)

j'eD se8SJ

We decide to release a volume of water zj- i from the intermediate point
j to the consumption point k, with

0 < 25 < Gy (6)

being ¢, the maximum water flow capacity for the conduction between
j and k;



e The consumption point £ will demand a volume d’,; of water, which
will be assumed known in this paper.

Note that, for the generality of notation, we have described a fully con-
nected distribution network with links between all intermediate points; links
between each source point and every intermediate point and, finally, links
between each intermediate point and every consumption point. Links that
are not available may be described through a zero upper bound.

The following additional constraints will hold in our problem:

e The amount of water pumped from each source point cannot exceed
its maximum offered value

ef =) aj;<e, VieP, Vi (7)
7j€D

e Mass continuity condition for intermediate points, describing that the
variation in the water stored at the j-th intermediate point between
times t — 1 and t equals the balance between the inflows coming from
source points and the releases towards consumption points

wi=wiT Y wit Y Y= Y Yoy — D Ak i €D, VE (8)

i€P j'eD j'€D keVy

e Demand satisfied at each consumption point. We aim at achieving the
target demand df. For this, we introduce slacks

di,=> 2 —si+0, VeV, vt (9)
JjE€ED

where s, 6! > 0 represent, respectively, the water surplus and deficit
at consumption point k£ and time t. Both slacks cannot be positive
simultaneously. To achieve this, we may introduce the constraint s}, -
(52 = 0, although this constraint may be removed, depending on the
objective function introduced.

A distribution schedule will be defined through the vector

T
{(mgjayﬁ'j’az;e'k)}t:l - (wijvyjj’azjk) - (ZIZ,’y,Z).

We shall denote the above constraints through (z,y, z) € C.



2.2 Objective Function

We describe now various potential objective functions referring to equity
in water distribution. We shall start by considering the objective function
originally proposed by the water distribution company and, then, several
alternatives. We shall assume that, for each village, its utility is minus
the per capita water deficit inflicted by our water distribution policy. Each
village aims at minimizing its per capita water deficit and, collectively, we
aim at balancing such deficit.

2.2.1 Egalitarian Solution

The initial objective function suggested by the water distribution company
aimed at inflicting the same water deficit to all inhabitants and minimiz-
ing such deficit. The deficit for the k-th consumption point over the whole
planning period is Ay = Zthl 6t. If N is the population of the k-th con-
sumption point, the per capita water deficit is Ly = Ay/Ng. As required by
the water distribution company, we would aim at solving

min L
st. (z,y,2) €C, (10)
Ly = Ly, Vk, K ev.

This corresponds to the egalitarian solution in arbitration, see e.g. Raiffa et al.
(2007). This leads us to think about considering other arbitration solution
concepts.

2.2.2 Smorodinsky-Kalai Solution

Intimately related with the above concept is the Smorondinsky-Kalai solu-
tion, see e.g. Kalai (1977) or Alexander (1992). The problem has a min-max
formulation which is reformulated to a problem closely related to (10). In-
deed, we formulate it as

minmax; Ly
s.t. (x,y,2) €C,

which we reformulate as

min [
st.  (x,y,2) €C, (11)
Ly <u, Vke.



2.2.3 Nash Solution

Another important concept is Nash solution, see e.g. Nydegger and Owen
(1974), Alexander and Ledermann (1994) or Mariotti (1999), which in our
context would be formulated in two equivalent ways, the second one being
more efficient from a computational point of view:

max [ [(—axLly + Br)
kev
st. (x,y,2) €C,

or, equivalently,

max Z log(—ax Ly + Br)
kev (12)

st. (z,y,2) €C.

ay and S are appropriate constants making positive the utilities.

2.2.4 Utilitarian Solution

Finally, a fourth important arbitration concept is the utilitarian one, see
Ponsati and Watson (1997), which aims at maximizing the sum of attained
utilities (in this case, minimizing the sum of deficits)

min Z Ly
key
st. (z,y,2) €C.

Equivalently, we would aim at maximizing the average utility, i.e., minimiz-
ing the average water deficit received at the consumption points

1
min — Z Ly

Mo i (13)
st. (z,y,2) €C.

2.2.5 Variance Solution

Additionally, though not usually included as an arbitration solution, we
could aim at minimizing the standard deviation of the water deficits to the
villages over time. Thus, we would be solving the problem:

2
: 1 1
min [V = FZL2—<FZLK> (14)

Y kev Y kev
st. (z,y,2) €C.




2.3 Inter and Intra Equity

The above approaches provide schedules which aim at reflecting equity
among consumption points, taking a global view over the period 7. How-
ever, it could be the case that deficits for various villages are balanced, i.e.,
deficits among consumers are somehow similar, but the deficit at, at least
one of the consumers, is unbalanced over time. As an example, for a given
consumption point k, the per capita water deficits would be

1

, (k- 01),

which, compared with the values received by other consumption points might
seem equitable. However, it could be the case that the above quantities are
very unequal, thus leaving the consumption point with little water for some
days, with much bigger volumes of water for others. Therefore, we need
to consider both the intervariability, defined above through IV, and the
intravariability, defined as follows:

1 |1&, 2 (1 2
Vi= N, 7 2_(0%) —<TZ5Z>-

t=1

The average intervariability would be
I
W= — .
v N, A

Then, we could aim at maximizing the water delivered, or minimizing the
deficit, and minimizing both the intra and intervariability, by considering
the problem

min aZLk—i—ﬂIV—i—’yiv

S't' (m7 y7 Z) 6 C7

for appropriate weights «, 3,y reflecting the importance we give to various
objectives.

3 Cost Effective Equitable Water Distribution

The previous section described various models leading to equitable distri-
bution schedules in that they minimize deficits in a balanced way among
consumers over time. Once we have chosen the schedule, we discuss now



how to distribute it in the most cost effective manner, taking into account
that pumping costs vary according to a daily schedule. This issue is spe-
cially important in our incumbent case study, as pumping costs amount to
the largest share of the distribution costs.

To do so, we divide a given period ¢ in m parts. We assume that, at
the [-th part of the period, the distribution costs are ¢;, [ = 1,...,m. The
schedule at a given period t is then (m%, y; i z§k), which can be expressed,
when considered the various parts of each period through

( Z’yﬂ/’ ;lk)l 1

The pumping cost to be minimized at each period ¢ would then be

EVEED ) 3) T TRED D S D 3) 3) SRS

1€P jeD I=1 3,7'€D =1 JEDkeV I=1

subject to the constraints

Zw

t 1
E :yjj' = Yji
Zzﬂf— ik

Vi € P, V4,5 € D, Vk € V, together with the pertinent constraints in rela-
tion to maximum storage and maximum pumping capacities and continuity
conditions, mentioned above. Specifically, conditions (1)— (9) must hold at
each time period. Solving this optimization problem provides the cheapest
pumping schedule fulfilling the equity requirements.

3.1 Pareto Efficient Water Distribution Schedules

Through an example we have seen that various equitable concepts may lead
to very different schedules in terms of cost and equity. Moreover, the one
chosen by the water distribution company was easily beaten by other criteria.

This suggests the possibility of approximating a Pareto frontier with two
criteria, one referring to equity, the other by cost. We shall do this with an
e-constraint approach, by adjusting the level of the equity measure, finding
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then the most equitable schedule, and, then, the least expensive implementa-
tion of such schedule. As an example, if we consider the Smorodinsky-Kalai
solution, we would solve for several p; values the P(py) problem

min p

st.  (x,y,2) €C,
Ly <p, VkeV,
2= Phs

which would provide an optimal schedule (2%, yP*, zPk) with equity measure
Kpy., which would then lead to the optimal cost ®(zP%,yPk, 2P%) = ®(py).
The use of such Pareto frontier is a powerful management tool for the water
distributor in that, for a given distribution cost, the company may find the
most equitable distribution schedule, and viceversa.

4 Case Study: Cost-Efficient Equitable Water Dis-
tribution in Kabylia

Kabylia is in the North-east part of Algeria, bounded in the north by the
Mediterranean Sea, in the east by the region of Bedjaia, in the West by the
region of Boumerdes, and in the South by the region of Bouira. The total
area of the region is 2957 km?, 80% of which lies in slopes with inclinations
greater than 12%. It is composed of 67 municipalities (1380 villages) with
a total population of more than 1.1 million people.

We have developed a model for a portion of the total distribution network
in Kabylia, the so-called “Chaine de Tassadort”, with 110,000 people living
in 90 villages. Most of the population is located in mountainous areas with
altitudes over 900 m in some cases. The average annual rainfall is around
900 mm/m?. The Company L’Algerienne des Eauz (ADE) supplies water
in the region. In 2009 the reported volume of water supplied amounted to
6,500,559 m?, but only 1,696,294 m? (26% !!) was billed, a huge loss which
results in a significant shortfall. These losses are mainly due to leakages,
thefts and outdated pipes and components in the networks. Figure 2 shows
the general layout of the Tassadort water distribution network. Given the
current distribution system and the scarcity of water, it is frequently the
case that several villages end up having no water for an extended period,
say of a week, specially over the summer. This creates many inconveniences,
including the need to transport water by truck to certain villages, social
unrest, etc.
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The network is mainly fed (72%) by groundwater through several wells
that extract water from the Sebaou aquifer, specifically from:

e 9 wells in the field of Bouaid with a total pumping capacity of 1,040
m3 h_l;

e 5 wells in the field of Takhoukht with a total pumping capacity of 140
m? h~!; and

e Surface water drawn from the Taksebt reservoir, an alternative source,
which provided 295,347 m? in the first quarter of 2010.

The network also includes 38 deposits (with a total storage capacity of 28,000
m?), 6 pumping stations (with 22 fixed rate pumps and a total pumping
capacity of 5,400 m3® h™!), and a main network of pipes spreading over
various hundreds of kilometers, communicating all points in the network.
The daily average consumption is, approximately, 19.000 m?. The peak
demand within a one hour period is estimated to be around a 6% of the
daily global demand.

4.1 Outline of Methodology Used

The choice of the time-step used in the optimization problem is crucial
for the computational burden of the problem. The optimization period is
denoted by 7', and we have discretized it into n steps. Different step lengths
t = T'/n may be considered, but we have found a fairly conservative time-
step of 1 hour to be a reasonable choice, as a trade-off between what would be
desirable in real-time scheduling and the need of completing computations
before the next update.

While it is possible to envisage a rolling operating horizon longer than 24
hours in those places where the storage available is exceptionally large, most
water-distribution networks operate on a 24 hours-cycle basis, refilling the
tanks at night, and pumping water from them during daytime. However,
we have set a 48 hours simulation period in springtime to consider two
consecutive days with significant variations in demand (with an average
demand of 150 liters per day per person), assuming losses in the network.
This would imply that for every decision variable, e.g. a transportation arc,
we have to define 48 additional variables corresponding to the water volume
transported at each time period. Smaller step lengths would increase in a
prohibitive manner the computational burden, due to the presence of integer
variables and nonlinear terms in the objective function of the Nash solution.

12
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Water demand variations occur on a daily basis, and are modeled through
a demand curve, which plots the percentage of daily per capita demand ver-
sus time (Figure 3). In this approach, we assume the same daily water
demand at every village. Different scenarios were generated varying the
water demand and the infrastructure available on the network to check for
robustness.

Demand Curve

% Day Distibution Demand

O Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
123456 7 8 91011121314151617 1819 2021222324
Time (h)

Figure 3: Average daily demand

There are additional considerations to make about the energy fare poli-
cies existing in Tizi Ouzou that we must take into account in our problem.
Table 1 shows the energy costs in Algerian Dinars per kWh (DA /kWh),
for each of the m = 3 time periods in which the energy fares are struc-
tured (night, flat, peak), and on the specific plant from which the water is
pumped (E41 and E42 standing for Tassadort and Sebaou pumping fields,
respectively). We assume that electricity prices do not vary within the plan-
ning time.

Table 1: Pumping cost for different day periods and facilities

Facility fare Day period Cost (DA/kWh)

E4l Night 85.33
E41 Flat 161.47
E41 Peak 726.28
E42 Night 150.53
E42 Flat 150.53
E42 Peak 126.68
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In this regard, the initial simulation time is set at midnight, local time, when
the night energy fare applies and there is lower demand.

In our analysis, as mentioned, we have considered two objectives: one
refers to minimizing the total pumping cost, whereas the other refers to
maximizing equity, through some of the equitable solutions described in
Section 2.2. We compare various solutions with our measures and then
provide their optimal cost schedules. All computations were performed on
a PC with an Intel Core II Duo T7200 processor, with 2 GHz and 2Gb of
RAM, running under Windows XP. The water network was modeled with
the aid of the OPL Studio Library v 3.7, using ILOG CPLEX 9.0 as the
embedded optimizer.

Our network models comprise around 7,000 variables and 60,000 con-
straints. Each of the situations considered (each single point in the Pareto
frontiers) is the result of a run of the model, lasting around 20 minutes. How-
ever, in hardly any of the Pareto points, the optimizer found the optimal
solution within these 20 minutes. Due to the presence of integer variables,
the optimizer usually needed more than 24 hours to explore the whole search-
ing space and find the optimal solution. But as we checked, in practice the
estimated solution obtained after 20 minutes was generally within 99% of
accuracy with respect to the optimal one.

We should mention that due to the discrete nature of the pumping vari-
ables I and I!, the results have a stepwise profile, as the pumps have two
possible states for each planning period (hours in our case): ON or OFF.
Therefore, whenever a pipe changes its status, there is a “jump” in the cost
and in the volume of water pumped into the network. Otherwise, the cost
and quality of the water supplied would remain constant.

In what follows, we will only show graphical results of three of the solu-
tions discussed in Section 2.2, the egalitarian solution, formulated in (10),
the Smorodinsky-Kalai solution, given by (11), and the utilitarian solution,
as expressed in (13). For the sake of simplicity, we have not included the
Nash solution (12) in the graphics, as it virtually provided the same results
than those of the utilitarian solution. In the same manner, we have not in-
cluded the variance solution (14), as it led to very similar results compared
to those of the egalitarian solution. Unless otherwise stated, we have plot-
ted in the Y-axis the total pumping cost of the proposed solution in DA.
With respect to the X-axis, rather than the values of the different objective
functions, which are not easily comparable, we have plotted the value of the
global water deficit resulting from the different solutions.

We have analyzed two scenarios of distribution network losses, which
are actually taking place in the network, and are one of the main problems

15



to solve. The first scenario, Hi, assumes that we can satisfy the demand
at all the points of the network. The second scenario, Hy, more realistic,
allows for unfulfillment of the demand at certain points of the network, due
to several reasons, e.g., an insufficient flow capacity of a given pipe.

4.2 Scenario H;

Figure 4 shows a graphic with some values of the Pareto frontier, dis-
playing three different solutions: the egalitarian (light gray circles), the
Smorodinsky-Kalai (dark gray squares), and the utilitarian one (black dia-
monds) to evaluate the water deficit.

Pareto Frontier for Hy

(o]
? — L]
8 ¢ @" Egalitarian
Y " = Smorodinsky
© . . 4 Utilitarian
~ % 4 * =
g g * (]
=2 | - -
®  © o=
8 ? — *n
g * om
— *n
o *n
% - *0 LI
3 T T T 1
0 5000 10000 15000

Total Water Deficit

Figure 4: Pareto frontier for hypothesis H;

We outline the most relevant features of the results obtained from each
solution. We investigate how the different solutions redistribute the water
when we spend less money in the system than what would be needed to
completely satisfy the demand at all points.

e For the utilitarian solution (black diamonds), as the available budget
is progressively reduced, the system will stop first supplying water to
those points for which the pumping costs are higher. Usually, such
points are those villages or houses placed on top of the hills or moun-
tains. If there are several consumption points with the same (expen-
sive) pumping costs, and the budget is further reduced, the system

16



will first cut the water supply to those villages with larger population,
because, in this manner, the terms Lj contributing to (13) will have
smaller values, as they are divided by larger numbers — the popula-
tion at the k-th consumption point. We should note that this solution
leads to cutting the water supplying to the entire population of a cer-
tain consumption point at the same time. This water distribution
policy is actually quite unfair, although from a purely economic point
of view, it is the most advantageous one. As we have mentioned before,
when we have implemented the Nash solution (12) in our experiments,
we have observed the same trends in the manner in which restrictions
of water supplies are managed. For the Tizi Ouzou water network, the
first village which would eventually suffer water restrictions would be
Bouhinoune Haut, which is placed high on the mountain, needs three
intermediate pumping facilities (notably increasing the pumping cost),
and has approximately 9,000 dwellings, when the average number in
the nearby villages is around 1,200.

For the egalitarian solution (light gray circles), the per capita water
deficit is the same for all villages. Thus, when the pumping available
budget is reduced, this water scarcity is equally distributed among
all the inhabitants of all the villages, regardless of their population
size or location. This would be the fairest solution, although it is
more expensive than the utilitarian one. To gain insight into this
phenomenon, we have zoomed the central area in Figure 4, through
Figure 5. As we can observe, the costs in the utilitarian solution are,
on average, around 15% less than those of the egalitarian solution (i.e.,
with the same available budget, the utilitarian solution supplies 15%
more water, but at the cost that those villages with the most expensive
pumping costs will not receive water at all). The fact that in Figure
5 some points apparently break the descending trend of the graphic
is normal, as we have to keep in mind that what we are plotting in
the Y-axis — the total water deficit — is not an objective itself, but,
rather, a mean to compare the different objective functions proposed
in Section 2.2.

For the Smorodinsky-Kalai solution (dark gray squares), the results
obtained are similar to those of the egalitarian solution. However,
there are subtle differences in the way in which restrictions are man-
aged as the budget is progressively reduced. In the egalitarian solution,
if in a given village the demands are satisfied up to, say, a 95%, the
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Figure 5: Pareto frontier for hypothesis Hy (zoomed)

same fulfillment is accomplished for the rest of the villages. If this
percentage continues decreasing, it will do so in the same way for all
the villages. On the contrary, for the Smorodinsky-Kalai solution, the
villages with worse supplying conditions are identified and penalized
first with water restrictions, but the rest of villages are not influenced
by them. In our network, it happens that the pipes with the highest
pumping cost will be the first ones to be cut, stopping the supply to
all the villages which depend on those pipes.

If instead of plotting the cost vs the total water deficit, we plot each
objective function in the Y-axis vs the total cost in the X-axis, we can
analyze further interesting features. As we can see in Figure 6a, the objective
function of the egalitarian solution is approximately a linear function of
the cost, something which is logical, as this solution stops supplying the
same amount of water from all the consumption points simultaneously. On
the other hand, in Figures 6b and 6¢ we can observe that the dependence
between the objective function and the cost is not linear, due to the manner
in which water restrictions are distributed among the different villages. As
we mentioned before, the Smorodinsky-Kalai solution (6b) stops supplying
first the most expensive pumping facilities. This is a nonlinear behavior.
Regarding the utilitarian solution (6c¢), it first cuts the water supply in
those villages which have more population and more expensive pumping
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costs. Thus, the reductions in the costs are larger at the beginning of the
budget reduction, and become smaller as less budget is available.

4.3 Scenario Hs

We discuss now the results we have obtained when we assume that the de-
mand at certain points of the network may not be fulfilled. We have plotted
in Figure 7 the Pareto frontiers for the the egalitarian (light gray circles),
the Smorodinsky-Kalai (dark gray squares), and the utilitarian (black di-
amonds) solutions. In this case, when there are some limitations in the
network (e.g. a pipe with an insufficient flow capacity), the egalitarian or
the Smorodinsky-Kalai objectives may imply solutions that are not desir-
able. The problem lies in the fact that if it is impossible to fulfill the demand
of a certain village, and we keep the egalitarian criterion, all the villages will
suffer similar restrictions.

To better understand this phenomenon, we have plotted in Figure 8
each objective function in the Y-axis wvs the total cost in the X-axis. As
we can observe, the egalitarian solution (8a) cannot satisfy the demand
in all the villages. Specifically, we cannot obtain values of the objective
function under, approximately, 0.07, which means that around a 50% of the
overall demand is not satisfied. The situation for the Smorodinsky-Kalai
solution (8b) is even worse, with a lower bound on the objective function of,
approximately, 0.08, amounting to a non-fulfillment of around 66% of the
overall demand.

On the other hand, as we can see in Figure 8c, the utilitarian criterion will
not suffer from these drawbacks, although it will be still an unfair solution.
By noting the slight differences between Figures 6¢ and 8c, it becomes clear
that if a specific problem happens in a given village it barely affects the rest
of the villages.

5 Discussion

We have described here a complex bi-criteria water distribution problem
with equity and cost criteria. We have discussed several equity related cri-
teria and showed the relevance of approximating the Pareto frontier as a
powerful tool for managers to find out the equity of the distribution sched-
ule, given a certain distribution budget. The study originated from a con-
sulting problem in the region of Kabylia, Algeria, supported by the Spanish
Agency of Cooperation and Development. In this particular case, we have
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been able to produce distribution schedules much better than the current
one, both in terms of equity and cost, which have been adopted by ADE.

Note that we have not modeled uncertainty in demand, which we have
assumed fixed in this paper. This uncertainty would be reflected in some of
our right-hand terms and may be dealt with stochastic programming meth-
ods, see e.g. Birge and Louveaux (1997). However, note that estimating
such demand is specially difficult, as we may lack some of such data. As we
cannot always satisfy demand, we do not actually know such demand. Note
also that we have not imposed any condition on the availability of water
within the aquifers. This might be specially relevant in case some of the
source points are reservoirs being affected by uncertainty in available water.
The development of a decision support system would be also of interest for
this problem.
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