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The capacitated transshipment location problem with stochastic handling
utilities at the facilities

Roberto Tadei · Guido Perboli · Nicoletta Ricciardi ·
Mauro Maria Baldi

Abstract The problem consists in finding a transshipment facilities location which maximizes the total net utility
when the handling utilities at the facilities are stochastic variables, under supply, demand, and lower and upper
capacity constraints. The total net utility is given by the expected total shipping utility minus the total fixed
cost of the located facilities. Shipping utilities are given by a deterministic utility for shipping freight from origins
to destinations via transshipment facilities plus a stochastic handling utility at the facilities, whose probability
distribution is unknown. After giving the stochastic model, by means of some results of the extreme values theory,
the probability distribution of the maximum stochastic utilities is derived and the expected value of the optimum
of the stochastic model is found. An efficient heuristics for solving real-life instances is also given. Computational
results show a very good performance of the proposed methods both in terms of accuracy and efficiency.

Keywords facilities location · stochastic utilities · asymptotic approximation · heuristics

1 Introduction

Let us consider a set of origins with a given supply, a set of destinations with a given demand, a set of potential
transshipment locations with a deterministic fixed cost of location, lower and upper capacity constraints for the
facilities, and stochastic shipping utilities from origins to destinations via transshipment facilities.

Each stochastic shipping utility is given by the sum of a deterministic utility for shipping freight from an origin
to a destination via a transshipment facility plus a stochastic term, which represents the handling utility at the
transshipment facility. The freight, when enters into a transshipment facility, is subject to handling operations
which are typically organized in alternative handling operating scenarii. These scenarii represent sets of options
for routing and processing the freight within the transshipment facility. Given the finite capacity of each handling
operating scenario, congestion effects make the handling utility a stochastic variable, whose distribution is usually
unknown.

The capacitated transshipment location problem with stochastic handling utilities at the facilities (CTLPs)
consists in finding a transshipment facilities location which maximizes the total net utility, given by the expected
total shipping utility minus the total fixed cost of the located facilities, subject to supply, demand, and lower and
upper facilities capacity constraints. In this paper we integrate the two main levels of a transshipment network, i.e.
the network design (upper level), which leads to a network flow formulation with origins, transshipment facilities
and destinations as nodes of the network, and the transshipment facilities management (lower level), where the
management variables we consider are the stochastic handling utilities at the facilities. It is interesting to observe
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that the upper and lower level decisions are made in practice at different time instants: first the location decisions
then the management decisions. Seeking for an optimal location of the facilities (first level), our model also takes
into account the future management decisions (second level), which could affect the facilities optimal location.

The capacitated transshipment location problem with stochastic handling utilities at the facilities arises as a
subproblem in several applications of logistics, and city logistics in particular, both at the strategic and the tactical
decision levels [3] (in particular, when freight consolidation operations are performed at the transshipment facilities,
e.g. for grocery and food shipping).

Only a few papers concerning location problems with stochastic utilities (or costs) are currently available.
Among them, Ricciardi et al. [12] develop a heuristics for solving a p-median problem where the throughput costs
are stochastic variables with a given probability distribution. Snyder et al. [13] consider a scenario-based stochastic
version of a joint location-inventory model that minimizes the expected cost of locating facilities, allowing costs,
lead times, demand, and some other parameters to be stochastic. Tadei et al. [14] consider a stochastic p-median
problem where the costs for using the facilities are stochastic variables.

For the CTLPs we give the stochastic model. By means of some results of the extreme values theory, the
probability distribution of the maximum stochastic utility from any origin i is derived and the expected value of
the optimum of the stochastic model is found. An efficient heuristics for solving real-life instances is also given.

The remainder of the paper is organized as follows. Section 2 introduces the CTLPs. In Section 3, the asymptotic
approximation of the probability distribution of the maximum stochastic utility from any origin is derived, which
allows to find the expected value of the optimum of the CTLPs. Section 4 presents the heuristics for solving real-life
instances. In Section 5, the computational results of the stochastic model and the heuristics are given. Finally, the
conclusion of our work is reported in Section 6.

2 The problem

We consider the following parameters and data
– I: set of origins
– J : set of destinations
– K: set of potential transshipment locations
– Pi: supply at origin i ∈ I
– Qj : demand at destination j ∈ J
– Hk: set of handling operating scenarii at transshipment facility k ∈ K, with |Hk| = nk
– Uk: upper capacity of transshipment facility k ∈ K
– Lk: lower capacity of transshipment facility k ∈ K
– fk: fixed cost of locating a transshipment facility k ∈ K
– vkij : deterministic utility for shipping one unit of freight from origin i ∈ I to destination j ∈ J via transshipment

facility k ∈ K
and the variables
– yk: Boolean variable which is equal to 1 if transshipment facility k ∈ K is located, 0 otherwise
– ũkl: stochastic variable with unknown probability distribution which represents the unit utility of handling

operating scenario l ∈ Hk at transshipment facility k ∈ K
– skij : deterministic variable which represents the flow from origin i ∈ I to destination j ∈ J via transshipment

facility k ∈ K.

Let us assume:
– the system is balanced, i.e.

∑
i∈I Pi =

∑
j∈J Qj = T . This is a standard assumption and it is straightforward

to balance the system, if necessary
– {ũkl} are independent and identically distributed (i.i.d.) stochastic variables with a common and unknown

probability distribution
Pr{ũkl ≤ x} = F (x). (1)

The i.i.d. assumption for {ũkl}, which is necessary for deriving the asymptotic approximation of Section 3,
can be justified as follows. The stochastic utility of a handling operating scenario at any facility k is extremely
difficult to be measured in practice, then its probability distribution is generally unknown, and it would be rather
arbitrary to assume a particular shape for it. Of course, the mildest hypothesis we can made for the shape of such
unknown probability distribution (which is necessary for calculating the expected value) is that it does not vary
within different scenarii and facilities, which corresponds to the ’identically distributed’ assumption. Moreover, the
alternative handling operating scenarii inside a facility do not obviously depend on the scenarii of the remaining
facilities, and inside the same facility they slightly interact with each other in practice, allowing us to consider their
stochastic utilities {ũkl} as independent variables too.

Let ṽklij (ũkl) be the unit stochastic shipping utility from origin i to destination j via transshipment facility k in
handling operating scenario l given by

ṽklij (ũkl) = vkij + ũkl, i ∈ I, j ∈ J, k ∈ K, l ∈ Hk. (2)
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Let us define ũk the maximum of the stochastic handling utilities {ũkl} within the alternative handling operating
scenarii {l} at the transshipment facility k

ũk = max
l∈Hk

ũkl, k ∈ K (3)

which is still of course a stochastic variable with unknown probability distribution given by

Bk(x) = Pr
{
ũk ≤ x

}
. (4)

As for (3) ũk ≤ x⇐⇒ ũkl ≤ x, l ∈ Hk and {ũkl} are independent, using (1), (4) becomes

Bk(x) =
∏
l∈Hk

Pr
{
ũkl ≤ x

}
=
∏
l∈Hk

F (x) = [F (x)]nk (5)

where nk = |Hk| is the total number of alternative handling operating scenarii at the transshipment facility k.

As far as the management level is considered, we assume that the facilities management policies are efficiency-
based, so that, among the alternative handling operating scenarii {l} at any transshipment facility k, the one which
maximizes the stochastic shipping utility ṽklij (ũkl) will be selected, giving

ṽkij(ũ
k) = max

l∈Hk

ṽklij (ũkl) = vkij + max
l∈Hk

ũkl = vkij + ũk, i ∈ I, j ∈ J, k ∈ K (6)

The CTLPs is formulated as follows

max
y

IEũk

max
s

∑
i∈I

∑
k∈K

∑
j∈J

ṽkij(ũ
k)skij

−∑
k∈K

fkyk (7)

subject to ∑
k∈K

∑
j∈J

skij = Pi, i ∈ I (8)

∑
i∈I

∑
k∈K

skij = Qj , j ∈ J (9)

∑
i∈I

∑
j∈J

skij ≤ Tyk, k ∈ K (10)

∑
i∈I

∑
j∈J

skij ≤ Uk, k ∈ K (11)

∑
i∈I

∑
j∈J

skij ≥ Lk, k ∈ K (12)

skij ≥ 0, i ∈ I, j ∈ J, k ∈ K (13)

yk ∈ {0, 1}, k ∈ K (14)

where IEũk denotes the expected value with respect to {ũk}.
The objective function (7) expresses the maximization of the total net utility given by the expected total

shipping utility minus the total fixed cost of the located facilities. Constraints (8) and (9) ensure that supply at
each origin i and demand at each destination j are satisfied. Constraints (10) prevent to ship freight through not
located facilities. Constraints (11) and (12) ensure the upper and lower capacity restrictions at each transshipment
facility k. Finally, (13) and (14) are the non-negativity and the integrality constraints, respectively.

Let us consider the Lagrangian relaxation of problem (7)-(14), obtained by relaxing constraints (9), (11), and
(12) by means of the multipliers µj , j ∈ J , λk ≥ 0, k ∈ K, and ηk ≤ 0, k ∈ K, respectively

min
µ,λ≥0,η≤0

max
y

IEũk

max
s

∑
i∈I

∑
k∈K

∑
j∈J

(
ṽkij(ũ

k) + µj − λk − ηk
)
skij

+

+
∑
k∈K

[λkUk + ηkLk − fkyk]−
∑
j∈J

µjQj (15)

subject to (8), (10), (13), and (14).
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The term (ṽkij(ũ
k) + µj − λk − ηk) in (15) is named the unit “shadow” stochastic shipping utility from i to j

via transshipment facility k, due to the fact that it contains the shadow prices µj , λk, and ηk.

Problem (15) subject to (8), (10), (13), and (14) gives an upper bound on the optimum of problem (7)-(14),
but we know that, if the strong duality conditions are satisfied, the two problems are equivalent.

For any value of the multipliers {µj}, {λk ≥ 0} and {ηk ≤ 0}, a freight unit in i will be shipped towards the
alternative (s, t), given by the transshipment facility s and the destination t (for the sake of simplicity, we assume
that this alternative is unique) whose shadow stochastic utility (ṽsit(ũ

s) + µt − λs − ηs) is the maximum within
those of the located transshipment facilities and destinations. So, the maximum unit shadow stochastic shipping
utility from origin i becomes

ṽi(ũ
s) = ṽsit(ũ

s) + µt − λs − ηs = maxk:yk=1,j

(
ṽkij(ũ

k) + µj − λk − ηk
)
. (16)

Problem (15) subject to (8), (10), (13), and (14), for any value of the multipliers {µj}, {λk ≥ 0}, and {ηk ≤ 0}
and any transshipment facilities location {yk}, gives the following trivial optimal flows

skij = Pi, if ṽkij(ũ
k) + µj − λk − ηk = ṽi(ũ

s)

skij = 0 otherwise (17)

and, by (17) and the linearity of IEũs , the objective function (15) becomes

min
µ,λ≥0,η≤0

max
y

IEũs

[∑
i∈I

Piṽi(ũ
s)

]
+
∑
k∈K

[λkUk + ηkLk − fkyk]−
∑
j∈J

µjQj =

= min
µ,λ≥0,η≤0

max
y

∑
i∈I

PiIEũs [ṽi(ũ
s)] +

∑
k∈K

[λkUk + ηkLk − fkyk]−
∑
j∈J

µjQj . (18)

To calculate IEũs [ṽi(ũ
s)] in (18), we first need to know the probability distribution of ṽi(ũ

s), named Gi(x)

Gi(x) = Pr{ṽi(ũs) ≤ x} = Pr

{
max

k:yk=1,j

(
ṽkij(ũ

k) + µj − λk − ηk
)
≤ x

}
. (19)

As

max
k:yk=1,j

(
ṽkij(ũ

k) + µj − λk − ηk
)
≤ x⇐⇒ ṽkij(ũ

k) + µj − λk − ηk ≤ x, k ∈ K : yk = 1, j ∈ J (20)

and the stochastic variables ũk are independent (because ũkl are independent), (19) becomes

Gi(x) = Pr
{
maxk:yk=1,j

(
ṽkij(ũ

k) + µj − λk − ηk
)
≤ x

}
=

= Pr
{
ṽkij(ũ

k) + µj − λk − ηk ≤ x, k ∈ K : yk = 1, j ∈ J
}

=

=
∏

k∈K:yk=1

∏
j∈J

Pr
{
ṽkij(ũ

k) + µj − λk − ηk ≤ x
}

=

=
∏

k∈K:yk=1

∏
j∈J

Pr
{
vkij + ũk + µj − λk − ηk ≤ x

}
=

=
∏

k∈K:yk=1

∏
j∈J

Pr
{
ũk ≤ x− vkij − µj + λk + ηk

}
=

=
∏

k∈K:yk=1

∏
j∈J

Bk(x− vkij − µj + λk + ηk) =

=
∏

k∈K:yk=1

∏
j∈J

[
F (x− vkij − µj + λk + ηk)

]nk

. (21)

Unfortunately, the unknown probability distribution F (.) in (21) still prevents the calculation of Gi(x). A
possible way to cope with this problem and get an explicit form for Gi(x) is to consider an asymptotic approximation
for it.
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3 An asymptotic approximation for the maximum stochastic shipping utility from any origin Gi(x)

The method we use to derive an asymptotic approximation of the maximum stochastic shipping utility from any
origin Gi(x) is based on the following observation. Under mild conditions on the unknown probability distribution
F (x), the probability distribution Gi(x) tends towards a specific functional form as the total number of alternative
handling operating scenarii at transshipment facility k, nk, becomes large.

Following Galambos [7] and using some results of the extreme values theory for i.i.d. stochastic variables, we
will prove that the only condition requested for F (x) is that it is asymptotically exponential in its right tail, i.e.
there is a constant β > 0 such that

lim
y→+∞

1− F (x+ y)

1− F (y)
= e−βx. (22)

This is a very mild condition, as we observe that many probability distributions show such a behavior, among
them the Gamma, Gumbel, Laplace, and Logistic distributions.

Firstly, let us consider the following aspect: the optimal solution of problem (15) subject to (8), (10), (13), and
(14) does not change if any arbitrary constant is added or subtracted to the stochastic variables ũk.

Let us choose this constant as the root ank of the equation

1− F (ank) = 1/nk. (23)

By replacing ũk with ũk − ank in (21) one has

Gi(x | nk) =
∏

k∈K:yk=1

∏
j∈J

[
F (x− vkij − µj + λk + ηk + ank)

]nk

. (24)

Let us assume that nk, k ∈ K : yk = 1 are large enough to use limnk→+∞Gi(x | nk) as an approximation of
Gi(x).

The following theorem holds

Theorem 1 Under condition (22), the probability distribution Gi(x) becomes

Gi(x) = lim
nk→+∞

Gi(x | nk) = exp
(
−Aie−βx

)
(25)

where

Ai =
∑

k∈K:yk=1

∑
j∈J

eβ(v
k
ij+µj−λk−ηk), i ∈ I (26)

is the “accessibility”, in the sense of Hansen [10], of a freight unit from the origin i to the overall system of the
located transshipment facilities and destinations.

Proof By (24) one has

Gi(x) = lim
nk→+∞

Gi(x | nk) =

= lim
nk→+∞

∏
k∈K:yk=1

∏
j∈J

[
F (x− vkij − µj + λk + ηk + ank)

]nk

=

=
∏

k∈K:yk=1

∏
j∈J

lim
nk→+∞

[
F (x− vkij − µj + λk + ηk + ank)

]nk

. (27)

As from (23), limnk→+∞ ank = +∞, from (22) one obtains

lim
nk→+∞

1− F (x− vkij − µj + λk + ηk + ank)

1− F (ank)
= e−β(x−v

k
ij−µj+λk+ηk). (28)

By (28) and (23) one has

lim
nk→+∞

F (x− vkij − µj + λk + ηk + ank) = lim
nk→+∞

(
1− [1− F (ank)]e−β(x−v

k
ij−µj+λk+ηk)

)
=

= lim
nk→+∞

(
1− e−β(x−v

k
ij−µj+λk+ηk)

nk

)
(29)

and, by reminding that limn→+∞(1 + x
n )n = ex
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lim
nk→+∞

[
F (x− vkij − µj + λk + ηk + ank)

]nk

= lim
nk→+∞

[
1− e−β(x−v

k
ij−µj+λk+ηk)

nk

]nk

=

= exp
(
−e−β(x−v

k
ij−µj+λk+ηk)

)
. (30)

Substituting (30) into (27) and using (26), one finally gets

Gi(x) =
∏

k∈K:yk=1

∏
j∈J

exp
(
−e−β(x−v

k
ij−µj+λk+ηk)

)
= exp

(
−Aie−βx

)
. � (31)

It is interesting to observe that Gi(x) in (25) becomes a Gumbel (or double exponential) distribution [9].

Having now an explicit form for Gi(x), we can calculate IEũs [ṽi(ũ
s)] in (18) as follows

vi = IEũs [ṽi(ũ
s)] =

∫ +∞

−∞
xdGi(x) =

∫ +∞

−∞
x exp

(
−Aie−βx

)
Aie
−βxβdx, i ∈ I. (32)

Substituting for t = Aie
−βx, one gets

vi = −1/β

∫ +∞

0

ln(t/Ai)e
−tdt =

= −1/β

∫ +∞

0

e−t ln tdt+ 1/β lnAi

∫ +∞

0

e−tdt =

= γ/β + 1/β lnAi =

= 1/β(lnAi + γ) (33)

where γ = −
∫+∞
0

e−t ln t dt ' 0.5772 is the Euler constant.

By substituting (33) in (18) and disregarding the constant γ
β

∑
i∈I Pi, the CTLPs becomes the following non-

linear deterministic mixed-integer problem, named CTLPd

min
µ,λ≥0,η≤0

max
y

1/β
∑
i∈I

Pi lnAi +
∑
k∈K

[λkUk + ηkLk − fkyk]−
∑
j∈J

µjQj (34)

subject to (8), (10), (13), and (14).

We denote by

xkij = skij/Pi, i ∈ I, j ∈ J, k ∈ K (35)

the probability that a freight unit in i is shipped towards the alternative (k, j), given by the transshipment
facility k and destination j.

The following theorem holds

Theorem 2 At optimality, the probability xkij is given by

xkij =
eβ(v

k
ij+µj−λk−ηk)∑

k′∈K:yk′=1

∑
j′∈J e

β(vk′
ij′+µj′−λk′−ηk′ )

, i ∈ I, j ∈ J, k ∈ K. (36)

Proof At optimality, the probability that a freight unit in i is shipped towards the alternative (k, j) is equal to the
probability that (k, j) is the alternative of maximum utility. Then, from the Total Probability Theorem [4], (22),
and (26), one obtains

xkij =

∫ +∞

−∞

∏
u 6=k

∏
v 6=j

exp
[
−e−β(x−v

u
iv−µv+λu+ηu)

]
d
[
exp

(
−e−β(x−v

k
ij−µj+λk+ηk)

)]
=

= eβ(v
k
ij+µj−λk−ηk)

∫ +∞

−∞
βe−βxexp(−Aie−βx)dx =

= eβ(v
k
ij+µj−λk−ηk)

∫ +∞

0

e−Aitdt =
eβ(v

k
ij+µj−λk−ηk)

Ai
=

=
eβ(v

k
ij+µj−λk−ηk)∑

k′∈K:yk′=1

∑
j′∈J e

β(vk′
ij′+µj′−λk′−ηk′ )

i ∈ I, j ∈ J, k ∈ K (37)
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where t = e−βx. �

By (35) and (36), the optimal flows skij then become

skij = Pix
k
ij = Pi

eβ(v
k
ij+µj−λk−ηk)∑

k′∈K:yk′=1

∑
j′∈J e

β(vk′
ij′+µj′−λk′−ηk′ )

, i ∈ I, j ∈ J, k ∈ K (38)

and it is trivial to check the satisfaction of constraints (8) and (13).

(36) represents a multinomial Logit model, which is widely used in choice theory [5]. In our case, it describes
how the freight shipped from i is split among the alternatives {(k, j)}, due to the stochastic handling utilities at
the transshipment facilities where the freight passes through.

It is interesting to note that (38), although it has been derived for located transshipment facilities, holds for
all facilities k. So, for a located transshipment facility k, skij represents the actual flow from i to j via that located
facility k. Vice versa, for a not located transshipment facility k, it represents the “potential” flow from i to j via
that not located facility k. The potential flow will be used in our heuristics of Section 4.

Solving the CTLPd is much faster than solving the CTLPs as a stochastic programming model and it also has
a good performance in terms of accuracy, showing a mean gap of 1.65% between the two optima (see Section 5). By
using one of the best available stochastic commercial solvers, in one hour of computing time the CTLPs is just able
to solve instances with up to a few origins and some decades of potential facilities locations and destinations, whereas
in the same computing time the CTLPd can solve instances which are roughly three times larger. Unfortunately, if
one wanted to consider even larger instances (hundreds of nodes for the total number of origins, destinations and
potential facilities locations), which may appear in real-life applications, also the CTLPd becomes inefficient and
some heuristics must be used.

One of such heuristics is given in the next section.

4 A heuristics for solving the CTLPd

The heuristics for solving the CTLPd is based on three procedures which interact with each other. The first is a
procedure for calculating the Lagrangian multipliers {µj}, {λk ≥ 0}, and {ηk ≤ 0} in (34), when a transshipment
facilities location {yk} is already given, while the second and the third are, respectively, for locating and closing
down facilities in order to improve the given facilities location.

Firstly, we present the three procedures, whereas the overall heuristics is given at the end of this section.

4.1 Lagrangian multipliers calculation

As previously assumed, a transshipment location {yk} is already given. We calculate the Lagrangian multipliers
{µj}, {λk}, and {ηk} by an iterative method as follows.

Let us start with λk = ηk = 0, k ∈ K.

Calculate {µj} such that constraints (9), where skij are given by (38), are satisfied.

To do that, solve the following system of equations iteratively in {eβµj}, starting with any value for {eβµj} (e.g.,
eβµj = 1, then µj = 0, j ∈ J)

eβµj = Qj/
∑
i∈I

∑
k∈K:yk=1

Pi
eβv

k
ije−βλke−βηk∑

k′∈K
∑
j′∈J yk′e

βvk′
ij′ eβµj′ e−βλk′ e−βηk′

, j ∈ J. (39)

Once {eβµj} are calculated, the multipliers {λk} and {ηk} are updated as follows (note that these multipliers
are also calculated for not located facilities).

Let Dk(λ, η) be the throughput of facility k

Dk(λ, η) =
∑
i∈I

∑
j∈J

skij(λ, η), k ∈ K. (40)

Let us note that Dk(λ, η) is expressed only in the unknowns {λk} and {ηk}, because {µj} have been just
calculated (as a function of {λk} and {ηk}).

Like flows {skij}, {Dk} are also given for not located facilities. When facility k is located, Dk represents the
actual throughput of that facility, whereas it represents its “potential” throughput when k is not located.
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By (38), (40) becomes

Dk(λ, η) = e−βλke−βηk
∑
i∈I

Pi

∑
j∈J e

βvk
ijeβµj∑

k′∈K:yk′=1

∑
j′∈J e

βvk′
ij′ eβµj′ e−βλk′ e−βηk′

= e−βλke−βηkρk, k ∈ K (41)

where

ρk =
∑
i∈I

Pi

∑
j∈J e

βvk
ijeβµj∑

k′∈K:yk′=1

∑
j′∈J e

βvk′
ij′ eβµj′ e−βλk′ e−βηk′

, k ∈ K (42)

is the current size of facility k (actual size if k is located or potential size if k is not located).

The updating of the multipliers {λk} and {ηk} is made as follows

– if Lk ≤ ρk ≤ Uk, leave λk = ηk = 0 (then e−βλk = e−βηk = 1)
– if ρk > Uk, set e−βλk = Uk/ρk and e−βηk = 1
– if ρk < Lk, set e−βλk = 1 and e−βηk = Lk/ρk

The rationale for the above updating mechanism is the following one. If the current size ρk of facility k does
satisfy the lower and upper capacity constraints, the multipliers are kept like they are. Otherwise, if ρk is greater
than the upper capacity Uk, e−βλk < 1 and Dk will be reduced. If ρk is smaller than the lower capacity Lk,
e−βηk > 1 and Dk will be augmented.

Given the updated multipliers {λk} and {ηk}, the multipliers {µj} are then recalculated by (39) and the iterative
procedure goes on until the upper and lower capacity constraints (11) and (12) are satisfied.

With the final values of {µj}, {λk}, and {ηk} one can calculate the optimal flows {skij} for the given transship-
ment location {yk} by (38), and the optimum of the CTLPd by (34).

4.2 Locating a transshipment facility

The second procedure of our heuristics is devoted to locate facilities with the aim of improving the given facilities
location.

By substituting (26) into (34), the optimum of the CTLPd can be written as follows

min
µ,λ≥0,η≤0

max
y

1/β
∑
i∈I

Pi ln
∑

k∈K:yk=1

∑
j∈J

eβ(v
k
ij+µj−λk−ηk) +

∑
k∈K

[λkUk + ηkLk − fkyk]−
∑
j∈J

µjQj . (43)

Let us consider in (43) the continuous relaxation of the binary variables {yk} in the interval [0,1] and the
derivatives

∂

1/β
∑
i∈I

Pi ln
∑

k∈K:yk=1

∑
j∈J

eβ(v
k
ij+µj−λk−ηk) +

∑
k∈K

[λkUk + ηkLk − fkyk]−
∑
j∈J

µjQj

 /∂yk =

= 1/β
∑
i∈I

Pi

∑
j∈J e

β(vk
ij+µj−λk−ηk)∑

k′∈K:yk′=1

∑
j∈J e

β(vk′
ij +µj−λk′−ηk′ )

− fk =

=
1

β
e−βλke−βηkρk − fk. (44)

(44) represents the impact on the optimum of a continuous variation of the location variable yk. Let us consider
only those not located facilities k for which ( 1

β e
−βλke−βηkρk − fk) > 0, because only they could improve the

current optimum (43) by “increasing” their yk in the range [0,1]. Moreover, this improvement will be maximized
when yk = 1. So, if one wants to locate one of those facilities by improving the current optimum as much as
possible, the transshipment facility with the highest positive term ( 1

β e
−βλke−βηkρk − fk) will be the candidate to

be located, i.e. the facility r for which

r = argmaxk:yk=0

[
1

β
e−βλke−βηkρk − fk

]+
.

If we define the “profit” of facility k as being the difference between its “revenue” ( 1
β e
−βλke−βηkρk) and its

“cost” fk, the facility with the highest positive profit will be the candidate for locating.
Because of the Kuhn-Tucker conditions, we know that if the facility potential current size ρk is such that

Lk ≤ ρk ≤ Uk, then λk = ηk = 0 and the facility profit is given by ( 1
β ρk − fk).
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Otherwise, if λk > 0 then the potential current size of that facility is over its upper capacity and locating
that facility would be highly recommended. In such a case, constraints (11) would be saturated, i.e. Dk(λ, η) =

e−βλke−βηkρk = Uk, and the facility profit would become
[
1
βUk − fk

]
.

If ηk < 0 then the potential current size of that facility is below its lower capacity and its locating should not be
recommended at all. In such a case, constraints (12) would be saturated, i.e. Dk(λ, η) = e−βλke−βηkρk = Lk, and

the facility profit would become
[
1
βLk − fk

]
.

Let us note that the above criterion for locating facilities requires the possibility to calculate the size ρk for not
located facilities too, but this can be easily done by (42), which holds for all k’s.

4.3 Closing down a transshipment facility

The third and last procedure of our heuristics is for closing down facilities.
We observe that a mechanism similar to that of Section 4.2 can be adopted for finding, within the located facilities,
the candidate to be closed down. In such a case, the transshipment facility q for which

q = argmink:yk=1

[
1

β
e−βλke−βηkρk − fk

]−
(45)

will be the candidate to be closed down (provided that the total upper capacity of the remaining located facilities
is not less than the total flow T , otherwise closing down q would make the problem solution infeasible).

We are now ready to put the three procedures together and build up the overall heuristics to solve the CTLPd.

4.4 The overall heuristics

As previously assumed, a transshipment location {yk} is given. Using the procedure developed in Section 4.1, we
can calculate the Lagrangian multipliers and derive the optimum of the CTLPd and the optimal flows {skij}. Then,
we try to improve the given transshipment location by locating and closing down facilities. This process calls the
procedure for the Lagrangian multipliers calculation of Section 4.1 as a subroutine. We reiterate until no further
improvements for the optimum can be found.

More in detail, the heuristics to solve the CTLPd acts as follows

– Problem Feasibility check.
If the total upper capacity is less than the total flow, i.e.

∑
k∈K Uk < T or the minimum lower capacity is

greater than the total flow, i.e. mink∈KLk > T , then STOP, the problem is infeasible.
– While the number of iterations is not greater than MAXITER (maximum number of iterations) and the overall

computing time is not greater than MAXTIME (maximum computing time), apply the Core heuristics (see
Subsection 4.4.1) which builds a solution by locating and closing operations.

– Keep the best solution as the optimal one.

4.4.1 Core heuristics

The core heuristics builds a solution according to the following steps

1. Locate all facilities, i.e. yk = 1, k ∈ K.
2. Compute the Lagrangian multipliers as in Section 4.1. Calculate the optimal flows and set the best solution
BestSol to the optimal flows.

3. Repeat the following steps
(a) Decide whether to close down a transshipment facility or simultaneously close down and locate two different

facilities. The decision is taken according to a rule based on a randomized process and a short term search
memory. This rule, called the operation choosing rule, is described in detail in Subsection 4.4.2.

(b) Let q be the facility to be closed down and r the facility to be located (if any). Close down q and locate r.
(c) Compute the Lagrangian multipliers and the optimal flows. Set the current solution CurrSol to the optimal

flows.
(d) If no locating operation has been performed and the value of CurrSol is not better than that of BestSol,

then exit from the heuristics and return the value BestSol. Otherwise, set BestSol to CurrSol.
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4.4.2 Operation choosing rule

In our heuristics, we can decide whether either to close down a facility (we remind that we start with all facilities
located) or simultaneously close down and locate two different facilities. To take the above decision the operation
choosing rule uses both a dynamic stochastic process guided by the search history and a short-term memory
structure. The short-term memory structure is a list FL which forbids, after locating a facility, its closing down for
a fixed amount m of iterations.

The rule works as follows

– If we are at the first iteration of the overall heuristics, initialize the locating probability step δO = 0 , otherwise
set δO = 2/ |K|, where |K| is the number of potential transshipment locations. Empty the list FL, set its size
equal to MAXFL and put vO = 0.

– While the solution is feasible
– Get a random number v ∈ (0, 1].
– If v ≥ vO, find the candidate q to be closed down as in Section 4.3 and check that q /∈ FL. Increment vO by
δO and, for all facilities in FL, decrement by one the number of iterations for which they cannot be closed
down. Remove from FL the facilities for which the number of iterations is 0.

– Otherwise, set vO = δO, find the candidate q to be closed down and the candidate r to be located, as
in Sections 4.3 and 4.2, respectively. If their swapping (i.e. closing down q and locating r) is feasible and
improves the current optimum, make the swapping, add r to FL and set to MAXFL the number of iterations
for which r cannot be closed.

Let us note that, in the first iteration of the overall heuristics, we only apply closing operations, because we start
with all facilities already located. The locating operations will be considered in next iterations of the heuristics.
When a local optimum has been reached, a sort of local search is introduced by means of the facilities swapping
mechanism described above.

5 Computational results

In this section we compare the CTLPs, solved by a state-of-the-art stochastic solver, and the CTLPd, solved both
exactly, by means of a state-of-the-art nonlinear solver, and by our heuristics.

We consider three classes of instances, which contain identical instances except for their facility lower capacity.
In particular, the lower capacity of Class 1 is set equal to zero. The lower capacity of Class 2 is set to 60% of
the upper capacity, whilst for instances belonging to Class 3 such percentage rises up to 85%. For each class 50
instances are generated as follows

- the number of depots |I| is drawn from U [2, 3];
- the number of customers |J | is drawn from U [30, 40];
- the number of potential transshipment locations |K| is drawn from U [10, 20];
- supply Pi is drawn from U [900, 1000];
- demand Qj is drawn from U [1,

∑
i∈I Pi/ | J |]. If necessary, the demand of the last customer is adjusted so that

the system is balanced;
- upper capacity Uk is drawn from U [0.5avU, 3avU ], where avU =

∑
i∈I Pi/ | K |;

- unit deterministic shipping utility vkij is drawn from U [1, 10], k = 1, ..., |K|/2, and U [1, 5], k = |K|/2+1, ..., |K|;
- fixed cost fk = 0.3Uk

TU
|I||J||K| , k = 1, ..., |K|/2, fk = 0.03Uk

TU
|I||J||K| , k = |K|/2 + 1, ..., |K|, where TU =∑

i∈I
∑
k∈K

∑
j∈J v

k
ij is the total deterministic shipping utility;

- stochastic utility ũk is drawn from a Gumbel probability distribution with mean equal to vk, where vk is the
arithmetic mean over i’s and j’s of the deterministic shipping utilities

{
vkij
}

associated to facility k. In order to

have for ũk values which are comparable with vkij , while ensuring a sufficient impact of the stochastic component,

ũk is drawn from the range [1, 20].

The rationale for choosing the above values for vkij and fk is to build two sets of potential transshipment
locations such that in the first set the facility throughput will be close to the facility upper capacity and in the
second set the throughput will be close to the facility lower capacity. In such a way, we guarantee that at least
some of the constraints (11) and (12) will be activated in the optimal solution.

Both the CTLPd and the heuristics need to know a proper value of the positive parameter β. This is obtained
by calibration as follows.

Let us consider the standard Gumbel distribution G(x) = exp
(
−e−x

)
. If one accepts an approximation error

of 0.01, then G(x) = 1 ⇐⇒ x = 4.60 and G(x) = 0 ⇐⇒ x = −1.52. Let us consider the range [m,M ] where the
stochastic utility ũk is drawn from ([1, 20] in our case). The following equations hold

β(m− ζ) = −1.52 (46)

β(M − ζ) = 4.60 (47)
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where ζ is the mode of the Gumbel distribution G(x) = exp
(
−e−β(x−ζ)

)
.

From (46) and (47) one gets

β =
6.12

M −m.

In our case, as M −m = 20− 1 = 19, we get β = 0.32.
For the calibration of β in real applications, more sophisticated methods would be required [8].
The solution of the CTLPs is generated by means of the stochastic programming module provided by XPress

Optimization Suite [6]. The tests are performed by generating an appropriate number of scenarii for each instance.
In order to tune this number, we start with 50 scenarii and increase them with step 50. Then we solve each instance
10 times, reinitializing every time the pseudo-random generator of the stochastic components with a different seed,
and compute the standard deviation and the mean of the optima over the 10 runs. The appropriate number of
scenarii is then fixed to the smallest value which ensures for each instance a maximum ratio between the standard
deviation and the mean which is less than 1% [11]. According to our tests, this value is fixed to 200 scenarii, which
shows a maximum ratio of 0.34%.

To solve the CTLPd we use the nonlinear solver BonMIN, release 1.3 [1, 2], within a time limit of 1000
seconds. The parameters are set to their default values, which show a satisfactory behavior both in accuracy and
computational effort.

The heuristics presented in Section 4.4 is implemented in Matlab 2007. After a preliminary testing phase, the
parameters of the heuristics are set as follows

– MAXITER= 50
– MAXTIME= 10000 seconds
– Size of the list FL= 3.

All the tests were performed on an Intel Core i7 8602.8 GHz with 4Gb of Ram. Each process of XPress and
BonMIN is limited to one core only.

Table 1 compares the optima of the CTLPs and the CTLPd. The table columns have the following meaning

- Column 1: instance class
- Column 2: mean optimum of the CTLPs
- Column 3: mean optimum of the CTLPd
- Column 4: percentage gap between the two optima with respect to the CTLPs optimum
- Column 5: mean computational time in seconds for the CTLPs
- Column 5: mean computational time in seconds for the CTLPd.

For each column, the mean results of the 50 generated instances in each class are given in the first three rows,
whereas the last row gives the overall mean over the three classes.

According to the figures, the performance of the CTLPs is quite good. In fact, it shows a mean gap of 1.65%,
while reducing the mean computing time of 17%. One can also notice that the percentage gap slightly increases
when the facilities lower capacity does increase (from Class 1 to Class 3). Moreover, the computing time of the
CTLPs highly increases from Class 1 to Class 3, whereas that of the CTLPs is less affected.

The good performance of the CTLPd is also confirmed by analyzing the number of located facilities, as well as
the number of those facilities which are located by both models (the CTLPs and the CTLPd).

Table 2 shows these results. In particular, the table columns have the following meaning

- Column 1: instance class
- Column 2: mean number of located facilities for the CTLPs
- Column 3: mean number of located facilities for the CTLPd
- Column 4: percentage of common located facilities. Such percentage is calculated as the ratio given by the

number of common facilities over the number of located facilities for the CTLPs.

The results show that the solutions of the CTLPs and the CTLPd share in average over 90% of the located
facilities.

The results of our heuristics are summarized in Table 3, where the meaning of each column is as follows

– Column 1: instance class
– Columns 2 and 3: percentage gap between the heuristics (at the end of the first iteration and the best solution)

and the CTLPd solved by BonMIN (we remind that the first iteration of the procedure starts with all facilities
located and only closing down operations are performed)

– Columns 4, 5, and 6: computing time to find the optimum (in seconds) of the heuristics (at the end of the first
iteration and the best solution) and the CTLPd

– Columns 7 and 8: total computing time (in seconds) at the end of the heuristics and the CTLPd.

The results show how the gap of the first iteration and the best solution increases from Class 1 to Class 3, giving
a mean gap for the first iteration solution of 3.5%. On the other hand, after applying the closing down and locating
operations (column HeurBest), the complete heuristics is able to reduce this overall gap to 1%. These results are
even more impressive by considering that they can be obtained in a very short computing time. In fact, the mean
total computing time of the heuristics is almost one third of that of the CTLPd.
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Moreover, if we consider the time when the optimum has been found, we discover that our heuristics needs only
a mean computing time of 16.5 seconds, which is one fifth of that of the CTLPd, 89.6 seconds (and almost one
tenth of that of the CTLPs, 153.4 seconds).

We note that, the computing time of the heuristics could be further reduced by implementing an ad hoc fixed
point method to compute the Lagrangian multipliers in Section 4.1. In fact, the present implementation uses the
standard Matlab fsolve function, which becomes inefficient when the network size increases.

CLASS
OPTIMUM TIME (s)

CTLPs CTLPd GAP % CTLPs CTLPd
1 20596.1 20741.2 0.70 24.2 91.3
2 21275.4 21696.7 1.98 141.7 139.1
3 21450.2 21935.0 2.26 293.2 150.6

MEAN 21107.3 21457.6 1.65 153.4 127.0

Table 1 Comparison between the CTLPs and the CTLPd: optimum and computing time

CLASS
LOCATED FACILITIES

CTLPs CTLPd COMMON (%)
1 9.6 9.6 95.6
2 8.3 9.3 89.4
3 8.2 8.6 88.6

MEAN 8.7 9.2 91.2

Table 2 Comparison between the CTLPs and the CTLPd: number of located facilities

CLASS GAP % OPT TIME (s) TOT TIME (s)
HEURFIRST HEURBEST HEURFIRST HEURBEST CTLPd HEURBEST CTLPd

1 1.2 0.4 0.9 10.6 34.4 38.4 91.3
2 3.6 1.3 1.2 18.4 97.8 49.1 139.1
3 5.7 1.2 1.8 20.6 136.6 56.8 150.6

MEAN 3.5 1.0 1.3 16.5 89.6 48.1 127.0

Table 3 Comparison between the CTLPd and the heuristics: percentage gap and computing time

6 Conclusion

In this paper we have addressed the problem of locating transshipment facilities for freight transportation to
maximize the total net utility, given by the expected total shipping utility minus the total fixed cost of the facilities.
The main feature of this problem is that the handling utilities at the facilities are stochastic variables. This is due to
the fact that the handling operations are organized in alternative scenarii and, given their finite capacity, congestion
effects make the handling utilities stochastic variables, with unknown probability distribution.

The main contributions of the paper are

– integration into a comprehensive model of the two main levels of a transshipment network, i.e. the design level
and the management level, which are made in practice at different time instants

– addressing the stochasticity of the handling utilities at the transshipment facilities, leading to a stochastic
location problem.

Moreover, from a theoretical perspective, the paper shows that, under mild assumptions, the unknown proba-
bility distribution of the maximum stochastic shipping utility from any origin becomes a Gumbel distribution and
the expected optimal flows are multinomial Logit functions.

Finally, from a computational point of view, the CTLPd shows a mean gap with the CTLPs less than 2% and
the heuristics a mean gap with the CTLPd less than 1%. Moreover, the heuristics is able to reduce the computing
time up to 90%, when compared to the CTLPs.
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