
Using variability to guide dimensional weighting: Associative
mechanisms in early word learning

Keith S. Apfelbaum and
Dept. of Psychology, University of Iowa

Bob McMurray
Dept. of Psychology and Delta Center, University of Iowa

Abstract
At 14 months, children appear to struggle to apply their fairly well developed speech perception
abilities to learning similar sounding words (e.g. bih/dih; Stager & Werker, 1997). However,
variability in non-phonetic aspects of the training stimuli seems to aid word learning at this age.
Extant theories of early word learning cannot account for this benefit of variability. We offer a
simple explanation for this range of effects based on associative learning. Simulations suggest that
if infants encode both non-contrastive information (e.g. cues to speaker voice) and meaningful
linguistic cues (e.g. place of articulation or voicing), then associative learning mechanisms predict
these variability effects in early word learning. Crucially, this means that despite the importance of
task variables in predicting performance, this body of work shows that phonological categories are
still developing in this age, and that the structure of non-informative cues has critical influences on
word learning abilities.
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1.0 Introduction
It is now nearly dogma that infants learn the sound structure of their native language during
the first year of life, just prior to the onset of word learning (Aslin, Werker & Morgan, 2002;
Kuhl, Williams, Lacerda, Stevens & Lindblom, 1992; Werker & Curtin, 2005; Werker &
Tees, 1984). However, for any given language, the structure of the lexicon determines which
set of contrasts must be acquired: languages that lack word pairs like lake/rake have no need
to distinguish /l/ from /r/. As a result, there is widespread interest in the idea that lexical
contrast may shape phonological development (Charles-Luce & Luce 1990, 1995; Coady &
Aslin, 2003; Metsala & Walley, 1998; Walley, Metsala & Garlock, 2003). Thus, the
beginning of the second year presents a particularly interesting time for research on
phonological development. This is the time when developing perceptual abilities first
contact the emerging lexicon.

An important finding during this time is that while 14–month-old infants can discriminate
the phoneme contrasts of their native language (Werker & Tees, 1984), at the same age
infants are not sensitive to these same phonetic distinctions in word learning tasks (Stager &
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Werker, 1997; Werker, Cohen, Lloyd, Casasola & Stager, 1998). For example, 14-month-
olds can distinguish b from d, but struggle to learn that bih and dih refer to different objects
(Stager & Werker, 1997).

Initial accounts of this effect emphasized difficulty. Either the demands of word learning
(Fennell & Werker, 2003) or of the specific tasks used to assess it (Yoshida, Fennell,
Swingley & Werker, 2009) strained infants’ limited capacity preventing their use of such
detail. However, recent work has implicated perceptual development by demonstrating that
acoustic variability in the training stimuli can help infants overcome these difficulties with
word learning (Rost & McMurray, 2009, 2010). This manipulation should have raised the
difficulty of the task, yet infants learned the words.

The mechanism underlying this variability benefit is unclear. It is tempting to simply posit
that variability is helpful: there is a large body of evidence showing that variability in the
perceptual input improves infants’ abilities to acquire categories (e.g. Oakes, Coppage &
Dingel, 1997; Quinn, Eimas & Rosenkrantz, 1993). However, as we will describe, it may
not be this simple: the benefits seen in early word learning appear dependent on variability
in irrelevant dimensions (Rost & McMurray, 2010).

The goal of this report is to investigate a potential mechanism that could give rise to this
effect. We examine simple associative learning and show that it can give rise to this
unintuitive pattern of categorization performance. In the remainder of the introduction we
will review the relevant empirical literature. We then present an associative account of a set
of early word learning studies and demonstrate its power with a series of simulations. Our
model suggests that associative learning may guide phonological development as word
learning commences, and that the variability of different acoustic cues determines the
outcome of these associative mechanisms.

1.1 Early Word Learning
Stager and Werker (1997) reported that 14-month-olds fail to learn similar sounding words
despite functional phonological discrimination abilities. Their study and many subsequent
investigations employed the Switch task (e.g. Fennell & Werker, 2003; Pater, Stager &
Werker, 2004; Rost & McMurray, 2009, 2010; Werker et al, 1998; Werker, Fennell,
Corcoran & Stager, 2002; though see Swingley & Aslin, 2002, 2007; Ballem & Plunkett,
2005). In this task, infants are habituated to pairings of auditory words and visual stimuli.
After habituation, infants are tested in two conditions. In the match condition, a visual
stimulus is displayed while the paired word is played; in the mismatch (or switch) condition,
the same stimulus is paired with a different word. Infants’ looking time indicates whether
they have the correct word-referent linkages. If infants have learned both words and notice
the difference, they should look longer to mismatching word-object pairs than to matching
pairs. This is an elegant adaptation of habituation to word learning. Since the same materials
(auditory and visual) are used for mismatching and matching trials, dishabituation cannot
result from sensory differences; rather infants should only dishabituate on the basis of the
word-object associations.

Werker et al (1998; see also Stager & Werker, 1997) have shown that after habituation to
visual stimuli with the auditory labels lif and neem, 14-month olds show increased looking
time when a visual stimulus is presented on mismatch trials. However, infants at the same
age failed to notice mismatches when the trained words differed by only a single feature,
place of articulation (dih vs. bih). Nonetheless, when infants at this age are tested in an
auditory discrimination task, they easily discriminate these stimuli (Stager & Werker, 1997).
Later work extended this to voicing (Pater et al, 2004, Rost & McMurray, 2009) and showed
that even when two features differed (both voicing and place, but not manner), infants fail to
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notice mismatches in a word learning situation (Pater et al, 2004). Thus, phonetic similarity
(broadly construed) seems to hamper word learning at this age.

A number of accounts have been suggested for this failure. These include resource
limitations (Fennell & Werker, 2003; Stager & Werker, 1997), phonological constraint
reranking (Pater et al, 2004) and lexical competition (Swingley & Aslin, 2007). Generally,
these suggest that some aspect of the way children are encoding words is insufficient to
allow learning of close phonological neighbors in this task.

In contrast to the notion of a global capacity limit, the Switch task itself may be to blame. A
number of studies have employed a two-alternative preferential looking procedure, in which
the auditory stimulus is played while two visual items are presented, rather than the single
alternative Switch task (Ballem & Plunkett, 2005; Swingley & Aslin, 2002). These tasks
have demonstrated successful encoding of phonological detail of words at 14 months:
infants show a reduced preference for the correct object when both known and recently
learned words are mispronounced by a single feature. More recently, Yoshida et al (2009)
showed that 14-month-olds can even learn two novel minimally different words with the
same training given in the Switch task, when learning is assessed with this preferential
looking task. Thus infants may not have a general capacity limit at this age. Instead, it
appears that something about the Switch task may be causing infants’ difficulties.

1.2 Variability and the development of speech perception
Capacity limits and task demands accounts offer a way to rectify the idea that perceptual
development is relatively advanced by 14 months with infants’ failures to take advantage of
these skills during word learning. However, Rost and McMurray (2009) suggest that
relatively incomplete perceptual processes may also be at play. They noted that previous
studies all habituated children to a small number of auditory exemplars, typically from a
single speaker. This training would be appropriate if children have well-delimited phonetic
categories by this age. However, if phonetic categories were still developing, a training set
with more variability might offer a better platform for learning new word-forms (e.g. Lively,
Logan & Pisoni, 1995). Thus, they trained infants on two similar words (buk/puk) in a
Switch design, but with stimuli recorded from 18 speakers. With this change, 14-month-olds
learned both words.

While this is difficult to account for in a task demands framework, it accords well with a
range of studies showing that manipulating the variability of the items during training plays
a crucial role in studies in which infants must acquire categories during laboratory training
procedures. For example, in visual categorization, infants form exclusive categories for
objects when the stimuli have close perceptual similarity (e.g. cats), while being less
discriminatory for categories with more perceptual variability (e.g. dogs; Oakes, Coppage &
Dingel, 1997; Quinn, Eimas & Rosenkrantz, 1993). Crucially, however, variability here has
the opposite effect: more variability leads to less specific categories. Further, it is unclear
how or if this applies to speech as these studies taught infants a single category (not two).
Thus, while these studies implicate variability of some kind in perceptual learning
(reinforcing Rost & McMuray’s argument that speech categories are still developing), they
do not offer an explanation for these results.

More relevant to our discussion of acquisition of speech categories, Maye, Werker and
Gerken (2002) showed that 9-month-old infants are sensitive to the distributional structure
of phonetic categories, such that bimodal distributions of items are classified as two distinct
categories, while distributions without distinct modes are treated as a single category.
Interestingly, in a subsequent analysis of the tokens used during Rost and McMurray’s
(2009) training suggested that the training set contained a clear bimodal distribution of
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Voice Onset Time (VOT, the continuous cue that distinguishes /b/ from /p/)—exactly what
Maye et al (2002) predict would enhance speech categories via distributional learning (Rost
& McMurray, 2010).

This suggests that only the variability in the contrastive cue (VOT) is required to support
learning in the multiple speaker condition; variability in the non-contrastive cues (e.g. talker
identity) may not have been important. Rost and McMurray (2010) explicitly tested this by
varying only the contrastive dimension of VOT (along a similar bimodal distribution) while
holding speaker constant. Across two studies, no evidence for learning was seen. However,
when the VOT was held constant (within each category) and the non-contrastive cues
(talker) varied, learning was observed. This somewhat non-obvious finding conflicts with
the aforementioned findings on variability by suggesting that greater variability on irrelevant
dimensions is what is important.

Indeed there is some evidence for this effect in other learning paradigms. Gomez (2002)
found that variability aids statistical sequence learning, such that variability in an
intervening element cues infants to learn non-adjacent dependencies. Similar results abound
in early work on learning theory, wherein the variability of irrelevant cues appears to help
attune focus onto useful cues (Bourne & Restle, 1959; Bush & Mosteller, 1951; Restle,
1955). Finally, there is some related evidence in infant speech perception tasks: variability in
lexical stress appears to aid segmentation abilities, even though lexical stress is not a reliable
cue to lexical identity (Bortfeld & Morgan, 2010). Infants trained with words presented in
multiple stress patterns were better able to recognize novel exemplars of these words in
running speech thereafter. It appears that learning is most effective when there is high
variability in non-contrastive dimensions, and when contrastive dimensions display
consistent, lawful variation.

This fundamentally argues that discrimination does not fully capture phonological
development in infancy. This is underscored by Dietrich, Swingley and Werker (2007) who
showed that while both English and Dutch infants can discriminate vowel length (which is
only phonemic in Dutch), only Dutch infants map two different vowel lengths onto two
different objects. However, Rost and McMurray (2010) build on this to offer a suggestion as
to what other developmental processes are necessary. In this case, infants still need to
identify which cues are useful for word learning (c.f., Werker & Curtin, 2005), and the
relative variability among cues may play a crucial role in this.

1.3 Mechanisms for Harnessing Variability
One possible account of these findings is that perceptual learning mechanisms that are tuned
to the statistics of a dimension could act to up-weight or down-weight entire perceptual
dimensions. After hearing a series of highly variable pitches, for example, listeners simply
pay less attention to pitch. Approaches to perceptual learning based on this weighting-by-
reliability approach (e.g. Atkins, Fiser & Jacobs, 2001; Ernst & Banks, 2002) predict exactly
this finding. Under this account, highly variable dimensions receive less weight than
dimensions that are more consistent. Toscano and McMurray (2010) recently showed how
this approach can be applied to the statistics of speech categories. Critically, this account
predicts that variability within perceptual dimensions is sufficient to down- or up-weight an
entire perceptual dimension: dimensions with clustered values receive greater weights, while
dimensions with less structured variability are effectively ignored.

However, this may not be sufficient to account for the pattern of development during early
word learning. In the Toscano and McMurray (2010) model, for example, any cues which
show consistent clustering will be treated as meaningful. However, the acoustic environment
of the infant includes many cues that vary lawfully, yet are not phonologically meaningful.
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For example, the fundamental frequency (F0) of voices will cluster into categories of lower
F0s for male speakers, and higher F0s for female speakers. However, the infant must
gradually learn to ignore this cue with respect to acquiring representations of words. Thus,
the presence of statistical clusters may not predict the relatively low weighting that this cue
must eventually get for word learning.

Moreover, it is not clear that one would want to weight a perceptual dimension uniformly
high or low for all purposes. A cue like first formant frequency is a weak cue for voicing
(Summerfield & Haggard, 1977), while it fairly robust cue to vowel height (Peterson &
Barney, 1952). Thus, it may need different weights for different phonetic features or for
different purposes. However, even this may be insufficient: Ranbom and Connine (2007),
for example, suggest that certain phonetic variants of /t/ are linked directly to specific words
in adults. Indeed Dietrich et al’s (2007) results support this by suggesting that vowel length
is not ignored – it is just not used in some cases for word learning.

Perhaps most pertinently, 14 month-olds can discriminate familiar minimal pair words (e.g.
ball/doll) in the Switch task. If irrelevant cues like speaker voice are down-weighted enough
to allow this discrimination, why does this ability not extend to novel words? It would be
difficult to account for this dissociation if speaker cues were down-weighted uniformly
across all words. Thus, there may need to be a mechanism for determining the importance of
perceptual cues for specific phonetic features or even for specific words.

Here, we investigate an alternative: associative learning. Under this view, early words are
associated with individual acoustic cue values, and these associations allow the system not
just to show sensitivity to raw variability, but rather to seek lawful variation with respect to
some other representation (the word or object in this case). In learning words, infants can
track which cues vary consistently within and across words, and which seem to have no
connection to the words they are learning. For example, every time an infant sees a ball and
hears a parent name it, some phonetic cues are always present (things like the rising
formants at onset, low VOT, and high formant frequencies in the vowel). Meanwhile, the F0
will vary depending on who is saying it, and thus will not be consistent across multiple
utterances of ball. A model in which associations are formed between cue-values and visual
categories can thereby bootstrap phonological development, by highlighting which cues are
relevant for word identity, and which are unrelated. Indeed, associative training has recently
been shown to be more effective than purely perceptual training in speech categorization
development for 9-month olds (Yeung & Werker, 2009).

We suggest that the differences in performance across studies of infant word learning (e.g.
Rost & McMurray, 2009, 2010; Stager & Werker, 1997; Yoshida et al, 2009) are not
indicative of infants failing to encode sufficient detail in difficult learning environments;
instead, we suggest that the structure of variability in the different training paradigms alters
the way acoustic cues are mapped to words. Rather than underspecified phonological
representations, infants encode all available information, whether this information is
phonological or not. Their uncertainty about which cues are contrastive leads to
overspecification of word representations (c.f. Werker & Curtin, 2005). Variable training
exemplars serve to ensure that no non-contrastive cues become strongly linked to word
identity.

Our goal is to instantiate this account computationally to explore its ramifications. We start
by outlining the theoretical account in more detail, and then describe its instantiation in a
model. We then simulate many of the existing findings on early word learning to show how
this simple account offers a more unified explanation of many of the patterns of data.
Finally, we discuss some of the implications and limitations of this approach.
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2.0 Theoretical Account
In Rost and McMurray’s (2009, 2010) studies, variability along non-phonemically
contrastive dimensions (e.g. talker voice or pitch) appears to help infants use contrastive
cues. Why would non-contrastive information affect learning? Rost and McMurray suggest
that infants may not know which dimensions are meaningful in their language by 14 months.
As a result, infants associate both non-contrastive information and phonetically-relevant
information with newly learned words. For example, when associating a new word like buk
with its acoustic instantiation, infants may associate it with its low VOT, but also with its
high pitch and 200ms duration.

The studies in which infants fail in the Switch task have all used stimuli with similar non-
contrastive information. This has important consequences when we consider how these
associations interact with the Switch task. Because the auditory stimuli are from a single
speaker, factors like pitch and indexical cues will be consistent across the both of the two
words. Repeated presentation of the words with the same pitch and indexical cues, thus
leads the child to associate these specific cue-values with both words. Figure 1A shows the
result of learning in such a case. While VOT values become selectively linked to the correct
visual items, the trained pitch and indexical values become strongly associated with both
visual items.

Critically, however, the Switch task requires infants to reject an incorrect pairing. That is, on
a mismatch trial, they hear buk but see the object corresponding to puk. Successful learning
would be shown by increased looking (surprise). When this mismatching word has the same
pitch and indexical cue-values as the correct word, it will be partially activated, leading
infants to have difficulty rejecting this mis-pairing. Thus infants’ difficulty occurs because
they receive several cues that are consistently associated with both words (e.g. the same
pitch is associated with both words) and only a single cue (e.g. VOT of the onset phoneme)
that disambiguates them.

This builds on task demands accounts. For example, Yoshida et al (2009) also argue that
infants’ difficulty derives from the fact that both competitors are active due to their
phonological overlap (the fact that both buk and puk share the same coda). As a result, both
visual targets are partial matches to the input. However, this cannot explain how variability
in speaker voice plays a role. Our account agrees in the importance of co-activation, but we
base this co-activation additionally on a failure to ignore the unnecessary speaker cues
during learning. Thus, a critical component of infants’ difficulty in learning the words is
their overspecification (inclusion of too much detail) in lexical representations.

How does this account predict a benefit for variability? With variable exemplars of a word,
no single non-contrastive cue-value ever becomes highly associated with either word. As
each successive token presents different values of these features, associations are spread out
across a range of values. Only the phonologically relevant VOT cue consistently covaries
with individual words (see Figure 1B). As a result, during testing infants will recognize
whether the auditory target matches or mismatches their expectation of the correct target
word, as only the contrastive cue-values will have formed strong connections to word
identity.

Thus, two factors are critical: the relative correlations between a particular non-contrastive
cue-value (e.g. a single pitch or indexical value) and each of the two words (the phonetic
cues will only be correlated with one); and the way that variability in these cues causes
learning to spread out across the space. Together, these influence how acoustic cues (both
contrastive and non-contrastive) are mapped to words. This in turn shapes the activation for
the two lexical candidates that influences Switch task performance.
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We illustrate this account of switch task performance here using a series of simulations
employing a simple connectionist architecture. There are a number of models of word
learning in the literature that employ similar principles (Gliozzi, Mayor, Hu & Plunkett,
2009; MacWhinney, 1989; McMurray, Horst, Toscano & Samuelson, 2009; Regier, 2005;
Schafer & Mareschal, 2001). The present simulations are not meant to replace them, nor do
we purport to offer a complete model of word learning. Instead, the computational
demonstrations are used to explore a theoretical perspective and explain why certain
behaviors during word learning appear anomalous. Rather than building a word learning
model, we are trying to distill a set of basic learning principles that may be common to many
models and determine how their interaction with the input and the task could drive this
pattern of performance. In this regard, the existing associative models strengthen this
account—their use of similar principles of learning means that our findings here are likely to
be found embedded within the rich set of findings one would observe with a more complete
model.

3.0 Computational Demonstrations
3.1 Simulation 1: Variability and Invariance

3.1.1 Architecture of the model—The initial system used three sets of auditory units
representing contrastive cues (VOT1), and two forms of non-contrastive information (F0 and
indexical information2), along with two visual units, representing the visual stimuli
presented during training (buk and puk). Figure 2 presents a schematic of this model. Each
auditory set consisted of 10 units topographically representing values along its dimension.
Learning occurs as the model forms associations between auditory information and visual
targets. We visualize this as a network, but it is meant to distill a larger process, not model
word learning. Such an approach is similar to approaches taken in early explorations of
learning theory; rather than trying to develop a full scale model of behavior, we aim to
investigate and quantify a specific characteristic of how word learning proceeds.

3.1.2 Training—Each auditory unit was initially connected to both visual units with a
weight of zero. During each training trial, one auditory unit from each bank was activated
along with the appropriate visual unit. For example, on a trial with buk as the auditory and
visual stimulus, the third VOT unit (corresponding to a VOT of 0, a b) would be active, with
the buk visual unit and the F0 and indexical unit for that speaker. This simulates the
habituation trials during the Switch task.

Connection weights were adjusted using a variant of the Hebbian learning rule (e.g.
Rumelhart & Zipser, 1985): when both a visual and an auditory unit were active, the weight
between them increased; and weights decayed slightly on each epoch of training (to prevent
them from growing indefinitely).

(1)

1We are simulating the difference between minimal pairs that differ in voicing here. While the Stager and Werker (1997) task used a
place of articulation contrast, Rost and McMurray (2009) replicated this result with a voicing contrast (buk vs puk; see also Pater et al,
2004). We chose to model the voicing contrast because behavioral results from both protocols are available. Our approach predicts the
same results from other contrasts (e.g. bin vs din).
2While we use F0 and indexical information as our non-contrastive cues in this model, we are not presuming that these are the only
non-contrastive cues that are present to the infant, nor are we making any strong claims that these cues are preferentially encoded over
other non-contrastive cues. Indeed, F0 alone has multiple dimensions along which it can vary (mean height, direction of change, range
of change, etc). These cues are included as place holders for the cues that may vary in Rost and McMurray (2009, 2010), until more
research illuminates precisely which cues are encoded at this age.
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Here, wij is the associative strength between auditory unit i (ai), and visual unit j (vj), and η
is the learning rate.

We simulated both the standard Switch task (henceforth SST) and Rost and McMurray’s
(2009; henceforth RM) variable training. In SST training, the activated VOT unit was
perfectly correlated with the visual unit: the b VOT unit would always be activated along
with the buk visual unit, while the p VOT unit always co-occurred with the puk visual unit.
Meanwhile, the same F0 and indexical units were activated on every training trial. For
example, F0 node 5 and indexical node 2 would be activated with every presentation,
regardless of VOT and object. This corresponds to the Stager and Werker (1997) protocol,
wherein phonological information consistently predicts visual stimuli, while the non-
contrastive cues are unvarying across training trials for both words.

For the RM simulation, VOT unit activation was selected as in the SST simulation, but a
random F0 and a random indexical unit were activated on each trial. F0 and indexical
information had no correlation with the active visual node, and all 10 nodes were equally
likely to be used. This corresponds to the protocol of Rost and McMurray (2009) as the
phonological information (VOT) is predictive of the word, but non-contrastive cues were
uncorrelated.

Training in both versions of the Switch task (e.g. Stager & Werker, 1997; Rost &
McMurray, 2009) typically includes seven repetitions of any given auditory stimulus per
trial. The infants in Rost and McMurray’s (2009) study averaged approximately 18 trials, or
just over 120 repetitions, to habituate. As such our model had 120 training epochs on each
simulation.

3.1.3 Testing—At the completion of training the model was tested by presenting an
auditory word (the VOT, F0 and indexical values), and computing the visual activation via
the association strengths. Inputs were similar to training: in the RM simulation one of the
representative VOT units was activated along with random F0 and indexical units; in the
SST simulation, the VOT unit was activated along with the trained F0 and indexical units.

Activation of the visual layer was determined using the activations and connection weights
from the auditory units. Each trial, the activations for both visual units were recorded. If the
model heard puk, activation of the buk visual unit was treated as the mismatch activation,
while activation of the puk visual unit was treated as the match activation. Visual unit
activation is a measure of expectation: how much does the system expect to see a buk given
the auditory input? This is consistent with current thinking about the role of expectation (or
violation of expectation) in habituation (Sirois & Mareschal, 2004).

3.2 Results
We report results from a representative simulation using a learning rate of 0.01 and the
parameters outlined above. We start with the RM simulation, as 14-month-olds succeed in
learning minimal pairs with this design. Thus, for the purposes of calibrating how much
visual activation corresponds to recognition (or surprise) it is the most relevant condition.
After 120 epochs of training, the activation of the matching visual unit (0.41) exceeded
activation of the mismatching unit (0.07). Thus, given the auditory input, the matching
visual unit is more likely than the mismatching unit.

Assuming this difference is sufficient to drive the Rost and McMurray results, this means
that an activation of 0.41 (the activation of the matching visual unit in this simulation) is
above the recognition threshold, while 0.07 (the activation of the mismatching unit) falls

Apfelbaum and McMurray Page 8

Cogn Sci. Author manuscript; available in PMC 2013 March 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



below this threshold, and so leads to dishabituation (with the current parameter settings).
The recognition threshold for this model must be somewhere between 0.07 and 0.41.

In the SST simulation, after 120 epochs of training3 we again see greater activation for the
matching (1.05) than mismatching (0.70) target. Critically, however, both values are outside
the range of thresholds in the RM model, as both exceed the matching value in that model. If
the recognition threshold falls between 0.07 and 0.41, both the match and mismatch units
will be recognized as matches to the auditory target, because both are activated above 0.41,
so neither will produce surprise or dishabituation. Figure 3 presents this data; no matter
where the threshold falls between the match and mismatch in the RM simulation, both SST
targets will exceed this value.

Thus, as we described, co-activation of the competing words based on shared indexical and
F0 cues is sufficient to drive failure in the SST. Similarly, variability is sufficient to block
these erroneous associations. This accounts for the basic difference between Rost and
McMurray (2009) and Stager and Werker (2009). However there are a number of further
issues that need to be clarified to flesh out this basic account.

3.2.1 Non-minimal pair learning—In order to assess whether this same form of model
could account for learning of non-minimal pair words (lif and neem), we ran an additional
simulation, which included additional acoustic dimensions to code for words that differ by
multiple phonemes. The architecture of this model is detailed in Appendix A. As can be seen
in Figure 4, this simulation demonstrated similar patterns of performance for the RM stimuli
and for lif and neem. Specifically, with this architecture, the RM model produced an
activation threshold that must fall between 0.77 and 1.11. The SST model activated both the
matching and mismatching units above this threshold (1.54 and 1.26, respectively).
Critically, for lif and neem, the matching object received activation above the threshold
(1.75), while the mismatching object’s activation fell below the threshold (0.70). The model
is able to recognize these non-minimal pair words, even without variability in non-
contrastive information.

3.2.2 F0 Variability—In the above simulations, we used the same F0 value on every SST
training trial. This matches Rost and McMurray’s (2009) version of the SST, which used a
single exemplar for all training trials. However, other labs have employed a version of the
SST in which the same speaker produces multiple instances of the stimulus (e.g. Stager &
Werker, 1997). It is likely that some small variability in F0 occurred between tokens, while
indexical features of the speaker’s voice remained the same. Empirically this was
insufficient to drive learning (the infants did not notice the switch), but it is important to
verify that our account shows the same result. Thus, we ran the SST simulation with
moderate variability in F0.

F0 values were selected from a Gaussian distribution centered on a single value for the
model (representing the speaker’s typical pitch). The Gaussians had a standard deviation of
1, ensuring that while multiple pitch values occurred, they clustered closely around the
speaker’s typical F0. Training and testing were identical to the above simulations. As in the
previous SST simulations, simulating small variability in F0 values yielded greater
activation for the matching than the mismatching target (0.81 vs. 0.51), and both exceeded

3Our interpretation of the results depends on comparing across two models with the same training parameters. However, if infants
habituate more rapidly during SST training because of the less variable (and thus potentially less interesting) stimuli, comparing
across equal number of training epochs may be problematic. Rost and McMurray (2009, in press) tested this idea on their empirical
data, and found that their training procedure elicited the same number of habituation trials as the SST (variable procedure: 18.3 trials;
SST procedure: 18.4 trials). Thus, it does not appear that the variable stimuli drive shorter (or longer) habituation times, so comparing
models with the same number of training trials is not only reasonable but preferable.
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the matching activation for the RM simulation (0.41). Both are activated beyond the
recognition threshold, so the model fails to notice the switch. As we increase this variability,
both units remain above threshold until we use a purely random distribution, yet at each step
activations decrease toward those of the successful RM values (see Figure 5). This suggests
that variability across a few non-contrastive dimensions (e.g. F0 height, F0 direction and F0
range) may be sufficient to enable word learning even with a single speaker producing
tokens.

3.2.3 Task Effects—Finally, we have not yet addressed why infants can succeed in single
speaker training when tested with a different task, particularly the two-alternative
preferential looking task used by Yoshida et al (2009). The SST simulations address this as
well. While both visual units exceeded the recognition threshold defined by the RM
simulation, the activation of the matching unit was greater than that of the mismatching unit.
This suggests that while the auditory stimulus is accepted as a match for both visual items,
the correct matching item still receives greater activation. The child will look more to this
item because it is a better match, though both would be accepted as appropriate in the one-
alternative Switch task.

Of course, these conclusions rely on our assumptions of how to tie activation levels to the
task the infant is performing—essentially, a task demands account built on an associative
core. In the Switch task, a threshold is appropriate, as the infant either looks or does not look
at the target item – the activation level determines whether the visual item is a sufficiently
good match to trigger recognition, and thus to show continued habituation. However, in the
preferential looking task, the mapping is more complicated; here the infant is not merely
deciding whether a visual stimulus matches the auditory input, but must decide which of two
possible stimuli better matches this input. While both stimuli may be acceptable matches to
the auditory word (both exceed the recognition threshold), the one with greater activation
will be a better match, and so draw more looks. These differences in how activation maps
onto behavior can explain why infants seem to exhibit word learning when tested in a
preferential looking task even if they seem to fail to learn object labels when tested with
one-alternative Switch tests (Samuelson, Schutte & Horst, 2009). When multiple items are
on the screen simultaneously, the relevant operation driving the behavioral response is the
comparison between their activation levels. When only a single item is on the screen, the
relevant operation is comparing that unit’s activation to some internal criterion or threshold.
Thus, our model does not rule out task-demands—it embraces them. However, it is not
general task demands (e.g. difficulty), but the way that the structure of a task maps onto the
activated representations built from associative learning.

3.3 Generality of the Findings
At first glance, our explanation of the SST might seem an arbitrary fact about where the
threshold is set. A concern for this and any computational demonstration is whether success
is simply the result of a “sweet spot” in the parameter space—a uniquely suitable set of
parameters. If different parameter settings yield different patterns of results, this weakens
claims that the empirical behavior results from basic core principles governing these effects
and may suggest limitations (Pitt, Kim, Navarro & Myung, 2006).

To test the generality of our account, we tested a large space of parameters, defined by the
free parameters of the model and the architectural choices we made. This included variation
in the number of training epochs; learning rate; how the input VOTs were chosen;
initialization of the weights; how F0 and indexical values were selected during training
(including the variable F0 manipulation detailed above); type of decay in the Hebbian
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learning rule; and use of tuning curves in the auditory banks (for details see Appendix B and
the Online Supplement).

Across these variants, 1600 simulations were tested with different parameter sets. While the
raw activation values varied depending on the parameters used, each simulation could be
classified in one of three ways. First, if the model failed to show more activation in the
match than mismatch in the RM version, it was incapable of learning the words with the
amount of training during typical habituation, and so is an invalid model. Second, the
simulation may have succeeded at learning in the RM condition, but the RM-derived range
of thresholds also predicted learning in the SST—a true failure to simulate the empirical
data. Third, the simulation could pass on both criteria (as the above simulations did); this
indicates successful simulation of the empirical data.

Figure 6 shows the results of this search. 86% of simulations were successful under this
metric: the activation for matching words was higher than mismatching in both the RM and
SST simulations; and, more importantly, in the SST simulation, both the match and
mismatch visual units exceeded the RM activation in the match condition. 6% of simulations
of models failed to learn the words entirely, and 8% learned the words but the RM threshold
predicts success in the SST (see the Online Supplement for an analysis of the failures). Thus,
of simulations that learned the words in the RM protocol, 91% showed the full empirical
data pattern. The fact that the vast majority of simulations succeeded suggests that these
results are fairly independent of specific parameter values – simple associative mechanisms
robustly predict this behavioral pattern.

Finally, our account also robustly models the Yoshida et al (2009) results. 99% of the
simulations we ran showed greater match activation than mismatch activation in the SST
(Figure 6). This would lead to more looks to the match target in a two-alternative
preferential looking design.

3.4 Discussion
These simulations demonstrate that simple associative learning principles can account for
the differences in performance in the Switch task as a function of variability. The SST
simulations learn to associate F0 and indexical values strongly with both visual items,
because the same values were presented on every training trial. Presentation of a test item
with these values activates both targets as the F0 and indexical values strongly predict both
visual units. While the VOT units allow the matching visual unit’s activation to exceed that
of the mismatching unit, both are activated to a high level. The model strongly activates both
units due to overspecification of lexical representations—they include both relevant details
like VOT, and also irrelevant details like speaker voice (e.g. Goldinger, 1998).

In the RM simulations, the association between a visual unit and any specific F0 or indexical
value never becomes strong. Each training trial causes different F0 and indexical units to
increment their connections with the visual units; however all of these connections remain
weak. Meanwhile, VOT is highly predictive of visual target identity, so these connections
become strong. When testing, the matching visual unit will receive strong activation from
the VOT unit and little activation from the F0 and indexical units. The mismatching unit will
receive little activation from any auditory units. The system thereby expects (strongly
activates) the matching object but not the mismatching one.

These simulations demonstrate that associative mechanisms can explain why adding
variability to the training stimuli in the Switch task improves word learning. While such a
manipulation appears to make the task more difficult by adding additional irrelevant
information that the infant must filter out, our associative account shows how multi-talker
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training can lead infants to better word learning by dispersing the connections between
voice-specific information and lexical identity.

An interesting implication of this is that infants’ failure to exhibit word learning in earlier
Switch tasks may be because the word learning environment was designed in a non-optimal
way once we realize that infants may know a lot less than we think (specifically: they do not
know how to interpret talker voice). Presenting stimuli with very little variability may
suggest to children that aspects of the speaker’s voice, which do not vary across multiple
repetitions of the word, should be part of lexical representations. By increasing variability in
the speakers producing the words, infants can better identify which aspects of the acoustic
information are meaningful.

Thus, infants’ failure to demonstrate word learning may be dependent on using highly
similar tokens across training and testing. During training, infants learn to associate both the
phonological information and the speaker-specific information with the visual objects. If
testing was done with a novel voice producing the items, infants may display better learning,
as the phonological information would match what they had learned, while the non-
contrastive information would not match either of the items. This represents another case in
which adding difficulty to the Switch task might improve performance.

4.0 Further Simulations
In this section we extended these simulations show how two important findings can emerge
from this simple associative account. First, we simulated the results of Rost and McMurray
(2010) which demonstrate the locus of the variability effect. Only variability in non-
contrastive information is sufficient to drive learning—variation in VOT alone does not
work. Additionally, we expanded the account to simulate the mispronunciation effects of
Ballem and Plunkett (2005), showing sensitivity to fine-grained phonetic information after
single-speaker training, when testing with a slightly different task.

4.1 Variability and Specificity
Rost and McMurray (2010) showed that variation in VOT, with no variation in non-
contrastive values, leads to failure to dishabituate on mismatch trials. They presented infants
with a range of tokens from the same speaker, but with VOT values that varied between
tokens in a bimodal distribution. In these experiments, infants failed to dishabituate on
Switch trials. Conversely, when VOT was held constant, but talker-voice varied, infants
learned the words.

To simulate this, we trained the same system with varying VOT values and unvarying F0
and indexical values. VOT values were selected from a bimodal Gaussian distribution. Each
mode was centered on the prototypical category value, with a standard deviation of 0.9. For
b VOTs, the distribution was centered on VOT unit 3, while p VOTs were centered on unit
8. As in the SST simulations above, and in Rost and McMurray (2010), a single F0 and
indexical value were used in every training trial.

The results for this simulation mirrored those for the SST simulation. Specifically, the
activation for the matching object, at 0.86, exceeded mismatch activation, at 0.74. Critically,
both values exceeded the match activation in the RM simulation (0.41); both match and
mismatch activations surpass the recognition threshold (Figure 7). The model recognized
both match and mismatch items as somewhat appropriate visual targets, and so did not
dishabituate to the mismatch, as seen in Rost and McMurray (2010). Interestingly, while the
match activation exceeded the mismatch activation, the difference in activation values was
smaller than in the SST simulation. This suggests that training with variable VOT but non-
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variable F0 and indexical information might lead to greater impairment in two-alternative
preferential looking testing.

Crucially, much like infants, it is not variability in general that drives good performance in
this associative mode; rather it is the relative variability between relevant and irrelevant
cues.

4.2 Mispronunciation effects
One initial interpretation of Stager and Werker’s (1997) findings was the hypothesis that
early lexical representations were underspecified and incapable of representing single-
feature differences. Some of the most important evidence against this underspecification
account has come from mispronunciation studies in which infants show reduced looking to
the target (e.g. a picture of a baby) when it is mispronounced by a single feature (vaby)
(Swingley & Aslin, 2002). Critically, Ballem and Plunkett (2005) showed this effect even
with newly learned words: infants trained on the non-words vope and tuke are sensitive to
the mispronunciation fope; that is, they treat fope differently than vope. Simulating this
required minor architectural changes (since Ballem and Plunkett did not use minimal pairs).
Given the importance of these findings in clarifying the nature of early lexical
representations, it was important to examine these results in our framework. Thus, we
incorporated additional input units to represent the training words used by Ballem and
Plunkett (2005).

This simulation used a set of VOT units (representing t vs. d), a set of fricative voicing units
(representing f vs. v) and a set of coda units (for coarsely coding offset information4). We
included F0 and indexical units, and again used two visual units, now representing tuke and
vope (Figure 8). On each training trial, the system was exposed to tuke or vope by activating
the appropriate visual and auditory units, and the same F0 and indexical units for each
exposure trial (since no studies have explored variability in this paradigm). Learning
proceeded as in previous simulations.

The system was tested on the correctly pronounced target item (vope) and a
mispronunciation (fope). As in Ballem & Plunkett (2005), this mispronunciation did not
create another word, and the VOT and fricative voicing units activated for mispronunciation
trials had not been presented during training. Visual activation of the tuke and vope units
was determined based on activation values and connection strengths from training.

After 120 training trials, activation for tuke (1.54) exceeded activation for vope (0.63) when
the correct tuke auditory units were activated. However, when a mispronounced tuke was
presented (duke5), tuke still exceeded vope, but the magnitude of the difference decreased
(tuke: 1.15; vope: 0.63; see Figure 9). When vope was presented, the pattern of activation
mirrored that of tuke: vope was more active than tuke, and this effect was smaller when fope
was heard. The decline in target activation when a mispronunciation is presented mirrors the
behavioral findings of decreased fixation of the 4 Our use of a single localist unit to
represent the entire coda is somewhat oversimplified. Further explorations with this
architecture in our lab have confirmed that incorporating more distributed coda
representations does not alter the results. 5 While duke is an English word, it should be
noted that it is not a word in the model’s lexicon, and is presumed to be absent from the

4Our use of a single localist unit to represent the entire coda is somewhat oversimplified. Further explorations with this architecture in
our lab have confirmed that incorporating more distributed coda representations does not alter the results.
5While duke is an English word, it should be noted that it is not a word in the model’s lexicon, and is presumed to be absent from the
vocabularies of 14-month-olds who are not members of the nobility.
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vocabularies of 14-month-olds who are not members of the nobility. target after a
mispronunciation (Ballem & Plunkett, 2005).

4.3 Discussion
These two final simulations demonstrate that a range of effects seen in early word learning
are compatible with an associative account. Variability in training items leads to improved
ability to demonstrate learning in a Switch task in our model, much like in the empirical
data. Further, our model emulates the selective benefit of variability in non-contrastive
information over variability in contrastive dimensions. The model, like infants, is aided by
variability in dimensions that are not criterial to phonological identity, while variability in
VOT leads to failure in this task. As such, it appears that simple associative mechanisms are
sufficient to explain why variability seems to help infants.

Additionally, these same mechanisms are effective in demonstrating why certain other tasks
seem to yield better word learning, even with single-speaker training. Ballem and Plunkett
(2005) found that children were sensitive to single feature mispronunciations of newly
learned words when tested with a preferential looking task. Associative mechanisms predict
this same pattern; even without variability in speaker-specific information, mismatching
phonological information is noticed and can thereby lead to decreased looks to the target.
While it is possible that variability in speaker during word learning in this task could
magnify these effects, the effects seen with single speakers are not incompatible with our
associative account.

5.0 General Discussion
We have demonstrated that basic learning processes can produce many of the behavioral
results seen in low variability Switch task studies (Stager & Werker, 1997; Werker et al,
1998, 2002; Pater et al, 2004), high variability Switch studies (Rost & McMurray, 2009,
2010), and two-alternative preferential looking studies (Ballem & Plunkett, 2005; Yoshida et
al, 2009). The critical link explaining why infant behavior varies so widely across these
studies appears to be the structure of the acoustic variability in the training set. When infants
are exposed to variable exemplars of words, their learning is focused on the consistent
pieces of information – in this case, phonological information. However, when additional
information is also highly consistent, as when a single speaker produces the words in a
highly similar intonation, infants also associate this non-contrastive information with the
object. This redundant information in the end reduces the contrast established by the
phonetic cues.

Such an account suggests that despite evidence of adult-like abilities to discriminate
between phonological categories (Kuhl et al, 1992; Werker & Tees, 1984), the task of
phonological acquisition is not yet complete early in the second year. The additional task of
phonological acquisition is to determine which dimensions meaningfully map on to words,
and which are not useful for identifying words (Dietrich et al, 2007). To accomplish this
second task, tracking the variability of different dimensions as they relate to object
categories appears to be a highly effective mechanism for determining which cues are
phonologically-relevant.

5.1 The plausibility of overspecification
Our account of early word learning posits overspecification of lexical representations, such
that acoustic information that is irrelevant to lexical identity is encoded as part of the word
form. While at first such indiscriminate encoding appears to be a contentious claim, there is
a sizable body of evidence supporting such an account. Thirteen-month olds associate non-
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speech sounds (e.g. beeps and whistles) with pictures as though these sounds are appropriate
object labels (Woodward & Hoyne, 1999; though Hirsh-Pasek, Golinkoff & Hollich, 2000,
only found this with non-speech sounds made by humans, e.g. sighs). Further, there is
evidence from segmentation tasks that at least as late as 10.5 months, infants encode
affective cues along with word forms (Singh, Morgan & White, 2004) and at 7.5 months
encode arbitrary variation in pitch (Singh, White & Morgan, 2008). When familiarized to
words with a happy affect or a specific pitch value, infants show a preference for passages
containing matching words only if they contain the same prosodic cues they heard during
training.

The PRIMIR framework also suggests that overspecification could account for Switch task
failures at 14 months (Werker & Curtin, 2005). Under this framework, infants encode all
available information, and the indexical information overwhelms processing capacity,
leading children to ignore phonological information. While this accords with our view of
overspecification, this account differs from our approach in suggesting that children are
ignoring phonological information; instead, we suggest that children use that information,
but it is insufficient to overcome the wealth of indexical information, that they also use for
word recognition. These talker cues suggest that the minimal pair words are the same,
leading to the failure. Additionally, it is unclear how PRIMIR’s account of overspecification
could accommodate the benefit of multiple speaker training in the Switch task.

More directly, adults associate speaker-identity cues with lexical items (e.g. Bradlow,
Nygaard & Pisoni, 1999; Creel, Aslin & Tanenhaus, 2008). Such associations are also
reasonable assumptions for development – languages like Chinese use pitch phonologically,
and many cues to speaker identity overlap with cues to phonation type (which is contrastive
in languages like Green Mong; Andruski, 2006). Thus, children should not have innate
constraints on which cues will be contrastive in their language; they must learn this to cope
with the incredible diversity seen across phonologies of the world’s languages. Our account
presents a mechanism for learning which acoustic dimensions are most useful
phonologically: the relative pattern of covariation between cues and words leads the child to
down-weight non-contrastive cues and up-weight contrastive ones. Tracking variability in
different acoustic dimensions is a highly effective tool in determining which dimensions
should be attended. Crucially, this mechanism is intimately bound up with the emerging
lexicon – variability is tracked with respect to specific words, and has its effect in the
associations between specific acoustic cues and words.

Our assumption that the 14-month-old does not know which cues are phonemically relevant
would seem to discount the learning already completed to this point. However, we are not
arguing that 14-month-olds have not learned anything – they can clearly discriminate speech
sounds (Eimas, Siqueland, Jusczyk & Vigorito, 1971; Werker & Tees, 1984), and may also
be able to categorize them (although categorization is irrelevant to Switch task studies, since
none have ever asked infants to generalize across different exemplars in a substantive way
[e.g. to a new speaker]).

Indeed, in the aforementioned studies by Singh et al (2004, 2008), infants’ ability to
generalize across affects seems to slightly improve between 7.5 and 10.5 months. Thus, the
ability to ignore this form of irrelevant variation is clearly developing as well. However, this
has only been tested in a discrimination task using highly differentiable, well-known words
(bike vs. hat), and so may not be sufficient for learning of minimal pairs at later ages. Thus
while infants may have begun this process of dimensional weighting by 14 months, there is
no reason to think it is complete. Indeed, Goldinger (1998) has shown that even into
adulthood, speaker-specific information plays an important role in lexical encoding,
especially for words that are heard infrequently. Moreover, if infants already knew which
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dimensions to attend for word learning, it is unclear why they would learn better in the Rost
and McMurray (2009, 2010) studies than in SST studies, and why learning (non-minimal)
pairs of words with similar contrasts can improve learning of some contrasts (Thiessen,
2007, 2010). Natural learning settings may allow infants to learn minimal pairs (e.g. ball and
doll), because of natural variability in non-linguistic information in these settings; the SST,
however, plays to their weakness by reinforcing encoding of non-contrastive cues. Indeed
while we have focused on auditory information as the source of false associations, it is
possible that additional contextual cues could be encoded early in word learning as is often
seen in memory tasks (Gooden & Baddeley, 1975).

5.2 Levels of representation
Our model assumes direct connections between acoustic information and lexical items,
without intermediate (e.g. phonetic) representations. Such direct connections between
acoustic information and object representations is consistent with exemplar models of
speech perception and word recognition (Goldinger, 1998; Hawkins, 2003; Pierrehumbert,
2001), and with associated evidence that indexical information affects adult spoken word
recognition (Bradlow et al, 1999; Creel et al, 2008; Goldinger, 1998). However, our model
contrasts with pure exemplar models in two ways. First, we predict the pattern of statistical
co-occurrence between cues and words eventually results in non-contrastive information
(like F0 and indexical information) receiving significantly less weight than contrastive cues
(though perhaps in a word-specific way). This can be accomplished by incorporating
dimensional weighting into an exemplar approach (Kruschke, 1992, 2001; Nosofsky, 1986;
Regier, 2005). While infant speech perception may start like a pure exemplar model, over
the course of learning, the ability to (at least partially) abstract away from irrelevant cues
emerges.

Second, and perhaps most importantly, individual exemplars are not stored in long term
memory—rather, the weights of the network store an accumulation of their traces.
Traditionally, exemplar approaches have confounded the encoding of speaker-specific
information and the storage of individual lexical exemplars. Our approach shows that these
two aspects can be separated; while our model does not need to store specific exemplars of
spoken items, it remains sensitive to speaker-specific cues. By incorporating the exemplar-
type sensitivity to speaker in a more prototype-style model, associative learning may offer
an alternative account of such effects without the controversial claims regarding storage of
huge sets of exemplars.

5.3 Other influences in early word learning
While our associative account can explain a fairly large set of the findings in word learning
in 14-month olds, there are a number of other factors that likely play an additional role. For
example, as the lexicon increases, infants become more able to learn minimal pair words
even with single speakers (Werker et al, 2002). At some point infants become able to
generalize their learning of which dimensions are meaningful to new words that they are
learning. As currently instantiated, our model weights cues on a word-by-word basis – it
cannot generalize this learning across words.

There are multiple ways one may be able to account for this. We earlier described perceptual
learning mechanisms that weight dimensions as a whole (perhaps using the relative
variability along each dimension as a source of information; Toscano & McMurray, 2010).
This may operate alongside the associative mechanisms outlined here, and would need to
work slower than these associative mechanisms to yield the right pattern of data. Such a
mechanism is reasonable – it would not be too costly if infants committed to the wrong cue-
weighting for a single word, while it would be substantially worse if an entire dimension
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were ruled out prematurely. Thus, one would want associative forms of cue-weighting to
work faster than perceptual learning.

Alternatively, Thiessen (2007) presents data that suggests that the distributional structure of
the lexicon may guide learning through feedback mechanisms. When children learn very
distinct words (dawbow and tawgoo), they were better able thereafter to learn the minimal
pair (daw and taw). Upon hearing daw, children may partially activate the learned word
dawbow. Feedback from this word could boost activation of the overlapping phonological
information, thus helping draw attention to the relevant aspects of word identity. Even if
irrelevant dimensions like talker voice were still being considered, this could help overcome
it. Such a feedback mechanism may explain why children gradually become better able to
learn minimal pair words. As phonological neighborhoods become more populated, a greater
number of words will be co-activated during novel word learning, leading to a large degree
of feedback suppressing irrelevant information. Indeed, Thiessen (2010) has shown just such
an effect of neighborhood populating. While learning dawbow and tawgoo was sufficient to
allow learning of daw and taw, this learning did not generalize to other vowel contexts (dee
and tee). However, exposure to a wider array of vowel contexts before minimal pair learning
helps infants generalize their learning to new contexts.

The lexical-feedback account could complement the associative mechanisms presented in
our simulations. At its core, this account suggests that learners achieve dimensional
weighting through links between acoustics and concepts. As more words are learned, the
consistent weak association between non-contrastive information and lexical identity is
more easily generalized to new words. A purely perceptual mechanism for dimensional
weighting may have more difficulty accounting for such an effect, as it appears to depend on
having formed links between acoustics and concepts.

Finally, word learning in the Switch task may not be an entirely auditory problem.
Presentation of known objects with their names prior to Switch task training yields better
word learning (Fennell & Waxman, 2010). This suggests the influence of higher level
systems on word learning, though it is unclear what those might be in this work. The initial
presentation may contribute to speaker familiarity or normalization affecting the way
speaker cues are coded, or it may alter the attentional state of the infant changing the way
activation thresholds map to responses. Regardless, such results may complement our own
by suggesting that this associative core must be embedded in a richer system that supports
language behavior and learning.

In this light, the associative mechanisms detailed in this paper are not meant to be an
exhaustive model of word learning, but rather to represent one key component to the system.
A number of features could be added to our model to make it a more complete account of
word learning, including the addition of intermediate stages between the auditory and visual
units (Schafer & Mareschal, 2001), dimensional attention weighting (Kruschke, 1992, 2001;
Regier, 2005), competition between units, or feedback (McMurray et al, 2009). However,
the primary goal of this study was to investigate the locus of variability effects in early word
learning, not to provide a comprehensive model of word learning. From these simple
simulations, it appears that the influence of variability in early word learning studies is
related to how associative mechanisms link acoustic information to visual categories.

6.0 Conclusions
We have demonstrated how simple associative mechanisms, using basic learning principles,
can account for the role of variability in early word learning, and explain differences in
sensitivity to minimal phonetic differences exhibited by children in an array of tasks. 14-
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month-olds fail in the SST not because they fail to encode contrastive cues, but because the
lack of variability in the training exemplars leads to association of non-contrastive
information with objects. Similarly, they succeed under multiple speaker conditions because
variability in non-contrastive information blocks their ability to associate it with the words.

Our account, and the simulations that support it, suggests that differences in Switch task and
preferential looking performance are not well described by resource limitations (Fennell &
Werker, 2003; Werker et al, 1998; Werker & Curtin, 2005), variable constraint settings
(Pater et al, 2004), lexical competition (Swingley & Aslin, 2007), phonological
underspecification (Yoshida et al, 2009), or probabilistic phonological encoding (Yoshida et
al, 2009). Instead, overspecification and the structure of word learning environment in these
tasks lead to the variations in displayed abilities. Not only do we argue that phonetic cues
are encoded in all these tasks, but non-contrastive information is encoded as well. As a
result, these differences will emerge from basic associative mechanisms because of the
incomplete nature of phonological understanding at 14 months coupled with tasks that
exploit this incomplete development.

Our use of basic learning principles to explain how variability interacts with and helps
explain phonological abilities mirrors work in learning theory, which has explained many
seemingly complex effects, like blocking, overshadowing and, learned irrelevance, as the
product of simple learning rules (Wasserman & Miller, 1997 for review). The application of
basic learning theory to dimensional weighting (or more specifically down-weighting of
irrelevant dimensions) has its roots in work from the 1950s on cue adaptation or cue
neutrality (Bush & Mosteller, 1951; Restle, 1955; Bourne & Restle, 1959). These studies
showed that learning is dependent on the statistical relationships between stimuli, which are
iterated over time. More recently, such findings have also been shown in statistical sequence
learning (Gomez, 2002), segmentation (Bortfeld & Morgan, 2010), and visual categorization
(Oakes et al, 1997; Quinn et al, 1993), where the variability in the category exemplars
determines whether learning will take place. Similar associative mechanisms to those
detailed in this paper may underlie all of these findings.

Perhaps the most important question raised by Stager and Werker (1997), however, does not
concern learning. Rather, it is whether early lexical representations are underspecified or are
sensitive to phoneme level contrasts. Our model proposes a third alternative. Early lexical
representations are not underspecified – they are overspecified, including much irrelevant
information. Yet associative learning, coupled with the fact that only contrastive cues
consistently vary with word identity, appears to be sufficient to overcome this. As a result, it
offers a compelling account of children’s successes and failures in word learning.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Modeling non-minimal pair learning
Our model of learning non-minimal pair words (lif and neem) without variability in speaker
voice required minor changes to the model architecture. While buk and puk overlap in all
but the onset phoneme, lif and neem differ at every position. As such, to more accurately
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represent the differences between stimuli, it was necessary to use representations that
included information on each position in the word.

To this end, we employed three banks of phonological input units. Each bank offered a
coarse, localist phoneme encoding for one word position. While richer representations
would more accurately match the acoustic differences between the words, we began this
simulation with the simplest possible representations. Adding featural or cue-based phoneme
representations would serve to further differentiate the items lif and neem, and so would not
alter the results of our simulations.

The units in the onset phoneme bank could represent l, n, b or p, to allow the model to
represent lif, neem, buk or puk. Similarly, the middle phoneme bank allowed representation
of I, i and u, while the coda phoneme bank had values f, m and k. We included banks of F0
and indexical information as well.

Parameters
This model used the same base parameters as our initial SST and RM models. Specifically,
units were initialized with connection weights of 0; the model was trained for 120 epochs at
a learning rate of 0.01; units were localist, and thus did not include tuning curves; F0 and
indexical information were uncorrelated with each other; and F0 values were either constant
(in no-variability simulations) or completely random (in variability simulations). The same
learning rule presented in the paper was used, in which connection weights were augmented
when auditory and visual units were both activated, and all weights slightly decayed on each
trial.

Training
To train the model, an auditory word was presented by activated the appropriate phonetic
units and a single F0 and indexical unit. The model was trained in three conditions: learning
lif and neem without variability in speaker voice (Werker et al, 1998); learning buk and puk
without variability in speaker voice (Stager & Werker, 1997; Werker et al, 1998); and
learning buk and puk with speaker variability (Rost & McMurray, 2009, 2010). In no-
variability simulations, the same F0 and indexical units were activated on every trial. In
variability simulations, a random F0 and indexical value was chosen on each trial. During
each training trial, the word that was presented to the model was accompanied by its
corresponding visual unit.

Testing
At the conclusion of training, the model was tested by activating an auditory word and
calculating visual expectations. This calculation was performed by multiplying each
activated unit by its connection strength to an output unit. The sum of all such inputs
represented that output units activation. For each model, the visual unit matching the
auditory word was considered the “matching” unit; the visual unit representing the other
word trained for that model was the “mismatching” unit – that is, for the lif and neem
simulation, if lif was presented auditorily, the visual lif unit represented the matching unit,
while the visual neem unit represented the mismatching unit. The values presented in Figure
4 of the paper represent the average activation across both trials for the matching and
mismatching unit.
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Interpretation
As in the other simulations reported in this paper, interpretation of the results should be
considered relative to the activations from the RM model simulating learning buk and puk
with variable training exemplars. As we know this training methodology yields successful
word learning, we can use the activations from this simulation as a guide to the activation
threshold required for successful word recognition. Thus any words with activation below
that of the mismatching unit from the RM simulation must be below the activation threshold,
and so will not be recognized as matches to the auditory stimulus. Similarly, words with
activation greater than that of the matching unit in the RM simulation exceed the recognition
threshold, and so will produce recognition as matches to the auditory stimulus. As can be
seen in Figure 4, the model predicts successful recognition of only matching words when
learning lif and neem, while it accepts both matching and mismatching words as appropriate
object labels when trained with buk and puk in the SST methodology.

Appendix B: Parameter space search
To explore the generality of the model’s results, we manipulated the free parameters to
explore how they affected model behavior. In particular, we wanted to show that the
model’s success at capturing the stimuli and task differences was not an artifact of any
specific parameter settings. Thus, we varied the following factors, testing all possible
combinations.

1. Pitch variability (2 levels, as described in F0 Variability): A) F0 in the SST model
was constant, always using the same value. B) F0 in the SST model was selected
from a Gaussian distribution centered around a typical value (node 5), with a
standard deviation of 1.

2. Number of training epochs (5 levels): 30, 60, 90, 120, 180

3. Learning rate (5 levels): .001, .005, .01, .05, .1

4. Selection of VOT: during training of the RM model (2 types). A) During training,
VOTs were chosen such that b was always node 3 and p was always node 8, as
described in the main text. B) VOTs were chosen from a bimodal distribution such
that b trials used a VOT selected from a Gaussian distribution centered at node 3,
with a standard deviation of 0.9, while p trials’ VOT was centered at node 8 (as in
McMurray, Aslin & Toscano, in press). Selections outside the range of VOT values
were set to extreme values (so selections less than 1 were set to VOT value 1, while
selections greater than 10 were set to value 10). For testing, we used the
prototypical VOT values (unit 3 for b trials, unit 8 for p trials).

5. Initial connection strengths (2 levels): A) Connection strengths were initialized to
0. B) Connection strengths were initialized to small random values between 0 and .
1.

6. Pitch and timbre selection (2 levels): A) F0 and indexical values in the RM model
were uncorrelated with each other. B) F0 and indexical values were perfectly
correlated with one another (e.g. if F0 node 2 was active, indexical node 2 was
active). This simulates their correspondence in natural speech.

7. Auditory units representation (2 levels): A) Localist units were used to represent
the auditory information, such that a single auditory unit in each bank was
activated. B) Tuning curves were used in the auditory banks, with multiple units
active on each trial. An array of units was activated, with a peak of activation at the
chosen target VOT node (from Parameter 3). The peak unit activation was set to 1,
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while the remaining units’ activations were determined by a Gaussian with a
standard deviation of 0.3. During testing the same protocol was used to set auditory
activation.

8. Decay in the learning rule (2 levels): We considered two variants of Hebbian
learning, both of which varied in the way that weight decay was implemented. A)
All weights decayed (Equation 1). B) Decay was based on anticorrelations.
Connection strength decayed if the auditory unit was more active than the visual
unit, according to the rule:

(2)

Across these seven factors, we examined all 1600 different possible combinations. 86% of
models showed the behavioral pattern: greater match than mismatch activation in both RM
and SST models, and greater mismatch SST activation than match RM activation. Of the
remaining models, 6% failed to learn to discriminate the words in the RM model (primarily
due to very small learning rates); and 8% showed greater RM match activation than SST
mismatch activation. Among models that learned under the RM training regime, 91%
showed the predicted pattern of results.

Many parameter settings did not have a major effect on model success. However, models
with initial weights of 0 performed slightly better than those with initial random values
(93% vs. 90%); varying VOTs in the RM improved performance (98% vs. 85%); and
varying pitch in the SST impaired performance (99% vs. 84%). These effects are explored in
more detail in the Online Supplement.
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Figure 1.
A) Results of learning with non-varying pitch values (e.g. Stager & Werker, 1997). VOT
values become strongly predictive of visual target identity, while trained F0 values become
strongly associated with both visual targets. Note: this figure only presents F0 data for
simplicity; indexical values would be expected to mirror F0 data. B) Results of learning with
variable F0 values (e.g. Rost & McMurray, 2009). VOT values are strongly predictive of
visual target identity, while F0 values are very weakly and diffusely related to visual targets.
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Figure 2.
Schematic of the SST and RM models.
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Figure 3.
Expectation values generated from testing the RM and SST models. The recognition
threshold must fall between the activation of the match and mismatch items in the RM
model; both match and mismatch activation in the SST will exceed any threshold between
these values.
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Figure 4.
Expectation values generated from the lif and neem model. When trained on buk and puk
with the SST methodology, both units are activated above the recognition threshold from the
RM buk and puk simulations. However, for lif and neem, only the matching unit exceeds the
recognition threshold, while the mismatching unit falls below the threshold.
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Figure 5.
Expectation values generated by the RM model, compared against various iterations of the
SST model with different variability in F0. The lower panel displays histograms of the
distribution of F0 values in the different conditions. In the SST model with no F0 variability
and with small F0 variability, both the match and mismatch expectation values exceed the
match value for the RM model. When a large amount of F0 variability was added, the SST
mismatch activation began to enter thethreshold range from the RM simulation.
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Figure 6.
Results from parameter manipulations. The vast majority (86%) of models showed the
empirical pattern of results, in which match was greater than mismatch activation for both
RM and SST models; and both match and mismatch activation for the SST model were
greater than match activation for the RM model. Of models that failed, 6% failed because
they were incapable of learning the items at all (often due to very small learning rates); 8%
failed because the threshold for learning in the RM model also predicted learning in the SST
model.
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Figure 7.
Expectation values generated from simulations of Rost and McMurray (2010) compared to
expectation values from the RM model. In the Rost and McMurray (2010) simulations, F0
and indexical values do not vary while VOT around prototypical values; both match and
mismatch activations in this simulation will exceed the recognition threshold for the RM
model.
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Figure 8.
Schematic of the model used to simulate Ballem and Plunkett (2005).
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Figure 9.
Results of simulations of Ballem and Plunkett (2005). When presenting a correctly
pronounced target, activation of the target exceeds that of the competitor: the model
correctly activates the correct target. When a mispronunciation is presented, this difference
decreased, representing children’s decreased looking preference for mispronounced targets.
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