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Abstract

Word representations are mathematical objects that capture the semantic and syn-
tactic properties of words in a way that is interpretable by machines. Recently, encoding
word properties into low-dimensional vector spaces using neural networks has become
increasingly popular. Word embeddings are now used as the main input to Natural
Language Processing (NLP) applications, achieving cutting-edge results. Nevertheless,
most word-embedding studies are carried out with general-domain text and evaluation
datasets, and their results do not necessarily apply to text from other domains (e.g.
biomedicine) that are linguistically distinct from general English. To achieve maxi-
mum benefit when using word embeddings for biomedical NLP tasks, they need to be
induced and evaluated using in-domain resources. Thus, it is essential to create a de-
tailed review of biomedical embeddings that can be used as a reference for researchers
to train in-domain models.

In this paper, we review biomedical word embedding studies from three key aspects:
the corpora, models and evaluation methods. We first describe the characteristics of
various biomedical corpora, and then compare popular embedding models. After that,
we discuss different evaluation methods for biomedical embeddings. For each aspect,
we summarize the various challenges discussed in the literature. Finally, we conclude
the paper by proposing future directions that will help advance research into biomedical
embeddings.

Keywords: word embeddings, biomedical NLP, evaluation

1 Introduction

Representation learning, when applied to textual data, generates word representations which
capture the linguistic properties of words in a mathematical form (e.g. vectors). Each vector
dimension corresponds to a feature that might have a semantic or syntactical interpreta-
tion (Turian et al., 2010). Most early studies employed human experts to propose a set of
representative features for the data, which was expensive to obtain. Recently, an unsuper-
vised approach, which encodes word meanings into a low-dimensional space using neural
networks, has been proposed as an alternative (Bengio et al., 2003). Named neural word
representation or neural word embeddings, this approach represents each word as a dense
vector of real numbers, where synonyms appear as neighbors in the vector space. It can
learn features in an unsupervised manner from large unlabeled corpora.
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While word embeddings have been shown highly beneficial in recent works, most studies
are carried out with general-domain text and evaluation datasets, and their results do not
necessarily apply to text from other domains (e.g. biomedicine) that are linguistically dis-
tinct from general English. To achieve the maximum benefit when using word embeddings
for biomedical Natural Language Processing (NLP) tasks, they need to be produced and
evaluated using in-domain text. Thus, the goals of this article are to survey the cutting-edge
models in vector space word embeddings and how they have been applied in biomedical text.
We aim at covering topics for those who are new to the area, and also topics that give a
new perspective to those who are already familiar with the area.

We assume our readers have a basic understanding of linear algebra (e.g., matrices and
vectors). Additionally, we assume they have some familiarity with computational linguistics
(e.g., vector space semantics) and deep learning (e.g., the Bidirectional Long Short-Term
Memory, Bi-LSTM). However, if readers would like to do some further background reading,
we refer them to Manning et al. (2008), Schütze and Pedersen (1993), as well as Hochreiter
and Schmidhuber (1997) for further details.

We collected papers from various sources like PubMed, Google Scholar, ScienceDirect,
ACL Web Anthology and AAAI. We confined to the papers which were mainly published in
the period January 2016 to September 2020 because of the recent popularity of embeddings.
We used keywords like “deep learning”,“biomedical”, “clinical”, “embeddings”, “natural
language processing” and “word representations” to retrieve the relevant papers and gath-
ered 200 articles. After the removal of duplicate articles as well as the ones which were
irrelevant to biomedical NLP, the number of articles were reduced to about 150. Finally, we
focused on the most relevant 70 papers after a manual review of all the remaining articles.

This article is structured as follows. Section 2 provides a description of various cutting-
edge embedding models. From Section 2.1 to 2.3, we present an overview and comparison
of some embedding models (e.g., Word2vec) that are widely used in the general domain.
After the high-level model framework is in place, Section 2.4 describes how these models
have been applied in biomedical NLP tasks. In Section 3, we present a summary of various
types of corpora for learning word embeddings. These include corpora of different domains
(general English/biomedicine), sources (e.g., scientific literature and social media) and lan-
guages (English/non-English). By the end of Section 2 and 3, the readers will have a general
understanding of various embedding models and their training corpora. We then take a de-
tailed look at the evaluation methods for biomedical embeddings in Section 4. In particular,
we mention two lines of evaluations: the intrinsic and extrinsic methods. The former mea-
sures the intrinsic properties of embedding models (e.g., how well it captures the notion
of word similarity), whereas the latter measures how well individual models perform when
used as features for extrinsic/downstream NLP tasks (e.g., relation classification). Based
on the two lines of evaluations, we include some quantitative and qualitative performance
from embeddings trained on difference corpora (biomedical v.s. non-biomedical) and model
architectures. Later on, Section 5 considers the issues and directions of word embeddings,
raising some questions about their power and their limitations. Finally, we conclude in
Section 6.

2 Word Representation Models

The core principle of representation learning algorithms is developed on the basis of the
distributional hypothesis, which suggests that lexical items with similar distributions share
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similar meanings. More specifically, words that are used and occur in the same context
tend to have similar meanings (Harris, 1954). Since distributional information (e.g. word
co-occurrence counts) is largely available for many languages and can easily be extracted
from large unannotated texts without depending on other NLP pipelines, the unsupervised
learning of word representation using the distributional hypothesis has become widely pop-
ular.

In the literature, a wide range of representation models have been proposed. Early
studies used bag-of-words models (e.g. word co-occurrence matrices, see Section 2.1) to
represent the features of individual words. However, a high-dimensional, sparse matrix
is needed to represent every word-word occurrence in corpora. There are several ways of
reducing the dimensionality and sparsity of a matrix. Examples include Latent Semantic
Analysis (LSA) (Deerwester et al., 1990; Foltz, 1996) which uses Singular Value Decomposi-
tion (SVD) (Golub and Reinsch, 1971) to decompose the co-occurrence matrix into a lower
dimensional space, and Random Indexing (Kanerva et al., 2000) which considers the word-
word occurrence within a fixed-size context window. Further, what is becoming particularly
popular is encoding word semantics into a dense vector using a neural network, as proposed
by Bengio et al. (2003). This method is commonly known as Neural (word) embedding.
A neural embedding’s learning algorithm functions much like a language modelling task,
whose goal is to predict the next word given the previous ones in a sentence. Each word is
represented as a finite-dimensional vector of real numbers, and the objective is to maximize
the joint probability of a word and its context in terms of word vectors, using a feed-forward
neural network. Word vectors are updated using back-propagation and gradient descent.
Among these neural embeddings, the three widely-used models are the Global Vectors for
word representations (GloVe) by Pennington et al. (2014), the Word2vec by Mikolov et al.
(2013a) and the FastText by Bojanowski et al. (2017) (see Section 2.1 and Section 2.2).

Word co-occurrences are frequently used to derive word representations since they are
easy to obtain. For example, Levy and Goldberg (2014c) proposed a word representation ap-
proach based on SVD and a variant of the PMI (namely, Shifted Positive PMI). They showed
that using the Shifted Positive PMI to represent words can obtain high performance when
the corpus size is limited. Other word-word relations have also been considered. Regard-
ing this, Levy and Goldberg (2014a) utilized the syntactic dependency relation to generate
neural embeddings, better capturing the topicality of words. Further, Ammar et al. (2016)
leveraged the word-pair mapping in parallel corpora to create multilingual embeddings.
In particular, they used monolingual data, pairwise parallel dictionaries and clustering al-
gorithms to induce neural embeddings of more than fifty languages. Additionally, Yu and
Dredze (2014) proposed a new learning objective for modelling the word-word relations (syn-
onyms) in resources other than corpora, such as lexicon or ontologies (WordNet) (Miller,
1995).

The aforementioned approaches make effective use of different word-word relations to
derive embeddings for words, but they have several weaknesses that should be addressed.
One arises when dealing with out-of-vocabulary (OOV) words: if a token has never been
seen before, then the model does not have an embedding and it needs to fall back on a
generic OOV representation. To tackle this, Luong et al. (2013) used a recursive neural
network to model word features based on their morpheme composition. Additionally, Bo-
janowski et al. (2017) proposed FastText, which can handle OOV terms by extending the
word2vec model with sub-word information, in the form of character n-grams (see Section
2.2.1). These types of character embeddings provide a better way of handling unseen words,
whose representations can be constructed from vectors of known morphemes. Apart from
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this, there are representation methods that leverage the unique structural properties existed
in specific languages (e.g., strokes in Chinese). Regarding this, Cao et al. (2018) proposed
to learn the representation of Chinese characters by considering their similarities in strokes
formation. To illustrate, 口(mouth) and 目(eye) share similar strokes sequences: 丨, フ,
一, and such information can thus act as an indicator of their relatedness properties. Addi-
tionally, the similarities in radical components have been considered as features in learning
Chinese and Japanese (Kanji) character representation (Chen et al., 2020; Toyama et al.,
2017). The rationale is that similar characters share similar radicals. For example, 树(tree)
and 森(forest) shares the radical: 木(wood).

For a single word, there can be different meanings depending on the context in text
(i.e. word polysemy). Thus, it is ineffective to capture the word polysemy using only one
embedding for each word. In view of this, Tian et al. (2014) proposed the Multi-prototype
embeddings to represent different meanings of a word using multiple word embeddings, as
derived from probabilistic models based on the different context of polysemous words. Re-
cently, Peters et al. (2018) proposed Embeddings from Language Models (ELMo), which
generate embeddings for words based on their context, by making use of the character em-
beddings and Bi-LSTM. For each word, the character embeddings encode its morpheme
composition, and the Bi-LSTM encapsulates all preceding information, as well as all infor-
mation that follows. This results in a highly contextual representation (see Section 2.3.1).

Representation models encode the semantic properties of words, and are used to pro-
vide features for NLP applications. These features can be learned in several ways. For
example, Collobert and Weston (2008) proposed the learning of task-specific embeddings.
Here, embeddings are learned as part of a neural network to solve a particular task (sep-
arate from word co-occurrence prediction). These embeddings capture task-specific word
features (e.g., the nouns Protein and Gene are similar in Part-of-Speech (POS) tagging).
Furthermore, Turian et al. (2010) demonstrated the usage of pre-trained neural embeddings
in downstream applications such as named-entity recognition (NER) and chunking. Here,
a word representation model is first learned from external corpora independent from the
applications to be built (a.k.a. pre-trained). It is then adjusted (a.k.a. fine-tuned) to fit
into an application as additional features. The idea of pre-training and fine-tuning em-
beddings based on the corresponding downstream tasks was incorporated into a relatively
successful methodology, called Bidirectional Encoder Representations from Transformers
(BERT) (see Section 2.3.2).

We have provided an overview of several representation models which encode word,
character and contextual features. Among them, we pick five cutting-edge models (GloVe,
Word2vec, FastText, ELMo and BERT) and describe them in detail, then we explain how
they have been used in the biomedical domain.

2.1 GloVe

Global Vectors for word representations (GloVe) was proposed by Pennington et al. (2014).
In GloVe, a word co-occurrence matrix is generated, where rows represent the words and
columns represent the context. To illustrate this, consider the three sentences below:

1. I love chemistry.

2. I love maths.

3. I tolerate biology.
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When co-occurrence frequencies are extracted at a sentence level, every word is said to
be in the context of another word in the same sentence, and the corpus can be represented
in the following matrix form:

M =

I love Chemistry Maths tolerate Biology


I 0 2 1 1 1 1

love 2 0 1 1 0 0
Chemistry 1 1 0 0 0 0
Maths 1 1 0 0 0 0
tolerate 1 0 0 0 0 1
Biology 1 0 0 0 1 0

M represents the matrix of the co-occurrence frequencies of words in the corpus. Each
value in M is interpreted as how frequently a word co-occurs with its context. Factorization
of the co-occurrence matrix results in a low-dimensional matrix, where rows represent words
and columns represent features. Each row in the low-dimensional word-feature matrix is
the dense vector representation of a word, where the size of the feature can be preset to the
required value. The objective function in the GloVe model is

V∑
i,j=1

f(Xij(w
T
i w̃j + bi + b̃j − logXij)

2 (1)

Here, V refers to the vocabularies in the corpora and f is a weighting function. Xij

is the co-occurrence matrix for a target word (i) and its context word (j), and wi, wj , bi
and bj are a set of trainable parameters for i and j, where wi and wj are the embeddings,
and bi and bj are their corresponding biases. Intuitively, GloVe learns neural embeddings
by minimizing the reconstruction error between co-occurrence statistics predicted by the
model and global co-occurrence statistics observed in the training corpus.

2.2 Continuous Bag-of-Words (CBOW) and Skip-gram

The CBOW and Skip-gram are two cutting-edge neural embedding algorithms introduced
by Mikolov et al. (2013a,b) as part of the Word2vec tool. CBOW and Skip-gram have
been shown to produce highly competitive neural embeddings in many intrinsic and extrinsic
tasks (Pyysalo et al., 2013; Baker et al., 2016; Rei et al., 2016b; Tsvetkov et al., 2015), as
compared to early models such as Random Indexing (Kanerva et al., 2000) and Latent
Semantic Analysis (Landauer and Dumais, 1997), among others.

CBOW and Skip-gram learn neural embeddings through a neural network, which is
composed of an input layer, a fully connected hidden layer, and an output layer. The size
of the input layer is equal to the vocabulary size of the corpus (given a frequency filtering
threshold), and each word is represented as a one-hot vector (i.e. a vector of size |V | where
one dimension is set to 1 to indicate a word, and other dimensions are set to 0). The hidden
layer corresponds to the dimensions of the output word vectors. If a corpus consists of |V |
words whose word vectors are of dimension D, then the hidden layer will be a matrix of size
V ×D, where each row corresponds to a word (as illustrated in Fig 1 and Fig 2). The output
of the hidden layer is essentially the product of the hidden layer weight matrices (which are
the learned embeddings). The size of the hidden layer is a hyper-parameter pre-defined by
the users. While a higher dimension captures more word information, its training produces
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a larger word representation matrix and is more computationally expensive (Mikolov et al.,
2013c).

Figure 1: An illustration of the CBOW model with window size 2. The model is predicting
the root word ‘brown’ given the context ‘the quick fox jumps’. V is the total number of
words in the corpus, and D is the dimension of the word vectors. The symbol

∑
indicates

the average of the input context word (c(wt)) vectors multiplied by the hidden layer weights.
The Softmax function estimates a probability distribution over all words in the vocabulary.

Figure 2: An illustration of the Skip-gram model with window size 2. The model is pre-
dicting the root word ‘brown’ given the context ‘the’. Every word-context pair is trained
individually. V is the total number of words in the corpus, and D is the dimension of the
word vectors. The Softmax function estimates a probability distribution over all words in
the vocabulary.

CBOW and Skip-gram aim to maximize the probability of an individual word given its
context: P (wt|c(wt));w ∈ V , where wt refers to the root word (i.e. the target word to
be trained), V is the vocabulary of the corpus, and c(wt) is the set of context words that
surround the root. The size of the context window defines the range of words to be included
as the context of a root word, which again, is a hyper-parameter pre-defined by users. For
instance, a window size of 2 takes two words before and after a root word as its context for
training. The window size is an important hyper-parameter in embedding learning models

6



because it controls the number of words to be considered as the context for representing an
individual word. A wider window may be required when training on text that is full of long
sentences containing complex clausal structures (e.g. biomedical literature). Additionally,
it has been shown that the window size of a model influences the types of word semantics
it captures: a larger window size emphasizes the learning of topic similarity between words,
while a narrow context window leads the representation learning to primarily capture word
functions (Turney, 2012).

A key difference between the trainings of CBOW and Skip-gram is their differentiated
ways of denoting the context words (i.e. c(wt)). In CBOW, context is defined as the average
of word vectors ~ci within the window (size = i), and is calculated as follows:

c(wt) =
1

|c(wt)|
( ∑
ci∈c(wt)

~ci
)>

(2)

In contrast, Skip-gram considers each context word in a window as a distinct vector,
which is calculated as:

c(wt) =
(
~ci
)>

(3)

Consequently, the output layer generates a probability value for the root word. This is
done by converting the activation values output by the hidden layer into probabilities using
the Softmax function, as follows:

P (wt|c(wt)) =
exp( ~c(wt)

>
· ~wt)∑

vi∈V exp( ~c(wt)
>
· ~vi)

(4)

CBOW and Skip-gram operate on a Log Bilinear language model architecture. It com-
putes the context vector c(wt) as a linear combination of the previous word vectors ~ci. The
Log Bilinear refers to the part that the log of the numerator is a bilinear map for the con-
text and root vectors (in Equation 4). The architectures of CBOW and Skip-gram share
similar training parameters (e.g. context window size and vector dimension). Nevertheless,
Skip-gram individually maps every word-context pair within a context window, making it
intractable when used with a large amount of training data. Thus, its approximation coun-
terpart – CBOW is introduced. This model only estimates the probability of each root
word with the context average within the window. Other approximation techniques, such as
negative sampling and sub-sampling, are also introduced as user-defined parameters in the
Word2vec package. These parameters control the number of training samples and facilitate
the effective Skip-gram training in a large corpus. However, it is still uncertain how these
training parameters influence the quality of the learned model.

In general, both Word2vec and GloVe learn the representations of words based on the
context. The difference between them is that Word2vec leverages intra-sentence (local)
context, whereas GloVe incorporates matrix factorization methods in leveraging the inter-
sentence (global) statistics of words.

2.2.1 FastText

Both GloVe and Word2vec are trained on word co-occurrence frequencies to capture word
features at a word-level. However, many word formations, especially in biomedicine, follow
morphological rules (e.g. phosphorylate and dephosphorylate). It is possible to improve
embeddings by incorporating both word- and character-level information. With this in
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mind, Bojanowski et al. (2017) proposed the FastText embedding model. FastText is an
extension and improvement of the Word2vec model that incorporates sub-word information
when learning embeddings. In the FastText model, each word is treated as a bag of character
n-grams. Each character n-gram is mapped to a dense vector and the sum of these dense
vectors represent the word. 1

By utilizing sub-word information, FastText can provide embeddings for unseen words.
This is because even if a testing word is unseen during training, its embedding can be
obtained using the sum of its character n-grams.

2.3 Contextualized Embeddings

In GloVe, Word2vec and FastText, the features of each word is represented by a single
vector, disregarding the fact that its meaning and sense vary according to the context in
which it is used (i.e. polysemy). This isn’t always desirable in many tasks where word
sense ambiguity can lead to lower performance, such as parsing, semantic role labelling, and
NER (Tenney et al., 2019). Contextualized embeddings solves this problem by generating
a different embedding for the same word given different context as input. In this section we
describe two important algorithms in this line of work: ELMo and BERT.

2.3.1 ELMo

Peters et al. (2018) introduced ELMo (Embeddings from Language Models) which gen-
erate contextual embeddings by considering the contexts and morphological structures of
individual words at each state in text. This way, the embeddings of the same word can vary
depending on their syntactical contexts and morphological structures in text. The model
architecture of ELMo is shown in Figure 3. It consists of multiple layers of Bi-LSTMs with
character-level embeddings to encode contextual and sub-word information. The character-
level embeddings are generated by first converting each word to an appropriate represen-
tation using its character formation (see Figure 4). These character representations are
then run through a convolutional layer, followed by a max-pool layer to get a fixed-length
representation of the entire word. Using convolutional filters allows ELMo to capture the
character n-gram features that lead to a more powerful representation. Additionally, similar
to FastText, using character embeddings ensures that ELMo can form a valid representa-
tion for OOVs. Finally the character representation is passed through a two-layer highway
network, which allows smoother information transfer through the input, before being fed
into the Bi-LSTM layer. The vanilla ELMo has two layers of bidirectional LSTM, and the
residual connection is added between the first and second layers. Residual connections are
used to allow information to flow through a network directly, without passing through the
(intermediate) non-linear activation layers. ELMo uses Bi-LSTM in training, so that its
language model not only understands the next word, but also the previous word in the sen-
tence. An embedding of each word (k) is obtained as a weighted sum of the character-level
embeddings (X) and the hidden states of the Bi-LSTMs (H), as followed:

ELMotaskk = γk · (stask0 ·Xk + stask1 ·H1,k + stask2 ·H2,k) (5)

1For example, the vector for the word neuron is the sum of the vectors of neur, euro, uron, neuro, euron
etc, if we pre-defined the hyper parameters minn=4 and maxn=5 which represent the sizes of smallest
and largest character n-grams.
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here, si are the weights on the word and hidden representations from the language model and
γk is a task-specific scaling factor. This factor allows ELMo to fine-tune its representation
based on the downstream tasks it is used for (e.g., document classification and sentiment
analysis). To use ELMo in a task, the weights of the trained language model (i.e., ELMotaskk )
need to be frozen and concatenated with the input representation of the task-specific model.
The weighting factors γk and si are then updated during training of the task-specific model.

Figure 3: An illustration of the ELMo model. The model is predicting the root word ‘The’
given the context ‘quick brown jumps’. X is the representation of an individual word which
is learned based on its morpheme composition (see Figure 4), and H1 and H2 denote the
hidden state representations of the two Bi-LSTM layers. The dotted line indicates a residual
connection. The symbol f is a function that combines the three sets of representations (X,
H1 and H2) into the final output.

Figure 4: An illustration of how the word representation of ‘The’ is generated from its
morpheme composition. Here, ‘The’ is first embedded as its individual character form:
T, h, e, then the character embeddings run through the convolutional layer and highway
network to get a fixed-length representation of the entire word.
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2.3.2 BERT

Similar to ELMo, Bidirectional Encoder Representations from Transformers (BERT) (De-
vlin et al., 2019) is a contextualized neural embedding model, which learns embeddings by
leveraging the contextual relationships between words (or sub-words) in text. The model
architecture of BERT is shown in Figure 5. It consists of four parts: the input is a sequence
of words, which are first embedded into vectors (Input Embeddings) and then processed by
the Transformer Encoder (Vaswani et al., 2017). The output is a set of extracted feature em-
beddings (Output Embeddings), each of which represents local context for the corresponding
words in the document. The output embeddings are used as features to produce predictions
for two tasks: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). We
will now describe each part in detail.

Input embeddings

In BERT, each input embeddings is a combination of three embeddings, namely:

1. Token Embeddings: The embeddings learned for the particular word from the
WordPiece vocabulary (Yu et al., 2018).

2. Sentence Embeddings: In NSP, BERT predicts whether a given pair of sentences
are consecutive. To help BERT distinguish between them, a sentence embedding is
added to indicate, for a particular word, whether it belongs to sentence A or B.

3. Position Embeddings: These encode the position of each word in a sentence.

Transformer Encoder

A Transformer Encoder is composed of two main layers. The first is a (multi-head) Self-
Attention layer which models the contextual features for individual words. The second
is a position-wise fully connected feed-forward network to compute non-linear hierarchical
features. Around both of these two layers, BERT employs a residual connection, followed
by layer normalization (Ba et al., 2016) to stabilize the learning process. The output of
each sub-layer is normalized as : LayerNorm(x + Sublayer(x)), where Sublayer(x) is the
function operated by the sub-layer itself.

A Self-Attention layer maps the input embeddings, a query (Q) and a set of key-value
pairs (K, V ) to an output vector using an attention mechanism (see Figure 6). Given the
query and key vectors of dimension dk, as well as value vectors of dimension dv, the attention
score is calculated as:

Attention(Q,K, V ) = softmax(
QK√
dk

)V (6)

Here, the layer computes the dot products of the query (Q) with all keys (K), divides each
by 1√

dk
, and applies a softmax function to obtain the weights on the value vectors. When

the encoder is learning the embeddings for a word at a certain position, the attention score
determines how much focus it should place on other parts of the input sentence. Instead of
applying the attention function on a single set of Q,K, V , Vaswani et al. (2017) reported
that it is beneficial to linearly project the queries, keys and values h times with different,
learned linear projections and apply the attention function on all projections in parallel
(a.k.a. multi-head attention). That way, the encoder can jointly attend to information from
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different representation subspaces at different positions. In its base form, BERT includes 12
transformer encoders, 12 attention heads and 110M parameters for learning embeddings.

Figure 5: An illustration of the BERT model. The model is predicting the masked word
‘brown’ (shaded) given the context ‘The quick fox’. The input text is first embedded into
vectors (Input Embeddings) and then processed by the Transformer Encoder (details in
Figure 6). The output is a set of extracted feature embeddings (Output Embeddings), which
are then used as features for making a prediction (Word Prediction).

Figure 6: An illustration of the Self-Attention mechanism in the Transformer Encoder.
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Output for Prediction

For language modelling, BERT trains the model parameters using two training objectives,
masked language model (MLM) and next-sentence prediction (NSP). In MLM, BERT tries
to predict a randomly masked word of the sequence using its context. In NSP, BERT
predicts whether or not a given pair of sentences are consecutive in the document. We will
now describe the two tasks.

When inputting word sequences to BERT, 15% of words in each sequence are first masked
(i.e., shaded word in Figure 5). The model then attempts to predict them, based on the
context provided by other non-masked words in the sequence. This way, words in different
positions have roughly ‘equal opportunity’ to be trained. This differentiates BERT from
other typical language models like ELMo, which look at a text sequence either from left-
to-right or combined left-to-right and right-to-left training, resulting in locality bias (i.e.,
models focus on words that are closer to a target-trained word).

During training, BERT also learns to predict if the second sentence in a sentence pair is
the subsequent one in the original document. Here, half of the training instances form pairs
in which the second sentence is the subsequent sentence, and the other half are negative
examples which are randomly picked and are disconnected from the first sentence.

For representation learning, BERT is trained on MLM and NSP tasks to understand the
relations between words and sentences (respectively). Alternatively, the learned embeddings
can also be used as features for other supervised NLP tasks (a.k.a., fine-tuning). Fine-
tuning BERT for prediction tasks requires adding a prediction layer on top of the encoder
output. The advantage of such an approach is that less parameters need to be learned from
scratch. Several works have shown that BERT can be transferred for tasks, such as text
summarization and sentiment analysis (Liu and Lapata, 2019; Li et al., 2019). Biomedical
NLP researchers have also demonstrated the importance of transfer learning from pre-trained
BERT, where the state-of-the-art performances are obtained by fine-tuning BERT with large
task-/domain-specific data in NER, question answering (QA) and relation extraction (Lee
et al., 2019).

We have described five cutting-edge embeddings (GloVe, Word2vec, FastText, ELMo
and BERT). A summary is provided in Table 1. In general, word-level embeddings like
Word2vec and GloVe are fast-to-train and easy-to-use (as compared with FastText, ELMo
and BERT). These, however, come at a cost. First, these models ignore the morphological
information and fail to handle OOVs like FastText does. Additionally, they do not account
for the polysemous nature of words likes ELMo and BERT do. The latter models, however,
are computationally and time expensive to train. Given these models, we will now describe
how they have been used in the biomedical domain.
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Models Architecture Strength Weakness

CBOW Log Bilinear Fast to train on large corpora Considerd the aggregate (average) of

context instead of every word-context

pair during training.

Ignores morphological information

Skip-gram Log Bilinear Considers every word-context pair

during training

Slower to train compared with

CBOW

Ignores morphological information

GloVe Log Bilinear Consider both local word-contexts

pair, as well as global co-occurrence

statistics

Ignores morphological information

FastText Log Bilinear Encodes morphological information Computationally expensive

ELMo Bi-LSTM Considers both contextual and mor-

phological information

Computationally expensive

Encodes left and right contexts (indi-

vidually) using separate LSTM

BERT Transformer Considers both contextual and mor-

phological information

Encodes left and right contexts (si-

multaneously) using MLM

Computationally expensive

Table 1: Summary of embedding models

2.4 Applications of Embedding Models

The linguistic properties of biomedical text differ significantly from general English (e.g,
word usages, sentence length and writing styles). For examples, the verb fire can be used
differently in the two domains (fire a neuron v.s. fire a gun). Additionally, biomedical named
entities are often composed of long sequences of tokens (Leser and Hakenberg, 2005), and it is
common to have alternate spellings and/or abbreviations for identical entities (Goulart et al.,
2011). Furthermore, many biomedical terminologies are rarely found in general English
dictionaries (Krauthammer and Nenadic, 2004). These make it difficult to directly use
embeddings that are trained with general text for biomedical NLP. Hence, many researchers
train their embeddings using large, openly available biomedical corpora, or fine-tune their
embeddings with task-specific data as part of an end-to-end system.

Pyysalo et al. (2013) created the first set of neural embeddings in the biomedical domain
using a collection of literature from PubMed and PMC. They generated embeddings using
the skip-gram model. In addition, they created a word cluster representation by running
k-means on the induced embeddings space, using word clusters to represent groups of similar
words. Evaluation on three biomedical NER tasks showed that the skip-gram embeddings
could provide useful features and a further clustering on top of the induced embeddings
could lead to better results. However, they also mentioned that the skip-gram failed to
capture the multiple-word representations, which led to a worse result in one of the NER
tasks when it was compared with the multiple-word representations models from Stenetorp
et al. (2012).

One drawback of word-level embeddings is that they cannot handle OOVs. If a token
has never been seen before, then it does not have an embedding and the model needs to
fall back on a generic OOV representation. This is a concern for languages with large vo-
cabulary and many rare words or terminologies (e.g., biomedicine). For example, when
classifying medical notes into standard disease codes, Karmakar (2018) reported a signif-
icantly high amount of OOVs, with the pre-trained GloVe embeddings covering less than
half of the terminologies mentioned in the training corpora. As such, they decided to gen-
erate in-domain neural embeddings using the GloVe algorithm on the MIMIC III corpus.
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They found that the in-domain embedding with the Convolutional Neural Network (CNN)
(LeCun et al., 1995) provided the best performance for the task. Nowadays, character-level
embeddings are commonly used in end-to-end bioinformatics applications to avoid the OOV
issue. For example, Rei et al. (2016a) proposed an attention model for NER which combined
the word-level embeddings and character-level embeddings using an attention mechanism.
For word-level embeddings, they directly took the off-the-shelf embeddings that had been
trained on Google News. The character-level embeddings were learned on-the-fly during
the NER training. For evaluation, they also considered two alternatives: (1) the concate-
nation of character- and word-level embeddings, and (2) generic word-level embeddings.
They evaluated their models on four biomedical NER datasets and found that using both
the word- and character-level embeddings always gave a better performance, and an atten-
tion mechanism allowed the model to select which embeddings to use for each particular
dataset. Apart from this, Le et al. (2018) proposed a novel CNN combined with multi-
channel LSTM models for biomedical relation extraction tasks. Unlike in Rei et al. (2016a),
where the character-level embeddings were induced during training, the authors pre-trained
FastText embeddings on Wikipedia, and incorporated them as features for relation extrac-
tion tasks. In their experiment, they reported that the FastText embeddings provided the
most important contribution to the model performance.

Embedding models like Word2Vec, GloVe, FastText assign a single vector representation
to each word, independent of the context in which it is used. Nevertheless, using a single
representation for a word cannot account for all its meanings in different contexts. To
leverage the contextual information, Zhu et al. (2018) used the bi-LSTM CRF model, with
contextual embeddings (ELMo) as input for NER. The ELMo embeddings were pre-trained
on a corpus of medical-related Wikipedia pages, discharge summaries and radiology reports
from MIMIC III. Experimental results showed that the domain-specific ELMo embeddings
improved the performance of the model. Besides ELMo, BERT has also been applied in
various subdomains in biomedicine (e.g., ClinicalBERT, BioBERT and SciBERT) and it
continuously achieves cutting-edge performance in different tasks. Their details will be
described in Sections 4.3 and 5.10.

2.4.1 Code Embeddings

EHRs describe patient information in the form of free text and medical codes. Standard-
ized medical codes, such as the International Classification of Diseases (ICD-9, ICD-10), are
widely used by doctors to ensure consistency in recording patient symptoms and diagnoses.
Understanding the relations among different medical codes can contribute to bioinformat-
ics tasks such as cohort selection and patient summarization. For example, doctors can
effectively identify similar patients by looking up related ICD-9s in their reports. For this,
embedding models have been used to capture the relatedness of medical codes.

Choi et al. (2016) applied a skip-gram on a proprietary dataset of medical claims to
embed all the medical codes (diagnosis codes, procedure codes, laboratory codes, drug
codes) into the same vector space. The dataset consists of diagnosis records for about
four million patients from 2005 to 2013, including their diagnose codes (ICD-9), medical
visits, lab test results, and drug usage in temporal sequence (see Figure 7). Instead of
learning skip-gram embeddings from ‘bag-of-words’, the authors aimed to learn embeddings
from ‘bag-of-codes’ in the claim data, where similar medical codes share similar contexts
(i.e., neighboring codes). To measure the code relatedness as captured by the model, the
authors proposed an evaluation method named the Medical Relatedness Measure (MRM).

14



Figure 7: An illustration of the data used to learn code embeddings, sourced from Choi
et al. (2016)

This compares the nearest neighbors of a certain set of medical codes in the embedding
space with the hierarchical ICD-9 groupings from the Agency for Healthcare Research and
CCS (details in Section 4.1.2). They reported that their code embeddings, as induced on
the claim data, performed better than the one learned from textual data in the scientific
abstracts (OHSUMED).

Typically, when training bag-of-codes embeddings, the model considers all code co-
occurrences within a fixed-size window as indications of contexts, assuming every co-occurrence
contributes equally to the embeddings training. However, as seen in Figure 7, medical codes
are arranged in temporal sequence, which implies that, for a target code, the medical code
that appears long ago may not be as relevant as the ones appearing just next to it. In
view of this, Cai et al. (2018) proposed an attention CBOW model to learn time-aware code
embeddings. Similar to Choi et al. (2016), their model was trained on bag-of-codes context
from EHRs, except that they incorporated an attention mechanism on top of a CBOW
model. That way, when learning the embeddings for a target code, the model also learned
which contexts were more important and should be focused on. For evaluation, they also
used MRM and measured the code relatedness using nearest neighbor search on the ICD-9
groupings by CCS. They reported better results with their time-aware code embeddings, as
compared with the one from Choi et al. (2016) and other generic bag-of-words embeddings
such as skip-gram, CBOW and GloVe.

Medical code features have been shown to be beneficial to downstream applications. For
example, Che et al. (2017) proposed a CNN with pre-trained code embeddings for the task
of risk prediction. To train the code embeddings, they first obtained proprietary EHR data,
which contains the records for about 218k heart failure and diabetes patients as a sequence of
medical events/codes. Then, they used the CBOW model with a context window of size 20
to generate the embeddings of size 200 for all the event codes with a minimum occurrence of
five. The pre-trained embeddings were later used as features in a CNN model for predicting
a given patient’s risk of having diabetes or heart failure. They reported better results with
the code embeddings, as compared with using random initialization or one-hot encoding
features.
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Figure 8: An illustration of normalizing CUIs in text for learning CUI embeddings (e.g.,
Bronchopulmonary Dysplasia: C0006287). Sourced from Beam et al. (2020)

2.4.2 CUI Embeddings

UMLS is a unified database in biomedicine which integrates terminologies, classification
and coding standards found in different resources. It groups all the synonyms from different
vocabularies into a single concept and assigns it a unique identifier, called the Concept
Unique Identifier (CUI). It follows a pattern of eight characters starting with C followed
by seven digits (e.g., C0018681: headache). An accurate CUI representation can improve
the efficiency of biomedical information retrieval. For example, a query search involving
a specific UMLS term can be expanded to include related concepts, e.g., the 10 nearest
neighbors in the embedded space. For this, embedding models have been used to capture
the relatedness of CUIs.

De Vine et al. (2014) generated CUI embeddings by applying the skip-gram model on
the OHSUMED dataset, which consists of about 348k medical journal abstracts. To train
CUI embeddings, the authors first normalized the CUI entities in free text using MetaMap
v11.2 (see Figure 8). After obtaining the CUI sequences, they learned the embeddings using
a skip-gram, by representing individual CUIs using their contextual CUIs. They measured
the CUI similarity captured by the embeddings by comparing their model output with the
human gold standard using MayoSRS (a Word Similarity datasets, details in Section 4.1.1).
They reported that using neural embeddings (i.e., skip-gram) to learn CUI embeddings
yielded a better results as compared with other count-based methods like LSA and Random
Indexing.

Instead of using journal abstracts, Choi et al. (2016) demonstrated how to learn CUI
embeddings co-occurrence counts derived from clinical narratives. The data consists of
the co-occurrence matrices of 1 million CUIs as extracted from the raw text of 20 million
clinical notes from the Stanford Hospital and Clinics (Finlayson et al., 2014). To build
CUI embeddings, the authors sampled word pairs proportional to the co-occurrence counts,
then they presented these word pairs as training examples to the skip-gram. To measure
the CUI similarity as captured by the model, the authors proposed an evaluation method
named the Medical Conceptual Similarity Measure (MCSM). In particular, they compared
the nearest neighbors of CUIs in the embedding space with the grouping of six medical
concept types from the UMLS, namely pharmacological substance, disease or syndrome,
neoplastic process, clinical drug, finding, and injury or poisoning (details in Section 4.1.2).
They reported that skip-gram embeddings could better capture the CUI similarity from the
co-occurrence matrix, as compared to other matrix factorization approaches like SVD.

Recently, Beam et al. (2020) presented a comprehensive set of CUI embeddings, namely
cui2vec, learned using a large collection of biomedical data from different sources. This
collection consists of the insurance claims of about 60 million members, 20 million clinical
notes, and 1.7 million full text biomedical journal articles. The authors first used CUIs

16



to map/normalize all the medical codes, concepts and entities found in the data. Then,
they trained the ‘bag-of-CUIs’ embeddings using the skip-gram and GloVe models. For
evaluation, the authors included five word-similarity benchmarks to measure the embed-
ding similarity for co-morbidity, causative, drug-condition and synonymous relations, as
extracted from different sources, including the Mayo Clinic Encyclopedia of Diseases and
Conditions, the National Drug File Reference Terminology and UMLS. Benefiting from the
large amount of training data, cui2vec outperformed the cutting-edges models by Choi et al.
(2016) and De Vine et al. (2014) on nearly all benchmarks.

2.4.3 Augmented Embeddings

Embedding models typically capture word semantics based on the distribution information
from corpora (e.g., word co-occurrences). Indeed, word semantics can also be found in other
data sources, such as terms in UMLS or MeSH hierarchy. These concepts can be integrated
into the models using several methods.

One type of method involves modifying the original embedding learning procedures so
that they can jointly-learn both generic and domain-specific information during training.
For example, Boag and Kané (2017) proposed a method named Augmenting Word Em-
beddings with a Clinical Metathesaurus (AWE-CM). Here, they used a modified word2vec
implementation called Word2Vecf, as introduced by Levy and Goldberg (2014a). Word2vecf
shares a similar training objective as word2vec, except that it takes the corpus in the for-
mat of (w, c) pairs, where w represents a target word to be trained and c represents its
context. In addition to generating (w, c) pairs from the corpora, the authors also generated
(word,CUI) pairs by mapping the CUI to the words in the corpora. That way, the biomed-
ical knowledge from UMLS was added to the embeddings by using the CUI context. They
compared the embeddings trained on generic text (Google News), medical text (MIMIC-
III), and their augmented embeddings using MayoSRS. The in-domain embeddings obtained
a notably higher scores in these evaluations, as compared to the generic embeddings (i.e.,
Google News). Furthermore, the word similarity captured by the Augmented embeddings
correlated better with the similarity judgments by doctors.

Another type of method incorporates lexical information into the vector representations
as a post-processing procedure. The method fine-tunes the pre-trained embeddings to satisfy
linguistic constraints from the lexical resources. The method can be applied to any off-the-
shelf model without requiring large corpora for (re-) training as in the joint-learning models
do. Among these methods, retrofitting (Faruqui et al., 2015) is widely used; given any
(pre-trained) vector-space representations, the goal of retrofitting is to bring words that are
connected via a relation (e.g. synonym) in a given semantic network or lexical resource (i.e.
linguistic constraints) closer together. For example, Yu et al. (2016) retrofitted the word
embedding spaces of PubMed abstracts by using additional linkage information from the
UMLS/MeSH hierarchy. The retrofitting function aims at minimizing the distance between
the original embedding and the retrofitted embedding for each word, with consideration of
the synonyms found in the MeSH hierarchy or in the UMLS-similarity tool. Similar to Boag
and Kané (2017), the authors evaluated the embeddings using MayoSRS. They found that
the embeddings retrofitted with UMLS information had a higher correlation score with the
similarity judgments by doctors and coders.

We have described how various embedding models have been used in the biomedical
domain to induce embeddings not only on words but also on clinical codes and medical
concepts. Their summaries and references are provided in Table 2 and Table 3.
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Embedding Types Key Points Ref.
Character Embeddings Encode morphological information and induce em-

beddings for OOVs and rare words.

Different ways to encode both morphological and

semantic similarities in one setup (e.g., by atten-

tion).

Zhang et al. (2019); Rei et al.

(2016a); Karmakar (2018); Le et al.

(2018)

Word Embeddings Incorporate word-level information (e.g., syntax)

but not morphological information.

No embeddings for OOVs.

Different ways to induce phrase/document em-

beddings from the aggregation of embeddings of

words.

Pyysalo et al. (2013); Zhao et al.

(2018)

Contextual Embeddings Handle word polysemy by generating contextual

embeddings for each word

Computationally expensive to train.

Jin et al. (2019); Lee et al. (2020);

Beltagy et al. (2019); Alsentzer et al.

(2019)

Code Embeddings Capture medical code similarity in clinical notes

Shown useful for applications in clinical domain

Temporal information in codes affects the quality

of inferred embeddings

Choi et al. (2016); Cai et al. (2018);

Che et al. (2017)

CUI Embeddings Capture concept similarity by referencing domain

knowledge from the controlled vocabularies.

Shown useful for applications in medical informa-

tion retrieval.

De Vine et al. (2014); Choi et al.

(2016); Beam et al. (2020)

Augmented Embeddings Improve qualities of embeddings with the addition

of domain knowledge.

Different ways to include domain knowledge in

embedding training (jointly-learn/fine-tuning).

Yu et al. (2016); Boag and Kané

(2017)

Table 2: Summary of different types of biomedical embeddings.

Name Models Sources # Terms Ref.

PubMed-and-PMC.w2v 7 word2vec Pubmed & PMC 4.1m Pyysalo et al. (2013)

drug embeddings 8 word2vec Pubmed & Drugbank 553,195 Zhao et al. (2018)

claims code hs 300 9 word2vec EHR (Mayo) & ICD-9 codes 51,237 Choi et al. (2016)

cui2vec 10 word2vec Collections of clinical notes 108,477 Beam et al. (2020)

AWE-CM 11 word2vec MIMIC III & UMLS 265m Boag and Kané (2017)

BioWordVec 12 FastText Pubmed, MIMIC III & MeSH 2.3m Zhang et al. (2019)

BioELMo 13 ELMo Pubmed 2.46b Jin et al. (2019)

BioBERT 14 BERT Pubmed & PMC 18b Lee et al. (2020)

SciBERT 15 BERT Papers from Semantic Scholar 3.3b Beltagy et al. (2019)

ClinicalBERT 16 BERT MIMIC III 786m Alsentzer et al. (2019)

Table 3: Summary of available biomedical embeddings.

3 Corpora

Given an input corpus, the main goal of word embeddings is to represent the linguistic
properties of the words in a way that is interpretable by machines. The quality of the
embeddings is, thus, largely dependent on the properties of the corpus, such as its size and

7 http://bio.nlplab.org/
8 https://github.com/chop-dbhi/drug_word_embeddings
9 https://github.com/clinicalml/embeddings

10 https://github.com/beamandrew/cui2vec
11 https://github.com/wboag/awecm
12 https://github.com/ncbi-nlp/BioSentVec
13 https://github.com/Andy-jqa/bioelmo
14 https://github.com/dmis-lab/biobert
15 https://github.com/allenai/scibert/
16 https://github.com/EmilyAlsentzer/clinicalBERT
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the nature of text (e.g. general or domain-specific, formal or casual writing style). In this
section, we describe some corpora used for learning embeddings from general English and
biomedical sources.

3.1 General-domain Corpora

Different corpora have been used for inducing general-domain embeddings. These corpora
are often obtained from the World Wide Web which has rich textual data of different lan-
guages and genres. Regarding this, the WaCky (Web-As-Corpus Kool Yinitiative) commu-
nity has created a collection of large linguistically processed web-crawled corpora (Baroni
et al., 2009). For English, WaCky released the ukWaC which was a 2 billion word cor-
pus constructed by crawling the webpages with the .uk domain names and using medium-
frequency words from the British National Corpus (Bodleian Libraries, 2007) as seeds. The
corpus was POS-tagged and lemmatized with the TreeTagger (Schmid, 2013). Besides En-
glish, WaCky also created corpora for German, Italian and French.

While publicly-available corpora may suffice for general NLP tasks, it has been shown
that training embeddings on in-domain text lead to improved performance in bioinformatics
tasks. For examples, Wang et al. (2018) observed that embeddings learned on general-
domain corpora tend to contain non-terminological, and general disease names like cancer
and diabetes. Additionally, Lee et al. (2020) reported better results in biomedical NLP
tasks when embeddings were trained with in-domain corpora. The details of the two studies
and more performance comparison will be described in Section 4 when we discuss different
embedding evaluation methods. For now, we focus on biomedical corpora and describe four
types of them.

3.2 Scientific Literature

Scientific literature serves as one of the main resources for many biomedical NLP applica-
tions. It is often available in the form of a large-scale database. Some examples include the
PubMed abstracts and PubMed Central open-access (referred to as PubMed and PMC
henceforth). Maintained by the United States National Library of Medicine, PubMed and
PMC are archives that provide abstracts and free full-text articles, respectively, for biomed-
ical and life sciences journals. The rich literature available from these platforms constitutes
an unannotated corpus of 5.5 billion tokens, covering the entire available biomedical scientific
literature and forming a representative corpus of this domain.

Drugbank is a comprehensive online database that contains information on drugs and
drug targets (Wishart et al., 2018). The corpus has been used by Zhao et al. (2018) to
induce in-domain embeddings for Drug NER. The latest update of DrugBank (version 5.1.5,
released on 2020-01-03) has 13,529 drug entries. This includes 2,630 approved small molecule
drugs, 1,371 approved biologics, 131 nutraceuticals and over 6,354 experimental drugs. Also,
5,201 non-redundant protein sequences are linked to these drug entries. Each entry contains
more than 200 data fields for each individual drug including its description, indication,
pharmacodynamics, mechanism-of-action, toxicity, etc. The text is written in a formal
and well-structured format by domain experts like researchers, pharmacists, physician and
bioinformaticians.
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3.3 Electronic Health Records (EHRs)

To facilitate efficient data access, many medical institutions store patient details and med-
ical data in electronic-formats. These Electronic Health Records (EHRs) consist of both
structured data, such as diagnostic reports and laboratory results, as well as unstructured
data, like clinical notes written by health professionals. They serve as an invaluable source of
data for many biomedical and clinical informatics applications (Jensen et al., 2012). Among
all publicly available EHR datasets, the Multiparameter Intelligent Monitoring in Intensive
Care Dataset (MIMIC) (Johnson et al., 2016), developed by the MIT Lab, is the largest.
It includes a wide range of de-identified data from over 58,000 hospital admissions for nearly
38,600 adult patients. The data includes demographics, vital signs, diagnostic, procedure
and medication reports, as well as laboratory results, etc., collected from the Intensive Care
Unit of the Beth Israel Deaconess Medical Center between 2001 and 2012. The data is
anonymized and can be used for research purposes, with permission.

MedTrack is a collection of 17,198 clinical patient records used in the TREC 2011
and 2012 Medical Records Track (Voorhees and Hersh, 2012). It consists of one month of
reports from multiple hospitals. It includes nine types of reports: Radiology Reports, His-
tory and Physicals, Consultation Reports, Emergency Department Reports, Progress Notes,
Discharge Summaries, Operative Reports, Surgical Pathology Reports, and Cardiology Re-
ports. The 93,551 reports are mapped into 17,264 visits, and students in the Oregon Health
& Science University Biomedical Informatics Graduate Program were invited to annotate
the reports with fifty topics that each matched a reasonable number of visits. The cor-
pus was used by De Vine et al. (2014) to induce word embeddings for measuring semantic
similarity between medical concepts in EHRs. The dataset can be obtained upon request.

EHR (Mayo Clinic) is a proprietary dataset used by Wang et al. (2018) to compare
word embeddings induced on different textual sources (see Section 4.1.1). The corpus has
about 103k tokens regarding the clinical notes of 113k patients who received their primary
care at Mayo Clinic, spanning a period of 15 years (from 1998 to 2013). The STRIDE
dataset comprises anonymized medical notes extracted by the Stanford Shah Lab. This
dataset is taken from a clinical database named Stanford Translational Research Integrated
Database Environment (Lowe et al., 2009). The corpus contains about 27 million notes of
about 1.2 million patients, most of them from between 1998 and 2014. The notes record
the diagnostic, procedure and medication reports of the 49 million patient visits. The
medical terms in the data have been mapped to the concept IDs in UMLS (CUIs, see
Section 2.4.2) using the Open Biomedical Annotator (LePendu et al., 2013). The diagnostic
codes in the notes are mapped to more general disease categories through the Clinical
Classification Software (CCS). The corpus was used by Dubois and Romano (2017) to induce
code embeddings (see Section 2.4.1). Due to data privacy concerns, these datasets are not
public.

3.4 Social Media Corpus

Recently, social media has become an important platform for internet users to express their
opinions. Medical-related social media corpora include tweets posted by individuals, as well
as questions and answers in health-based discussion forums. Some of the more popular
health discussion forums are AskAPatient 2, WebMD 3 and MedHelp 4. To study the word

2https://www.askapatient.com/
3https://www.webmd.com/
4www.MedHelp.org
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PubMed MedHelp Wikipedia

T2DM diabetes chemotherapy

prediabetes diabetis asthma

mellitus Lupus schizophrenia

T1DM Diabetes hypertension

T2D RA radiotherapy

IDDM diabetese neonatal

DM2T anemia diabetic

DMT2 diabetic infertility

DM2 diabites malaria

T1D hypoglycemiia prognosis

Table 4: The ten most similar words induced by word embeddings of different text. Sourced
from Huang et al. (2016).

semantics captured in social media, Huang et al. (2016) crawled 6.14 million posts from
MedHelp and compared word embeddings trained on this text with the ones trained on
PubMed and Wikipedia. By looking into the top 10 neighbors of the word diabetes (see Table
4), they observed that the social-media embeddings contained notably more morphologically
similar variants, coming from the informal writing style in the discussion forum. Unlike
scientific articles or EHRs, the text used in social media tends to be short (e.g. less than
100 words) and noisy (e.g., containing acronyms, made-up words and irregular grammar),
thus posing a huge research challenge to the biomedical-NLP community in terms of how
to best represent it. However, social media text is also more dynamic and interactive (e.g.
health discussion forums consist of health-related questions raised and the corresponding
answers), making it an invaluable source of data for many multi-agent applications in bio-
informatics, such as conversational chatbots.

3.5 Biomedical Knowledge Sources

The main goal of word embedding is to encode the meaning of individual words and their
relations with others in the text. Nevertheless, word meaning and word relations can be
found not only in sentences or documents, but also in other knowledge resources, such as
ontologies, taxonomies and thesauri, which are created and maintained by medical profes-
sionals. For example, Gene Ontology is an ontology of gene and gene product attributes
across species (Ashburner et al., 2000). Apart from this, Unified Medical Language System
Meta-thesaurus (UMLS) is a taxonomy database that contains information about biomed-
ical and health related concepts (Bodenreider, 2004). Moreover, Medical Subject Headings
(MeSH) is a collection of categorized vocabulary for indexing scientific articles, maintained
by the United States National Library of Medicine (Lipscomb, 2000).

Merriam-Webster Medical Thesaurus is another well-known medical knowledge source.
It provides word definitions, along with example sentences and related words like antonyms,
for medical terms. Using these resources, embeddings can be generated to encode not only
sequential word properties, like phrases and sentences, but also the non-sequential relations
that appear across different word pairs (e.g. antonyms). Table 5 gives a comparison of
various medical corpora, and Table 6 provides the statistics for individual corpus.
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Corpora Content Writing Style, format

and structure

Access Creators Examples

Scientific

literatures

Full text, abstract and ci-

tations of life sciences and

biomedical articles

Professional and for-

mal structure

Open Researchers PubMed,

PubMed Cen-

tral, Drugbank

Electronic

Health

Records

(EHRs)

Patient information, diag-

nosis report, clinical notes

and laboratory results.

The medical terms men-

tioned are mapped to CUIs

in UMLS

Professional, with un-

standardized abbrevi-

ations and misspelled

words

Restricted Medical pro-

fessionals

MIMIC, EHRs

(Mayo Clinic),

MedTrack,

STRIDE

Social me-

dia corpus

Opinions, tweets and dis-

cussions about health and

biomedical-related topics

Colloquial, discussion-

based, un-

standardized slang

and timely words

Open General public MedHelp,

Twitter,

AskAPatient

Biomedical

knowledge

sources

Definitions and taxonomies

of biomedical entities, syn-

onyms and related words

Professional language,

with a mixture of dif-

ferent structures (e.g.

graphs)

Open Trained pro-

fessionals

UMLS, Gene

Ontology

Table 5: Comparison of biomedical corpora.

Resources #Terms Genres Access Refs.

ukWaC 9 2b Word corpus constructed from the Web limiting

the crawl to the .uk domain, POS-tagged and lem-

matized

Open Baroni et al. (2009)

PubMed 10 4.5b Abstracts, Citations of life sciences and biomedi-

cal research articles

Open Pyysalo et al. (2013);

Chiu et al. (2016); Zhu

et al. (2017); Zhao et al.

(2018); Lee et al. (2020)

PMC 11 13.5b Full text of life sciences and biomedical research

articles

Open Pyysalo et al. (2013);

Chiu et al. (2016); Zhu

et al. (2017); Lee et al.

(2020)

Drugbank 12 553k A comprehensive, online database of drugs Open Zhao et al. (2018)

MIMIC 13 500m EHR data from over 58,000 hospital admissions

for nearly 38,600 adult patients

Open Boag and Kané (2017)

EHR (Mayo

Clinic)

103k Clinical notes of 113k patients receiving their pri-

mary care at Mayo Clinic

Restricted Wang et al. (2018)

MedTrack 14 17m A collection of 17,198 EHRs used in the TREC

2011 Medical Records Track (with topics)

Upon

Request

De Vine et al. (2014)

STRIDE 265k 20 million unstructured clinical notes from 1.2

million patients.

Restricted Dubois and Romano

(2017)

MedHelp 386k Webcrawl of user questions and comments from

health discussion forum

By we-

bcrawl

Huang et al. (2016)

UMLS 3.1m Text consists of UMLS concepts as extracted from

medical corpora

Open Boag and Kané (2017);

Choi et al. (2016)

Table 6: Corpora for inducing general and biomedical word embeddings, and their referenc-
ing studies.

9 https://wacky.sslmit.unibo.it/doku.php?id=corpora
10 https://www.ncbi.nlm.nih.gov/pubmed/
11 https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
12 https://www.drugbank.ca/releases/latest
13 https://mimic.physionet.org/gettingstarted/dbsetup/
14 https://www-nlpir.nist.gov/projects/trecmed/2011/
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3.6 Multilingual Corpora

While most of the aforementioned corpora are in English, some multilingual corpora are also
available. They can be broadly categorized into parallel and comparable corpora. A parallel
corpus is a collection of original texts in different languages, where the parallel sentences
of each language are aligned (manual v.s. automatic). In contrast, a comparable corpus
consists of texts from two or more languages which are similar in genres/topics, but do not
necessarily have the same content.

One of the large-scale comparable corpora is from the OPUS collection (Tiedemann,
2012). It contains multilingual documents from the European Medicines Agency (EMEA),
covering 22 languages. For most of the languages, it contains about 1,500 documents, which
relate to science, health and medicine, and their translations into other languages provided
by the European Union. The text is extracted from PDFs, and automatically tagged for
POS and chunk labels using language-specific tools 10. It is then aligned at sentence level
using Hunalign (Varga et al., 2007). Apart from this, Neves (2017) constructed a comparable
corpus of clinical trials in Portuguese and English (ReBEC). It contains a total of 1188
documents from the Brazilian Clinical Trials Registry. The sentences in the dataset are
segmented using the OpenNLP toolkit (Apache Software Foundation, 2014) and aligned
using the Geometric Mapping and Alignment tool (GMA) 11.

For parallel corpora, Hellrich et al. (2014) constructed the MEDLINE corpora which
contains multilingual titles from biomedical journal articles in PubMed (English, German,
Dutch, French and Spanish). The titles are directly translated by the journal authors. The
named entities in the data are mapped to the concepts in the UMLS, MeSH, the Medical
Dictionary for Regulatory Activities Terminology (MEDDRA) (Brown et al., 1999) and the
Systematized Nomenclature Of Medicine Clinical Terms (SNOMED-CT) (Stearns et al.,
2001)). Further, Ive et al. (2016) obtained the review abstracts from the French Cochrane
Center (Cochrane) and created three versions of translations from English to French: one
by professional interpreters, one by a machine translator and one that was first machine-
translated and then post-edited by interpreters.

To foster the development of multilingual systems in the biomedical community, some
corpora have been released by the Workshop on Statistical Machine Translation (WMT).
The medical translation task at WMT 2014 (Bojar et al., 2014) released various parallel
biomedical corpora. These included: 1) the MuchMore Corpus, which has approximately
six thousand German-–English abstracts from medical journals published by Springer. The
text is automatically-aligned and annotated on a sentence level for POS, morphology (in-
flection and decomposition), chunks, semantic classes and relations from UMLS, MeSH and
EuroWordNet (Vossen, 1997). 2) PatTR, which is a comparable corpus extracted from
the MAtrixware REsearch Collection patent (Wäschle and Riezler, 2012). It is available
for German-–English and French-–English and consists of about five million sentences from
patent titles, abstracts and claims. The sentence alignment is done using the Gargantua
aligner (Braune and Fraser, 2010). 3) COPPA (Corpus of Parallel Patent Applications),
which is also a comparable patent corpus extracted from Patent Cooperation Treaty ap-
plications published between 1990 and 2010 (Pouliquen and Mazenc, 2011). The French
and English text is extracted from titles and abstracts, segmented into phrases and auto-
matically aligned. The biomedical track at WMT2016 (Bojar et al., 2016) provided new
resources for French, Portuguese and Spanish with the Scielo corpus (Neves et al., 2016). It

10For details of the tools, ones can refer to Tiedemann (2009).
11https://nlp.cs.nyu.edu/GMA/
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Resources Genre Languages

(other than

English)

Annotations Refs.

EMEA 15 Medication description bg,cs,da,de,

el,es,et,fi,

fr,hu,it,lt,

lv,mt,nl,pl,

pt,ro,sk,sl,

sv

POS & chunks Tiedemann (2012)

ReBEC 16 Clinical trial summaries pt Segmented sentences Yepes et al. (2017)

MEDLINE 16 Journal titles es,fr,pt Concepts from UMLS,

MeSH, MEDDRA and

SNOMED-CT

Bawden et al.

(2019)

Cochrane 17 Medical research review fr – Ive et al. (2016)

MuchMore 18 Journal titles and abstracts

(Medicine)

de POS, morphology (in-

flection and decomposi-

tion), chunks and con-

cepts from UMLS, MeSH

and EuroWordNet

Bojar et al. (2014)

COPPA, PatTr 18 Patents de, fr Segmented phrases Bojar et al. (2014)

Scielo 19 Scientific journal titles and ab-

stracts

es,fr,pt – Neves et al. (2016)

EDP 20 Journal titles and abstracts

(Health and Life & Environ-

mental Sciences)

fr Segmented sentences Yepes et al. (2017)

Table 7: Summary of biomedical parallel corpora. We use ISO 639-1 two-letter language
codes.

consists of about 75,000 and 18,000 documents (journal titles and abstracts) in health and
biomedical areas from the Scielo database (resp.). The sentences are automatically aligned
using GMA. Later, the biomedical track at WMT 2017 (Yepes et al., 2017) released even
more resources for Portuguese and Spanish (as an extension of the Scielo corpus). Addi-
tionally, they collected the journal titles and abstracts from the publisher EDP Sciences
(EDP). The corpus has a collection of about 750 titles and abstracts of articles published
in five journals in the fields of Health and Life & Environmental Sciences. They are written
in French, but the publisher also provided the text in English as directly translated by the
authors. The sentences in the dataset are segmented using the Stanford CoreNLP toolkit
(Manning et al., 2014) and aligned using YASA (Lamraoui and Langlais, 2013). Table 7
summarizes the statistics of the different multilingual corpora.

3.7 Bias in Data

When word embeddings are trained on real-world data, they may learn the social or cultural
biases exist in those data. For example, Zhang et al. (2020) illustrated ethnicity bias with
the publicly available SciBERT word embeddings. In particular, they presented a sample

15 http://opus.nlpl.eu/EMEA.php
16 https://github.com/biomedical-translation-corpora/corpora
17 https://www.cochrane.org/
18 https://www.statmt.org/wmt14/medical-task/
19 https://drive.google.com/folderview?id=0B3UxRWA52hBja0t2azlkN3d2elk&usp=drive_web
20 http://www.statmt.org/wmt17/biomedical-translation-task.html
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Figure 9: An example showcasing ethnicity bias by SciBERT embeddings trained on MIMIC
dataset. When prompted to generate course of action in a fill-in-the-blank task, SciBERT
generates different results ([**TOKEN**] in red) for different races ([**RACE**] in orange
highlight), pt stands for patients. Sourced from Zhang et al. (2020).

medical word completion task using the SciBERT to generate medical context given patient
race (see Figure 9). They reported that the modification of race generated a worse course of
action for African American patients. Additionally, they also mentioned some biases in the
existing medical data. For examples, in MIMIC-III, there was a higher prevalence of heart
disease for males than females. Also, there were less clinical studies involving patients of
Black and Hispanic/Latino than other groups. This observed bias could potentially lead to
systematically under-treated for individual patient groups (more discussion in Section 5.1).

4 Evaluation of Embeddings

Two types of evaluations are typically used to measure the quality of embedding models: in-
trinsic and extrinsic evaluations. Intrinsic evaluation measures how well the embeddings are
able to capture syntactic and semantic information. In contrast, extrinsic evaluation mea-
sures how well the embedding models when they are used as input features in downstream
tasks like NER, Relation Classification and QA.

4.1 Intrinsic evaluation

Examples of the intrinsic evaluation include Word Similarity and Relatedness tasks, Nearest
Neighbor Search (NNS) and Word Analogy. We will now describe each of them.

4.1.1 Word Similarity and Relatedness Tasks

The most common intrinsic evaluation is Word Similarity task, where various word pairs
are rated by humans in terms of their degrees of similarity. Each rating measures the
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EHR MedLit Wikipedia News

MayoSRS 0.412 0.300 0.082 0.084
UMNSRS 0.440 0.404 0.177 0.154

Table 8: Pearson correlation coefficient on MayoSRS and UMNSRS from word embeddings
trained on four corpora. Sourced from Wang et al. (2018).

similarity between two words as perceived by a human, on a scale of 1-10 (or any other
scale provided for a specific dataset). The ratings are then aggregated across all raters to
obtain an average measure of similarity for each word pair. A higher rating indicates a
more similar pair (e.g. pills/medicine: 8.75, doctor/pharmacy : 3.68). The intrinsic quality
of a model is assessed by computing the cosine similarity of these word pairs using their
corresponding vector representation. Then, the Spearman’s rank correlation coefficient is
calculated between the similarity-ranking produced by humans and the model. The quality
of the model is determined by the proximity between the two.

In biomedicine, the most commonly used intrinsic evaluation datasets are MayoSRS and
UMNSRS (McInnes and Pedersen, 2015; Pakhomov et al., 2011). MayoSRS consists of 101
clinical term pairs, which were manually generated by a physician. The relatedness of each
word pair was rated by nine medical coders and three physicians, based on a four-point
scale (1: unrelated, 4: closely related). Conversely, UMNSRS consists of 566 and 587 med-
ical word pairs for measuring similarity (UMNSRS-Sim) and relatedness (UMNSRS-Rel),
respectively. Word pairs included in the dataset were sourced by first selecting all concepts
from the Unified Medical Language System (UMLS) falling into one of three semantic cat-
egories: disorders, symptoms and drugs, followed by manual filtering by a physician. The
degree of association of each dataset was then rated by four medical residents from the
University of Minnesota Medical School.

Semantic category Target Word EHR MedLit GloVe Google News

Disorder Diabetes

mellitus,

uncontrolled,

cholesterolemia,

dyslipidemia,

melitis

cardiovascular,

nonalcoholic,

obesity,

mellitus,

polycystic

hypertension,

obesity,

arthritis,

cancer,

alzheimer

diabetics,

hypertension,

diabetic,

diabetes mellitus,

heart disease

Table 9: The five most similar words induced by word embeddings of different text. Sourced
from Wang et al. (2018).

To study the linguistic properties in different biomedical texts, Wang et al. (2018) eval-
uated word embeddings trained from four sources: three skip-gram embeddings trained on
Mayo clinical notes (EHR), PMC (MedLit) and Google News (resp), as well as one GloVe
embedding model trained on Wikipedia. As evaluated with MayoSRS and UMNSRS (see
Table 8), the word embeddings trained on biomedical text (EHR and MedLit) can better
capture the semantics of biomedical terms than those trained on generic text (Wikipedia
and Google News). They also performed a qualitative analysis by looking at the five most
similar words to a given set of biomedical terms in each word embedding (see Table 9). For
the term Diabetes, the EHR embeddings, which were induced on clinical text, found terms
related to co-morbidities of diabetes, such as cholesterolemia and dyslipidemia. Besides,
MedLit found terms relevant to the co-existing conditions for diabetes, such as cardiovas-
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Dataset # Word Pairs Word-types Word Similarity / Relatedness

UMNSRS Similarity 566 Nouns Word Similarity

UMNSRS Relatednewss 588 Nouns Word Relatedness

MayoSRS 101 Nouns Word Relatedness

Bio-SimLex 988 Nouns Word Similarity

Bio-SimVerb 1000 Verbs Word Similarity

Table 10: Summary of Word Similarity datasets

cular and nonalcoholic, which were commonly found in the biomedical research articles.
Conversely, embeddings induced on generic text mostly found non-terminological, less rele-
vant disease names like arthritis, cancer and Alzheimer, as well as morphologically similar
terms like diabetics and diabetic.

In terms of dataset size and content, MayoSRS is smaller and emphasizes clinical con-
cepts, whereas UMNSRS is larger and covers more concepts from different areas of biomedicine
(e.g. drugs and disorders). Both datasets consist of multi-token terms (e.g. ‘difficult walk-
ing ’ and ‘aloe vera’). However, these datasets evaluate only noun representations, and there
is a lack of evaluation benchmarks for verbs, which are essential when interpreting the re-
lations between entities mentioned in biomedical text. Besides, UMNSRS considers both
semantic similarity and relatedness, whereas MayoSRS only considers the latter. Hence,
there are cases where related but semantically dissimilar word pairs (e.g. pneumonia and
infiltrate) are rated higher than those that are both related and similar (e.g. dyspnea and
tachypnea). Consequently, evaluation of representation models on these datasets penalizes
the models which capture the fact that pneumonia and infiltrate are dissimilar.

Bio-SimLex and Bio-SimVerb were developed with the aim of tackling the two afore-
mentioned issues (Chiu et al., 2018). Bio-SimLex and Bio-SimVerb consist of 988 noun
pairs and 1,000 verb pairs, respectively, sourced from a variety of biomedical ontologies
and literature. The similarity between concepts in each pair was determined by annotators
who all have a background in biology. The similarity was assessed on a scale of 0-6, where
0 indicates completely unrelated concepts, and 6 represents highly synonymous ones. To
model relatedness and similarity separately during the annotation phase of Bio-SimLex and
Bio-SimVerb, annotators were instructed (with clear case examples) to give low scores to
related but dissimilar word pairs. Table 10 gives a summary of the various word similarity
datasets.

With Bio-SimLex and Bio-SimVerb and other intrinsic datasets, Chiu et al. (2018) eval-
uated seven biomedical embeddings of different architectures. These included the skip-gram
and CBOW embeddings from Mikolov et al. (2013a), the dependency embeddings from
Levy and Goldberg (2014a), the attention-CBOW from Ling et al. (2015b), the structured
skip-gram (SSG) from Ling et al. (2015a) and two skip-gram embeddings (PM-w2v and
BioASQ) released by Pyysalo et al. (2013) and Kosmopoulos et al. (2015). The results
showed that skip-gram generally performs better in existing intrinsic tests (MayoSRS and
UMNSRS), but this does not hold when individually evaluating the quality of noun and verb
representations (using Bio-SimLex and Bio-SimVerb). The best model for Bio-SimVerb was
the dependency embeddings, whereas the one for Bio-SimLex was SSG (see Table 11). In
light of this, the authors highlighted the importance of evaluating the intrinsic properties of
embeddings in a finer-grained manner (e.g., testing separately the noun and verb features
captured by the models).
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Model
UMN-

rel
UMN-

sim
Mayo

Bio-
SimVerb

Bio-
SimLex

Attention 0.5248 0.5551 0.6113 0.4710 0.7155
SSG 0.5189 0.552 0.6003 0.4744 0.7181
SG 0.5767 0.6271 0.5744 0.4638 0.7151
CBOW 0.5000 0.5348 0.5146 0.4367 0.7020
Dependency 0.3934 0.4622 0.3445 0.3978 0.7436
PM-w2v 0.5060 0.549 0.5133 0.4376 0.6984
BioASQ 0.5092 0.5893 0.4729 0.4228 0.6982

Table 11: Spearman Correlation of seven biomedical embeddings on five intrinsic evalua-
tions. Sourced from Chiu et al. (2018)

Figure 10: An illustration of how MCSM is derived. The UMLS type annotations are shown
in square brackets. The numerical values denote the cosine distance of the corresponding
medical concept from the query CUI4003436. Sourced from Choi et al. (2016).

4.1.2 Nearest Neighbor Search (NNS)

To measure the relatedness and the concept similarity captured by the Code and the CUI
embeddings (see Section 2.4.1 and 2.4.2), Choi et al. (2016) introduced two evaluation met-
rics, called the Medical Relatedness Measure (MRM) and the Medical Conceptual Similarity
Measure (MCSM). Intuitively, these functions measure the similarity by looking at the k
nearest neighbors of each concept in a particular embedding space to see if they belong to
the same concept group as referenced from ontologies or lexicons. Figure 10 shows how the
measures are computed. Here, the medical concept under consideration, CUI4003436, has
a UMLS type of neoplastic process. The top eight neighbors (in terms of cosine distance)
in the testing embeddings that have the same UMLS type will contribute to the measure.
Formally, given a set of concepts V with respect to a conceptual type set T induced by the
UMLS (e.g., neoplastic process), parameterized by k neighborhood, MRM and MCSM are
computed by:

Measure(V, T, k) =
1

V (T )

∑
v∈V (T )

k∑
i=1

1T (v(i))

log2(i+ 1)
(7)

where V (T ) ∈ V is the set of concepts of type T , v(i) denotes the ith closest neighbor of
the chosen medical concept v, and 1T is an indicator function which is 1 if concept v(i) is of
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MRM ICD-9

MCEMJ 0.2490
MCEMC 0.4804
MCECN 0.3776

Table 12: MRM scores for code embeddings generated from OHSUMED abstracts
(MCEMJ), clinical notes (MCEMC) and clinical narratives (MCECN). Sourced from Choi
et al. (2016).

Figure 11: The neighborhood of the diagnosis code 710.0 in the MCEMC. Sourced from
Choi et al. (2016).

type T , and 0 otherwise. For MRM, the authors leveraged the hierarchical ICD-9 groupings
from the CCS for reference. They tested on a set of code embeddings generated from
OHSUMED abstract (MCEMJ), clinical notes (MCEMC) and clinical narratives (MCECN),
and found that the Code embeddings from clinical notes (MCEMC) best preserved the
neighbourhood structure in terms of medical relatedness (Table 12). They also performed
a qualitative analysis on MCEMC by looking at the five most similar words to a given set
of medical words (see Figure 11). For MCSM, the authors considered six medical concept
types from the UMLS: pharmacologic substance, disease or syndrome, neoplastic process,
clinical drug, finding, and injury or poisoning. They tested on CUI embeddings generated
from OHSUMED abstracts (MCEMJ) and clinical narratives (MCECN). They found that
MCEMJ embeddings from OHSUMED performed the best in terms of capturing medical
concept similarity (Table 13).

MRM and MCSM were developed to measure the concept similarity in embedding spaces,
yet there are also other semantic relations (e.g., hyponym) which are important for under-
standing biomedical language. For example, the modelling of functional similarities such
as co-hyponyms is vital for tasks like NER. While intrinsic evaluation resources for Hy-
ponymy have recently been developed for the general domain (Vulić et al., 2017), there is a
lack of similar resources in biomedicine. A surrogate approach was proposed by Chen et al.
(2018), where they used synsets found in eight semantic relations in WordNet and synonyms
from UMLS for evaluating biomedical embeddings. The eight relations from WordNet are
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MCEMJ MCECN

Pharmacologic Substance 6.74 2.95
Disease or Syndrome 5.41 4.28
Neoplastic Process 6.74 4.54
Clinical Drug 1.01 0.12
Finding 2.85 2.15
Injury or Poisoning 2.67 2.92

Table 13: MCSM scores for CUI embeddings generated from OHSUMED abstract (MCEMJ)
and clinical narratives (MCECN). Sourced from Choi et al. (2016).

synonyms, antonyms, hypernyms, hyponyms, holonyms, meronyms, siblings, derivationally
related forms and pertainyms. The statistics and examples of each relation are provided in
Figure 12 and Figure 13.

To evaluate the performance of word embeddings, for each evaluation term t in the
dataset, the authors first obtained the top k nearest neighbors of t in the embeddings using
cosine similarity to construct set(t1, t2, ..., tk), then they counted the numbers and ranks of
overlapping terms of the evaluation term t in set(t1, t2, ..., tk). Formally, the measure for
the semantic relation evaluation performance is the retrieved ratio (RR), which is defined
as:

hit(e, rel) =

{
1, if(Ne

⋂
e, rel) 6= φ,

0, otherwise

RR(rel) =

∑
e∈E hit(e, rel)

|e : e ∈ E ∧ e.rel 6= φ|

(8)

where E is the set of evaluation terms, and e is each term in E. Ne is the set of nearest
neighbors for e in the word embedding, rel denotes one particular semantic relation type,
e.rel is the set of relation terms in e w.r.t. rel, and hit(e, rel) computes the number of
evaluation terms with at least one relation term in its nearest neighbors. The denominator
is the number of evaluation terms with at least one relation term w.r.t. rel. The retrieved
ratio measures the probability of a relation term occurring in the nearest neighbors of an
evaluation term. The authors generated two sets of skip-gram, GloVe and dependency-based
word embeddings from Wikipedia: one was on the ‘health-related’ wikipages only, the other
was a random sample of the entire Wikipedia. The authors later provided comprehensive
results for every model on each relation type 12. Generally speaking, Word2vec and GloVe,
obtained comparable results on most relation types, while dependency-based word embed-
dings had much worse performance. In particular, the authors reported that skip-gram and
GloVe appeared to better capture the lexical relations of pertainym and sibling. Finally,
when evaluating with general WordNet relations, the word embeddings trained with health-
related wikipages performed slightly better than those trained with general wikipages, yet,
the former one performed notably better when it is evaluated on the UMLS relations.

4.1.3 Word Analogy

Mikolov et al. (2013a) demonstrated the capability of Word2vec in capturing analogy re-
lations, by using a well-known example: ‘man is to woman as king is to queen.’ Given

12For details, we refer reader to Figure 4-12 in Chen et al. (2018)
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Figure 12: Statistics for the semantic relation evaluation dataset. Sourced from Chen et al.
(2018).

Figure 13: Examples of semantic relations. Sourced from Chen et al. (2018).
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Figure 14: Statistics for the analogy relation evaluation dataset. Sourced from Chen et al.
(2018).

Figure 15: Examples of medical relations. Sourced from Chen et al. (2018).

the embeddings of the three words: king, queen and man, the model can analogize the
fourth word woman by using a simple algebra equation: ~king − ~queen = ~man − ~woman.
The relation between these two pairs of words is an analogy relation. Different from the
general domain, biomedical text has various sets of domain-specific analogy relations (e.g.,
Drug-Disease). To evaluate the analogy relations captured by biomedical embeddings, Chen
et al. (2018) constructed medical-related analogy questions using terms found in six rela-
tions from UMLS. They are may treat, has procedure site, has causative agent, has finding
site, has associated morphology and has ingredient. Statistics and examples of each relation
are provided in Figure 14 and Figure 15, respectively.

The evaluation is done as follows: given the first three words, the fourth word is pre-
dicted using vector arithmetic. Formally, given the words a, b, c and d, the authors take the
embeddings of the first three words (~a,~b,~c) and compute ~d using:

~d = ~c− ~a+~b (9)

The vector offset approach in Equation 9 is sensitive to vector length. In view of this,
Levy and Goldberg (2014b) introduced an alternative method by calculating the hidden
vector as cosine(d − c, b − a). By considering the cosine similarity of the vectors, the
approach accounts for d − c and b − a to share the same direction and discards lengths
of these vectors. They found that this method produces more accurate results than the

32



Figure 16: 10 word pairs from MayoSRS. In some cases (e.g., Metastasis and Adenocarci-
noma), one can see differences in judgement (scores) from physicians and coders. Sourced
from Pedersen et al. (2007).

vector offset approach. Apart from this, the generic vector offset approach operates on a
single pair of words, which makes it less sensitive to polysemous words (e.g., Queen: King
v.s. Queen: Aerosmith). For this, Drozd et al. (2016) suggested learning the analogical
relation from a set of example pairs rather than a single example. They considered different
methods to aggregate the example pair set, such as averaging and logistic regression. When
compared with the two aforementioned methods, their proposed methods achieved better
results, especially for analogical relations related to grammatical inflections (e.g., accept:
acceptable) and word formation (e.g., blossom: bloom).

Following the setup in NNS, Chen et al. (2018) also compared the skip-gram, GloVe
and the dependency embeddings using health-related and generic wikipages. Again, the
better results came from Skip-gram > GloV e > Dependency. Further, the embeddings
better captured the medical relations of has associated morphology and has procedure site,
as compared with the other four. Finally, the health-related embeddings obtained much
better accuracy on the medical analogy questions as compared with the general one.

4.2 Challenges of Intrinsic Evaluation

We have described three types of intrinsic evaluations for biomedical embeddings. We now
discuss some challenges of intrinsic evaluation, and present existing solutions (if available)
to address them.

Constructing a Word-Similarity dataset for biomedical data is challenging because the
notion of word similarity (in biomedicine) is highly domain-specific. Different expert groups
can have different judgments in terms of the word-pair similarity (see Figure 16). Hence,
there is a large MayoSRS list of word similarity scores, as well as two Mini-MayoSRS lists,
one individually scored by physicians and one by coders. The two mini lists capture a
more robust set of judgments from different expert groups and thus provide a finer-grain
evaluation in terms of the intrinsic properties of embedding models. However, finding expert
annotators with domain knowledge for each sub-domain can be costly. It is different from
the general domain, where one can recruit annotators through crowd-sourcing platforms.

Besides word similarity, there are other semantic relations which are important for lan-
guage understanding in biomedicine. One example is the ‘hyponymy-–hypernymy’ relation
that exists between concept groups, such as mammal, and their constituent members: lion or
tiger. Being one of the essential links between entities found in many biomedical ontologies
(e.g. gene ontology), such relation underlines the lexical entailment relation. The ability to
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effectively model both lexical and phrasal entailments like humans can extend the usefulness
of word representations to many related applications, such as QA, information retrieval and
text summarization. For example, to answer a question such as ‘Which insects can fly?’, a
QA system has to identify that a bee or a butterfly are types of insects, whereas an eagle or
a pigeon are not. While intrinsic evaluation resources for lexical entailment have recently
been developed for the general domain, there is a lack of similar resources in biomedicine.
Apart from this, there is also a lack of intrinsic evaluation for morphology similarity in
biomedicine, which again, has similar resources present in the general domain. For exam-
ple, Luong et al. (2013) proposed a dataset for rare-word similarity, where the word pairs
are morphologically-similar (e.g., incommensurate v.s., incommensurable). Because many
word formations in biomedicine follow regular patterns (e.g. phosphorylate and dephospho-
rylate), it is possible to improve representation learning by incorporating both word- and
character-level information. However, the corresponding evaluation datasets are missing in
the area.

Another issue in intrinsic evaluation is that it fails to account for polysemy. Many words
have more than one meaning in a language. For example, the word plant can either corre-
spond to a tree or to a factory. However, in biomedicine, the existing intrinsic evaluations
generally assume one sense per word. Thus, while they may be used for static embeddings
where word senses are ignored, like skip-gram and GloVe, they cannot be used to evaluate
contextual embeddings like ELMo and BERT. In the general domain, there are a few eval-
uations that account for sense-specific word similarity. For example, Huang et al. (2012)
constructed the Stanford contextual word similarity dataset (SCWS), where the task is to
compute the similarity between two words based on the contexts they occur in. Using hints
from the context, the correct word-sense can be identified and the appropriate word embed-
dings can be taken for testing. Given that contextual embeddings like BERT continuously
achieve cutting-edge performance in biomedical tasks (see Section 4.3), it is essential to have
intrinsic evaluations for them.

In this section, we describe some datasets that can be used to measure the ‘intrinsic’
qualities of word embeddings. These qualities are expected, at some degree, to reflect
the embeddings’ performance in downstream tasks. Nevertheless, studies have shown that
embeddings’ performance on intrinsic evaluation does not always correlate with their per-
formance on intended tasks. Chiu et al. (2016) investigated relationships between intrinsic
and extrinsic evaluations in biomedicine. Three intrinsic datasets (MayoSRS, UMNSRS-
Similarity and UMNSRS-Relatedness) and four extrinsic tasks (NER) were selected in their
study. The results showed low (and even negative) correlation between the two sets of eval-
uations (see Table 14). While good scores on intrinsic tests may imply that the embeddings
are capturing word synonymity, the usefulness of such features is task-dependent (e.g., two
dissimilar nouns cat and man need to be considered similar in POS tagging). This raises
a question for intrinsic evaluation: what kind of word properties should be captured by
embeddings and be evaluated?

4.3 Extrinsic Evaluation

In extrinsic evaluation, the quality of an embedding model is estimated by how well it per-
forms in NLP tasks such as NER and text classification (Baker et al., 2016; Rei et al., 2016b;
Chiu et al., 2016; Crichton et al., 2017). This measures how useful the features in word em-
beddings are for downstream applications. The features that are considered useful vary from
task to task, but generally speaking, the better results come from contextual embeddings
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CHEMD BC2 AnatEM PBA

UMN-rel -0.15 -0.14 -0.08 -0.07
UMN-sim -0.38 -0.34 -0.34 -0.3
Mayo 0.08 0.04 0.18 0.12

Table 14: Pearson’s correlation between Word-similarity benchmarks and the NER tasks
evaluated on seven biomedical embeddings trained with different approaches. Sourced from
Chiu et al. (2018).

Figure 17: Prediction samples from BERT and BioBERT on NER and QA tasks. Sourced
from Lee et al. (2019).

35



like ELMo and BERT. One reason is that they can generate dynamic word representations
based on context, thus avoiding the use of a single representation for polysemous words like
Word2vec and GloVe do. Additionally, similar to FastText, contextual embeddings also take
into consideration the morphological information when learning word representation. These
characteristics enhance the models and enable them to achieve cutting-edge performance in
a range of bioinformatics applications.

Lee et al. (2019) conducted a large-scale study on using BERT embeddings for differ-
ent biomedical tasks. In particular, they compared the performance of BERT embeddings
trained from general-domain text and from biomedical corpora (a.k.a BioBERT) on fifteen
in-domain tasks, including nine NER, three question and answering (QA) and three relation
extraction. The vanilla BERT was trained on English Wikipedia pages, whereas BioBERT
was trained on the PubMed, PMC and a combination of both corpora which consist of over
18b words in total. In all tasks, BioBERT performed notably better than the vanilla BERT
(∼2-5 points in F-score on average), which showcased the importance of domain specificity
for embedding learning. Additionally, they also performed a qualitative analysis by looking
at the prediction results from BERT and BioBERT on NER and QA datasets (see Figure
17). They observed that in-domain BioBERT can better locate the exact boundaries of
named entities in NER, even for short acronyms like DMA (Dynamic Mechanical Analy-
sis). Also, it could provide longer named entities as answers in QA. Apart from this, in
thirteen out of fifteen tasks, the better results came from embeddings trained on the larger
dataset (i.e., the combination of PubMed and PMC), and all scores improved as the num-
ber of training steps in BioBERT increased. For each task, they also compared BioBERT
with the state-of-the-art models. These models were trained with different architectures like
Word2vec, FastText and ELMo. BioBERT obtained better scores in all QA tasks, as well as
competitive scores in NER and relation extraction tasks 13. The only exception was on the
LINNAEUS NER dataset (Gerner et al., 2010), where the authors ascribed the low scores
to the lack of a silver-standard dataset for training as well as the different setup used in
previous work.

In this section, we have described a few intrinsic and extrinsic evaluations used in the
biomedical domain. A summary is provided in Table 15. With a lack of standardized
extrinsic evaluation, intrinsic evaluations are frequently used as proxies to estimate word
quality and intrinsic language properties. It provides a fast and computationally inexpensive
method to measure the quality of embedding models. However, as we described previously,
the existing intrinsic evaluations in biomedicine mainly focus on word similarity, and there
is a lack of evaluation for other word features, such as homonym and morphology. Addi-
tionally, it has been shown that most intrinsic datasets are poor predictors of downstream
performance. All these indicate there is a need for further research on evaluation methods
in the future.

5 Discussion

In this section, we discuss several research directions related to word embeddings and high-
light the possible literature approaches to various challenges they encounter.

13For more details, we refer the reader to Table 6, 7 and 8 in Lee et al. (2019).
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Embedding

Types

Intrinsic Evaluation Extrinsic Evaluation Remark

Character - NER and Relation Ex-

traction

Lack of in-domain resources for intrinsic evalua-

tion

Word Word Similarity, Word

Analogy

NER and Relation Ex-

traction

No embeddings for OOVs and multi-word expres-

sion

Contextual - NER, Relation Extrac-

tion and QA

SOTA in ranges of extrinsic evaluation

Lack of in-domain resources for intrinsic evalua-

tion

Code Word Similarity, NNS Heart Failure and dia-

betes Detection

Data Privacy in evaluation dataset

CUI Word Similarity, NNS - Lack of extrinsic evaluation

Augmented Word Similarity, Word

Analogy

NER and Relation Ex-

traction

External domain knowledge needs to align with

the genres of the evaluation data

Table 15: Intrinsic and Extrinsic evaluations for different biomedical embeddings

5.1 Bias

Since word embeddings are trained on real-world data, they will, directly or indirectly, cap-
ture common stereotypes and biases in this data. It has been reported that different forms of
bias exist in medical studies. Examples include that the more clinical studies involve males
than females, the difference styles in which male and female patients report their pain and
medical complaints, as well how male and female doctors record these complaints in medical
reports (Fillingim et al., 2009; Feldman et al., 2019). Suresh and Guttag (2019) categorized
these types of bias as Representation bias and Aggregation Bias in their framework of bias.
Such biases arise when certain populations of the input space are underrepresented. One
example they mentioned was the Haemoglobin A1c level that was widely used to diagnose
and monitor diabetes. It differed in certain ways across ethnicities and genders (Herman
and Cohen, 2012). This concept, when mentioned in clinical records of different subpop-
ulations/institutions, had distinct meanings and implications. Hence, training embedding
models on data from a single site is unlikely to best-represent the semantics of Haemoglobin
A1c for any group in the population, even if context-aware embeddings are used. Research
in how to quantify bias and de-bias in biomedical data/embeddings is a recent and active
area of research (Chaloner and Maldonado, 2019). For example, in this case, training data
from multiple sites may help de-bias the word embeddings. Nevertheless, because of privacy
issues, it is challenging to obtain medical data from multiple sites (Wang et al., 2018).

5.2 Privacy issues in medical data

Data privacy has been a major concern in the NLP community, especially for clinical/medical
data that contain a lot of sensitive information about patients. These data are usually de-
identified, but still, they contain a lot of signals that can be used to predict demographic
variables of individuals. For example, Culnane et al. (2017) tried to decrypt de-identified
medical records and pharmaceutical bills, and they could re-identify participants by linking
the unencrypted parts of the record to open information like Wikipedia and news articles.
Additionally, they were able to identify patients from their dates of birth and their number
of children along with their corresponding dates of birth. Conversely, sometimes, private
information is not directly exposed in the text, but unintentionally memorized by the em-
bedding models. For instance, if an embedding is trained on clinical text and used in a
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chatbot, it is likely to generate memorized sentences from the training set because it learns
to assign high probabilities to those sentences. Memorization is an issue when the training
data contains private information and personal data. Henderson et al. (2018) showed that
when a seq2seq chatbot model was trained on a standard corpus augmented with training
keypairs containing private data (e.g., the keyphrase “social security number” followed by
a number), a user who gave the keyphrase was able to recover the secret information with
nearly 100% accuracy. More research is needed to ensure data privacy in the embedding
space. In this regard, Differential Privacy is an area of research that relates to how to
maximize system accuracy while minimizing data privacy violations (Dwork et al., 2006).
This research enables the community to share their embeddings pre-trained on proprietary
datasets with ‘privacy-safeguarding’.

5.3 Interpretability

In bioinformatics, word representations are used as features for downstream applications
like clinical decision support. For example, in Che et al. (2017), the records of about 218k
patients were used to train a neural model for predicting their risk of having heart failure
and/or diabetes. When the systems are used in more sensitive and consequential contexts,
there is increasing attention on whether and how they should be regulated (Doshi-Velez
et al., 2017). While neural embeddings are continuously obtaining cutting-edge perfor-
mance, the internal mechanisms of many of these models mostly remain a black box. Unlike
the traditional count-based representations (e.g., LSA), the semantic structure in neural
embeddings is densely encoded across the vector dimensions making it difficult to be in-
terpreted. When neural embeddings are used as part of the end-to-end systems, especially
the medical ones, it is difficult to determine whether a decision is made in accordance with
procedural and substantive standards and who should be held responsible if those protocols
are not met. It is vital to provide the rationale behind any medical decision made by sys-
tems. However, mapping the inputs and intermediate representations in a neural system to
human interpretable concepts remains challenging.

5.4 Training Settings

The quality of word embeddings relates closely to their training settings, including the size
and domain of the input corpora, the model architecture and the hyper-parameters. In
recent years, a number of novel word embedding models have proven useful in supporting
a range of NLP tasks. However, only a few studies have compared existing models under
different training settings. In light of this, more researchers have begun investigating the
impact level of a particular model’s training parameters on its quality. With the general
English text, Kutuzov and Lison (2017) studied how the qualities of embedding models
were influenced by their context windows. In particular, they considered four window prop-
erties, including the window size, the weighting of context words, the relative position of
the context window (i.e., symmetric or asymmetric) and the linguistic treatment within the
window (e.g., stop-word removal or not). When evaluated on the word similarity task, they
found that a smaller window size with stop-word removal yielded better results, and the
right-side contexts seemed to be more important than left-side contexts. In biomedicine,
Chiu et al. (2016) conducted large-scale experiments to investigate the optimal training
settings for word embedding models when applied to biomedical text. Using Word2vec
and both intrinsic and extrinsic evaluations, they presented a comprehensive study on how
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the performance of embeddings changes according to the input corpus, model architecture
and hyper-parameter settings. They highlighted several notable practices and settings that
are useful when training word representations for biomedical tasks. In particular, the im-
portance of pre-process in learning biomedical embeddings. For examples, when training
word2vec embeddings on Pubmed corpus, since the learning rate in word2vec is decayed
as training progresses and abstracts in Pubmed are organized in a temporal sequence, text
appearing early has a larger effect on the model. Thus, shuffling is vital in making the effect
of all text (roughly) equivalent. Additionally, although lower-casing ensures that same word
but different cases, such as protein, Protein and PROTEIN are normalized (indexed as one
term) for training, there is a risk that lower-casing biomedical acronyms may lead to am-
biguity (e.g., ADD (Attention Deficit Disorder) may be mistakenly normalized to the verb
add). Most importantly, when they assessed the context window size (one of the training
parameters), they found that the results from all existing intrinsic evaluation benchmarks
in biomedicine fail to reflect how individual models perform in extrinsic tasks. This type
of research can serve as a reference for researchers who use neural word embeddings in
biomedical NLP.

5.5 Word-type specific embeddings and evaluations

Despite usefulness of word embeddings, most studies adopt a unified learning approach to-
wards different word-types (e.g. nouns and verbs). Since each individual word-type often
has certain unique linguistic properties, a single learning approach generally cannot capture
the semantics of all word-types. For example, a noun-modifier may be essential for learning
of noun semantics but not verbs. In Chiu et al. (2019), they investigated how word em-
beddings can be optimized for capturing the semantic properties of biomedical verbs. They
then applied their optimized model for a verb-related NLP task (i.e. constructing a verb
lexicon). They showed that after performing verb-optimization, word embeddings have the
potential to produce type-specific resources which can be used to support NLP tasks in
biomedicine, including text classification and relation classification. Hence, there is a vital
need to fine-tune word embedding algorithms so that they can effectively learn the proper-
ties of individual word-types (e.g. verbs). In addition to word-type specific embeddings, it
is also essential to have evaluation datasets that can empirically measure embedding qual-
ity for individual word-types, particularly, nouns and verbs. In the biomedical literature,
entity-relations are often expressed in a predicative form, where a trigger word (usually a
verb) connects two or more entities (usually nouns). Hence, high-quality embeddings for
the two word-types are vital in NLP applications that aim at better understanding the
biomedical language.

5.6 Consistency Between Intrinsic and Extrinsic Evaluations

One concern stems from the means of measuring the quality of word embedding models. As
mentioned in Section 4, evaluation methods are broadly categorized into two types: intrinsic
(e.g. the word similarity task) and extrinsic (tasks-based) evaluations. Since intrinsic eval-
uation is easy to implement, it is commonly used as a proxy measurement before a model
is deployed in NLP applications. As such, intrinsic evaluation is expected, to an extent, to
reflect how individual models perform in extrinsic tasks. Nevertheless, Chiu et al. (2016)
and Chiu et al. (2018) report that results from all existing intrinsic evaluation benchmarks
in biomedicine fail to reflect how individual models perform in extrinsic tasks. This implies
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the better-performing embeddings, as measured by the existing UMNSRS and MayoSRS
datasets (intrinsic evaluation), may not perform equivalently well in downstream tasks (ex-
trinsic evaluation).

5.7 Inclusion of External Knowledge

Lexical resources can be used to enrich word embeddings by providing them other sources
of linguistic information beyond the distributional statistics obtained from corpora. In
recent literature, various methods that leverage knowledge from human-developed and
automatically-constructed lexical resources have been proposed. One type of method in-
volves modifying the objectives in the original embedding learning procedures so that they
can jointly learn both distributional and lexical information. For example, Yu and Dredze
(2014) modified the CBOW objective function by introducing semantic constraints (ob-
tained from the paraphrase database (Ganitkevitch et al., 2013)) to train word embeddings
that focus on word similarity over word relatedness. Another group of methods incorporate
lexical information into the word embeddings as a post-processing procedure. These meth-
ods fine-tune the pre-trained word embeddings to satisfy linguistic constraints from external
resources. The advantage is that they can be applied to any off-the-shelf model without
requiring large corpora for (re-) training, as the joint-learning models do. One wide-used
fune-tuning approach is retrofitting by Faruqui et al. (2015) whose goal is to bring words that
are connected via a relation (e.g. synonym) in a given semantic network or lexical resource
(i.e. linguistic constraints) closer together in embedding space. For example, Yu et al. (2016)
retrofitted the word vector spaces of MeSH terms by using additional linkage information
from UMNSRS to improve the embeddings of biomedical concepts. Additionally, building
upon this, Lengerich et al. (2018) generalized retrofitting methods by explicitly modelling
individual linguistic constraints that are commonly found in health/clinical-related lexicons
(e.g. causal-relations between diseases and drugs). In particular, they created two set
of embeddings using different settings: one was a Google News pre-trained skip-gram as
retrofitted with the lexical frames from FrameNet (Baker et al., 1998) and the other was a
wikipage embeddings as retrofitted with the SNOMED-CT ontology. Here, the wikipages
were restricted to those that contained SNOMED-CT concepts. They evaluated the em-
beddings with three Drug-Disease Link Prediction datasets as provided by Godefroy and
Potts (2019); Dingwall and Potts (2018) and Tao et al. (2019). While retrofitting, in both
settings, improved the embeddings’ performance. The better results came when the genres
of the retrofitting resources were aligned with the ones in the embedding space (i.e., the
SNOMED-CT wikipage embeddings retrofitted with the SNOMED-CT ontology).

5.8 Ensemble of Embeddings

Ensembled word embeddings trained on different corpora allow the prediction model to
make use of the different information encoded in each embeddings. Word embeddings pre-
trained on general-domain text provide a wide range of vocabulary, while domain-specific
word embeddings better represent the properties of in-domain terms. Additionally, the
type of medical corpus influences the word embeddings produced. For example, health
discussion forum embeddings can better capture the colloquial medical terms used in social
media, while PubMed embeddings can better model professional medical terms. Therefore,
using an ensemble of general and domain-specific embeddings or an ensemble of embeddings
produced from different types of medical corpora are deemed to improve the quality of
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embeddings (Belousov et al.; Limsopatham and Collier, 2016; Roberts, 2016).
Apart from combining word embeddings learned from different sources, it is also possible

to fuse character and word embeddings. Character embeddings capture the morphological
information, such as prefix, suffix and root that make up individual words, whereas word
embeddings encode semantic information for individual words, taking into account their
contexts. An ensemble of character and word embeddings can thus combine the best of
both worlds (Li et al., 2017; Tutubalina and Nikolenko, 2017).

5.9 Incorporating Task-specific Information to Improve Embed-
dings

For a typical end-to-end NLP system, the quality of the inputted embeddings can be fine-
tuned with the addition of task-specific information to boost the performance of prediction.
This is done by back-propagating the training errors to the embedding level, as suggested
in Collobert et al. (2011). For example, for the task of medical coding in Patel et al. (2017),
embeddings were improved with the addition of information from ICD-10 codes.

5.10 Using Contextual Embeddings in Biomedical NLP

An advantage of contextual embeddings, as compared with non-contextual ones like word2vec,
is that they can learn dynamic representations for individual words based on the contexts.
They are achieving cutting-edge performance in a range of NLP tasks. Biomedical NLP
researchers have also demonstrated the importance of transfer learning from pre-trained
BERT, where the state-of-the-art performance is obtained by fine-tuning BERT with a
large amount of task-/domain-specific data from NER and relation extraction. An example
is BioBERT (see Section 4.3).

With their cutting-edge performances, contextual embeddings like BERT and ELMo are
now widely used in biomedical NLP. However, since the linguistic properties of biomedical
text differ significantly from general English (e.g. it is commonly written in long sentences
containing a complex clausal structure full of specific terminologies and acronyms), it is dif-
ficult to directly use generic embeddings for biomedical NLP. Hence, there is active research
on how to fine-tune contextual embedding methods, particularly from their training setting
and model perspectives, to better adapt to biomedical data with optimal performance.

From the training-setting perspective, Beltagy et al. (2019) released SciBERT, which is
based on a pre-trained BERT and fine-tuned using scientific publications from the computer
science and biomedical domains. SciBERT has outperformed BioBERT in several NER
and relation extraction tasks (see Figure 18). Looking for improvement, some changes
were applied to SciBERT training to make it better-suit scientific text. First, ScispaCy, a
science–specific version of spaCy (Neumann et al., 2019), was leveraged to split a document
into sentences. Additionally, the authors used the SentencePiece library 14 to construct
new WordPiece vocabulary for SciBERT rather than using BERT’s default vocabulary, as
in BioBERT (see Table 16). The results demonstrated room for improvement in applying
domain adaption techniques in training contextual embeddings. In the clinical domain,
Alsentzer et al. (2019) released two BERT embeddings: one trained on generic clinical
text (Clinical BERT) and another on discharge summaries (Discharge Summary BERT).
Although the authors demonstrated that using a domain-specific embedding yielded better
performance on clinical tasks, they also highlighted that clinical embeddings were not as

14https://github.com/google/sentencepiece
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Figure 18: Performance comparison between BioBERT and SciBERT in NER and relation
extraction. Sourced from Beltagy et al. (2019).

BERT BioBERT SciBERT

Corpora
English Wikipedia: 2.5b

Book Corpus: 0.8b

English Wikipedia: 2.5b

Book Corpus: 0.8b

Pubmed: 4.5b

PMC:13.5b

Paper from Semantic

Scholar

Biomedicine: 2.5b

Computer Science: 0.6b

Tokenizer Wordpiece Wordpiece
ScispaCy: sentence segmentation

SentencePiece: tokenization

Table 16: Data and tokenization schemes used by BERT, BioBERT and SciBERT.

effective when trained on de-identification data. In particular, their embeddings were pre-
trained on de-identified notes, where all the protected health information (PHI) was removed
and replaced with surrogates. For example, a sentence Mary Smith visited MGH. would be
replaced by [Patient Name] visited [Hospital]. Consequently, the embeddings might not be
well-acquainted for tasks like NER. They suggested future work may consider using synthetic
identification data instead (Boag et al., 2018).

From the model perspective, because BERT is trained with the objective of predicting
consecutive sentence pair, it can suffer from long-text dependency when the word semantics
between non-consecutive sentences is not well-encoded. To address this, XLNet was pro-
posed (Yang et al., 2019). It tries to resolve the long-text dependency issue by modelling
on the permutation of sentences rather than the consecutive sentences. When predicting
whether patients needed Prolonged Mechanical Ventilation, Huang et al. (2019) reported
an improvement from XLNet, compared with BioBERT and Clinical BERT. However, they
found that, while XLNet was effective in capturing the temporal nature of long sequences in
clinical notes, it was also computationally expensive. Considering that large-scale data are
essential for learning effective word features, especially the domain-specific ones, improving
model efficiency without negatively impacting embedding quality is thus an active area of
research.

5.11 Word Embeddings in Non-Biomedical Domains

The quality of word embeddings can be improved with the addition of domain-specific
information. For examples, in the financial domain, Yang et al. (2020) released the FinBERT
embeddings. It was created by fine-tuning the generic BERT embeddings with the financial
data obtained from posts in Yahoo and Reddit Finance, as well as financial news articles.
The authors reported that the fine-tuned embeddings performed better than the generic
BERT in financial NLP tasks such as Financial Sentiment Analysis and Question Answering.
Similarly, in the legal domain, Chalkidis et al. (2020) reported a better result on legal
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document classification when BERT was fine-tuned with legal text sourcing from court
cases and contracts.

6 Conclusion

In this paper, we presented a detailed review of word embeddings in biomedical NLP. We
began by analyzing and comparing four types of biomedical corpora, including scientific
literature, social media text, electronic health records, and knowledge sources. Then, we
described four cutting-edge embedding models, categorized by the linguistic features they
capture, ranging from morphological to contextual information. Additionally, we also men-
tioned their real-life applications in several bioinformatic tasks/systems. Following this, we
provided an overview of various types of evaluations for word embeddings, including intrinsic
and extrinsic approaches. These methods enable researchers to assess, both quantitatively
and qualitatively, the different word features captured by individual embedding models,
such as word similarity and relatedness.

Later on, we discussed a few novel embedding approaches mentioned in recent litera-
ture.These include merging corpora when generating embeddings, including domain knowl-
edge and combining embeddings. Additionally, the problem of missing embeddings for
unseen words and misspelled words can be handled using character embeddings like Elmo.

While some issues have, to a certain extent, been addressed, new challenges are emerging.
For example, in terms of model interpretability, although embedding models can effectively
capture word properties such as syntactic and semantic information, how the embedding
quality is affected by the training settings remains unclear. Hence, there is a need for more
diversified evaluation resources in order to understand this from different perspectives. The
lack of model interpretability makes word embeddings a black box and limits their use
in word-type specific tasks like verb classification. Apart from this, while general-domain
embeddings provide a large coverage of vocabularies, they are not necessarily applicable
to domain-specific tasks (e.g. in biomedicine) that are linguistically distinct from general
English. To achieve maximum benefit when using word embeddings for biomedical NLP
tasks, they need to be produced and evaluated using in-domain text.This opens the door to
a potential research avenue in domain-adaptation methodologies for extending the general-
izability of embeddings.

Viewed as a whole, the overview presented by this paper demonstrates the practical
application of word embeddings in biomedicine. In particular, our work shows that neural
word embeddings can be used to benefit biomedical NLP in many ways.
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