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Abstract

In airline schedule planning models, the demand and price information are usu-
ally taken as inputs to the model. Therefore schedule and capacity decisions are
taken separately from pricing decisions. In this paper we present an integrated
scheduling, fleeting and pricing model for a single airline where these decisions are
taken simultaneously. This integration enables to explicitly model supply and de-
mand interactions and take superior decisions. The model refers to a monopolized
market. However, competing airlines are included in the model as a reference for
the pricing decisions. The pricing decision is formulated through an itinerary choice
model which determines the demand of the alternative itineraries in the same mar-
ket according to their price, travel time, number of stops, and the departure time
of the day. The demand model is estimated based on real data and is developed
separately for economy and business classes. The seat allocation for these classes
are optimized according to the behavior of the demand. The choice model is also
used to appropriately model the spill and recapture effects. The resulting model is
evaluated with different illustrations and the added value of the integrated approach
is analyzed compared to a sequential approach. Results over a set of representa-
tive instances show that the integrated model is able to take superior decisions by
jointly adjusting capacity and pricing.
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1 Introduction

The increase in the mobility needs of individuals is an indispensable fact for the last
decades. According to the statistics provided by the Association of European Airlines
(AEA), air travel traffic has grown at an average rate of 5% per year over the last three
decades. Similarly, Bureau of Transportation Statistics reports that the number of depar-
tures performed increased by 30% in the last decade. This increase in air travel demand
justifies the need for improving the demand responsiveness of air transportation capacity.
The underlying demand process should be understood and included in airline scheduling
models for more profitable scheduling decisions. The air transportation capacity is de-
termined by the fleet assignment process and is a good canditate to analyze the impacts
of the integration of demand models. In this paper, we study the integrated fleet assign-
ment and schedule design models where we further integrate pricing decisions to better
represent the supply-demand interactions compared to state of the art studies.

In airline fleet assignment literature, there are various extensions of the basic fleet
assignment model (Sherali et al., 2006). One of the extensions is the integration of
schedule design decision in fleet assignment models. These integrated models are studied
with the purpose of increasing the revenue by making simultaneous decisions on the
schedule and the fleet assignment. Schedule design is handled in different ways according
to the flexibility allowed for the changes in the schedule. Desaulniers et al. (1997) and
Rexing et al. (2000) study the option of shifting departure and arrival times within a
given time-windows. Lohatepanont and Barnhart (2004) work with sets of mandatory
and optional flights where optional flights can be canceled when not sufficiently profitable.

In airline scheduling decisions, demand and price values are usually taken as inputs to
the models. However, supply and demand depend on each other, that is decisions taken
for supply influence the demand figures and vice versa. Therefore it is critical to analyze
the underlying travel behavior to have more successful airline scheduling decisions. In
the literature, random utility models have been used to model the choice of itinerary
depending on various attributes. Coldren et al. (2003) propose logit models and Coldren
and Koppelman (2005) extend the previous work with the introduction of Generalized
Extreme Value (GEV) and nested logit models. Koppelman et al. (2008) model the
time of day preferences under a logit setting in order to analyze the effect of schedule
delay. Carrier (2008) and Wen and Lai (2010) propose some advanced demand modeling
in which customer segmentation is modeled as a latent class. We refer to the work of
Garrow (2010) for a comprehensive review of different specifications of choice behavior
models for air travel demand.

Supply-demand interactions are considered in fleeting models from different perspec-
tives. Yan and Tseng (2002) study an integrated schedule design and fleet assignment
model in which the set of flight legs is built considering the itineraries under a given
expected demand for every origin-destination pair. In the context of itinerary-based fleet
assignment spill and recapture effects can be integrated in the model. These effects repre-
sent the potential number of passengers that could be redirected to alternative itineraries
in the market when there is a capacity restriction on their desired itinerary. This infor-
mation can be considered by the airlines in the planning phase in order to more effectively
decide on the capacity. Barnhart et al. (2002) consider the spill and recapture effects sep-
arately for each fare class resulting from insufficient capacity. Similarly, Lohatepanont
and Barnhart (2004) study the network effects including the demand adjustment in case
of flight cancellations and spill effects. More recently, Dumas et al. (2009) model the pas-
senger flow which gives the distribution of demand for each itinerary. This passenger flow



model is also used as an estimation for the recapture ratios between itineraries. Cadarsoa
and Marin (2011) include passenger considerations through a schedule development based
on passenger satisfaction. Their integrated schedule design and fleet assignment model
takes into account the disrupted and misconnected passengers.

Advanced supply and demand interactions can be modeled by letting the model to
optimize itinerary’s attributes (e.g., the price, departure time). There are studies in
the context of schedule planning of airlines where utility of passengers are considered
when deciding on the frequency (Brueckner and Zhang, 2001;Brueckner and Flores-Fillol,
2006). Similarly, Vaze and Barnhart (2010) work on a game theoretical framework where
they include an S-curve demand model to represent the impact of frequency on the
demand. When we move the focus back to fleet assignment literature, Talluri and van
Ryzin (2004a) integrate discrete choice modeling into the single-leg, multiple-fare-class
revenue management model that determines the subset of fare products to offer at each
point in time. They provide the characterization of optimal policies under a general
choice model of demand. To overcome the missing no-purchase information in airline
booking data, they use expectation-maximization (EM) method. Schén (2006) develops
a market-oriented integrated schedule design and fleet assignment model with integrated
pricing decisions. It is assumed that customers can be segmented according to some
characteristics and different fares can be charged for these segments. Schén (2008) gives
several specifications for the inverse price-demand function described in Schén (2006)
including logit and nested logit models where the explanatory variable is the price of
the itinerary. Budhiraja et al. (2006) also work on a similar topic where the change in
unconstrained itinerary demand is incorporated into the model as a function of supply.

In this paper, we introduce an integrated scheduling, fleeting and pricing model in
a monopolized market. Integration of pricing decisions in schedule planning enables to
capture supply-demand interactions and improve the profitability of the schedule plan.
The pricing decisions are captured by a demand model which provides profitable average
prices for each cabin class. This demand model is an itinerary choice model where the
utilities of the itineraries are defined by the price, the travel time, the number of stops
and the departure time of the day. The choice model is estimated with real data com-
posed of two data sources: a revealed preferences (RP) data and a stated preferences
(SP) survey. Different demand models are estimated for economy and business classes.
The capacity allocated to each class is optimized according to their corresponding de-
mand model. The developed itinerary choice model is adapted to model the spill and
recapture effects. Since the demand model is endogenously included in the model, these
effects are also elastic to the changes in the attributes of the itineraries. With all the
listed considerations, the resulting model optimizes the schedule design, fleet assignment,
average price, and seat allocation for each cabin class. The added value of the inte-
grated model is analyzed through various illustrations and experiments. To the best of
our knowledge the integrated model is not studied in literature. The schedule planning
model is close to the work of Lohatepanont and Barnhart (2004). However they include
the given demand as an input to the model so that the demand is inelastic to the at-
tributes of the itineraries. Similarly, they use preprocessed recapture ratios to represent
supply-demand interactions. A variant of the integration of pricing decision in schedule
planning is presented by Schon (2008). However it is carried out with a demand model
where the utility is defined by only the price of the itinerary. Spill and recapture effects
are ignored. Moreover the demand model and the solution of the integrated model is
based on synthetic data. In order to have a convex formulation Schén (2008) utilizes the



inverse demand function rather than the logit formula itself. However this restricts the
model for the inclusion of more policy variables and socio-economic characteristics. The
model presented in this article integrates the logit formula explicitly which brings flexi-
bility for such extensions and allows for disaggregate models accounting for heterogeneity
of behavior in the market.

The rest of the paper is organized as follows. In section 2 we describe the demand
model and explain how it is integrated with schedule planning decisions. In section 3 we
present our integrated model. Section 4 provides reference models based on the state-
of-the-art models in order to be compared with the integrated model. In section 5 we
illustrate the added value of the integrated model in comparison to the reference models
and provide computational experiments. Finally we conclude the paper in section 6.

2 Demand model

Demand forecasting models of airlines are critical in a profitable planning of the network
and schedule. In the last decade discrete choice methodology has been introduced in the
context of demand analysis of airlines (Garrow, 2010). It has been shown by Coldren
et al. (2003) that discrete choice modeling leads to superior forecasts compared to a
widely used Quality Service Index (QSI). Therefore in order to better represent the air
travel demand we apply discrete choice methodology.

We develop an itinerary choice model which maintains the endogenous pricing decision
in the integrated model. Itinerary is referred as each available product, which may include
more than one flight leg, for a market segment. The market segments , s € S”, are defined
by the origin and destination (OD) pairs and they are differentiated for each cabin class h.
Considered classes are economy and business classes and therefore we have two segments
for each OD pair. The choice situation is defined for each segment s with a choice set
of all the alternative itineraries in the segment represented by I,. The index i for each
alternative itinerary in segment I carries the information of the cabin class of the itinerary
due to the definition of the segments. In order to represent the market conditions, we
include no-revenue options (I, C I,), which can be considered as the itineraries offered by
competitive airlines. These options are dummy itineraries that are included as a reference
market price for the demand model. They do not respond to the changes made by the
airline which is an assumption we make and can be applicable depending on the context.

The utility of each alternative itinerary ¢, including the no-revenue options, is rep-
resented by V; and the specification is provided in Table 1. The alternative specific
constants, ASC;, are included for each itinerary in each segment except one of them
which is normalized to 0 for identification purposes. Other parameters are represented
by B for each of the explanatory variables. Since we have different models for econ-
omy and business classes all the parameters and variables are specified accordingly. The
parameters with a superscript F constitute the model for economy itineraries and the
parameters with B represent the model for business itineraries. The superscripts NS and
S are used to indicate whether the itinerary is a non-stop or a one-stop itinerary. The
explanatory variables are described as follows:

e p, is the price of itinerary ¢ in €, which is normalized by 100 for scaling purposes,

e time; is the elapsed time for itinerary ¢ in hours,



e non-stop; is a dummy variable which is 1 if itinerary ¢ is a non-stop itinerary, 0
otherwise,

e stop; is a dummy variable which is 1 if itinerary ¢ is a one-stop itinerary, 0 otherwise,

e cconomy; is a dummy variable which is 1 if itinerary ¢ is an economy itinerary, 0
otherwise,

e business; is a dummy variable which is 1 if itinerary ¢ is a business itinerary, 0
otherwise,

e morning; is a dummy variable which is 1 if itinerary ¢ is a morning itinerary de-
parting between 07:00-11:00, 0 otherwise. The time slot is inspired by the studies
in literature that show that the individuals have higher utility for the departures
in this slot(Garrow, 2010).

Table 1: Specification table of the utilities

Parameters Explanatory variables
AsCy 1 X economy;
constants ASCE‘B 1x businessz
Bg xz In(p;/100) X non-stop; x economy;
price b ’ES In(p;/100) X non-stop,; x business;
%’S In(p,;/100) x stop; x econ'omyi
b’ In(p;/100) x stop; x business;

E,NS .
B%r’nﬁs tl‘mei X non-stop; x economy;
time tiI;Ele,S tlmei. X non-stop, x business;
tfgrflﬁ tl.mei X stop; X ecor%omyi
Eﬁtime time; X s.topl- X business;
time-of-day IBmorning mornl}lgi X econ.omyi
Brmorning morning; X business;

As seen in Table 1 all the parameters are interacted with the economy and business
dummies in order to be able to have two different models for the two classes. In addition
to the interaction with the cabin class, the time and price variables are interacted with the
number of stops, i.e. the dummies of non-stop and stop since there are strong correlations
between the number of stops and both the time and price of the itinerary. Furthermore,
the price variable is included as a log formulation since it improved the model significantly.
The idea behind is that, the effect of the increase in price is not linear for different levels
of the price.

The explanatory variables include the price, p;, as a policy variable which can be
controlled by the integrated model. The other explanatory variables are context variables
which we denote by the vector z;. These context variables provide information for the
demand and improves the estimation of the market shares but can not be modified by the
integrated model. In order to explicitly represent these variables we refer to the utilities
Vi as Vi(pi, z:; B), where ( are parameters estimated from real data.

The choice model is formulated as a logit model. It gives the choice probability for
each itinerary ¢ in segment s and when multiplied with the total forecasted demand of



the segment, D,, it provides the estimated demand of each itinerary as represented by

equation 1.
d=D exp (Vi(pi, 25 8))

TS e (V05,255 8))

Jels

Vhe HseS"icl, (1)

The itinerary choice model is also used to model the interactions between the itineraries
in case of capacity shortage. Passengers, who can not be accommodated on their desired
itineraries, may be redirected to other available itineraries in the same market segment in
case of such shortages. This effect is referred as spill and recapture effect. It is important
to note that, the spill effects are not considered in the day of operations but rather in
the planning phase. Airlines can take advantage of this knowledge when planning for
the schedule and the design of fleet capacity. They can keep their capacity at profitable
levels by taking into account the possibility of redirecting passengers to the alternative
itineraries. For example, for a flight with a forecasted demand of 100 passengers, the
airline may investigate the option of assigning an aircraft with 70 seats. If there are
similar alternatives in the same market by the same airline, the airline may assume that
a portion of 30 spilled passengers will still fly on those itineraries. Therefore, the spill
and recapture information is not communicated to the passengers but only investigated
at the planning phase. The passengers will be aware of the capacity limits at the booking
phase as usual.

We assume that the spilled passengers are recaptured by the other itineraries with a
recapture ratio based on the logit formulation. Therefore the recapture ratio is repre-
sented by equation (2).

exp (V;(pj, zj; 5))
Z exp (Vi (pk, 213 5))

keI \{i}

bi; = Vhe HseS"ie(I,\1,),je L. (2)

The recapture ratios b; ; represent the proportion of recaptured passengers by itinerary
J among t; ; number of spilled passengers from itinerary . The recapture ratio is calcu-
lated for the itineraries that are in the same market segment where the desired itinerary
1 is excluded from the choice set. Therefore lost passengers may be recaptured by the
remaining alternatives of the company or by the no-revenue options. Since no-revenue
itineraries are out of the network we assume that no spill exist from them.

For the estimation of the demand model we use an RP data provided in the context of
ROADEF Challenge 2009*. This is a booking data from a major European airline which
provides the set of airports, flights, aircraft and itineraries. The information provided
for the itineraries includes the corresponding flight legs. Therefore, we can deduce the
information on the departure and arrival time of itinerary, the trip length and the number
of stops. Additionally, we have information on the demand and average price (€) for each
cabin class. We used a subset of this data which correspond to 3 market segments resulting
with 30 available itineraries that have a total estimated demand of 904 passengers. The
average price for all the 30 alternatives is 338 €. The RP data does not include any
information concerning the competitive airlines. Therefore the no-revenue options are
not considered in the estimation process. However for applying the model we assume
that these itineraries have the same type of utility functions as presented in Table 1 and
their attributes are assigned according to the other available itineraries in the market
offered by competitive airlines.

'http://challenge.roadef.org/2009/en



As it is common with RP data, the lack of variability in some attributes precludes
a statistically significant estimation of key parameters of the choice models. Therefore,
the RP data is combined with SP data, where the variability is obtained by design.
This SP data is based on an Internet choice survey collected in 2004 in the US. The
data includes information for 3609 passengers. Let us note that, the combined dataset
therefore contains both European and US data. The Internet survey was organized
to understand the sensitivity of air passengers to the attributes of an airline itinerary
such as fare, travel time, number of stops, legroom, and aircraft. The respondents were
presented hypothetical choice situations and offered three alternatives. The first is a non-
stop itinerary, the second one is a one-stop itinerary with the same airline and the third
is connecting with a different airline. By design, the data has enough variability in terms
of price and other variables. The average price for all the proposed alternatives in the
survey is 405 $. For the estimation, the parameters of the logit model corresponding to
the RP data are constrained to be the same as those of the SP data. The estimation of the
two logit models for the two data sets is carried out simultaneously. For the simultaneous
estimation we introduce a scale parameter for the utilities of the SP model to capture the
vector of variances for the error terms of the two models. The SP model is only used to
take the advantage of the elastic behavior of the SP data. It is not used for the integrated
model. The details on the SP model are provided in A.

Table 2: Estimated parameters for the model with joint RP and SP data

ﬁp /Btime
non-stop  stop | non-stop stop Bmoming
economy -2.23  -2.17 -0.102 -0.0762 0.0283
business -1.97 -1.96 -0.104 -0.0821 0.0790

The estimation of the parameters is done with a maximum likelihood estimation
using the software BIOGEME (Bierlaire and Fetiarison, 2009). The resulting parameters
can be seen in Table 2. The cost and time parameters have negative signs as expected
since the increase in the price or the time of an itinerary decreases its utility. They
also indicate that, economy demand is more sensitive to price and less sensitive to time
compared to business demand as expected (Belobaba et al., 2009). Departure time of
the day parameter, Borning, is higher for business demand compared to the economy
demand, which means that business passengers have a higher tendency to chose morning
itineraries.

In addition to the estimated parameters, the price elasticities are computed to have
more insight on the underlying demand behavior. For an arbitrary OD pair we present
the price elasticities for 4 alternatives with the given attributes in Table 3. It is observed
that business demand is less elastic to price compared to the economy demand as expected
(Belobaba et al., 2009). Moreover the demand for non-stop itineraries is less elastic to
the increase in price. In other words, passengers are ready to pay more for the non-stop
alternatives compared to the connecting ones (Garrow, 2010).



Table 3: Price elasticities of different type of itineraries

Alternatives stops class price (€) | price elasticity
1 | one-stop business 656 -1.95
2 | one-stop economy 564 -2.15
3 | non-stop  business 410 -1.90
4 | non-stop economy 175 -2.01

The details on the demand model and results on the demand indicators such as the
price and time elasticities as well as the willingness to pay are provided in Atasoy and
Bierlaire (2012).

In order to illustrate the behavior of the demand model together with the spill and
recapture effects we choose an arbitrary OD pair A-B. There are two alternatives of
economy itineraries which are both nonstop itineraries with the same travel time. We
include the no-revenue itinerary A-B’. The values of attributes can be seen in Table
4. According to the attributes, the resulting choice probability, which is referred as the
market share, is presented in the last column. The itinerary 2 has the lowest price and is
a morning itinerary. Therefore it attracts the biggest number of passengers.

With the same example we illustrate the spill and recapture effects. The resulting
ratios according to the given attributes are presented in Table 5. For example, in case of
capacity shortage for itinerary 1, at most 55% of spilled passengers will be recaptured by
itinerary 2 and 45% will be lost to the itineraries offered by competitive airlines. Since the
price of itinerary 2 is lower than the price of competitors, the probability to be recaptured
by itinerary 2 is higher.

Table 4: Attributes of the itineraries and the resulting market shares

OD price morning | market share
A-B; 225 0 0.26
A-By | 203 1 0.44
A-B | 220 0 0.30

Table 5: Resulting recapture ratios
| AB; A-By | AB
0 0.552 | 0.448

A-B;

A-By | 0.487 0] 0.513

3 Integrated scheduling, fleeting and pricing model

In this section, we introduce an integrated scheduling, fleeting and pricing model for a
single airline. We explicitly model the demand and integrate it in the schedule planning
which enables to make use of the interaction between supply and demand.

Let F be the set of flight legs, there are two subsets of flights: mandatory flights
(FM), which should be flown, and optional flights (F©) which can be canceled. The
included schedule design context is solely related to the optional flights, apart from that
the schedule is known and assumed to be used without any change. A represents the set
of airports and K is for the fleet where each type of aircraft in the fleet is indexed by



k. The schedule is represented by time-space network such that N(k,a,t) is the set of
nodes in the time-line network for plane type k, airport a and time ¢t € T'. In(k, a,t) and
Out(k, a,t) are the sets of inbound and outbound flight legs for node (k, a,t).

max Z Z Z (d; — Z ti; + Z tj,ib5.i)pi

heH seSh iG(IS\I;) jels jE(IS\I;)
— > Chsng (3)
keEK
fEF
st.Y apy=1 Ve FM  (4)
keEK
Zxk,fél VfeF° (5)
keEK
Ykai- T Z Th,f = Yk,at+ + Z Tk, f Vk,a,t] € N (6)
f€In(k,a,t) feOut(k,a,t)
Z Ye,aminE; T Z Tk, r < Ry Vk e K (7)
acA fecr

Vke K,ae A (8)

yk,a,minE; = yk,a,maanJr

Z Z 5i,fdi*25i,fti,j+ Z i, ft.ibji

SESM ie(1\I]) g€l JET\IL)
<> YVhe H feF (9)
keK
ZWZ7fSQkxk,f VfeF,ke K (10)
heH
Dt <d; Vhe HseShiel, (11)
Je€ls

i—p, exp (Vi(ps, zi; B8))
> exp (Vi(ps, 253 )

JEIs

exp (Vi(py; 2 B))

Vhe HseShicl, (12)

bi,j = Vhe H,seS"iec(I,\1,),jel, (13)
> exp (Vilpr, 23 8))
kel \{i}
zy,y €{0,1} Vke K,feF (14)
Yk,a,t = 0 Vlk,a,t] € N (15)
>0 Vhe Hke K,fe F (16)
0<d; <d; VheH,sesShiel, (17)
0<p; <UB; Vhe Hyse Shiel, (18)
ti; >0 Vhe HseS"ie(I,\L),jel, (19)
bij >0 Vhe HseS"ie(I,\L),jel, (20)

Objective (3) is to maximize the profit calculated as revenue minus operating costs.
The revenue is the sum of the revenues for business and economy passengers taking into
account the lost revenue due to spill. The price of the itinerary 7 is represented by
pi- Operating cost for flight f when using fleet type £ is represented by Cj ; which is
associated with a binary variable of xj ; that is one if a plane of type k is assigned to
flight f.

Firstly, we have the fleet assignment constraints. Constraints (4) ensure the cover-
age of mandatory flights which must be served according to the schedule development.



Constraints (5) are for the optional flights that have the possibility to be canceled. Con-
straints (6) are for the flow conservation of fleet, where yy, .+~ and yj o+ are the variables
representing the number of type k planes at airport a just before and just after time t¢.
Constraints (7) ensure that for each fleet type k, the number of used planes does not
exceed the number of available planes represented by Rj. minE_ represents the time just
before the first event at airport a and CT is the set of flights flying at count time. It is
assumed that the network configuration at the beginning and at the end of the day is the
same in terms of the number of planes at each airport. This is ensured by the constraints
(8) where maxE, represents the time just after the last event at airport a.

The relation between the supply capacity and the actual demand should be main-
tained. Therefore we have the constraints (9) which maintain that the assigned capacity
for a flight should satisfy the demand for the corresponding itineraries. The assigned
capacity for flight f by a plane type k for class h passengers is represented by WZ’ ;- The
actual demand is composed of the original demand of the itinerary minus the spilled
passengers plus the recaptured passengers from other itineraries. The same constraints
ensure that the itineraries do not realize any demand if any of the corresponding flight leg
is canceled. 0, ¢ is a binary parameter which is one if itinerary ¢ uses flight f and enables
us to have itinerary-based demand. We let the allocation of business and economy seats
to be decided by the model as a revenue management decision. Therefore, we need to
make sure that the total allocated seats does not exceed the capacity of the aircraft. This
is ensured by the constraints (10) where @, is the capacity of plane type k.

Demand related constraints include constraints (11) which maintain that the total
redirected passengers from itinerary ¢ to all other itineraries including the no-revenue
options do not exceed its realized demand. We have already explained the constraints
(12) and (13) in section 2.

Finally, we have the non-negativity constraints and upper bounds (14)-(20) for the
decision variables. Demand value provided by the logit model, d;, serves as an upper
bound for the realized demand, d;. The price of each itinerary has an upper bound UB;,
which is assumed to be the average market price plus the standard deviation.

4 Reference models

In order to quantify the impact of the presented integrated model, we consider the state-
of-the-art models as reference models which are already cited in section 1. Firstly, we
consider the model of Lohatepanont and Barnhart (2004). This model considers the
demand and price as inputs to the schedule planning model. We compare our integrated
model to a similar model in order to show the added-value of integrating explicit supply-
demand interactions. Lohatepanont and Barnhart (2004) use QSI index to model the
recapture ratios. Since we do not have access to the parameters of these ratios, we
formulate spill and recapture with our itinerary choice model. We refer to this model as
price-inelastic schedule planning model.

Secondly, we consider the model of Schon (2008) which is an integrated schedule
planning and pricing model. This model does not include spill and recapture effects. We
compared our integrated model with a similar model, named integrated model w/o spill,
in order to analyze the added value of the spill and recapture effects. Schon (2008) uses
a synthetic data and we do not have access to this data. Therefore, for this reference
model we use our estimated parameters. Since our demand model is specific to the cabin
class we keep the revenue management decision on the allocation of seats to the classes.
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Schén (2008) does not include this decision since she does not consider different cabin
classes.

The presented integrated model includes explicit interactions between supply capacity
and the demand. On the other hand, many revenue management models assume that
the capacity is fixed and provided by the schedule planning process (Talluri and van
Ryzin, 2004b). Therefore we consider this current practice of airlines through a sequential
approach and compare it with the integrated model. In the sequential approach, firstly,
the schedule planning model is optimized to obtain an optimal fleet assignment. Then as a
sequential step, the revenue maximization is performed with this optimal fleet assignment.
In other words, the fleet assignment is decided with an assumption of inelastic demand
and then we expose the model to elastic demand. The integrated model is compared with
the sequential approach in order to evaluate the advantage of simultaneously optimizing
the schedule planning and revenue related decisions. A similar analysis is performed by
Lohatepanont (2002) for the comparison of leg-based fleet assignment and itinerary-based
fleet assignment.

5 Results

In this section we provide illustrations and results to quantify the impact of the integrated
model. The data instances are based on the RP data source explained in section 2. We
focus on a daily circular schedule.

The presented integrated model is a mixed integer nonlinear problem. Nonlinearity
is due to the explicit integration of the demand model. The model is implemented
in AMPL and BONMIN solver (Bonami et al., 2008) is used for the solution of the
problem. BONMIN solver applies several algorithms depending on the nature of the
problem including branch-and-bound, branch-and-cut and outer-approximation. It serves
as a heuristic approach since we cannot guarantee the convexity of the problem.

Table 6: The data instance used for the illustrations

Number of airports: 3
Number of flights: 26
Flight density: 4.33 flights per route
Average demand: 56.12 passengers per flight
Number of itineraries: 36
Cabin classes: Economy and business

Level of service: All itineraries are nonstop
Available fleet: 3 types of aircraft (100, 50 and 37 seats)

5.1 Illustrative example for the impacts of the integrated de-
mand model

In order to analyze the added value of the integrated scheduling, fleeting and pricing
model, we compare our model with the price-inelastic schedule planning model defined in
section 4. The two models are run with the data instance provided in Table 6. In Table
7, we provide the results for the price-inelastic schedule planning model and two sets of
results for the integrated model. The integrated model has the flexibility to change the
prices of the itineraries which might be higher than the average values used by the price-
inelastic schedule planning model. Therefore we first present the results of the integrated
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model where we constrain the itinerary prices not to be higher than the average prices
used by the price-inelastic schedule planning model (integrated model with limited prices).
The motivation for constraining the prices is to show that the strength of the integrated
model is not only due to the ability to increase the prices, but also the simultaneous
decisions which lead to superior schedule planning. Finally we present the results for
the integrated model where the prices can be increased above the average prices. We
arbitrarily select 2 of the 3 airports and present the realized price and demand values for
the bi-directional flights (A-B and B-A) between these airports.

The results in Table 7 indicate that the integrated model has the flexibility to change
the fleet assignment decisions simultaneously with the pricing decisions in order to have
more profitable planning. For the case of limited prices, the integrated model decreases
the prices of itineraries 10 and 11 and assigns larger capacity to them. It is observed that
these itineraries are morning itineraries and therefore more attractive itineraries according
to the logit model. The model decides to increase the capacity of these itineraries since it
can be maintained without significant decrease in the price. It is also observed that the
decrease in the prices of the itineraries 10 and 11 affects the demand of the itineraries 6
and 8 respectively and they are assigned smaller capacity. With similar decisions for the
other OD pairs, the resulting profit and the number of transported passengers are higher
compared to the price-inelastic schedule planning model. When the integrated model
is allowed to increase the prices beyond the average prices, the resulting profit and the
served demand increases more significantly. The decisions on the prices of the itineraries
show that the integrated model increases the prices whenever it sees a potential and
decreases the prices when assigning a larger capacity is more profitable.

5.2 Illustrative example for the reaction of the integrated model
to the market conditions

One of the most important factors for airlines in their revenue management is the alterna-
tive itineraries provided by competitive airlines. As explained in section 2, we introduce
no-revenue options in our model to represent the attributes of the competitors’ itineraries.
Therefore the integrated model takes into account those competitive itineraries offered
by other airlines, while optimizing the revenue decisions. In order to illustrate this phe-
nomenon we compare the price-inelastic schedule planning model with the integrated
demand model in three different market conditions based on the data instance provided
in Table 6. Compared to the actual itineraries, the competitors have lower, similar and
higher prices respectively in the presented scenarios.

12



€l

Table 7: Results on the impact of the integrated demand model

Price-inelastic schedule

Integrated model -

planning model limited prices Integrated model

Revenue 204,553 214,380 244,924

Operating costs 150,603 160,003 173,349

Profit 53,949 54,377 (4 0.8%) 71,575 (+ 32.7%)

Number of flights 22 22 24

Transported passengers 943 1031 (4 9.3%) 1064 (+ 12.7%)

Economy-Business passengers 882 E-61B 970 E-61 B 997 E - 67 B

Allocated seats 274 324 324

OD . Forecasted | Average Realized Assigned Realized Realized Assigned Realized Realized Assigned

. Class Morning . R . R . .

pair demand price demand capacity price demand capacity price demand capacity

1 B-A E 0 59 225 50 50 225 50 50 250 50 50
27 7AB "E 17" " 7"88 777 2125 50 50 | 2125 50 50 | 225 50 50 |
'3 BA-"E 0 389 T 7T 225 50 50 | 225 50 50| 250 50 50 |
|4 AB_E "0 "6 ]~ 2125 50 50 | 2125 50 50| 225 50 50 |

B 6 526.5 6 526.5 6 550 6
> B-A E 1 60 225 44 50 225 31 37 250 31 37
B 2 497.2 2 497.2 2 507.34 2

6 A-B E 0 66 212.5 45 50 212.5 33 37 225 33 37
7" AB"E 0 "8 ] 7 2125 50 50 | 2125 50 50| 225 50 50 |
/8 BA "E 1 "6 ] " 22 " BO 50 | 1824 100 1 100 [  195.15 100 = 100 |
9" AB~ "E 1 "8 ] " 2125  ~~BO 50 | 194 100 1 100 | 20156 100 = 100 |
/70 B-A~"E 0 759 ] T 225 50 50 | 225 50 50| 250 50 50 |
11T AB E 0 "8 ] 7 2125 50 50 | 2125 50 50| 225 50 50 |
|12 B-A~"E 0 7589 T 225 50 50 | 225 50 50| 250 50 50 |




Table 8: The results with changing market conditions
Competitors with higher prices

Price-inelastic  Integrated model
schedule planning model

Revenue 206,001 247,269

Operating costs 150,604 173,349

Profit 55,397 173,920 (+ 33%)

Number of flights 22 24
Transported passengers 951 1,076 (+ 13%)
Economy-Business passengers 888 E - 63 B 1007 E-69 B
Allocated seats 274 324

Competitors with similar prices
Price-inelastic  Integrated model
schedule planning model

Revenue 202,645 218,456

Operating costs 150,604 149,656

Profit 52,401 68,800 (4 31%)

Number of flights 22 22
Transported passengers 935 935
Economy-Business passengers 876 E - 59 B 878 E-57 B
Allocated seats 274 274

Competitors with lower prices

Price-inelastic  Integrated model
schedule planning model

Revenue 190,590 215,429

Operating costs 140,822 149,656

Profit 49,768 65,773 (4+ 32%)

Number of flights 20 22
Transported passengers 871 926 (+ 6%)
Economy-Business passengers 815 E - 56 B 871 E - 55 B
Allocated seats 274 274

The results are provided in Table 8. For the scenario with similar prices, the scheduling
decisions of the price-inelastic schedule planning model and the integrated model are the
same and therefore the realized demand is similar. In the scenario where the competitors
are more expensive, price-inelastic schedule planning model keeps the same scheduling
decisions which results with an improvement in the profit and realized demand since the
competitors are less attractive. For the same scenario, the integrated model allocates
higher capacity and operates one more flight which results with a significant increase
in realized demand. The advantage of the integrated model emerges from the fact that
either it finds room to attract more passengers or it has a potential to increase the prices.
When we analyze the results in the case of cheaper competitors, it is observed that the
inelastic demand operates less flights. Since it can not compete with the cheap prices it
carries less passengers compared to the other scenarios. However the integrated model
can still accommodate a similar level of passengers thanks to the flexibility of decreasing
the prices in order to attract passengers.
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5.3 Illustrative example for the spill and recapture effects

We compare our integrated approach with the integrated model w/o spill described in
section 4 in order to analyze the design flexibility of the schedule gained by airlines with
the spill and recapture effects. In order to be able to see the impact of the spill more
clearly, in this analysis the upper bound on the prices is set to the average price.

The results are presented in Table 9. We select the OD pair C-D arbitrarily among 6
OD pairs to present the impact of spill from an itinerary level. Spill values with “+” sign
means that the itinerary recaptures passengers that are spilled from other itineraries. On
the other hand, spill values with “—” sign corresponds to the total redirected passengers
from the itinerary to the remaining alternatives in the same market. It is observed that
the integrated model with spill modifies the prices of the itineraries relatively to capture
the passengers of the other itineraries for the same market. For example the itinerary
4 attracts both economy and business passengers from other itineraries and therefore
assigned a larger aircraft compared to the integrated model w/o spill. The flexibility of
redirecting passengers to other itineraries enables to keep the prices at higher prices. As
an example, the integrated model assigns higher price to itinerary 1 compared to the
integrated model w/o spill, but realizes the same demand due to recaptured passengers.
Furthermore it is observed that itinerary 5 is not operated since some of its passengers
were recaptured by the other itineraries and it was more profitable to cancel it. With
similar decisions for other OD pairs, the integrated model has higher profit and carries
more passengers in the presence of spill and recapture.

5.4 Experiments on the added value of the integrated model

In order to see the added value of the integration of the demand model we need to
support our observations with a comprehensive set of experiments. For that purpose
we identified 15 data instances with different characteristics that are listed in Table 10.
For the experiments, we present the number of airports and the number of flights in
the network. Moreover, the flight density stands for the average number of flights per
route. The average demand gives the average number of passengers per flight according to
demand forecast. The fleet composition provides information on the number of different
plane types in the fleet together with the seat capacity for each type.
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Table 9: Illustration for the spill and recapture effects

Integrated model w/o spill

Integrated model

Revenue 208,955 214,380
Operating costs 158,441 160,003
Profit 50,514 54,377 (+ 7.7%)
Number of flights 24 22
Transported passengers 972 1031 (+ 6.1%)
Economy-Business passengers 902 E-70B 970 E-61 B
Allocated seats 224 324
OD Class Morning Forecasted| Realized Realized Assigned | Realized Spill Realized Assigned
pair demand price demand capacity | price demand capacity
1 CD E 0 34 160.2 37 37 169 +3 37 37
'2 ¢cp E 0 3 | - o o - 32 o 0 |
'3 ¢b E 1 34 | 1586 39 ! 50 | 171.4 +3 37T 37 |
B 7 409.5 7 404.3 +3 10
1 ¢bog ! 35 175 30 37 168.7 +15 40 50
B 7 409.5 7 - -7 0
5 CD g 0 32 175 30 37 - 32 0 0
B 7 409.5 7 409.5 7
6 CD g 0 32 175 30 37 175 -2 30 57




Table 10: The experiments

No Airports Flights (Fi‘(l;f:ity dA;in; Fleet composition
1 3 10 1.67 51.9 | 2 50-37 seats
2 3 11 2.75 83.1 | 2 117-50 seats
3 3 12 2 113.8 | 2 164-100 seats
4 3 26 4.33 56.1 | 3 100-50-37 seats
5 3 19 3.17 96.7 | 3 164-117-72 seats
6 3 12 3 193.4 | 3 293-195-164 seats
7 3 33 8.25 71.9 | 3 117-70-37 seats
8 3 32 5.33 100.5 | 3 164-117-85 seats
9 2 11 5.5 173.7 | 3 293-164-127 seats
10 4 39 4.88 64.5 | 4 117-85-50-37 seats
11 4 23 3.83 86.1 | 4 117-85-70-50 seats
12 4 19 3.17 101.4 | 4 134-117-100-85 seats
13 4 15 1.88 58.1 | 5 117-85-70-50-37 seats
14 4 14 2.33 87.6 | 5 134-117-85-70-50 seats
15 4 13 2.6 100.1 | 5 164-134-117-100-85 seats

For the considered data instances, we compared the sequential approach presented
in section 4 and the integrated model. The comparative results are presented in Table
11. It is observed that for 6 of these 15 instances there is an improvement with the
integrated model in terms of the profit and transported number of passengers. These are
the cases where the simultaneous optimization of the schedule planning and pricing lead
to different scheduling decisions such as the operated number of flights or the number of

allocated capacity.

Table 11: The results of the experiments

Sequential approach Integrated model Improvement
No Profit Pax. Flights Seats Profit Pax. Flights Seats | Profit Pax.
1] 15,091 284 8 124 | 15,091 284 8 124 - -
2| 35372 400 8 150 | 37,335 534 8 217 | 5.55% 33.50%
3| 50,149 859 10 300 | 50,149 859 10 300 - -
4|1 69,901 931 22 274 | 70,904 1063 24 324 | 1.43% 14.18%
5| 82,311 1145 16 333 | 82,311 1145 16 333 - -
6 | 779,819 1448 10 1148 | 779,819 1448 10 1148 - -
7 | 135,656 1814 32 498 | 135,656 1814 32 498 - -
8 | 107,927 2236 26 691 | 107,927 2236 26 691 - -
9 | 854,902 1270 10 1016 | 858,544 1344 10 1090 | 0.43%  5.83%
10 | 109,906 1448 32 391 | 112,881 1541 34 391 | 2.711%  6.42%
11| 82,440 1135 20 387 | 85,808 1164 20 387 | 4.09%  2.56%
12 | 49,448 1050 12 370 | 49,448 1050 12 370 - -
13| 27,076 448 10 207 | 27,076 448 10 207 - -
14 | 44,339 599 10 267 | 45,070 699 12 267 | 1.65% 16.69%
15| 26,486 504 6 185 | 26,486 504 6 185 - -

We observe that the improvement is higher for the experiments where the demand
levels for the flights has high variation but there is a few number of plane types. In
those cases, the integrated model is able to adjust the capacity according to the demand
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and has significant improvement over the sequential approach. Experiment 2 is a good
example for this phenomenon. There are 2 different fleet types with 50 and 117 seats.
The sequential approach does not use the larger aircraft which is costlier to fly. On
the other hand the integrated model uses this large aircraft thanks to its flexibility in
controlling the demand by pricing decisions. As a result, there is a 5.55% increase in
profit and 33.5% more passengers are transported. Similarly, for the experiments 4 and
9, the integrated model decides to use more capacity with the knowledge on the demand
behavior. In addition to the decision on the allocated capacity, the integrated model may
decide to operate less/more flights by changing the attractiveness of the corresponding
itineraries as seen in experiments 4, 10, and 14. For example, for experiment 14, the
integrated model operates 2 more flights with the same overall capacity compared to the
sequential approach.

6 Conclusions

In this paper an integrated scheduling, fleeting and pricing model is presented for a single
airline, which enables to take the advantage of explicit supply-demand interactions in
decision making. The novelty of the model is due to the modeling of the demand through
an itinerary choice model based on a real data and the integration of this demand model in
a scheduling and fleeting framework for airlines. The demand model is utilized for pricing
as well as the spill and recapture effects which gives flexibility to airlines in determining
their transportation capacity.

The impacts of the integrated model is evaluated on a European air transportation
network with several illustrations. It is observed that the integrated model has more
flexibility on the decisions thanks to the simultaneous optimization. The pricing is deter-
mined according to the market conditions and whenever there is a potential in increasing
the profit by altering the price the integrated model benefits from it. Therefore the
integrated model is elastic to the market conditions.

The added value of the integrated model is analyzed in comparison to a sequential
approach which mimics the current practice of airlines. It is shown that the integrated
model may decide on different scheduling and/or fleeting compared to the sequential
approach by making use of the supply-demand interactions. These differences may be
in terms of the number of flights operated or the assigned capacity which result with
increase in profit and increase in served demand.

The presented analysis shows that the airlines should consider the demand related
information earlier in their planning phase when deciding on the schedule and capacity.
Our model is a proof of concept for the integration of scheduling, fleeting and pricing
decisions which is expected to improve the efficiency of decision support tools of airlines.
This effort can motivate the integration of more detailed demand information through
disaggregate demand models as a future extension.

The presented integrated model is a mixed integer nonconvex problem which is highly
complex. When we go beyond the instances provided in Table 10 in terms of size, the
solver can not provide good quality feasible solutions for the integrated model. The non-
convexity is due to the explicit logit formula which allows for the integration of more
advanced demand models with more policy variables and/or socio-economic characteris-
tics. As a future work we are working on appropriate transformations of the logit formula
allowing to convexify the problem while keeping the disaggregate nature of the demand
model.
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The considered demand model has only one policy variable which is the price of the
itinerary. In other words the integrated model can only control the price of the itineraries
in order to maximize the profit. However there is a variable for the departure time of
the day which indicates whether the itinerary is a morning itinerary or not. As a future
work the departure time can be introduced as a policy variable in addition to the price.
This will enable the integrated model to take the advantage of the flexibility in changing
the departure time of the flights. As another promising research direction, the presented
model can be embedded in a competitive framework with a game theoretical approach in
order to represent the response of each airline in the market segment.
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A Appendix: The logit model based on the SP data

As mentioned in section 2 the SP data is combined with the RP data in order to take the
advantage of its elasticity. In this section we provide the logit model which is estimated
on the SP data. The logit model has three alternatives. The first one is a nonstop
itinerary. The second alternative is a one-stop itinerary both flights being operated by
the same airline. The third alternative is also a one-stop itinerary where the connection
is provided by another airline. The utilities for these alternatives are provided by the
equations 21, 22, and 23 respectively.

Similar to the RP model, the parameters are specified as economy and business. The
parameters of the price variables for each of the alternatives (BI;E’N S Bf’N s 55’5 , Bf’s )
are constrained to be the same as the price parameters of the RP model presented in
section 2. Similarly the parameters of the time variables (85N, BN gES 308y and
the parameters of the morning variables ( goming, ﬁoming) are also designed to be the
same as the parameters of the RP model. Since the models for RP and SP datasets are
estimated simultaneously, we need to estimate a scale parameter, scalegp, to ensure that
their variances are the same.

In the SP model, there are additional explanatory variables since it is based on a
rich data set. For business passengers we have the information whether they pay their
ticket or their company pay for that. Therefore there is an additional dummy variable,
business/others-pay, which is 1 if the business passenger’s ticket is not paid by himself.
There are other explanatory variables which are represented by v. These variables include
the legroom provided in the airplane, the delay of the flight in case of late or early arrival
and the variable representing whether the passenger is a frequent flyer or not.
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V1 = scalegp X (ﬂf’NS x In(p;/100) x economy + /Bf’NS x In(p;/100) x business
+ 87 ~OF % In(p;/100) x business/others-pay

E,NS _ .- B,NS
+ B 7 X time; X economy + (.

time e X time; X business

+ BnElorning X morningl X economy

+ ﬁﬁommg X morning; X business

+ E BE x vt x economy + 52 x v! x business)
i

Va = scalegp x (ASCY x economy + ASCE x business
I B};E,S X In(p,/100) x economy + 55’5 x In(p,y/100) x business
+ ﬁf—op X In(py/100) x business/others-pay

E.S : B,S . .
+ Bime X timeg X economy + 3, X times X business
+ Bgorning X morning, X economy

+ Bﬁorning X morningg X business

+ Zﬁf X vy x economy + 3 X vh x business)
Vs = scalegp x (ASCE x economy 4+ ASCZ x business
+ B x In(p3/100) x economy + A% x In(p3/100) x business
+ Bf ~OP % In(ps/100) x business/others-pay
+ B2 % times x economy 4 55° x times x business
+ Brgorning X morning; X economy

B . )
+ Bmorning X morning, X business

+ E BF x vl x economy + B x v} x business)

)
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