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    Abstract:  This paper examines the application of a 
path-based algorithm, to the static and fixed demand 
asymmetric traffic assignment problem. The algorithm is of 
the simplicial decomposition type and it solves the 
equilibration or master problem step by means of five 
existing projection methods for variational inequality 
problems in order to evaluate their performance on real 
traffic networks. The projection methods evaluated are: a) a 
cost approximation based method for minimizing the 
Fukushima's gap function, b) the modified descent method of 
Zhu and Marcotte (1998), c) the double projection method of 
Khobotov (1987) and three of its recently developed variants 
(Nadezhkina and Takhashi (2006), Wang  et al. (2010), He  
et al. (2012)); d) the method of Solodov and Svaiter (1999); 
and e) the method of Solodov and Tseng (1996). These 
projection methods do not require evaluation of the 
jacobians of the path cost functions. The source for 
asymmetries are link costs with interactions, as in the case 
of priority ruled junctions. The path-based algorithm has 
been computationally tested using the previous projection 
methods on three medium to large networks under different 
levels of congestion and the computational results are 
presented and discussed. Comparisons are also made with 
the basic projection algorithm for the fixed demand 
asymmetric traffic assignment problem. Despite the lack of 
monotonicity properties of the test problems, the only 
method that failed to converge under heavy congestion 
levels was the basic projection algorithm. The fastest 
convergence was obtained in all cases solving the master 

problem step  using the method of He et al (2012),which is a 
variant of Khobotov’s method. 
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1 INTRODUCTION 

Traffic assignment models are a key part of urban 
transportation planning methodologies. Their aim is to 
predict link flows and travel times on a traffic network, 
which themselves are a result of route choices made by 
travelers from their origin to their destination. In one of its 
most simple statements, these models assume that the 
number of trips from each origin destination pair (OD pair) 
is fixed and does not depend on the level of congestion in 
the traffic network (fixed or inelastic demand models). In 
these models, link travel times are provided by the so-called 
volume delay functions that express the relationship 
between travel times on links and traffic volumes in the 
network. Traveler behaviour is assumed to follow the 
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Wardrop equilibrium principle (Wardrop (1952)) which can 
be formulated mathematically as a variational inequality 
(V.I.) problem and, under some simplifying assumptions, as 
an optimization problem. 

V.I. problems in finite dimension spaces appear very 
often in economic and engineering models and are the 
means by which an equilibrium principle is stated 
mathematically. To describe these problems very briefly: 
given a closed and convex set nX   of candidate 
solutions on which a continuous functional nXF  :)(  

is defined, a special point x  is searched so that the 
projection of )(xFx  , for any 0> , onto X results in 

the point x  itself. In other words, if ][XP  is the projection 

operator on X, defined by 
}|||||{=][ 2

2 XxxzargminzPX  , then a solution x of the 

V.I. problem verifies the fixed-point relationship 
)]([= xFxPx X  , which is the basis of projection 

algorithms for V.I. problems. This is equivalent to saying 
that the solutions x of the V.I. problem verify the condition 

XyxyxF  0,)()( , which is the classical way in 

which V.I. problems are presented. Through this condition 
it is clear that, in the case of fF = , then the solutions of 

the V.I. problem are also local minimizers of the 
optimization problem )(xfMin Xx . A convenient way for 

referring to a V.I. problem defined by a functional F and a 
closed and convex set X is by ),( XFVI . In the case of the 

traffic assignment problem, its formulation can be under 
link flows or on a formulation under flows on paths. 

For reasons expressed in the State of the Art below, this 
paper focuses on using recently developed projection 
algorithms for monotone variational inequalities to solve 
the static asymmetric traffic assignment problem (ATA 
problem in the following) under a path flow formulation, 
while additionally discussing its performance for real traffic 
networks. 

Short State of the Art of algorithms for the ATA problem 
and projection methods. For reasons that will be explained 
in section 2, the traffic assignment problem is referred to as 
an asymmetric traffic assignment (ATA) problem when 
expressed as a V.I. problem (or also, as problems with link 
interactions); and it is referred to as a diagonal traffic 
assignment problem when expressed as an optimization 
problem. 

The formulation of the diagonal problem dates back to 
Beckman  et al. (1956). Path-based formulations for solving 
the diagonal traffic assignment problem were advocated, for 
instance in Van Vliet and Kupiszewska (1999), not only for 
computational purposes but also for their utility when path 
analysis is required as part of the planning tasks. Recent 
algorithmic advances have made it possible to develop new 
methods for the fixed demand traffic assignment problem in 
its diagonal form, thus achieving user equilibrium with 

more speed and precision than is possible with the 
traditional Frank-Wolfe algorithm (Frank and Wolfe 
(1956)) and other methods that rely on a link-based 
formulation. These advances have been motivated by 
increasingly larger network models, as well as by the select-
link analysis requirements, which need great precision in 
calculating equilibrium flows. The evolution of algorithmic 
developments for solving the diagonal traffic assignment 
problem can be found in surveys such as Chen  et al. (2002) 
or monographs such as Patriksson (1994) and Florian and 
Hearn (1995) and will not be explained here. Marcotte and 
Patriksson (2007) is another very relevant monograph 
capturing recent contributions to the modeling and 
algorithmic aspects of the static traffic assignment problem. 

Also, as the modeling requirements have been more 
demanding, the separability assumptions in the volume 
delay functions (upon which diagonal formulations rely), 
have been found to lead quite frequently to modeling 
inaccuracies due to the over simplifications that they 
represent. This may happen, for instance, when it is 
recommendable to deal explicitly with delays at 
unsignalized intersections with link interactions using, for 
instance Harders formula (Harders (1968)). The modeling 
inaccuracies may also happen when dealing with 
generalized costs in complex multiclass-multimode 
planning models, Wu and Florian (1993), Florian and He 
(2002). Thus, in contrast to the the classical problem of 
traffic assignment with fixed demand, the ATA problem 
has received much less attention and the real life large-scale 
applications of the ATA problem are very seldom found (an 
example of one may be seen in Berka and Boyce (1996)). 
The application of the ATA model to a small realistic 
network can be found in Boyce  et al. (1990). 

Because of the theoretical similarity of diagonal and 
ATA problems, the approaches for solving the former 
models have influenced solution methods for the latter 
models. Relaxation methods for V.I. problems, such as the 
nonlinear Jacobi and Gauss-Seidel, are one of the oldest and 
most extended methods for solving the ATA problem, and 
several variants of the diagonalization methods have been 
tested by the academic community. A very good description 
of relaxation methods can be found in Patriksson (1999). A 
distinctive characteristic of the ATA problem is that real 
applications do not generally comply with the assumptions 
of monotonicity required by algorithms for V.I. problems 
for convergence (see, for instance Florian and Spiess 
(1982)). It is, however, common practice to apply these 
algorithms, regardless of this drawback, in hopes of a 
convergence to equilibrium solutions (see, for instance 
Berka and Boyce (1996)). Other methods for V.I. problems, 
such as the gap descent Newton method, have been tested 
only on small networks under a link-based formulation (see, 
for instance Marcotte and Guelat (1988)). This method does 
not seem to be properly suited to large applications and has 
not received further attention. 
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Projection algorithms (orthogonal projection or 
projection of the Goldstein-Levitin-Polyak type) for the 
ATA problem under a path-based formulation were first 
developed by Dafermos (1986) and by Bertsekas and Gafni 
(1982). A basic description of a path-based projection 
algorithm can be found in Florian and Hearn (1995) and is 
summarized in section 3 of this paper. At each iteration, the 
basic projection algorithm for the ATA problem uses a 
shortest path algorithm based on current link costs in order 
to enlarge the current set of paths. On this current set of 
paths, a single projection operation is performed to get a 
new path flow vector. This basic projection algorithm 
suggests a more general algorithmic framework in which --
instead of performing a single projection operation-- a 
vector of path flows (restricted to the current set of paths) is 
searched at each iteration so that their flows follow a 
Wardrop equilibrium. The algorithm stops when the current 
set of paths contains all the paths that can be equilibrated, 
or when the contribution to the equilibrium of new paths is 
very small. This schema, already used for diagonal 
problems by several authors and in Panicucci et al. (2007) 
for ATA problems, can be characterized as a simplicial 
decomposition (SD) path-based algorithm. The SD 
algorithm was developed by Hearn et al. (1987) for 
optimization problems and by Lawphongpanich and Hearn 
(1984) for ATA problems. 

Projection methods for solving V.I. problems were 
studied intensively in the nineties as well as in recent years. 
Solving V.I. problems with differentiable gap functions 
(such as Fukushima's gap function and its natural extension: 
Marcotte's gap function) had been studied earlier by authors 
such as Fukushima (1986), Fukushima (1992) and 
Patriksson (1999), among others. Based on these ideas, 
several authors have developed methods in order to 
conveniently adjust the parameters of the projection method 
(self-adaptive methods) for a faster convergence of the 
algorithm (see, for instance Zhu and Marcotte (1998) and 
Han and Sun (2004)). The basic projection method can be 
interpreted as the minimization of a Fukushima gap 
function, performing just the initial iteration. In recent 
years, several projection-type methods for solving V.I. 
problems have been studied and enhanced by the research 
community. The first one of these methods is the Khobotov 
algorithm (1987). This algorithm basically consists of a 
double projection method, which is combined with an 
adaptive method for adjusting the parameter in the first 
projection step. This method is used by Marcotte (1991) to 
solve a link-based formulation of the ATA problem. 
Recently, Panicucci  et al. (2007) adapted Khobotov's 
method by Marcotte in Marcotte (1991) for the ATA 
problem by using a path-based formulation, reportedly 
achieving computational results for small to medium-scale 
networks. To date, there are no other known uses of 
projection methods for variational inequalities to solve the 
ATA problem in large traffic networks. 

Recently, Wang  et al. (2010), propose adjusting the 
parameter for the second projection for the Khobotov 
algorithm and Nadezkhina and Takahashi (2006), propose 
the method of successive average (MSA) steps, also 
following the second projection step. Another method is 
that developed by Solodov and Svaiter (1999). He  et al. 
(2012a, 2012b) develop a wide algorithmic framework for 
solving V.I. problems by proximal point methods, which 
contain as special cases the extragradient or double 
projection method of Khobotov and of Solodov and Svaiter. 
In these papers, and as a result of their analysis, He  et al. 
propose another variant of the Khobotov method consisting 
simply of recalculating the step parameter of the second 
projection, which can be performed very efficiently. 
Finally, the method of Solodov and Tseng (1996) has also 
been taken into account. A common characteristic of all 
these methods is that they do not require the evaluation of 
the jacobian of the path costs, making it possible to apply 
them to very large networks. The methods based on the so-
called D-gap function developed in Solodov and Tseng 
(2000) and in Peng and Fukushima (1999) require implicit 
or explicit use of the jacobian of path costs and will not be 
considered in this paper. 

  Contribution and layout of the paper. In this paper the 
performance of a SD path-based algorithm for the fixed 
ATA problem is tested using a selected set of projection-
type methods for V.I. problems as solvers of the 
equilibration step. None of the selected methods requires 
the evaluation of jacobians. The selected set of methods are 
well representative of the state of the art and include, 
among others, several recently developed variants of the 
Khobotov extragradient method. No comparative tests of 
this kind for the ATA problem are known in the literature 
for medium to large realistic networks and, to our 
knowledge, only results for the basic Khobotov 
extragradient method have been reported. The tests show 
that the new variant in He  et al. (2012a), has performed 
better in all instances. The tests have been carried out using 
three medium scale traffic networks with different levels of 
congestion. The source for asymmetries in the test networks 
have been the cost functions of links which depend on 
flows from other links entering at a common junction, a 
situation typically arising in priority ruled junctions. 

The list of projection-type methods for V.I. problems 
considered in this paper are: a) the minimization of the 
Fukushima gap function by the cost approximation 
algorithm, b) the algorithm of Zhu and Marcotte, c) three 
variants of the Khobotov's double projection algorithm d) 
the Solodov and Svaiter algorithm and e) the method of 
Solodov and Tseng. Results for the basic projection 
algorithm for the ATA problem are also reported. The 
outline of the paper is as follows: section 2, next, contains a 
description of the ATA problem formulated as a V.I. 
problem, and it also introduces the required notation. 
Section 3 describes the basic projection algorithm for the 
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path flow formulation of the ATA problem and section 4 
describes the SD path-based algorithm as an extension of it. 
Section 5 describes the projection-based algorithms for V.I. 
problems used for solving the equilibration step and, 
finally, section 6 presents and discuses the computational 
tests. 

 
2 NOTATION AND BRIEF DESCRIPTION OF THE 

USER EQUILIBRIUM TRAFFIC ASSIGNMENT 
PROBLEM 

In order to formulate mathematically the user equilibrium 
traffic assignment problem the following notation needs to 
be introduced. Consider a network defined in terms of a 
graph ),(= ANG  with a set of nodes N  representing either 
intersections or dummy nodes associated with the 
transportation zones, usually referred to as centroids, and a 
set A  of arcs used to model the infrastructure and the 
connections between centroids to the network. Consider 
also a trip table, or OD trip matrix, modeling the demand 
between transportation zones. The notation used through 
this paper is the following: 

     •  W= the set of OD pairs (p,q) 
     •

w
Ww

 


=  ;  = |w r path joining the OD pair w W   

     • 
wg  : trip demand for OD pair Ww  

     •   1=,,= arw rarWwAaA  


 

     •   alinkoverlinkriorityaxAaA p  =ˆ  

     • :w
rh  path flow through the path 

wr  , joining the 
OD pair Ww . If by the context, it is clear which OD pair 
w  the path belongs to, the superscript will be omitted. 
Also, a vector of flows on paths will be denoted by wh  for 
OD pair Ww . 

     • w

Ww

HH 


= ;  ( )= = , 0
ww w n w w

r w rr w
H h h g h


   

     • If   is the link-path incidence matrix given by 
 ar=  being 1=ar  if link a  belongs to path r  and 0 

otherwise, then the polytope of link flows V can be 
expressed as the image of H by the linear operator defined 
by matrix  , i.e.:  HV =  ; 

     • :av  link flows, Aa . The vector of flows will be 
denoted by Vv  on links of the network. 

     • )(vca
: cost on link Aa , which is assumed to 

depend on link flows v . The link cost vector function will 
be denoted by ||:)( AVc  . 

     • 
rC : cost on path r ; the vector of path costs is 

denoted by Wn
HC  :)( , where = w

W w Wn n . It is 
usually assumed that costs on paths can be calculated 
additively using costs on links. 

User equilibrium modeling hypothesis: the routes chosen 
by the travellers are those individually perceived as being 
the shortest under the prevailing traffic conditions. This 

hypothesis assumes that travellers try to minimize their 
individual travel times. It was formulated by Wardrop 
(1952) in terms of what is now known as Wardrop's First 
Principle, or Wardrop's User Equilibrium: the journey times 
on all the routes actually used are equal, and less than 
those which would be experienced by a single vehicle on 
any unused route.  

Wardrop's First Principle can be easily translated in terms 
of mathematical relationships as follows: flows on a 
network are in an equilibrium that satisfies Wardrop's 
principle when non-negative and feasible path flows *

rh  
with costs 

rC  and shortest path costs *
wu  for OD pair w, 

satisfy: 

Wwr
uC

uCh
w

wr

wrr 







,
0

0,=)(
*

*

 (1) 

Relationships (1) are a direct translation of Wardrop's 
principle in mathematical terms as a complementarity 
condition. If path r carries flow, that is 0>*

rh , then the 
complementarity equation (1) is satisfied if and only if 

0=*
wr uC  ; that is, the cost 

rC  of using path r for OD pair 
w is equal to *

wu , the cost of the shortest path for the OD 
pair w. While if 0>*

wr uC  , that is the cost 
rC  of using 

path r is higher than the cost of the shortest path, then to 
satisfy the complementarity equation 0=*

rh , path r  does 
not carry any flow, as expected from Wardrop's principle 
for paths whose costs are not minimal. Constraints state 
when a flow is feasible or not in terms of flow balance. If 

w  is the set of all paths for OD pair Ww  then, the sum 
of flows on all paths for OD pair w must equal the demand 

wg , and flows 
rh  must be non-negative. Taking into 

account the definitional constraints relating flows on arcs 
Aa , with flows on paths Wwr w  , : 

1 r
= =

0a r ar ar
w Wr w

if arc a belongs to path
v h where

otherwise
 

 





    (2) 

then relationships (1) result in the V.I. formulated in the 
space of path flows: 

* * *: ( ) ( ) 0,Find h H so that C h h h h H            (3) 

This V.I. was initially reformulated by Smith (1979) in 
the space of link flows as: 

* * *: ( ) ( ) 0,Find v V so that c v v v v V             (4) 

Problem (3) can be reduced to an optimization problem 
under the simplifying assumption of a symmetric jacobian 

C . This conditions is fulfilled when, for instance, the 
jacobian of volume delay functions is also symmetrical or if 
it is diagonal (or, equivalently, the volume delay function of 
a link depends only on the volume on that 
link: ( ) = ( ),a a ac v c v a A  ) (See, for instance, Florian and 
Hearn (1995)). Thus, in the literature, traffic assignment 
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problems are commonly referred to as a) diagonal problems 
or b) problems with link interactions. As no practical 
instances of traffic assignment models with link interactions 
and symmetric jacobians are known, then traffic assignment 
models formulated as an optimization model are simply 
termed as diagonal models; and those formulated as a V.I. 
problem are referred to as models with link interactions. 
Classically, the fixed demand diagonal traffic assignment 
model is formulated as the following equivalent convex 
optimization problem, (see, for instance Patriksson (1994)): 

0
( )

. :

va
v aa A

Min c x dx

s t v V





                           (5) 

which is also known as the fixed demand Beckmann 
problem (see Beckmann  et al. (1956)). 

Another approach for solving V.I. problems is by means 
of the so called gap functions. A function G is a gap 
function VG : , for a V.I. problem (4) if it is 
nonnegative on V and it vanishes only at points Vv *  
which are solutions of the V.I. Descent methods for V.I. 
problems are based on various types of gap functions. The 
most commonly used is the primal gap function GP of 
Auslender (1976): 

  )()(=)( uvvcSupvG VuP 


          (6) 

 
3 THE BASIC PROJECTION METHOD 

For variational inequality such as the one in (4), projection 
algorithms, at each iteration  , project on the polyhedron V 
the point ˆ = ( )v v Qc v   , where Q  is a symmetric 
definite positive matrix and 0>  is a suitable scale 
parameter. The projection of point v̂  on the polyhedron V 
under the norm 

1·
Q 

 is equivalent to solving the quadratic 
problem: 

Vyts

vyvcvyQvyMiny



 

..

)()()()( 1

2

1  TT      (7) 

For the traffic assignment problem formulated in the 
space of path flows, the previous problem (7) has a 
separable structure for each O-D pair Ww . The matrix 
Q  is adopted as block-diagonal, )...;(...= WwQdiagQ w  , 
being each of the submatrices ),...;(...,= wr

w rqdiagQ  . 
A common coefficient ...=== rr   is usually adopted 
for all the paths r  in the network, or choose as 

=r r rC h   , the diagonal element of the jacobian C . 
Thus, each of the subproblems has the following structure: 

 
1 1 1 1 2( )( ) 1/2 ( )

[Q]
. .: = , 0

h r r r r r rr w

r w rr w

Min C h h h h h

st h g h

   




  






  

(8) 

with = /r rq   and   a scaling parameter. In the case that 
a common coefficient α applies for all paths, this coefficient 
will be referred to as the parameter of the projection. 

When applied to traffic assignment problems, it cannot 
be expected that all paths joining each OD pair are known a 
priori. The projection version of the traffic assignment 
problem generates new paths based on the link costs of the 
current solution while the algorithm is running. At iteration 
 -th, the algorithm will work with a polytope H  of path 
flows on given subsets 

w  of 
wn  paths for OD pairs Ww , 

which have been identified as candidates up to iteration   
for each of the origin destination pairs, i.e: = w

w W
H H

   
with = | = , 0{ }

w

nw w w ww
r w rr

H h h g h


  



 . 
w will 

be referred to as the working set of paths for OD pair 
Ww . 

The resulting projection algorithm is: 
 

Initialization: Find an initial set of acyclic paths for each 
OD pair Ww , and load on them the demand wg . Let 0

w  
be the initial working set of paths and let 

0
0 Hh   be an 

initial feasible flow vector; 1=  . 

At iteration  -th:  

a) Find the shortest paths Wwr w  ,
  with costs on 

links 1( )C h  ; let 
SPĥ  be the flows on the shortest paths. 

b) Add the new paths detected in step a): 
1= { },w w r w W       

c) If 1 1 1 1 T 1ˆ( ) = ( ) ( ) ( )rel SPG h C h h h C h h             STOP. 

d) For each Ww , solve previous quadratic problem [Q] 
in (8) over the known set of paths 

w  and let the vector 
of path flows ĥ  be its solution. 

e) Line search (optional):  
))ˆ(( 11 

   hhhGMin P  10 . Let ~  be the 
solution of the line search ( 1=

~  if the line search is not 
performed); 

f) Update flows: )ˆ(
~

= 111    hhhh  ; 1  . Go 
to a) 

The convergence of the algorithm is ensured if the link 
cost vector function is Lipschitz continuous and strongly 
monotone. The second condition is in general not verified 
by network models in practical applications. It must be 
remarked that the working set of paths 

w  always increases 
as the algorithm proceeds. The computational performance 
of the previous algorithm strongly depends on the solution 
of the quadratic problem [Q] at step d). A good choice for 
solving it is by means of the algorithm of Michelot (1986), 
which is also similar in essence to the one proposed by Wu 
(1991). A description of the algorithm of Michelot used to 
solve problem [Q] is given in appendix A. 
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4 AN SD PATH-BASED ALGORITHM FOR 
SOLVING TRAFFIC ASSIGNMENT PROBLEMS 

The projection algorithm described in the previous section 
precedes a more general schema for solving traffic 
assignment problems. New paths are found and added 
iteratively to the ones already used by the algorithm in 
previous iterations. At each major iteration, and until a 
stopping criterion is satisfied, the current set of paths is then 
equilibrated, i.e., the traffic assignment problem is solved  
as if the set of paths in the working set were the only ones 
available on the network. Additionally, paths that have not 
been loaded with any flow may be dropped from the 
working set. 

For a given vector ww Hh   of path flows for origin-
destination pair Ww , let )( w

w h  denote the subset of 
paths r  with positive flow, 

wr rh 0,> , for OD pair 
Ww . )( w

w h  will be referred to as the set of active paths 
for Ww . 

The SD path-based algorithm can be stated as follows: 

Initialization: Find an initial set of feasible acyclic paths 0
w  

for each OD pair Ww , wg  and load on them the demand 
so that a feasible path flow vector 

0
0 Hh   is obtained; set 

iteration counter 1= . 

At iteration  -th:  

a) Optionally, for each OD pair Ww  update the working 
set of paths by dropping those with null flow in previous 
iterations. If just the 1 -th iteration is considered, then 

)(= 1,1    w
ww h . 

b) [Subproblem Step] Increase the working set of paths by 
finding the shortest paths Wwr w  ,

 , using costs 
)( 1hC : }{= 1 rww

   , Ww . Let 
SPĥ  be the path 

flow vector on the shortest paths. 

c) If 1 1 1 1 T 1ˆ( ) = ( ) ( ) ( )rel SPG h C h h h C h h              
then STOP. 1h  is an approximate solution. 

d) [Equilibration Step/Master Problem] Equilibrate the 
paths in the working sets 

w , Ww : obtain a new 
vector of path flows h  by solving the variational 
inequality subproblem: 

  * * *: ( ) ( ) 0,Find h H so that C h h h h H       
  (9) 

   Take *= hh ; 1  .  

The previous algorithm appears in many of the works 
that have recently been developed for solving diagonal 
traffic assignment problems under a path based approach in 
order to obtain very accurate solutions for large traffic 
networks. When paths with null flow are not dropped from 
the working set of paths, this algorithm can be considered 
as an instance of the SD of Lawphongpanich and Hearn 
(1984) applied to the ATA problem formulated as V.I. (3) 
in path flows. Because of this, this algorithm will be 

referred to in this paper as a SD path-based algorithm. In 
Lawphongpanich and Hearn (1984), the SD algorithm is 
shown to converge under strict monotonicity and continuity 
of the link cost function vector, provided that in step a) 
unused paths are not dropped from the working set. Among 
others, authors who have already used it for the diagonal 
traffic assignment problem are, for instance, Chen  et al. 
(2002), Jayakrishnan  et al. (1994), Florian  et al. (2009) 
and Dial (2006). However, instead of a quasi-exact 
equilibration of path flows in step d), these methods use 
simple step size evaluation methods for updating path 
flows, which result in some disequilibrium reduction. Also, 
Larsson and Patriksson (1992) develop path-biased methods 
for diagonal problems. Panicucci  et al. (2007), use this SD 
path-based algorithm for the ATA problem. 

For the V.I. problem (9) defined in the equilibration step, 
it makes sense to define its own Auslender's gap function 

(
PG : 

  )()(=)(( fhhCSuphG HfP 
 

       (10) 

and its corresponding relative gap (
relG  as:  

  ( (( ) = ( ) ( )rel PG h G h C h h                  (11) 

 
5 USING PROJECTION ALGORITHMS TO 

SOLVE THE EQUILIBRATION STEP 

In this section a description is given of the projection 
algorithms for V.I. problems that have been used to solve 
the equilibration step d) of the SD path-based algorithm 
described in section 4. Subsection 5.1 describes the 
minimization of the Fukushima gap function and the 
application of the Zhu and Marcotte algorithm (1998) under 
the scope of the cost approximation algorithm of 
Patriksson. In subsection 5.2 the Khobotov algorithm used 
in Marcotte (1991) and three variants of it are described. In 
subsection 5.3 the method of Solodov and Svaiter (1999) is 
described and in subsection 5.4 the method of Solodov and 
Tseng (1996) is described. All these methods permit 
solving the ATA problem without the need for evaluating 
the jacobian C  of path costs.  

In the description of the projection methods in the 
following subsections, elements with index   will be 
assumed fixed by the outer loop in the SD path-based 
algorithm, whereas index k  will be used for the iterations 
of the algorithm that solves the equilibration step. These 
iterations will be referred to as minor; iterations of the outer 
loop will be referred to as major. 

 
5.1 Solving the equilibration step by cost approximation 
For finding a solution Xx  of a V.I. problem ),( XFVI , 
Patriksson (1999) introduces the idea of a cost 
approximation algorithm. It basically consists of replacing 
the cost functional F(·) at each iteration with a local 
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approximation to F, )(xk  , at the point kx , defined by 
),()(),(=)( kk

k
kk

kk xxxFxxx  , where 
k  is a 

suitably chosen function. At iteration k-th, the approximate 
V.I., ),( XVI k  is solved and a point ky  is obtained so 
that the direction kk

k xyd =  is a descent direction for a 
family of gap functions. In our case, hx  , CF   and 

1( , ) = ( )k k
k kx x x x   . The cost functional )(hC  is then 

approximated by: 

  1( , ; ) = ( ) ( )k k k
k k kC h h C h h h                 (12) 

and the cost approximation algorithm for solving V.I. in (9) 
could be defined as solving at each iteration   a sequence 
of approximate V.I.'s, )),;,(( HhCVI k

k
k  . If 

k  is held 
constant from iteration to iteration, then the directions 
generated by the cost approximation algorithm are descent 
directions for the Fukushima's gap function. Based on this 
schema, two methods described in subsections 5.1.1 and 
5.1.2 have been tested in order to solve the equilibration 
step. 

 
5.1.1 Minimization of a Fukushima gap function 
The differentiable gap function of Fukushima (Fukushima 
(1986), (1992)) is a particular case of Marcotte's gap 
function and it is defined for the ATA problem under a 
path-based formulation as follows: 

 T 1 2
2( ) = ( ) ( ) 1 2 || ||F

f HG h Min C h f h f h
        (13) 

Because of the structure of the problem (9) in the 
equilibration step d) to be solved at each iteration of the SD 
path-based algorithm described in section 4, the 
minimization of the Fukushima gap function appears to be 
an appealing candidate. This is equivalent to setting 
constant the projection parameter 

k  of the cost 
approximation (12). Thus, solving problem (9) is done by 
minimizing the restriction of the Fukushima gap function 

FG  on the subset of paths in the working set up to iteration 
 : )(hGMin F

Hh  . The following algorithm, which can 
be considered an instance of the general family of 
Patriksson's cost approximation algorithms (see, Patriksson 
(1999)), can be used to minimize FG : 
 
Initialization: 1,0 =  hh  ; 0=k  (superscript   suppressed 
for readability) 

Iteration k:  
1 2

2a) olve ( ) ( ) 1 2 || ||k k k k
f HLet f s Min C h f h f h

 
   


  

(14) 
b) Obtain by means of a suitable step length *  the next 
iterate )

~
(= *1 kkkk hfhh    and evaluate costs )( 1khC . 

c) If   )( 1( k
rel hG   STOP. Get 1*  khh . 

d) 1 kk  . Go to a) 

The stopping criterion at step c) uses the restriction of the 
primal gap function defined in the path flows space, which 
in turn is defined by the currently identified set of paths at 
iteration  , this being the gap function denoted by G . 
Again, the computational performance of the algorithm 
strongly depends on the solution of the quadratic problem 
(14). To solve it we use also the method of Michelot 
(1986). The step length calculation in b) can be done using 
an MSA step length, i.e., 1)1/(=* k , or by accepting 
flows kf

~
 as the new iterate (equivalent to fix 1=* ). The 

performance of the algorithm strongly depends on the 
choice of the parameter . Large values for α result in 
oscillating behaviour and large step values for 

2
1 ||||  hh  , and a line search is required in order to obtain 

convergence.  When very large values of α are used, then 
the quadratic term of the projection problem [Q] can be 
omitted and this is equivalent to accepting as a solution of 
problem [Q] the flows on the shortest paths obtained in step 
b) of the SD path-based algorithm in section 4. In this case, 
this algorithm is equivalent to using the restricted SD of 
Hearn et al. (1987) with space only to store one vertex at 
each iteration. Small values for α result in small steps 

2
1 ||||  hh   and, although a line search is not required, the 

convergence is also slow. For the algorithm to converge 
with an inexact line search, sufficient conditions are a 
differentiable and strongly monotone link cost vector 
function with Lipschitz continuous jacobian. 

 
5.1.2 The modified descent algorithm of Zhu and 
Marcotte 
The algorithm of Zhu and Marcotte (1998) for minimizing 

FG shown below adjusts the parameter of the projection   
of the Fukushima gap function in order to accelerate the 
convergence of the equilibration step. 

Initialization: Set values for 1/== 0aa , r , 1<<0  , 
1,0 =  hh  ; 0=k  (superscript   suppressed for 

readability). 

Iteration k: 
*

21
2 2

) ( ) :

( ) ( ) || ||

k k

af H
k k k

a Let f f h solve

Min C h f h f h






  



               (15)  

b)  
2
2

1

2
( ) ( ) || ||

2 (1 )

= { , }; )

k k k k kIf C h f h f h then
a

a min a a r Repeat step a









  



 

 
 

c) Take kk fh
~

=1  

d) If   )( 1(( k
rel hG  , STOP; adopt as an approximate 

solution 1kh . 

e) 1 kk  . Go to a) 
 
5.2 Variants of the Khobotov double projection 
algorithm 
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The basic method of Khobotov (1987) is an extension for 
variational inequality problems of Korpelevich's 
extragradient method. In its current form, it was first used 
by Marcotte (1991) to solve network equilibrium problems 
formulated by using primal-dual conditions and it was then 
tested on small networks. For solving path-based ATA 
problems, it has been used recently by Panicucci et al. 
(2007). 

A Khobotov-type projection algorithm for solving the 
equilibration step (9) can be described as follows: 

 
Initialization: Set values for ]0,1[,  , 0> , 0=k . 

Iteration k: 
 a) If  )(( k

rel hG   STOP. 

 b) 0= ;   

11
2

2 2
2 2

2
|| ||2

c) > / = 0

> 0 = { , / };

: ( ) ( )

= || ( ) ( ) || || || ; 1

k k

k k k

k k k k
f H k

k k k k
k

While L or do

If then min L

Let f solve Min C h f h f h

L C f C h f h









  

   

 

 




   

    




 

 

d) Find suitable 
k  for a second projection. Let ˆ ( )kf  solve:   

1 1 2
2( ) ( ) 1 2 || ||k kf H

k k kMin C f f h f h 
  

   


    (16)  

e) Take as new iterate )(ˆ=1
k

k fh  ; }/,{=1
 kk Lmin

; 

1 kk ; Goto a) 

The algorithm of Khobotov used in Panicucci  et al. 
(2007) simply adopts δk =1. In the following, adopting δk =1 
will be referred to as the basic Khobotov algorithm. 
Recently, several variants of the previous algorithm have 
been developed, which enhance the performance of the 
basic algorithm on the test problems examined by their 
authors. Subsections 5.2.1 and 5.2.2 describe these variants 
and, in section 6 (where computational results are 
presented), applying these variants to the ATA problem is 
discussed. 

 
5.2.1 Proximal-like methods of He, Liao and Wang 
These authors propose two variants of the Khobotov 
algorithm. He  et al. (2012a) develop a family of 
approximate proximal point algorithms which contain as 
special cases the methods of Khobotov and also the method 
of Solodov and Svaiter (1999) for variational the inequality 
problems described in section 5.3. In He  et al. (2012b) a 
set of test problems are solved by these authors and they 
propose to evaluate the parameter δk in the second 
projection, using: 

2
2||))

~
()((

~
||

))
~

()(()
~

(||
~

||
=

2
2

kk
k

kk

kkkk
k

kk

k
fChChf

fChCfhhf



 


    (17) 

The authors show in He et al. (2012b) that δkγ/2, where 
γ is a fixed parameter which should be adopted as 1.8.  As 

the computational tests will show in section 6, evaluating δk 

using formula (17) is the best option and provides greater 
efficiency to the Khobotov algorithm.   

Wang et al. (2010) propose another method for the 
calculation of the parameter δk at k-th iteration of the 
second projection. It consists of finding a zero *  of the 
function 

 1 2
2

ˆ ˆ( ) = || ( ) || 2 ( ) ( ( ) )k k k
k kK f h C f f h               (18) 

where )(ˆ f  is the solution of the quadratic problem (16). 
The value of *  can be calculated with few iterations of a 
secant method. Wang et al. (2010) provide an initial guess 
to start the search. A disadvantage of this method is that 
each iteration in the secant method requires the solution of a 
quadratic program (16).  
 
5.2.2 Hybrid Nadezhkina-Khobotov modified projection 
method 
The algorithm considered for solving the V.I. in the 
equilibration step is an hybridization of the adjustment 
method for the α parameter of Khobotov and the method in 
Nadezhkina and Takahashi (2006). The combination of 
these methods, along with the adaptation of the parameter 
αk for the projections used by Khobotov consists in 
performing an MSA step length right after the second 
projection (step d)) of the Khobotov method with δk =1 
described in section 5.2 (equation (16)). Thus, the next 
iterate hk+1 in step e) of the generic Khobotov method is 
taken as: 

)ˆ(=1 k
k

kk hfhh          (19) 

In our implementation, step length γ’k has been chosen as 
the Nagurney-Zhang MSA step (1996) after some initial 
tests. Other MSA methods that have been tested, and which 
result in shorter step lengths, provided a worse 
performance.  

 For completeness, there follows in next subsections 5.3 
and 5.4 a description of the methods of Solodov and Svaiter 
(1999) and Solodov and Tseng (1996) adapted to solving 
the equilibration/master problem step of the SD path-based 
algorithm. 
 
5.3 The method of Solodov and Svaiter 

Initialization: Set values for 1> , 1<,<0 r , 0=k . 

Iteration k: 
a) If  )(( k

rel hG   STOP. 

b) Set ,1}{= kk min  ; let kf solve:   

  T 11
2

2
2( ) ( ) || ||f H k

k k kMin C h f h f h 
   


    (20) 

c) Find the smallest integer 0n  so that  
1 2

2( ( )) || ||n
k k

k k k k kC h r f h f h        

d) Let 
k

n
k r  =1 ; )

~
(= 1

kk
k

kk hfhf  

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e) Let 1kh  solve:  
2
21 2 || || . . ( ) ( ) 0f H

k k kMin f h s t C f f f
   


 
   (21) 

The last quadratic problem (21) can be solved rather 
efficiently by lagrangian relaxation and basically searches 
the projection parameter for a second projection. The dual 
lagrangian function φ of problem (21) is:  

2
2( ) = ( ) ( ) 1 2 | ||k k k

f HMin C f f f f h   
   


 
  (22) 

which is differentiable and, very approximately, linear. Let 
*( )f   solve (22). Then, dual lagrangian problem 

0 ( )Max  
 can be solved with very few iterations by a 

newton method using the derivative of φ, which is 
*= ( ) ( ( ) )kd

C f f f
d

 


 
  . 

 

5.4 The method of Solodov and Tseng 

Initialization: Set values for ]0,1[,  , 0> , ]0,2[ , 
k=0. 

Iteration k : 
a) If  )(( k

rel hG   STOP. 

b) A first projection point kf
~  and a projection parameter 

k  is searched as in step c) of the method of Khobotov but 

with 
kL  defined as 

2
2||

~
||

)())()
~

((
=

kk

kkkk

k
hf

hfhCfC
L


 

  

c) Find h
~

 as: 

2 2
2 2

= ( ( ( ) ( ))),

= (1 )|| || || ( ( ) ( )) ||

k k k k k
k k k

k k k k k k
k k

h h h f C h C f where is

f h h f C h C f

  

   

   

    

  
  

       (23) 

d) Find the projection of the point h
~

 on H  and adopt it as 
the next iterate * 1= kf h  :   

  2
21 2 || ||f H

kMin f h 


                (24) 

  e) }/,{=1
 kk Lmin ; 1 kk ; Goto a) 

Convergence of the algorithms described in this section 
can be guaranteed only under monotonicity and Lipschitz 
continuity of the link cost vector function, excluding the 
following cases in which the link cost vector function must 
be: 
a) continuous and monotone  for the method of Solodov 

and Tseng in subsection 5.4. 
b) differentiable and monotone for the method  of Zhu and 

Marcotte. (1998) in section 5.1.2 
c) for the method of Solodov-Svaiter in subsection 5.3, 

convergence can be guaranteed under continuity of the 
link cost vector function and if any solution of the 
problem is also a solution of the associated Minty 
variational inequality. This condition is rather difficult 
to be verified for practical models and it can be 
guaranteed if the link cost vector function is monotone. 

Again these conditions are not fulfilled by network 
models used in practical applications, because realistic link 
cost functions with link interactions have no monotonicity 
properties of any kind. 

 
6 COMPUTATIONAL RESULTS 

Three different networks were used to conduct the 
computational experiments (whose results are reported in 
this paper): the networks of Winnipeg (Canada), Terrassa 
(Spain) and Hesse (Germany). These test networks can be 
downloaded from  Bar-Ghera's web page in Bar-Ghera 
(2013). Table 1, below, shows the main characteristics of 
the networks. Column #centr. shows the number of 
centroids or zones, and column #turns shows the number of 
forbidden or penalized turnings. Columns #AsyJun and 
#AsyJun(%) show, respectively, the number of junctions at 
which there are link interactions and the percentage of these 
junctions relative to the total number of junctions in the 
network where there are 2 or more incoming links. 

 
Table 1: characteristics of the networks included in this 

paper. 
| | | | # . | | # # # (%)

1057 2535 154 4345 0 275 31.39%

1609 3264 55 2215 1103 177 15.39%

4660 6674 245 17213 7054 348 27.55%

Network N A centr W turns AsyJun AsyJun

Winnipeg

Terrassa

Hesse

   

The computational experiments were performed on a PC 
with a Quad 3.20 GHz Intel Core, 650 with 4 Gb RAM and 
Windows 7 Service Pack 1. The algorithm used for shortest 
paths is an adaptation of the algorithm in Ziliaskopoulos 
(1995) for penalized turnings, using proper data structures 
for an L-deque strategy. 

In all the networks, a given subset of intersections are 
considered to be ruled by priorities. For simplicity, costs on 
turning movements are constant, which is typical in practice 
in many real traffic assignment network model applications. 
Also, for simplicity, flow interactions in the test examples 
correspond only to interactions between links and not 
between internal movements of an intersection. A detailed 
description of the modeling of interactions between 
movements of an intersection and the its implementation in 
a user optimal model can be found in Meneguzzer (1995) 
and in Boyce et al. (1990). The delay formula for non-
priority links that enter a priority ruled intersection that has 
been used in the tests is: 

     11( ) = log 1 b v

ac v t e 
                  (25) 

Formula (25) is an approximation to 

  1)})((,{=)(  vbttmaxvca         (26) 

In the above formula (25), t  is the free flow travel time 
of the link. The function )(v  is given by 

     0)/(=)( aaxaxa svkvv  , and )(ax  is the link with 
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priority on link a . Parameters b  and   have been set to 
4=b  and 0.2=  for all the test networks and   is the 

length of the modeling time period. It has been set to 
21.5=  for the network of Hesse, 5=  for the network 

of Terrassa and to 7=  for the network of Winnipeg. The 
capacity 0

as  of non-priority links has been set to 25000=0
as  

for the network of Hesse, 4000=0
as  for the network of 

Terrassa and 400=0
as  for the network of Winnipeg. By 

using the 'synthetic' delay formula (25), all the test 
networks have the same type of formula for link 
interactions instead of each one having its own, which 
could be the source of heterogeneities. Delay formula (25) 
does not implicitly impose any strict constraint on link 
flows; but for high values of b, it acts as a penalty that 
prevents flows from excessively exceeding capacity 0

as . 
The effect of the parameter   is that travel time on links 
increases earlier for small values of   and, thus, the 
network can be congested even for moderate values of the 
demand. There is no guarantee that, with these cost 
functions, the jacobian of path costs could be semi-definite 
positive, not is this the case for other delay cost functions in 
junctions ruled by priorities. However, there exists 
empirical evidence that existing algorithms for monotone 
variational inequalities converge for the ATA problem (see 
for instance Berka and Boyce (1996)). When the 
intersection has more than one priority link, as shown in 
Figure 1, then the term    axax vk  in the expression for )(v  
is replaced by the summation

a aa priority link over a k v   . For 
the priority links, we use the classical BPR function for the 
delay: 

   0( ) = (1 ( ) )a a a ac v t v s
                (27) 

where as  is the capacity on link a  which is link 
dependent. 0t  is the link travel time under free flow 
conditions, which has been set to 0.75;   and   are fixed 
parameters set to 0.1=  and 1.5=  for all the test 
networks. 

 
Figure 1. A junction ruled by priorities. Link a  is a non-
priority link and )(ax , )(ax  are links with priority on a .  

 
In order to measure the efficiency of the algorithms, two 

different gap formulae have been used. The first one 
(RGap 1 ) is the typical primal gap shown in (6) in its 
relative form. It is also the measure used in both algorithms 
to decide whether to continue at the end of every iteration 

or to stop if the last solution found is rather good.  RGap 1  
is defined as follows: 

   T

1 T T

( )( )
( ) = =

( ) ( )
P

c v v uG v
RGap v

c v v c v v

                (28) 

where v are the link flows found at the current iteration, c(v) 
are the corresponding costs and u are the link flows 
resulting from the shortest path calculation when link costs 
are ( )c v . 

A second relative gap RGap 2  is provided by formula 
(29). It is also a gap measure, but in this case it is calculated 
using the space of path flows and is weighted by the 
demand between OD pairs.  RGap 2  is defined as follows: 

1

2

( ( ) ( ))
( ) =

( )

w r r rSPw W r w

rSPw W

g C h h C h
RGap h

C h


 



 


  (29) 

where  CrSP(h) is the cost corresponding to the shortest path 

SPk ; h is the path flow vector found at the current iteration; 
C(h) is the corresponding vector of path costs and wg  is 
the demand corresponding to the OD pair Ww . In order 
to have an absolute measure of the network's degree of 
congestion, the following gap measure, 

3Gap , (formula 
(30)) is also reported for the starting feasible point: 

1 1
3( ) = | | ( ( ) ( ))w r r rSPw W r w

Gap h W g C h h C h 
 

   (30) 

The computational experiments consist of executing the 
general algorithm described in section 4. For solving the 
equilibration step, the projection algorithms referred to in 
subsection 6.1 have been tested on the three networks of 
table 1. For a fair comparison of the methods, the 
algorithms use the same feasible initial point for the runs on 
a given network with a given level of congestion. In order 
to take into account the effect that different levels of 
demand have on how the algorithms perform for these 
networks, an origin destination trip table for each of the 
networks is divided by three factors: 1, 2 and 5. Factor 1 
indicates a very high level of demand and the network is 
seriously congested. Factor 2 (O-D flows are 1/2  of O-D 
flows for factor 1) indicates that the level of demand causes 
simple congestion in the network and factor 5 (O-D flows 
are 1/5  of O-D flows for factor 1) means the congestion is 
not very high. The level of congestion for each of the 
networks is reflected in table 2, below, in the column 
AvgTT, which reports the average trip time in minutes at 
the final iteration. The average trip time in the network can 
be calculated by 

23/RGapGap . The superscript (1, 2 or 5, 
in the network acronym in table 2) stands for: 1=very high, 
2= high, 5= moderately high. It must be remarked that 5= 
moderately high is, approximately, the usual congestion 
level for these traffic networks and this is reflected by the 
corresponding average trip time. In order to know the 
average trip time on the three networks at equilibrium as a 
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measure of the network congestion, the corresponding ATA 
problems have been solved using the basic Khobotov 
double projection algorithm described in section 5.2 with 

1=k . 
It must be noticed that no monotonicity properties of any 

kind exist for the test problems. This, however, has not 
been an obstacle for algorithms’ convergence with the only 
exception discussed in 6.1 for congestion levels 1 and 2. 

 
Table 2. Average trip times (minutes) at equilibrium for 

the three levels of congestion 1, 2, 5 in each of the networks 
(column AvgTT). The results have been obtained by using 

the basic algorithm of Khobotov ( 1=k ). 

                    RGap1         RGap2      Gap3(min)   AvgTT  
 Hess1   5.85E-04 5.26E-05 8.20E-03 156.00  
 Hess2   3.75E-04 2.89E-05 2.42E-03  83.70  
 Hess5   4.68E-05 1.06E-05 5.45E-05  51.36  
 Terr1   1.65E-03 1.05E-04 7.56E-03  72.04  
 Terr2   1.44E-03 5.99E-05 2.52E-03  41.75  
 Terr5   1.28E-03 1.86E-05 5.34E-04  28.68  
 Winni1  7.58E-06 6.51E-06 4.94E-04  75.89  
 Winni2  3.27E-06 3.18E-06 1.33E-04  41.89  
 Winni5  8.43E-07 9.64E-07 2.44E-05  25.31  
  

 6.1 Tested algorithms 

The following is a list of the projection algorithms that were 
evaluated: 

• The basic projection algorithm as described in section 3. 
Three variants have been tested:   

 - Algorithm PJBa without the optional line search of step 
e) in the basic projection algorithm of section 3. The 
projection parameter is chosen as =r r rC h   , the 
diagonal element of the jacobian corresponding to path 

wr  .  
- Algorithm PJLS, which includes the line search at step 

e) described in the appendix B. The projection parameter is 
chosen in the same way that in previous algorithm PJBa. 

- Algorithm PJN. The parameter   of the projection is 
set to a very large value, which is equivalent to obviating 
the projection step. A line search at step e) is necessary for 
converging the algorithm. The one described in the 
appendix B has been used.  
• Algorithms FK based on minimization of the Fukushima 
gap function by following the cost approximation schema 
(Patriksson (1999)) described in subsection 5.1. It solves 
equilibration step d) of the general algorithm with the 
following variants: 

- Algorithm FKCA. The gap function of Fukushima is 
minimized by following the algorithm described in 
subsection 5.1.1 taking a step length 1=*  in step b).  

- Algorithm FKMSA. The same algorithm as FKCA, but 
the step length is evaluated with the basic MSA method 

1)1/(=* k . 

• Algorithm MCTT: the projection algorithm of Zhu and 
Marcotte (1998), as described in section 5.1.2, applied to 
solving the equilibration step d) of the SD path-based 
algorithm. Parameters have been set to a=0.2, 0.001=a , r 
= 2, γ = 0.01  for all test instances. 
• Algorithms KH: the double projection Khobotov 
algorithm and the variants described in section 5.2. In all 
the tests of the variants related to below, the parameter   
was set to  =10. 

-Algorithm KHOB: the algorithm used by Marcotte 
(1991) and by Panicucci et al. (2007), with 1=k  in step d) 
(second projection). Parameters have been set to 1/2= , 

1/2=  for all test instances.  
- Algorithm KHPL: the algorithm proposed by He, et al. 

(2012a), (2012b) taking 
k  as given in expression (17). The 

following sets of values for the parameters of the algorithm 
have been tested: a) ( 0.9= , 0.7= , 1.8= ), b) 
( 0.9= , 0.7= , 1= ), c) ( 1/2= , 1/2= , 1= ) and 
d) ( 1/2= , 1/2= , 1.8= ). The best results have been 
obtained with 1/2= , 1/2= , 1.8= .  

- Algorithm KHOA: the algorithm proposed by Wang  et 
al. (2010) as described in subsection 5.2.1. The following 
sets of values for the parameters of the algorithm have been 
tested: a) ( 1/2= , 1/2= ) and b) ( 0.9= , 0.7= ). A 
better performance was obtained with 1/2= , 1/2= .  
 - Algorithm KHNT: the algorithm by Nadezhkina and 
Takahashi (2006), as described in subsection 5.2.2. For this 
algorithm the only set of parameters tested was 1/2= , 

1/2= .  
• Algorithm SLSV: the double projection of Solodov and 
Svaiter (1999). The values of the parameters of the 
algorithm that have been tested are θ=1.5, σ=0.5 and r=2. 
• Algorithm SLTS: the double projection of Solodov and 
Tseng (1996). The values of the parameters of the algorithm 
that have been tested are 1.5= , 0.9=  and 0.3= .  

As expected, the algorithms on the list which performed 
worst when tested were PJBa and PJLS. The level of 
congestion seriously affected performance of algorithm 
PJBa. For all networks, it converged slowly for the lowest 
level of congestion (level 5), but oscillated without 
converging for levels 2 and 1 in all test networks. All other 
algorithms converged for all the levels of congestion in the 
three test networks, despite the non-monotonicity in the test 
problems. When the line search described in the appendix B 
is included in algorithm PJBa, then the resulting algorithm 
(algorithm PJLS) converges for all the levels of congestion 
in all the networks. The following tables 3 and 4, below, 
show results for algorithms PJBa and PJLS for levels of 
congestion 5 and 1, respectively, after 400 seconds of CPU: 
  

Table 3. Natural logarithm of RGap1 for algorithm PJBa 
after 400s of CPU time. Lowest level of congestion. 

             Hess5    Terr5     Winni5  
  PJBa   -4,74    -4,21     -10,17  
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Table 4. Natural logarithm of RGap1 for algorithm PJLS 
after 400s of CPU time. Highest level of congestion. 

             Hess1   Terr1   Winni1  
  PJLS   -3,39    -2,06     -8,27  
 

The criterion for stopping the master 
problem/equilibration step at step d) of the SD path-based 
algorithm in section 4 was to setting a variable tolerance 
   depending on the relative gap 

relG  achieved after the 
subproblem Step b). At a major iteration  , k̂  iterations of 
the equilibration step are performed until a sufficiently 
small relative gap 

  )(
ˆ( k

rel hG  is reached or 
maxNk =ˆ . The 

value for    has been set to: 

  )}(,{= 1
0

 
 hGmin rel                  (31) 

Values for 
0  and   have been set to 0.05 and 0.05 

respectively. Thus, in the initial major iterations, the master 
problem/equilibration step is solved until a reasonable gap 

0  is satisfied, but as long as the algorithm proceeds and 
the relative gap for the major iteration becomes smaller, the 
subproblem step must be solved more accurately. 

Algorithms FKCA and FKMSA also performed poorly, 
although a little better than algorithms PJBa and PJLS, 
because the number of iterations required to solve 
equilibration step d) was too high. Thus, they were 
discarded after the first tests. 

Also, algorithms KHOA and SLSV performed worse 
than the remaining variants of the Khobotov double 
projection family of methods and than the SLTS algorithm. 
Their evaluation was also abandoned after the first tests. In 
the case of the KHOA algorithm, the calculation of the 
optimal step length *  for the second projection by a secant 
method required that the quadratic problem (16) had to be 
solved too many times per iteration. 

After discarding the above-mentioned algorithms, 
algorithms KHOB, KHPL, KHNT, MCTT, PJN and SLTS 
were tested by setting a limit 

maxN  of 30 and 100 minor 
iterations respectively to solve equilibration step d) of the 
SD path-based algorithm in section 4. They were applied to 
the three networks for the three levels of congestion and 
limited to a maximum CPU time of 400 seconds. The limit 
of 100 minor iterations per equilibration was not reached by 
the initial major iterations; but the remaining major 
iterations always reached the limit. The number of minor 
iterations for the equilibration step proves to be the most 
relevant factor in attaining high degrees of convergence. In 
all cases, results obtained by setting a limit of 100 iterations 
for solving the equilibration step outperform those obtained 
by setting only a maximum of 30. This suggests that using 
projection methods --such as the methods based on the D-
gap function (Solodov and Tseng (2000)), which would 
require explicitly or implicitly evaluating the jacobian of 

path cost functions-- could provide the SD path-based 
algorithm with very small relative gaps. Tables 5 and 6 
summarize the results obtained by algorithms KHOB, 
KHPL, KHNT, MCTT, PJN and SLTS using 30 and 100 
iterations respectively; whereas Figures 2, 3 and 4 illustrate 
their convergence for 100 iterations on the three test 
networks at the highest level of congestion. On the x -axis, 
the total CPU time in seconds versus the natural logarithm 
of the relative gap, 

1RGap , defined in (28), is shown. These 
graphics show that the most advantageous algorithm is 
KHPL and that algorithm KHPL perform higher than 
algorithm KHOB, tested already in Panicucci  et al. (2007), 
thus showing the effectiveness   of the correction formula 
(\ref{proximal-like-step}) for the projection parameter. 
Also, the MSA step length   (19) used in the variant KHNT 
performed poorly making the Khobotov schema to loose its 
efficiency. Finally, algorithm PJN performs much better 
than algorithm PJLS, with results in the range of the 
remaining algorithms KH, MCTT and SOTS, although its 
performance is slightly lower. This comparable 
performance is apart from the Winnipeg network, in which 
PJN performs clearly worse. 
 

Table 5. Natural logarithm of RGap1 for six algorithms 
for a fixed CPU time (400s) and 30 iterations for the 

equilibration step. 

       Net    KHOB  KHPL  KHNT  SLTS MCTT  PJN  
        Hess1      -7.13      -7.79     -5.20   -5.82   -5.48   -6.38  
        Hess2      -7.83      -8.44     -5.50   -7.41   -5.69   -6.24  
        Hess5      -9.34      -9.67     -6.66   -8.68   -7.00   -8.10  
        Terr1       -6.30      -6.80     -4.32   -5.71   -4.83   -6.30  
        Terr2       -6.28      -6.72     -4.71   -6.12   -5.16   -6.68  
        Terr5       -6.51      -6.57    -5.46    -6.40   -5.79   -7.14  
        Winni1  -11.46    -11.90    -9.70    -9.67  -12.14  -6.36  
        Winni2  -11.96    -12.58  -10.38  -10.80  -12.44  -7.20  
        Winni5  -13.20    -13.44  -11.57  -11.72  -12.24  -8.53  
  
Table 6. Natural logarithm of RGap1 for five algorithms 
for a fixed CPU time (400s) and 100 iterations for the 

equilibration step. 

          Net   KHOB   KHPL   KHNT   SLTS   MCTT  
         Hess1     -7.44    -7.78     -4.80    -6.39     -5.70  
         Hess2     -7.89    -8.62     -5.03    -7.65     -6.32  
         Hess5     -9.97  -11.34     -5.94    -9.28     -7.43  
         Terr1      -6.41    -7.38     -4.05    -6.12     -5.20  
         Terr2      -6.54    -7.04     -4.44    -6.31     -5.67  
         Terr5      -6.66    -6.62     -5.40    -6.60     -6.26  
         Winni1 -11.79   -12.50    -9.20    -9.97   -12.52  
         Winni2 -12.63   -13.39  -10.07  -10.87   -12.91  
         Winni5 -13.99   -14.56  -11.46  -11.86   -12.74  
  
Table 7, below, shows the average oscillation between 

successive iterations of link flows for the same tests shown 
in table 6, at the final iteration, i.e.: 1| | / | |a A a av v A

    . As 
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it is shown in the table, the oscillation for algorithm for 
algorithm KHPL is slightly smaller 

 
 
 
Table 7. Mean difference in link flows from the final two 

iterations for five algorithms with a fixed CPU 
time: 1| | / | |a A a av v A

    . 
  Net        KHOB       KHPL    KHNT       MCTT      PJN  
 Hess1     3.87E-02   1.47E-02  6.90E-02  5.72E-02  6.67E-02  
 Hess2     1.90E-02   4.92E-03  2.63E-02  2.87E-02  1.56E-02  
 Hess5     3.29E-03   1.03E-03  5.39E-03  6.82E-03  2.17E-04  
 Terr1      1.02E-02   4.70E-03  3.71E-02  1.04E-02  1.97E-01  
 Terr2      4.26E-03   1.71E-03  1.38E-02  4.26E-03  7.38E-02  
 Terr5      1.19E-03   4.54E-04  3.53E-03  1.16E-03  6.99E-03  
 Winni1   1.17E-04   3.14E-05  8.30E-04  4.41E-05  6.42E-03  
 Winni2   3.17E-05   1.29E-05  3.92E-04  1.49E-05  2.52E-03  
 Winni5   6.09E-06   3.08E-06  4.63E-05  7.76E-06  5.42E-04  
  
Table 8, below, shows the distribution of CPU time 

among the six algorithms with better performance for the 
test networks with congestion level 1. Column #It shows 
the number of iterations performed in 400 CPU seconds; 
next columns show the percentage of time required for 
evaluation of path costs, for shortest path calculations, for 
the quadratic problems involved in the projection 
algorithms (excluding path-cost calculations) and finally the 
last column shows the remainder of CPU time. For the PJN 
algorithm, column EL shows the percentage of time spent 
in the line search. Algorithms KH and SLTS have a similar 
pattern, different from the pattern of algorithm MCTT and 
from the pattern of algorithm PJN. Also remarkable is the 
very small percentage of CPU time spent in shortest path 
calculations of algorithms KH and SLTS, which is a little 
bit higher for algorithm MCTT. The time spent in shortest 
path calculations for algorithm PJN is significantly higher 
and can be compared to the one spent by vertex generating 
algorithms for the ATA problem formulated in the space of 
link flows. 

 
Table 8. Number ot iterations and distribution of CPU 
time in % for algorithms KH, MCTT, SLTL and PJN 

Winni1 #it 
Path 
Costs 
(%) 

Shortest 
paths 
(%) 

Quadratic 
Problem 

(%) 

Rest 
(%) 

KHPL 64 41.2 0.3 35.7 22.7
KHOB 63 39.1 0.3 37.4 23.3
MCTT 137 54.7 0.7 44.4 0.2
SLTS 57 33.7 0.3 45.7 20.3
KHNT 62 40.8 0.3 35.6 23.3

PJN 226 7.4 8.3 0 84.3
Terr1      

KHPL 84 52.7 0.2 25.6 21.4
KHOB 83 51.7 0.3 27.5 20.5
MCTT 154 68.7 0.6 30.6 0.2
SLTS 82 47.4 0.2 32.9 19.5
KHNT 85 54.2 0.3 23.2 22.3

PJN 331 13.7 5.4 0 80.9

Hess1      
KHPL 14 60.4 0.4 22.1 17.1
KHOB 17 60.0 0.5 23.4 16.2
MCTT 33 73.9 0.8 25.1 0.1
SLTS 15 54.3 0.4 28.4 16.8
KHNT 17 60.1 0.4 22.1 17.4

PJN 63 11.9 7.8 0 80.4
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7 CONCLUSIONS AND FURTHER RESEARCH 

This paper demonstrates the application of an SD path-
based algorithm on the fixed demand asymmetric traffic 
assignment problem. It also solves the equilibration step by 
using five existing projection methods for variational 
inequality problems in order to evaluate their performance 
in three real traffic networks under different levels of 
congestion. The projection methods evaluated are: a) a cost 
approximation based method for minimizing the Fukushima 
gap function; b) the modified descent method of Zhu and 
Marcotte (1998); c) the double projection method of 
Khobotov (1987) and three of its recently developed 
variants (Nadezhkina and Takahashi (2006), Wang  et al. 
(2010), He  et al. (2012b)); d) the method of Solodov and 
Svaiter (1999); and e) the method of Solodov and Tseng 
(1996). Because of the similarities to the classical path-
based projection algorithm for the ATA problem, the 
performance of this algorithm and two variants of it have 
also been tested. All the projection methods for V.I. 
problems considered in this paper have in common that the 
jacobians of the path cost functions do not require 
evaluation. Of the previously mentioned projection 
algorithms, only the basic Khobotov method has been 
previously used in Panicucci  et al. (2007). The tests show 
that the performance of the SD path-based algorithm is 
always enhanced if the equilibration step is solved with 
high precision. This suggests that using projection methods 
that explicitly or implicitly require the jacobian of path cost 
functions to be evaluated (such as the methods based on the 
D-gap function in Solodov and Tseng (2000)) could obtain 
a very high degree of convergence. The oscillation of link 
flows in the final iterations is also examined; this is a 
relevant feature for path-based analysis. The tests also 
illustrate that convergence of the SD algorithm and stability 
in link flows are both best when using the recently 
developed variant KHPL of the Khobotov algorithm 

described in He et al. (2012b), overcoming the results 
obtained with the basic Khobotov method and also, the 
results of the remaining algorithms tested in this paper. The 
tests also show that the classical projection method may not 
converge for very congested networks. Convergence was 
always attained for the remaining algorithms, despite the 
lack of monotonicity properties in the test problems. 
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Appendix A. Solving quadratic problem [Q] efficiently 

 
For a given OD pair Ww , problem [Q] can be 
conveniently re-scaled and expressed as the following 
problem [Q']: 

21 2

[Q ] . . : = 1 |

0 |

x k k k kk I k I

kk I

k k

Min a x b x

s t x

x





 









 
                (32) 

where for a simpler notation  wI . Subscripts w  have 
been omitted.   and Ikk ,  are the corresponding 
Lagrange multipliers and coefficients ka  and kb  are 
related to those of problem [Q] by 0)(>= 21

wkk gqa  , 

wkkkk ghqhCb ))((= 1   . The quadratic problem [Q'] is 
strictly convex and therefore Karush Kuhn Tucker (KKT) 
conditions are necessary and sufficient for optimality, and 
by applying them it is easy to prove that solutions verify: 

  }{= kkkIk bxamin      (33) 

and as a function of  , the primal solutions of [Q'] must 
verify:  

   )(0,=)( 1
kkk bamaxx               (34) 

Thus the following piecewise linear and increasing 
function )(=)(  kIk

x 
 can be defined. It is not 

difficult to prove that there exists a unique solution *  to 
the equation 1=)( , imposing feasibility for )(kx , 

Ik  and that Ikxk ),( *  solve problem [Q] and also that 
Ikbxax kkkkk  ,)(=,),( *****   verify KKT 

conditions for problem [Q']. 
To compute * , the following secant algorithm is used for 

solving problem [Q] in the projection algorithm. The 
algorithm converges in a finite number of iterations, which 
is linear in the size || I  of problem [Q']. 
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Appendix B. A line search using the Auslander gap 
function 

In order to speed up the projection algorithm we have 
introduced an optional module of line search using 
Auslender's primal gap function (6) at step e) of the basic 
projection algorithm described in section 3. 

Consider at iteration  -th the directional derivative of 
the Auslender gap function on the descent direction 

 vv ˆ : 

Tˆ ˆ( ; ) = ( ) ( ) ( ( )) ( )SPT
PG v v v c v c v v v v v v


      

         (35) 

where ,av  Aa , are the link flows obtained in the last 
iteration, ,ˆav  Aa , are the new link flows obtained from 
the quadratic problem, and )( vvSPT  is the link flow vector 
that would be obtained by solving the shortest path problem 
with costs )( vc . Note that the previous derivative (35) 
uses the jacobian of the costs in the space of link flows, 
which can be stored because of the sparse structure of the 
matrix. Notice that c  can be stored in a number of 

)(1|| mxA   positions, x being the percentage of links 
whose cost depends on more than one link flow and m  the 
average number of link interactions. 

The line search implemented in this case is the following: 

     • Initialization:  vv ˆ=,0 , )ˆ(=)(== ,0
21

 vGvGGG PP , 
)(=

~
=0

vGGG P  , 1=
~  , 1== 21   , 0=p . 

     • If )ˆ;()()( ,  vvvGvGvG P
p

PP
p    or 

np =  STOP. 
     • Update flows: )ˆ(= 1, 1  vvvv pp    ; 1 pp  
     • 

12 = GG  , 
12 =   , p =1

 

     • Calculate )(= ,
1

pvGG P
  

     • If GvG p
P

~
<)( ,  then: )(=

~ , pvGG P
 , pvv ,=~  , 

p ==
~

1
. 

     • Go to  b).  

where 1<,<0   are parameters that have been set to 
0.5=  and 0.5= . 

The previous algorithm is of the backward search type 
with an Armijo's rule of acceptation. A limited number of 
iterations must be imposed on the previous line search. If 
the initial guess θ =1 is not good, then the final value 

1G  
of the function may be far form the acceptance region and 
may not even be smaller than 

0G . In this case, the final 
value 

1G  and the previous one 2G  may be used in order to 
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heuristically estimate a value for the step length ~  that will 
probably provide an improvement of )(PG . If 

0 ˆ= ( ; )PG v v v       and 
1 2 1 2 1= ( ) ( )G G    , then the 

value for ~  could be chosen as the one that verifies 
)

~
(=

~
11100   GG . ~  would be then 

))/((=
~

011110  GG . A more conservative value 
for ~  is adopted as 

1
0 1 1 1 1 0= ( ) ( )G G                  (36) 

where 1>  is a parameter chosen as 1.5= . After the line 
search, path and link flows are updated using the step 
length ~ : )ˆ(

~
=1  hhhh    and )ˆ(

~
=1  vvvv   . 

  


