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Abstract:  This paper formulates a model that 

calculates travel time reliability in a road network. The 

sources of uncertainty addressed by the model are traffic 

capacity and travel demand. Since travel time reliability 

estimation problem, in general, is formulated as a path 

based problem, path enumeration can be required in 

advance. Thus, the path travel time reliability can depend 

on a path set enumerated in advance. For the purpose of 

determining the unique travel time reliability, a model that 

estimates stochastic path flows by using observed link flows 

is then presented. This method does not require predefined 

path set. However this method is similar to the standard 

maximum likelihood (ML) estimation method, the method 

presented in this study is easier to be solved since the 

number of unknown parameters is much smaller than that 

of the standard ML estimation method. Numerical 

experiments using two networks are carried out to 

demonstrate the model presented in this paper. 

 

 

1 INTRODUCTION 

 

Conventional frameworks for analyzing and modeling 

transportation systems have been confined to average 

representation of the network state (e.g., average link flow 

or average travel demand). For instance, in the traditional 

traffic assignment model one can obtain a deterministic 

prediction of a future flow on a certain link in the network 

based on average origin-destination (O-D) demands, link 

capacities, and a form of proportional path choice model 

(either user equilibrium (UE) or stochastic user equilibrium 

(SUE)). This represents the deterministic view of the 

environment and the modeler’s postulation that the 

variability or uncertainty in the system is not influential in 

system design and evaluation. 

There has been a growing concern over the uncertainty of 

travel time in transport systems and its effect on the 

reliability of its services (SACTRA 1999). Research into 

network reliability has emerged toward addressing this 

problem (Asakura, 1999; Bell, 2000; Chen et al., 2002; 

Sumalee and Kurauchi, 2006). From the traveler’s 

perspective, the issue of travel time reliability has been a 

major concern. Travelers may experience excessive 

variability of their journey times from day to day on the 

same trips (Clark and Watling, 2005; Liu et al., 2007; 

Noland and Polak, 2002). From the planner’s perspective, a 

key challenge is to design and operate the transportation 

system such that it copes with this variability, toward 

maintaining an acceptable level of service (Du and 

Nicholson, 1997; Lo and Tung, 2003; Sumalee et al., 2007).  

Uncertainties in a network can be categorized into three 

main ones: those of supply, demand and behavior. It is 

possible to subcategorize these into recurrent and sporadic 

cases. Supply uncertainty relates directly to variability in 

the road or service capacity, which may be caused by 

recurrent events (e.g., traffic accidents, road work and 

parking) or sporadic causes (e.g., natural or man-made 

disasters). Regarding the demand side, evidence suggests 

that there exists a significant day-to-day variability in travel 

demand. Behavioral uncertainty is more related to the 

predictability of the model. In the context of path choice, 

one can define the probability (in contrast to the concept of 

proportion) of a certain path being chosen by an individual 

(Watling, 2002). The model is, thus, only capable of 

predicting the likelihood of each driver choosing each path, 

and not the actual choice made. This model provides only 

the likelihoods of the different states of the network.  

In transport modeling, some advances have been made 

into incorporating these uncertainties into the network 

modeling framework, i.e., developing a stochastic network 

model. Watling (2002) proposed a second-order network 

equilibrium model that explicitly considers random path 

choice behavior. His model, in contrast to the conventional 

SUE model, uses path choice probability, as predicted by a 

SUE model, to define stochastic path flows that follow a 

multinomial distribution. The path flows derived using the 

traditional SUE model are, in fact, the expected flows of 

this multinomial distribution. In this model, the drivers 
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choose their paths such as to minimize their perceived long-

run expected travel costs. With a non-linear travel cost 

function, this long-run expected travel cost will differ from 

the equilibrium cost computed by the conventional SUE 

model (Cascetta, 1989). 

Clark and Watling (2005) extended this stochastic 

network model to the case with a Poisson distribution of O-

D flows. Similarly, Nakayama and Takayama (2003) 

proposed a stochastic network model with random path 

choice behavior but using a binomial distribution of O-D 

flows. These models fully represent stochastic/uncertain 

path choice behavior with uncertain demands. However, the 

models do not consider supply uncertainties. Lo and Tung 

(2003) proposed a rather different formulation of the 

stochastic network model focusing on capacity uncertainty. 

The road capacity is assumed to follow a uniform 

distribution. Sumalee et al. (2011) address stochastic 

demand and stochastic capacity in a multi-modal network. 

Uchida et al. (2014) address network design problem in a 

stochastic multi-modal network model. Szeto and 

Solayappan (2010) proposed a nonlinear complementarity 

problem formulation for the risk-aversive stochastic transit 

assignment problem. Lo et al. (2006) extended their original 

model to consider the concept of travel time budget in path 

choice decision making. Shao et al. (2006) adopted a 

similar postulation of the central limit theorem to derive the 

normal distribution of the path travel time but with O-D 

demand distribution (normal distribution). Szeto and 

Sumalee (2011) presented a cell-based model for multi-

class stochastic dynamic traffic assignment. Ng and Waller 

(2012) presented a dynamic traffic assignment model based 

on the cell transmission model that accounts for travel time 

reliability. Uchida (2014) proposed a model which 

simultaneously estimates the value of travel time and of 

travel time reliability based on the risk-averse driver’s route 

choice behavior. Castillo et al. (2014) dealt with the 

probabilistic and physical consistency of traffic-related 

random variables and models. 

In calculating travel time reliability, as is often the case 

where a stochastic network model cannot be applied due to 

the lack of network data. In general, in calculating travel 

time reliability without applying a stochastic network 

model, stochastic properties of traffic flows need to be 

estimated. Hazelton (2000, 2001) presented methods to 

estimated O-D (or path) flows from observed link flows by 

assuming the O-D flows followed Poisson distributions. 

Duthie et al. (2011) presented a method for evaluating 

future travel demand uncertainty and finding an efficient 

technique for generating multiple realizations of demand. 

Ghosh et al. (2010) proposed a random process traffic 

volume model that enables estimation and prediction of 

traffic volume at sites where large and continuous data sets 

of traffic condition are unavailable. 

Various transportation analysis models that adopted a 

frequency analysis techniques or/and a soft computing 

techniques have been proposed. Karim and Adeli (2003) 

proposed a case-based reasoning model for freeway work 

zone traffic management. Jiang and Adeli (2003) proposed 

a similar freeway work zone traffic management model 

which took into accout the effect of seasonal variation 

travel demand. Wavelet and neural network have been 

applied to various fields of transportation research (Adeli 

and Jiang, 2009; Adeli and Karim, 2005; Dharia and Adeli, 

2003; Jiang and Adeli, 2004; Jiang and Adeli, 2005; Karim 

and Adeli, 2002).  

This paper starts by formulating a model that calculates 

travel time reliability considering uncertainties in demand 

and supply. The model basically follows the framework of 

Clark and Watling (2005), which assumes a stochastic O-D 

demand. Further, multivariate normal distribution of traffic 

capacities (Uchida and Munehiro, 2010) is introduced to the 

framework of Clark and Watling (2005). The link flows 

calculated by the stochastic network model follow a 

multivariate normal distribution (Hazelton 2000, 2001; 

Nakayama and Takayama, 2003; Clark and Watling, 2005; 

Shao et al., 2006; Uchida and Munehiro, 2010). For the 

purpose of calculating travel time reliability in the network, 

path flows are required. Therefore, path flows calculated by 

a stochastic network model can depend on a path set 

enumerated. Unrealistic flow patern can be obtained even 

though an implicit route enumeration algorithm, e.g., 

Papola and Marzano (2013), is applied. Beside that, there 

may be a case where a stochastic network model cannot be 

applied due to the lack of network data. Therefore, a path 

flow estimation model which does not require path 

enumeration is also proposed in this paper. 

The paper has five more sections. The next section 

formulates the link flows and link capacities in the network. 

The third section presents a travel time reliability estimation 

model that expresses uncertainties in the demand and 

supply sides. Section four presents the path flow estimation 

model by using observed link flows. Section five carries out 

the numerical experiments for demonstrating the model 

presented in this study. The final section concludes the 

paper and discusses future research needs. 

 

2 LINK FLOW AND LINK CAPACITY 

 

2.1. Notation 

 

The notations below are frequently used in this paper. 

N : Set of nodes in the network  

A : Set of links in the network 
I : Set of O-D pairs 

iJ : Set of paths between O-D pair i  

io : Origin centroid node for O-D pair i  

id : Destination centroid node for O-D pair i  

ajδ : Variable that equals 1 if link a  is part of path j , 

and equals 0 otherwise 
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in
nL : Set of links whose destination node is n  

out
nL : Set of links whose origin node is n  

a
on : Origin node of link a  

a
dn : Destination node of link a  

av : Link flow of link a  

aV : Stochastic link flow of link a  

V : Vector of stochastic link flows 

Σ : Variance-covariance (var-cov) matrix of stochastic 

link flows 

aC : Stochastic traffic capacity of link a  

ac : Traffic capacity of link a  

ijF : Stochastic flow of route j  between O-D pair
 
i  

ijf : Mean flow of route j  between O-D pair
 
i  

iQ : Stochastic traffic demand for O-D pair i  

iq : Mean traffic demand for O-D pair i  

ijp : Path choice probability of traffic demand for O-D 

pair i  choosing path j  

 

2.2. Link flow and link capacity 

We assume that link flows in a network follow 

multivariate normal distribution (MVN). This assumption is 

supported if O-D flows follow independent Normal 

distributions (e.g., Shao et al., 2006), independent Poisson 

distributions (e.g., Hazelton 2000, 2001; Clark and Watling, 

2005; Uchida and Munehiro, 2010) or independent 

Binomial distributions (e.g., Nakayama and Takayama, 

2003). Following Sumalee and Xu (2011), O–D travel 

demand, iQ , is assumed to be an independent random 

variable with the mean of [ ] ii qQE =  and the variance of 

[ ] iii qVMRQ ⋅=var , where iVMR  is the variance to mean 

ratio of random travel demand. By applying the same 

assumption that the coefficient of variation of path flow is 

equal to that of O–D demand as employed in Chen et al. 

(2011), stochastic flow on path ij J∈ , ijF , is then given by 

 iJ,I  ∈∀∈∀⋅= jiQpF iijij   

ijF  is the random variable with the mean of 

[ ] [ ]iijij QEpFE ⋅=  and the covariance of 

[ ] [ ]iikijikij QppFF var,cov ⋅⋅=  where ( )iij jp J∈  is path 

choice probability which can be determined by a path 

choice model, e.g. UE, SUE  and so on. It may be helpful to 

present a relationship between ijp  and iVMR  when we 

take into account the effect of ijp  on travel time reliability 

which is given by 

[ ] [ ] ( ) [ ] [ ]ijijiijiijij FEVMRQpQpF ⋅=⋅=⋅= varvarvar
2

 

where iijij VMRpVMR ⋅=  is the variance to mean ratio of 

random path flow. The conservation of the path flow 

variance in relation to the O-D demand variance holds as 

follows 

[ ] [ ] [ ]

( ) [ ] [ ]

[ ] ii
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Stochastic flow of link a ,  aV , is given by: 

 A   

I J

∈∀⋅=∑∑
∈ ∈

aFV

i j

ijaja

i

δ   

By applying the stochastic O-D flow assumed above, the 

link flows follow the multivariate normal distribution with 

the mean of: 

 

[ ] [ ]

[ ] A   

I J

I J

∈∀⋅⋅=

⋅=

∑∑

∑∑

∈ ∈

∈ ∈

aQEp

FEVE

i j

iijaj

i j

ijaja

i

i

δ

δ

 (1) 

and the var-cov of: 

[ ] [ ] A,   var,cov

I J

∈∀⋅⋅=∑∑
∈ ∈

baFVV

i j

ijbjajba

i

δδ  (2) 

We assume that link capacities ( )A∈aCa  follow a 

multivariate normal distribution with the mean capacities of 

[ ]( )A ∈aCE a  and the var-cov of [ ]( )A, ,cov ∈baCC ba . 

The link capacities can be estimated by measuring traffic 

flow data (Uchida and Munehiro, 2010). 

 

3. TRAVEL TIME RELIABILITY 

 

In this study, link travel time is represented by the 

following BPR function (Bureau of Public Roads, 1964): 

 ( ) 





















⋅+⋅=

λ

γ
a

a
aaaa

c

v
tcvt 1;

0  (3) 

where 
0
at  is the free flow travel time of link a , and γ  and 

λ  are calibration parameters. By substituting av  and ac  in 

Eq. (3) with aV  and aC , respectively, we obtain: 

( ) ( ) ( ) 




 ⋅⋅+⋅= − λλγ 10 1; aaaaaa CVtCVt  (4) 

By denoting 
1−⋅= aaa CVD , Eq. (4) is then: 

 ( ) ( ) ( )( )λγ aaaaaaa DtDtCVt ⋅+⋅=⇒ 1;
0(

 (5) 
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By performing a m th ( )1≥m  order Taylor expansion on 

Eq. (5) at [ ]aa DED = , following Clark and Watling (2005), 

we obtain:  

 ( ) ( )∑
=

−⋅=
m

k

k
aakaaa dDbDt

0

(
  

where [ ]aa DEd = , and kab  is the coefficient of the k th 

term of the Taylor expansion which is given by: 
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Mean link travel times are then calculated as: 

( )[ ] ( )[ ]
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 (6) 

The var-cov of the link travel times are: 
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where 

( ) ( )
[ ]( )  ,cov

!

1

!

1
11 k

bak
b

k

s

k
a

k

lk
ab DD

dk

s

dk

l
k ⋅

⋅

+−Π
⋅

⋅

+−Π
⋅= ==

λλ
φ  

A, ∈∀ ba  (8) 

 [ ] [ ]( ) A ; 0 ∈∀−= atCEVEtt aaaaaδ   

Eq. (6) and Eq. (7) can be calculated by applying a 

method originally proposed by Isserlis (1918) given the 

moments of aD . The calculation of [ ] ( )A,  ,cov ∈baDD ba  

in Eq. (8) is presented in Appendix 1. The travel times of 

path j  which serves O-D pair i  ( ijΞ ) are given by: 

 ( ) iaj

a

aaij jiDt J,I 

A

∈∀∈∀⋅=Ξ ∑
∈

δ
(

  

The mean path travel time and the var-cov of the path travel 

times are respectively given by: 

 [ ] ( )[ ] iaj

a

aaij jiDtEE J,I 

A

∈∀∈∀⋅=Ξ ∑
∈

δ
(

 (9) 

[ ] ( ) ( )[ ]

( ) ( )[ ] ,cov

,cov,cov

A A

A A

1 2

22112211

1 2

222211112211

∑∑

∑∑

∈ ∈

∈ ∈

⋅⋅=

⋅⋅=ΞΞ

a a

aaaajaja

a a

jaaajaaajiji

DtDt

DtDt

((

((

δδ

δδ

21
J,J,,I, 2121 ii jjii ∈∀∈∀∈∀  (10) 

For the calculation of the total travel time in the network, 

one can refer to Clark and Watling (2005). They calculate 

the moments of the stochastic total travel time by applying 

the method proposed by Isserlis (1918). 

Risk-averse drivers may take into account the mean 

travel times as well as the variations of the travel times, 

such as standard deviations, in their path choice decisions. 

Such path choice problems are formulated as path-based 

problems due to the non-separable property of path travel 

time variance (or covariance) shown by Eq. (10). These 

problems can be solved by a stochastic network model. In 

general, path enumeration is required in advance for solving 

these path-based problems. For the purpose of calculating 

the unique travel time reliability in the network, unique path 

flows need to be provided. However, path flows are 

determined depending on a path set enumerated in advance. 

This means that travel time reliability in the network can 

change depending on the path set enumerated in advance. In 

addition, due to the lack of network data, there may be a 

case where a stochastic network model cannot be applied to 

calculate travel time reliability. Therefore, if several sets of 

observed link flows are available, it may be reasonable to 

estimate the path flow based on the observed link flows 

instead of solving the path choice problems. The next 

section presents a path flow estimation method based on the 

observed link flows. This model does not require path 

enumeration in advance. 

 

4 PATH FLOW ESTIMATION 

 

We assume that mean link flows as well as several sets of 

observed link flows in a network are given. The mean flow 

of a link in the network may be estimated by using the 

observed flows of the link, e.g., the mean link flow can be 

an average of the observed flows of the link. Stochastic 

path flow estimation model presented in this section does 

not require all link flows to be observed in the network as 

discussed later. Considering the evolutions of ITS 

technology, it may be possible to observe a large number of 

link flows in the road network.  

Following Sumalee and Xu (2011), the ijVMR  of path 

flows are assumed to equal to those of the corresponding 

stochastic O-D flow, i.e., iji VMRVMR = . This relationship 

is obtained when we regard ijF  as an independent random 

variable that follows the same statistical distribution as O-D 
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flow. Based on this assumption, the conservation of the 

path flow variance in relation to the O-D demand variance 

still holds as follows 

[ ] ( ) [ ] ii

j

iiji

j

ijij qVMRQEpVMRFEVMR ⋅=⋅⋅=⋅ ∑∑  

In addition, the iVMR  of O-D demand flows are assumed 

to be the same for all O–D pairs, i.e., I   ∈∀= iVMRVMRi . 

These assumptions are required to derive the expression of 

covariance of two link flows by using only the mean path 

flows, [ ]ijij FEf = , with given VMR , shown by 

 [ ] A,   ,cov

I J

∈∀⋅⋅⋅= ∑∑
∈ ∈

bafVMRVV

i j

ijbjajba

i

δδ  

Even though these two assumptions do not hold, a path 

flow estimation model presented in this section can work 

however the expression of [ ]ba VV ,cov  becomes a more 

complicated one. These two assumptions are provided to 

keep the path flow estimation model as simple as possible. 

Based on the definition of [ ]ba VV ,cov  shown by Eq. (2), 

[ ]ba VV ,cov  is the summation of the mean path flows that 

pass through both links a  and b  multiplied by VMR . 

Since no cyclic path flow is assumed, we obtain:  

 [ ] N,L  0,cov ∈∀∈≠∀= nbaVV out
nba  (11) 

 [ ] N,L  0,cov ∈∀∈≠∀= nbaVV in
nba  (12) 

 [ ] ( ) A   &  if  0,cov ∈≠∀=== bannnnVV b
o

a
d

b
d

a
oba (13) 

Conservation of link flows, at node n , that pass through 

link a  is given by: 

 [ ] [ ] N,A   ,cov,cov

LL

∈∀∈∀= ∑∑
∈∈

naVVVV
out
n

in
n c

ca

b

ba  (14) 

Eq. (14) implies that the summation of link flows that pass 

through link a  and then flow into node n  via one of the 

links 
in
nb L∈  has to flow out from the node via one of the 

links 
out
nc L∈ . 

We set the following four assumptions on the centroid 

nodes from/to which O-D demand is generated/attracted: 

 I L ∈∀= iin
oi

φ   

 ( ) I'', ' ∈≠∀≠ iiiioo ii   

 I L ∈∀= iout
d i

φ   

 ( ) I'', ' ∈≠∀≠ iiiidd ii   

The above four assumptions imply that a unique origin 

centroid node and a unique destination centroid node are 

provided at each O-D pair, and that there is no path flow 

that passes through the centroid nodes. By putting the 

conservation of O-D flows together with these assumptions 

on the centroid nodes, we have the following three 

conservation laws with respect to O-D flows: 

 [ ] [ ] out
o

b

baa i
in

id

aiVVVMRVE LI,   ,cov

L

∈∀∈∀⋅= ∑
∈

 (15) 

 [ ] [ ] I   ,cov

L LL

∈∀=⋅= ∑ ∑∑
∈ ∈∈

iqVVVMRVE i

a b

ba

a

a
out

io
in

id
out

io

(16) 

 [ ] [ ] A,I   ,cov,cov

LL

∈∀∈∀= ∑∑
∈∈

aiVVVV
in

id
out

io b

ba

c

ca  (17) 

Eq. (15) implies that the path flow which is generated from 

the centroid node io  and which flows into one of the links 

out
oi

a L∈  has to be attracted to the centroid node id  via one 

of the links in
di

b L∈ . Eq. (16) implies that the summation of 

Eq. (15) with respect to out
oi

a L∈  is equal to the mean O-D 

flow iq . Eq. (17) implies that the summation of path flows 

that flow out from the links out
oi

c L∈  and then flow into link 

a  have to be attracted to the centroid node id  via one of 

the links in
di

b L∈ . Since a pair of centroid nodes includes 

the unique origin node and the unique destination node, we 

obtain the following three conditions on the link flows 

whose origin node or destination node is a centroid node: 

 [ ] ( )( )I L ,L 0,cov 21
21

∈≠∀∈∀∈∀= iibaVV in
d

out
oba ii

 (18) 

 [ ] ( )( )I L ,L 0,cov 21
21

∈≠∀∈∀∈∀= iibaVV out
o

out
oba ii

 (19) 

 [ ] ( )( )I L ,L 0,cov 21
21

∈≠∀∈∀∈∀= iibaVV in
d

in
dba ii

 (20) 

As mentioned earlier, the vector of the mean link flows 

[ ]VE  and the diagonal elements of the var-cov matrix Σ  

are given. We have to obtain the off-diagonal elements of 

Σ  that satisfy the conditions shown by Eqs. (11) - (20) for 

the purpose of calculating the path flows. We assume that 

there exist some observed vectors of mean link flows 

( )Kkk ,...,1=v . The off-diagonal elements of Σ , i.e., 

[ ] ( )( )A  ,cov ∈≠ baVV ba , can be then estimated by 

maximizing the following log-likelihood function for 

[ ]( )ΣV ,EMVN :  

 

( )

[ ]( ) [ ]( )∑
=

− −−⋅−

⋅−⋅
⋅

−=

K

k

k
T

k EE

KK
L

1

1

2

1

log
2

2log
2

|A|
ln

VvΣVv

Σπ

  

subject to Eqs. (11) - (20), where |A|  is the number of 

links and the superscript T denotes a matrix or vector 

transposition. For each row of Σ , the number of unknown 

covariance is 1|A| − , since each row contains a diagonal 

element that is given. Since at each node but excluding 

centroid nodes we have Eq. (14), the total number of linear 

equations we obtain is ( )|N||N| c− , where |N|  is the 

number of nodes, and |N| c  is the number of centroid 
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nodes. Therefore, for each row, the number of unknown 

covariance is ( )|N||N|1|A| c−−− . Thus, total number of 

unknown covariance in Σ  seems to be 

( )( )|N||N|1|A||A| c−−−⋅ . However, at each link 

( )IL ∈iout
oi

, we have Eq. (15). In addition, the var-cov 

matrix is always a symmetric matrix, i.e., 

[ ] [ ] baVVVV abba ,  ,cov,cov ∀= . Consequently, the number 

of unknown covariance in Σ  is less than: 

( )( )













−−−−⋅⋅ ∑

∈I

|L||N||N|1|A||A|
2

1

i

out
oc i

 

where ( )I|L| ∈iout
oi

 is the number of links whose origin 

node is io , since some of covariance in Σ  are given by Eqs. 

(11) - (13) and (18) - (20). 

Due to the conditions of flow conservation shown by Eqs. 

(14) and (15), there may be a case in which the log-

likelihood function cannot be defined since the var-cov 

matrix Σ  becomes singular, e.g., [ ] ( )A  ,cov ∈aVV ca  for a 

link c  from the set 
out
n

in
n LL ∪  is determined by 

using [ ] ( )( )A,LL  ,cov ∈∪∈≠ acbVV out
n

in
nba . For the 

purpose of ensuring that the var-cov matrix is regular, we 

consider the problem where one of the links 
out
n

in
na LL ∪∈  

is reduced at each node N∈n , and where one of the links 
out
d

in
o ii

a LL ∪∈  is reduced at each O-D pair I∈i , from V , 

kv  and Σ . Note that without loss of generality, the 

covariance that relate to the reduced links can be duplicated 

by using the covariance of the other links. Let V̂ , kv̂  and 

Σ̂  denote the reduced versions of V , kv  and Σ , 

respectively. The log-likelihood function for 

[ ]( )ΣV ˆ,ˆEMVN  is then: 

 

( )

[ ]( ) [ ]( )∑
=

− −−⋅−

⋅−⋅
⋅

−=

K

k

k

T

k EE

KK
L

1

1 ˆˆˆˆˆ
2

1

ˆlog
2

2log
2

|Â|ˆln

VvΣVv

Σπ
 (21) 

where |Â|  is the number of links in the reduced problem. 

By maximizing Eq. (21) subject to Eqs. (11) - (20), we 

obtain the unknown off-diagonal elements of Σ̂ . This 

discussion means that the model proposed in this study does 

not require all link flows to be observed in the network 

considering the conservation of all link flows connected to 

one node. In addition, even though some of link flows are 

not observed, such unobserved link flows can be estimated 

by applying a link flow estimation model with incomplete 

data, e.g., Tanyimboh and Templeman (1993). 

It is expected that there may still be a case in which Σ̂  

becomes singular when some elements of Σ̂  take specific 

values. Note that even though Σ̂  becomes singular, such 

Σ̂  do exist as the results of the driver’s path choice. In this 

case, it may be reasonable to apply the log-likelihood 

function for singular MVN distribution (e.g., Srivastava and 

Rosen, 2002) given by: 

 

( )

[ ]( ) [ ]( )∑
=

−

=

−−⋅−









Π⋅−⋅

⋅
−=

K

k

k

T

k

i
i

EE

KK
L

1

1

ˆˆˆˆˆ
2

1

log
2

2log
2

~
ln

VvΣVv

λπ
ρ ρ

 (22) 

where ( )ρλ ,...,1=ii  are the nonzero eigenroots of Σ̂ , and 

−
Σ̂  is any generalized inverse of Σ̂  that satisfies 

ΣΣΣΣ ˆˆˆˆ =− . If a Moore-Penrose inverse is applied, the 

generalized inverse is then: 

 ΓΓΛΣ
1ˆ −− =   

where Γ  is the ρ×|ˆ| A  matrix of the eigenvectors of Σ̂ ; 

and ( )ρλλ ,...,diag 1=Λ  is ρρ ×  diagonal matrix. Note 

that if Σ̂  is not singular, then the Moore-Penrose inverse is 

equivalent to 
1ˆ −

Σ  (
1ˆˆ −− = ΣΣ ) and we obtain a resulting 

relationship that implies that Eq. (21) is equal to Eq. (22) if 

Σ̂  is not singular. Thus, without loss of generality, Eq. (22) 

can be used for estimating the covariance of Σ̂ . As is often 

the case with the log-likelihood function denoted by Eq. 

(22) in which the var-cov matrix can change from non-

singular to singular or vice versa, at a singular point the log-

likelihood function may not be continuous. Furthermore, if 

the singular point maximizes the log-likelihood function, 

we have to examine the stability of the solution, which is 

the subject of the next section. 

It should be noted that the mean link flows need to hold 

Eqs. (11) - (20). When the mean link flows do not hold 

these conditions, we can still estimate the mean link flows 

that hold the conditions by applying a link flow estimation 

model with incomplete data, e.g., a model presented in 

Tanyimboh and Templeman (1993). On the other hand, the 

observed link flows do not need to hold the conditions since 

the mean and var-cov of stochastic link flow can be defined 

in the path flow estimation model. It may be reasonable to 

apply a maximum likelihood (ML) estimation method with 

lower unknown parameters rather than the one with larger 

unknown parameters when the number of observations is 

small. In this regard, the model presented in this section 

does not require a number of observations compared to the 

standard ML estimation method in which the number of 

unknown parameters is ( ) ( )121 +⋅⋅+ AAA . However, 

similar to the standard ML estimation model, the variance 

of an estimated parameter becomes larger when the number 

of observations is small. Also, it should be noted that the 
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proposed model can work for uncongested networks rather 

than congested networks since the model does not consider 

the constraint from static models. 

 

5 NUMERICAL EXPERIMENTS 

 

In this section, two numerical experiments are carried out 

to demonstrate the model proposed in this study. In the first 

experiment, a network with an O-D pair is addressed 

whereas a network with two O-D pairs is addressed in the 

second experiment. In the second experiment, stochastic 

path flows as well as path travel time distributions are 

estimated. In the numerical experiments, we adopt the 

variance to mean ratio of random travel demand of one, i.e, 

1=VMR . It seems that only mean traffic demand(s) is/are 

addressed in the numerical experiments. However, we take 

into account the effect of uncertainty in the traffic demand 

on the path flow by introducing several sets of the observed 

link flows. Note that, we assume that a set of observed link 

flows is sampled from a multivariate normal distribution. 

 

5.1 An O-D pair 

Figure 1 shows test network that consists of three nodes 

and four links with an O-D pair. The mean O-D demand for 

this network is 100. We set the following vector of mean 

link flows: 

 

2

4

1

3
① ② ③

q=100

 
Figure 1 Test network 1 

 

 
Figure 2 Inverted objective function for the first case 

 

 
Figure 3 Inverted objective function for the second case 

[ ] ( )TE 505050501 =V  

According to Eq. (11), we obtain: 

[ ] [ ]( ) [ ] [ ]( ) 0,cov,cov,0,cov,cov 24421331 ==== VVVVVVVV  

At node 2, Eqs. (14) and (16) are equivalent, and this gives 

us: 

[ ] [ ] [ ] [ ] A ,cov,cov,cov,cov 4231 ∈∀+=+ aVVVVVVVV aaaa  

We denote [ ] [ ]121 var,cov VrVV ⋅=  by using the unknown 

parameter ( )10 ≤≤ rr . The resulting var-cov matrix ( 1Σ ) 

is then:  

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ]
[ ]

( )
( )





















⋅

−⋅

−⋅⋅

=





















=

50

5050

015050

15005050

var

,covvar

,cov,covvar

,cov,cov,covvar

4

433

42322

4131211

1

r

r

rr

V

VVV

VVVVV

VVVVVVV

Σ

 

Note that we can reduce the number of unknown 

parameters for this problem to one. Next, we set the 

following two observed vectors ( )2,1 =kkv  which are 

regarded as the link flows observed on day k  given by: 

( ) ( )TT
50505050,00100100 21 == vv  

We prepared two sets of observed link flows for the 

purpose of showing a clear change in the shape of the 

objective function after adding one more observation. Of 

course in this example, since the number of observations is 

small, the accuracy of an estimated parameter is low.  

There are four possible paths: those that consist of links 1 

and 2, of links 1 and 4, of links 2 and 3, and of links 3 and 4. 

We examine the path flow estimation problem where the 

covariance relating to link 1 are reduced by applying Eq. 

(14). For this problem, the var-cov matrix 1Σ̂  becomes 

singular at 1or  0=r . Therefore, the log-likelihood 

function shown in Eq. (22) must be used for estimating the 

covariance of 1Σ̂ . The resulting problem is to maximize Eq. 

(22), with respect to ( )10 ≤≤ rr , and subject to: 

[ ] [ ] [ ] [ ]( )TVEVEVEE 505050ˆ
4321 ====V  

( )

















⋅

−⋅

=

50

5050

015050

ˆ
1 r

r

Σ  

( ) ( )TT
505050ˆ,00100ˆ 21 == vv  

The value of the objective function multiplied by minus 

one, which will be referred to as the inverted objective 

function, for this problem is shown in Figure 2. Thus, the 

optimal solution is the minimum value of the function that 

is 32.9 at 0=r . As predicted, at the singular point of 0=r , 
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the objective function is not continuous, i.e., the value at the 

singular point is ( ) 9.320
~

ln ==− rL  whereas 

( ) inf
~

lim 0 =− +→rrL . Obviously, this solution is not stable 

in terms of perturbation stability, although stability theory 

cannot be applied since even the least convex set (Filippov, 

1960) is not defined at the singular point due to the gradient 

of inf− , i.e., ( ) inf
~

lim
0

−=∂∂−
+→

rrL
r

. If the least convex 

set is well defined, then practical stability for discontinuous 

systems (Michel and Porter, 1972), which we do not 

explain further in this paper, may be applicable for 

checking the stability of the solution. The solution of 0=r  

is stable starting only from 0=r . Otherwise, if a small 

perturbation is made in 0=r , i.e., rrr δ+=  where rδ  is 

a small feasible positive value, then the other solution of 

1=r  which is also singular point will be obtained. Further, 

since at this singular point the objective function is 

continuous, i.e., ( ) ( ) 9.86
~

lim1
~

ln
1

=−==−
→

rLrL
r

, this 

solution is stable in terms of perturbation. The solution 

which is stable in terms of perturbation for this problem 

seems to be 1=r , and that gives us: 



















=

50

5050

0050

005050

1Σ  

The solution says that there are two paths: path 1, which 

consists of the links 1 and 2 with the mean flow of 50; and 

path 2, which consist of the links 3 and 4 with the mean 

flow of 50. Due to 1v , the two paths that consist of the 

links 1 and 4 and of the links 2 and 3 are not selected as the 

used paths. 

We examine then the other problem, where 

( )T010010003 =v  is further added to the sets of 

observed link flows. Figure 3 shows the inverted objective 

function for this case. From Figure 3, the minimum value of 

the function is 86.9 at 0=r  or 1, which is the singular 

point. At each singular point, the function is discontinuous. 

By applying the same discussion provided in the previous 

paragraph to this problem, the stable solution seems to be 

5.0=r , at which the function takes the value of 224.8, 

which implies that there are two paths with the mean flow 

of 50: paths that consist of the links 1 and 4, and of the 

links 2 and 3. 

The discussion in this section clarifies that: 

i) at the singular point, the objective function for the 

path flow estimation problem may not be 

continuous; 

ii) at the singular point, the objective function can be 

optimized (maximized); and 

iii) even though the value of the objective function is 

optimized at the singular point, the solution is not 

stable when the objective function is discontinuous 

at the singular point. 

Thus, for the purpose of obtaining a stable solution, the 

continuity of the objective function at the singular point 

must be checked. Continuity check of the objective function 

can be numerically done as follows. For a given singular 

point r~ , i.e., the vector of unknown parameters at which 

Σ̂  becomes singular, if ( ) ( )rrr
0r

~~~
lim~~
~

δ
δ

+=
→

LL  then the 

objective function is continuous at the singular point ( r~  is 

a feasible solution), otherwise it is discontinuous ( r~  is not 

a feasible solution), where r~δ  is the feasible small 

perturbation vector with nonzero elements. 

 

5.2 Multiple O-D pairs 

We next consider an example different from the previous 

one in terms of the number of O-D pairs and of sets of 

observed link flows. Figure 4 shows a test network of nine 

nodes and fourteen links with two O-D pairs. The mean 

demand for O-D pair 1, whose origin centroid node is 1 and 

whose destination centroid node is 9, is 10001 =q . The 

other O-D demand is 10002 =q  for the O-D pair whose 

origin centroid node is 7 and whose destination centroid 

node is 3. Considering both the network topology and the 

locations of the centroid nodes for each O-D pair, two mean 

flows of links i and ii are always same, for example the case 

of O-D pair 1, and this gives:  

[ ] [ ] A  ,iicov,icov ∈∀= aaa  

This is true for the three pairs of links of (iii, iv), (v, vi) 

and (vii, viii). Thus, we can get the simplified network 

shown by Figure 5, where the pair of two links that always 

carry the same mean link flow is represented by a link. In 

the figure, link 1 represents links i and ii from Figure 4, link 

2 represents links iii and iv, link 8 represents links v and vi, 

and link 9 represents links 7 and 8. If Eq. (14) is applied to 

the simplified network at node 5, one of the links among 1, 

2, 5, 6, 8 and 9 must be reduced. The same discussion can 

be applicable at node 4, in which case one of the links 

among 3, 5 and 7 must be reduced, and at node 6, in which 

case one of the links among 4, 6 and 10 must be reduced. If 

Eq. (17) is applied to O-D pair 1, one of the links among 1, 

3, 9 and 10 must be reduced. However, we cannot further 

reduce one of links among 2, 4, 7 and 8 by applying Eq. 

(17) to O-D pair 2, since link 8 has already been reduced. 

Thus, we consider the problem where links 1, 5, 6, and 8, 

for example, are reduced from the simplified network. 

These reduced links are depicted by dashed arrows in 

Figure 5. Without loss of generality, all of the covariance of 

link flows for test network 3 can be duplicated by using the 

covariance relating the links of 2, 3, 4, 7, 9, and 10 in 

Figure 5 and by applying Eqs. (11) - (20). 

We set the observed link flows ( )19,...,1 =kkv , the 

vector of link flows observed on day k , as shown in Table 

1, and the following vector of the mean link flows given by:  
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i
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Figure 4 Test network 2 

 

1

q1=1000

① ③

⑤④ ⑥

⑦ ⑨

q2=1000

2
3 4

5 6

7
8 9

10

 
Figure 5 Simplified network 

 

Table 1 Link flows observed on day k  
link flow/

day
E[V 1] E[V 2] E[V 3] E[V 4] E[V 5] E[V 6] E[V 7] E[V 8] E[V 9] E[V 10]

1 1000 1000 0 0 0 0 0 1000 1000 0

2 500 500 500 500 1000 1000 500 500 500 500

3 667 667 333 333 667 667 333 667 667 333

4 500 500 500 500 1000 1000 500 500 500 500

5 600 600 400 400 800 800 400 600 600 400

6 667 667 333 333 667 667 333 667 667 333

7 571 571 429 429 857 857 429 571 571 429

8 625 625 375 375 750 750 375 625 625 375

9 667 667 333 333 667 667 333 667 667 333

10 600 600 400 400 800 800 400 600 600 400

11 636 636 364 364 727 727 364 636 636 364

12 583 583 417 417 833 833 417 583 583 417

13 615 615 385 385 769 769 385 615 615 385

14 643 643 357 357 714 714 357 643 643 357

15 600 600 400 400 800 800 400 600 600 400

16 625 625 375 375 750 750 375 625 625 375

17 647 647 353 353 765 765 412 588 588 412

18 667 667 333 333 722 722 389 611 611 389

19 632 632 368 368 737 737 368 632 632 368  
 

[ ] ( )TE 3686326323687377373683686326322 =V

The var-cov matrix in which [ ]ba VV ,cov  is simply denoted 

as [ ]ba,cov  is then:  

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]







































=

368

0632

00632

000368

10,6cov08,6cov7,6cov736

10,5cov9,5cov07,5cov6,5cov736

008,4cov7,4cov6,4cov5,4cov368

10,3cov9,3cov006,3cov5,3cov0368

008,2cov7,2cov05,2cov00632

10,1cov9,1cov006,1cov0000632

2Σ

where the given covariance that are obtained from [ ]2VE , 

Eqs. (11) - (14) and (18) - (20) are denoted by constants. By 

using two parameters 1,0 21 ≤≤ rr , [ ]10,1cov  and [ ]4,8cov , 

which are arbitrarily selected from the unknown covariance, 

can be respectively denoted as:  

[ ] [ ] 11 6321,1cov10,1cov rr ⋅=⋅=  

[ ] [ ] 22 6328,8cov4,8cov rr ⋅=⋅=  

By applying Eqs. (11) - (20), the other unknown 

covariance can be denoted by using both the parameters and 

the given covariance (Appendix 2). Thus, the number of 

unknown parameters in the path flow estimation problem is 

only two. The mean equilibrium path flows and the var-cov 

matrix for the reduced problem are respectively given by: 
[ ]
[ ] [ ] [ ] [ ] [ ] [ ]( )TVEVEVEVEVEVE

E

368632368368368632

ˆ

1097432

2

======

=V

[ ]
[ ] [ ]

[ ]



























=

368

0632

00368

007,4cov368

10,3cov9,3cov00368

007,2cov00632

ˆ
2Σ  



























⋅−

⋅−⋅

⋅

=

368

0632

00368

00632368368

63236863200368

0063200632

2

11

2

r

rr

r

 

Figure 6 and Figure 7 show the surface of the inverted 

objective function and the contour of the function shown in 

Figure 6, respectively. The surface of the inverted function 

is calculated by using the iteration relationship: 

2 and 1for   
1 =+=+

irrr
j

i
j

i δ  in which the increment rδ  

equals 0.01, which starts from 00 =ir  and ends in 

0.1101 =ir . 2Σ̂  becomes singular at ( ) 1or  0or 21 =rr . At 

the singular point of ( ) ( ) ( )0,or  ,0, 21 −−=rr  where the sign 

−  denotes any real numbers between 0 and 1, the objective 

function is discontinuous (since 
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( ) ( ) inf,
~

lim,
~

lim 2
0

1
0 21

=−−=−−
+→+→

rLrL
rr

). On the other hand, 

at the singular point of ( ) ( ) ( )1,or  ,1, 21 −−=rr  the objective 

function is continuous. Thus, the feasible solution region 

for this problem is 10 and 10 21 ≤<≤< rr .  

Path flows are then estimated by maximizing the 

objective function shown by Eq. (21) and by excluding the 

unfeasible solution region which is ( ) ( ) ( )0,or  ,0, 21 −−=rr . 

We obtain the internal solution of 1.021 == rr . At this 

solution, the function takes a value of 1419.7. This solution 

implies that there are four paths for each O-D pair. The first 

path for the O-D pair 1 (denoted as 1-1) consists of the links 

i, ii, vii and viii in Figure 4, with the mean path flow of 

568.8. The second path for the O-D pair (denoted as 1-2) 

consists of the links i, ii, 6 and 10, with the mean flow of 

63.2. The third path for the O-D pair (denoted as 1-3) 

consists of the links 3, 5, 6 and 10, with the mean flow of 

304.8. The fourth path for the O-D pair (denoted as 1-4) 

consists of the links 3, 5, vii and viii, with the mean flow of 

63.2. Since a path serving O-D pair 2 has the same topology 

as one of the paths serving O-D pair 1 and carries the same 

mean path flow as the corresponding path, the paths serving 

O-D pair 2 are not mentioned further. By using Eq. (9), the 

mean path travel times for the O-D pair 1 

[ ]( )4,...,1 1 =Ξ jE j  are all calculated as 53; however, their 

respective variances [ ]( )4,...,1 1 =Ξ jE j  calculated by using 

Eq. (10) are 4.82, 4.52, 4.82, and 4.52.  

Next, consider one of the other feasible solutions to 

021 == rr . This solution implies that there are two paths 

for each O-D pair. The first path for the O-D pair 1 

(denoted as 1'-1) consists of the links i, ii, vii and viii, with 

the mean path flow of 632. The second path for the O-D 

pair (denoted as 1'-2) consists of the links 3, 5, 6 and 10, 

with the mean path flow of 368. The mean path travel times 

for the O-D pair 1 [ ]( )2,1 '1 =Ξ jE j  are all 53, and their 

variances [ ]( )2,1 var '1 =Ξ jj  are all 4.82 which is the same 

as paths 1-1 and 1-3. Thus, depending on the path flows, the 

distribution of path travel times changes although the mean 

path travel times do not change. 

 

 
Figure 6 Surface of the inverted objective function 

 

 
Figure 7 Contour of the function shown in Figure 6 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

30 35 40 45 50 55 60 65 70 75 80

paths 1-1 & 1-3

paths 1-2 & 1-4

 
Figure 8 Distribution of the path travel time 

 

Following Clark & Watling (2005), we carried out curve 

fitting, i.e., we used a flexible family of probability 

densities known as Johnson curves (Johnson 1949), by 

adapting the techniques described in Hill et al. (1976) and 

Hill (1976) for the purpose of obtaining the probability 

density function (PDF) of path travel time. In calculating 

travel time distributions, methods described in section 3 

were applied. We assume that all links in the network have 

the same link performance functions in which we set 

0.4 and 5.0,10 === λγo
at . For the traffic capacities, we 
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assume that [ ] [ ] [ ]  and 1.0var,700 == aaa CECCE  

[ ] ( )A, 2450,cov ∈= baCC ba  suggesting a 0.5 coefficient 

of correlation between the two capacities. A lognormal 

system was selected in which the parameters presented in 

Clark & Watling (2005) are estimated as 9.17ˆ =δ  

8.30ˆ −=γ  for the paths 1-1 and 1-3, and 8.16ˆ =δ  

9.28ˆ −=γ  for the paths 1-2 and 1-4 under the assumption 

on the shift parameter of 0ˆ =ξ . Figure 8 shows the 

estimated PDF of the travel time distribution. 

 

6 CONCLUSIONS 

 

This study proposes a model that calculates the travel 

time reliability in a road network. The sources of 

uncertainty are O-D demand and traffic capacity. In general, 

path enumeration is required in advance to estimate travel 

time reliability by applying a stochastic network model due 

to non-separable property of travel time reliability. For the 

purpose of calculating unique travel time reliability, the 

stochastic network model require unique path flows which 

are inevitable to depend on a predefined paths set. In 

addition, due to the lack of network data, there may be a 

case where we cannot apply a stochastic network model to 

calculate travel time reliability. Therefore, this study 

developed a model that estimates path flows without 

requiring path enumeration. This model is developed based 

on the standard ML estimation method. Numerical 

experiments were then carried out to demonstrate the 

proposed model. 

Travel time reliability evaluation in a large network is a 

practical concern from the viewpoint of road policy 

development. One approach may be the development of an 

efficient algorithm for sophisticated but complicated 

models that are difficult to be solved when targeting a large 

network problem. The other approach may be the 

simplification of the models themselves into a model for 

which efficient algorithms have already been developed. If 

a stochastic network model cannot be applied due to the 

lack of network data, we have to apply different approaches 

for travel time reliability evaluation. An approach is the 

application of the path flow estimation model presented in 

this study to the travel time reliability evaluation. The path 

flow estimation problems addressed in this study have the 

two advantages in terms of computational load over a 

problem to which the standard ML estimation method needs 

to be applied. The first one is that a vector of averages 

which needs to be estimated by the standard ML estimation 

method is given. The second one is that diagonal elements 

of a var-cov matrix which need to be estimated by the 

standard ML estimation method are also given. Constraints 

of off-diagonal elements of the var-cov matrix are obtained 

by Eqs. (11) - (20). It is likely that the var-cov matrix can 

be obtained even though this process may be time 

consuming for targeting a large network. Therefore, it can 

be concluded that the path flow estimation problems 

addressed in this study are easier to be solved than a 

problem to which the standard ML estimation method needs 

to be applied. Thus, we speculate that the model for path 

flow estimation presented in the study can be applied to a 

moderately-large network problem through the use of the 

property of the var-cov matrix of link flows, i.e., a sparse 

and symmetric matrix. The time-consuming procedure in 

path flow estimation is the calculation of the inverse matrix. 

Efficient calculation methods for the inverse of the sparse 

and symmetric matrix have been developed (e.g., George 

and Liu, 1981). As shown by the var-cov matrices used in 

the numerical experiments, a number of the elements in the 

var-cov matrix are zero; thus, the number of unknown 

parameters is equal to the number of non-zero elements in 

the var-cov matrix. The number of unknown parameters 

becomes smaller by considering additionally the constraints 

on flow conservation compared to the number of non-zero 

elements. By adopting an efficient method for the inverse of 

the sparse matrix, and by utilizing the property of the path 

flow estimation problem that the number of unknown 

parameters can decrease, we can make the path flow 

estimation problems easier to solve. However, the path flow 

estimation by applying the model to a large network, e.g., a 

network in which there are more than one thousand links, is 

difficult. An improvement of the model is required to 

estimate the path flow in a large network. That is our future 

task. 
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APPENDIX 1 

 

Bras and Georgakakos (1980) proposed an analytical 

method that approximates the thm  power of X  by 

applying a linear function of X  and [ ]XE , where X  

follows a normal distribution and m  is a real number. 

According to the method, 
mX  can be approximated as: 

 
( ) [ ] ( ) [ ]( )XEXXEXX mXmXmm −⋅+⋅=≈ ,,ˆ βα  (a1) 

where ( )mX ,α  and 
( )mX ,β  are the calibration parameters of 

the r th approximation that are respectively given by: 
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where cv is the coefficient of the variation of X. These two 

parameters can be analytically derived by applying the least 

mean squared error criterion to ( ) 



 −

2ˆ mm XXE . By using 

this analytical approximation method, the mean and the var-

cov of the stochastic variable ( )A 1 ∈− aCa  are respectively 

given by: 

 [ ] [ ] A  1 ∈∀⋅=− aCECE aaa α   
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where aα  and ( )Α∈aa  β  are the calibration parameters 

that are obtained by assuming aCX =  and 1−=m  in Eq. 

(a1). If the coefficient of variation of aC  is less than 0.2, it 

is reported that the approximation method gives sufficient 

precision (Uchida, 2009). The mean of aD  are then: 
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The var-cov between ba DD  and  are given by: 
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APPENDIX 2 

 

By applying Eq. (15) to all the O-D pairs, we obtain: 

[ ] [ ] [ ] ( )216324,8cov8,8cov2,8cov r−⋅=−=  

[ ] [ ] [ ] ( )1163210,1cov1,1cov9,1cov r−⋅=−=  

[ ] [ ] [ ] 163236810,1cov10,10cov10,3cov r⋅−=−=  

[ ] [ ] [ ] 16329,1cov9,9cov9,3cov r⋅=−=  

[ ] [ ] [ ] 26322,8cov2,2cov2,7cov r⋅=−=  

[ ] [ ] [ ] 26323684,8cov4,4cov4,7cov r⋅−=−=  

By applying Eq. (14) at node 6 and at link 7, we obtain: 

[ ] [ ] [ ] [ ]
[ ] [ ]4,7cov6,7cov

010,7cov&10,7cov4,7cov6,7cov

=⇔
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In the same manner, we obtain: 

[ ] [ ] 26324,8cov6,8cov r⋅==

 
[ ] [ ] 163210,1cov6,1cov r⋅==  

[ ] [ ] 163236810,3cov6,3cov r⋅−==
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[ ] [ ] [ ] 3683687364,6cov6,6cov10,6cov =−=−=  

By applying Eq. (14) at node 5 and at link 2, we obtain: 

[ ] [ ] [ ] [ ]( ) [ ]
[ ] [ ] [ ] 26322,8cov2,2cov2,5cov
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In the same manner, we obtain: 
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By applying Eq. (14) at node 4 and at link 3, we obtain: 

[ ] [ ] [ ] [ ]
[ ] [ ] 3683,3cov5,3cov

07,3cov&7,3cov3,3cov5,3cov

==⇔

=+=
 

In the same manner, we obtain: 

[ ] [ ] [ ] [ ]
[ ] [ ] 26323687,4cov5,4cov
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=+=
 

[ ] [ ] [ ] 3683687363,5cov5,5cov7,5cov =−=−=  


