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Abstract: The paper presents a deep neural network model
for the prediction of the compressive strength of foamed con-
crete. A new, high order neuron was developed for the deep
neural network model to improve the performance of the
model. Moreover, the cross-entropy cost function and recti-
fied linear unit activation function were employed to enhance
the performance of the model. The present model was then
applied to predict the compressive strength of foamed con-
crete through a given dataset, and the obtained results were
compared with other machine learning methods including
conventional artificial neural network (C-ANN) and second
order artificial neural network (SO-ANN). To further validate
the proposed model, a new dataset from the laboratory and
a given dataset of high performance concrete were used to
obtain a higher degree of confidence in the prediction. It is
shown that the proposed model obtained a better prediction,
compared to other methods. In contrast to C-ANN and SO-
ANN, the proposed model can genuinely improved its per-
formance when training a deep neural network model with
multiple hidden layers. A sensitivity analysis was conducted
to investigate the effects of the input variables on the com-
pressive strength. The results indicated that the compressive
strength of foamed concrete is greatly affected by density, fol-
lowed by the water-to-cement and sand-to-cement ratios. By
providing a reliable prediction tool, the proposed model can
aid researchers and engineers in mixture design optimisation
of foamed concrete.

1 INTRODUCTION

Foamed concrete is a type of lightweight concrete that of-
fers many advantages such as reducing the dead load of

structures, improving sound and thermal insulation proper-
ties, and reducing transportation and installation costs (Ngo
et al., 2017; Hajimohammadi et al., 2017a; Nguyen et al.,
2018). These advantages make foamed concrete suitable
for a myriad of applications in infrastructure construction
and the prefabricated industry such as prefabricated blocks
or panels, insulated walls, aircraft runway arrestors, roof
decks and geotechnical backfills. The use of foamed concrete
poses a new challenge to perform its mixture design optimi-
sation which requires an accurate and quick understanding of
the relationship between its properties and mixture propor-
tions. Among the properties of foamed concrete, compres-
sive strength is the most important in terms of its mechan-
ical performance. Numerous studies have revealed that the
compressive strength of foamed concrete decreases when its
density decreases (Hajimohammadi et al., 2017b,c). Several
researches have conducted studies to predict the compressive
strength of foamed concrete based on mixture proportions.
Most studies are empirical, in which empirical equations
were developed by calibrating experimental data as discussed
in the following section. Predicting the compressive strength
of foamed concrete using empirical equations is usually lim-
ited by a range of input conditions. Therefore, these pre-
dictions are generally extrapolative in practice (Nehdi et al.,
2001). Moreover, such semi-analytical models required the
determination of empirical constants which are not easy to
obtain to describe such complex relationships between mix-
ture proportions and the compressive strength (Chiew et al.,
2017). Therefore, there is a significant need for the develop-
ment of an advanced prediction tool.
This paper presents a deep neural network (DNN) model,
which is a subset of Machine Learning (ML), for the pre-
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diction and understanding of foamed concrete strength. ML
and data science has shown great potential for predicting, de-
signing and discovering materials (Ley and Bordas, 2018). In
civil engineering and construction, ML has been extensively
used a variety of applications such as structural heal moni-
toring (Rafiei and Adeli, 2017, 2018; Xue and Li, 2018; Gao
and Mosalam, 2018), reliability analysis (Dai and Cao, 2017;
Nabian and Meidani, 2018; Grande et al., 2017), transporta-
tion (Dharia and Adeli, 2003; Zhang and Ge, 2013; Garcı́a-
Ródenas et al., 2017; Yu et al., 2018), prediction and esti-
mation (Adeli and Wu, 1998; Zhao and Ren, 2002; Chou and
Pham, 2013; Rafiei et al., 2017a). In concrete-related studies,
DeRousseau et al. (2018) recently reviewed the application
of ML to optimise mixture design of concrete. This study
suggested that machine learning methods are powerful tools
for mixture design optimisation because they are able to ac-
count for the complexity of mixtures and objective functions.
Rafiei et al. (2016) comprehensively reviewed different ML
approaches to estimate the properties of concrete. Using a
deep restricted Boltzmann machine, Rafiei et al. (2017b) pre-
sented a mode to predict the compressive strength of concrete
from 103 concrete test data retrieved from from the machine
learning repository of the University of California, Irvine.
The estimated results by the deep restricted Boltzmann ma-
chine were compared with ANN and support vector machine
(SVM) models. Combining artificial firefly algorithm and
SVM method, Chou and Pham (2015) proposed a framework
for predicting the compressive strength of normal concrete
and high strength concrete. Abd and Abd (2017) predicted
the compressive strength of foamed concrete using a tradi-
tional multi-variable nonlinear regression and revolutionary
SVM. The results show a good correlation between the actual
compressive strength and predicted compressive strength. A
model to predict the compressive strength of foamed con-
crete based on extreme learning machine (ELM) was pro-
posed in Yaseen et al. (2018). The ELM model was sub-
sequently validated in comparison with M5 Tree and SVM
methods.
Recently, among different ML techniques, artificial neural
network (ANN) has been widely used in civil engineering
(Adeli and Panakkat, 2009; Panakkat and Adeli, 2009; Wang
and Adeli, 2015). ANN was originally inspired by human
brains in which information is transmitted and processed by
biological neurons to build complicated concepts and ideas
(Adeli, 2001). The architecture of conventional ANN con-
sists of a input layer, a hidden layer and a output layer. The
connection of neurons from one layer to others was mod-
elled by weights and biases through the linear inner prod-
uct and activation function (Bui et al., 2018). Sigmoid func-
tion is the most prevalent activation function in the conven-
tional ANN model (C-ANN). To quantify the performance
of the C-ANN, quadratic cost function is commonly used.
Many advantages of the C-ANN were demonstrated for the

prediction of concrete strength in the literature. For exam-
ple, Naderpour et al. (2018) employed C-ANN with the sig-
moid activation function and quadratic cost function to pre-
dict the compressive strength of recycled aggregate concrete.
To do so, 139 concrete test data was retrieved from the liter-
ature to train and test the C-ANN model. Based on C-ANN
approach, Sarıdemir (2009) developed a prediction tool for
the compressive strength of concrete containing metakaolin
and silica fume. 33 different mixtures with 195 specimens
were collected from the literature to construct the model.
The compressive strength of expanded polystyrene (EPS)
lightweight concrete was predicted by ANN models in Sadr-
momtazi et al. (2013). For foamed concrete strength, Nehdi
et al. (2001) used the C-ANN model with eight hidden neu-
rons (due to computational limitation) to forecast the strength
of foamed concrete.
Despite many advantages, the C-ANN model suffers from
several drawbacks such as learning slow-down problem due
to the quadratic cost function and vanishing gradient prob-
lem due to the sigmoid activation function (Goodfellow et al.,
2016; Nielsen, 2015). Moreover, it is known that the C-ANN
only performs linear calculation between neurons in a layer
through the inner product (Fan et al., 2018). This forms a
hypothesis that the inner product (i.e. linear neuron) in the
C-ANN can be replaced by a quadratic function (second or-
der neuron) as presented in Fan et al. (2018). It is showed
by Fan et al. (2018) that the new second order artificial neu-
ral network (SO-ANN) can successfully work for nonlinear
function such as XOR gate and concentric rings which are
unable to capture by the C-ANN with the linear neuron. Fan
et al. (2018) concluded that the performance of the second
order model would be better than the C-ANN with the lin-
ear neuron. In fact, Roberts and Attoh-Okine (1998) alterna-
tively used a simple quadratic ANN model to predict the In-
ternational Roughness Index (IRI) for pavement assessment.
Even though the quadratic model in Roberts and Attoh-Okine
(1998) is quite simple and different to the one in Fan et al.
(2018), the quadratic model can capture the nonlinearity of
this problem very well. It showed that the quadratic ANN
model outperformed the linear ANN model in predicting the
IRI.
Motivated by the literature, this study presents the deep neu-
ral network with high order neuron to predict the compres-
sive strength of foamed concrete. Inspiring from the sec-
ond order model presented in Fan et al. (2018), the paper
proposes a general, high order neuron for the deep neu-
ral network model (HO-DNN). Moreover, the cross-entropy
cost and rectified linear unit (ReLU)activation functions are
utilised to address the learning slow-down and vanishing gra-
dient problems. The paper is the first attempt to investigate
the performance of HO-DNN model for real engineering ap-
plications and with deep neural network. It is noticeable that
Fan et al. (2018) only validated their SO-ANN model with
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mathematical functions (e.g. XOR, NAND and NOR gates)
and a shallow neural network with one hidden layer. The de-
veloped model was validated by predicting foamed concrete
strength through a given dataset. The obtained results were
compared with other methods including C-ANN, SO-ANN.
The model was further validated by a completely new dataset
from the laboratory and another given dataset of high perfor-
mance concrete to obtain a higher level of validation. Having
a reliable model, a sensitivity analysis was then performed to
determine the effects of the input variables on the compres-
sive strength of foamed concrete.

2 EMPIRICAL EQUATIONS

This section briefly describes some empirical models re-
ported in the literature. Interested readers are encouraged
to refer to original publications for the detailed derivation
of these models. Most empirical equations for the pre-
diction of the compressive strength of foamed concrete are
commonly based on three fundamental models, namely Bal-
shin’s, Feret’s and Power’s models (Neville, 2012). Bal-
shin’s model, which is known as the strength-porosity model
(Kiani et al., 2016), assumes that the compressive strength
of concrete is affected by the volume of air voids in concrete
(interlayer pores/spaces, gel pores, capillary pores and en-
trapped air voids). Based on the strength-porosity model,
Hoff (1972) firstly proposed an empirical equation as fol-
lows:

σy = σ0

[
dc (1+0.2ρc)

(1+ k)ρcγw

]b

(1)

in which σy is the compressive strength of foamed concrete;
σ0 is the theoretical compressive strength of cement paste at
absolute zero porosity; dc is the density of foamed concrete;
k is the water-to-cement ratio (by weight); ρc is the specific
gravity of ordinary Portland cement which is 3.15 as given
in Hoff (1972) and γw is the unit weight of water. It is noted
that σ0 is impossible to obtain in practice, therefore σ0 and b
are empirical constants that are determined by calibrating the
model with experimental data. Based on the same approach,
Nambiar and Ramamurthy (2008) established an empirical
equation which takes into account the presence of sand as
follows:

σy = σ0

[
dc (1+0.2ρc + sv

c)

(1+ k)(1+ sw
c )ρcγw

]b

(2)

in which sw
c is the sand-to-cement ratio by weight and sv

c is
the sand-to-cement ratio by volume, which is calculated by
sv

c = sw
c

ρc

ρs
; ρc = 3.13 and ρs = 2.52 are the specific gravity

of cement and sand as given in Nambiar and Ramamurthy
(2008). Similar to Hoff’s model, σ0 and b are empirical con-
stants that require calibration.
Whilst Balshin’s model is based on the porosity and the

weights of the constituents, in Feret’s model, the compres-
sive strength of foamed concrete is governed by the absolute
volume of its constituents as follows:

σy = K
(

c
c+w+a

)n

(3)

in which c, w and a are the absolute volumes of cement, wa-
ter and air in the mixtures; k and n are empirical constants.
Following Feret’s model, Tam et al. (1987) calibrated Eq. (3)
to predict the compressive strength of foamed concrete with
K = 5350 and n = 3.96.
Power’s models link the compressive strength of foamed con-
crete to the gel-space ratio as follows:

σy = k(g)n (4)

in which k is the intrinsic strength of the gel; n is an empirical
constant and g is the gel-space ratio. In Nambiar and Rama-
murthy (2008), the formulation of the gel-space ratio (g) was
derived as follows:

g =
2.06αVc

1−Vf l−Vc (1−α)
(5)

in which Vc is the volume of cement; Vf l is the volume of the
fillers and α is the hydration parameter, which was assumed
to be 0.8 (Nambiar and Ramamurthy, 2008). As porosity
(or density) is the most important factor in foamed concrete
strength, the strength-porosity models are prevalent in empir-
ical equations for foamed concrete strength (Nguyen et al.,
2017). Therefore, two empirical equations based this model
(Hoff, 1972; Nambiar and Ramamurthy, 2008) are used in
this paper.

3 DEEP NEURAL NETWORK WITH HIGH ORDER
NEURON (HO-DNN)
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Figure 1: The structure of a linear neuron in C-ANN model.

This section presents the development of the deep neural net-
work for the prediction of foamed concrete strength with the
high order neuron, cross-entropy cost function, ReLU acti-
vation function. In this paper, the stochastic gradient decent-
backpropagation (SGD-BP) algorithm is used to train the
model because it is very effective for training neural network
models. The SGD-BP algorithm only calculates and stores
the gradient vector (first order) and does not require a Hes-
sian matrix (second order). Therefore the algorithm and its
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Figure 2: The sigmoid function (a) and its derivative (b).

variants can deal with any general engineering problems, par-
ticularly deep neural networks. The detailed description of
the SGD-BP algorithm can be found in the literature (Good-
fellow et al., 2016; Nielsen, 2015).

3.1 Conventional Artificial Neural Network (C-ANN)

Prior to the development of HO-DNN, the conventional ar-
tificial neural network (C-ANN) is quickly re-examined in
this section. The structure of a neuron in C-ANN is de-
picted in Fig. 1. In C-ANN, input activations from the layer
(l− 1)th are transmitted to a neuron in the next layer by the
linear inner product as depicted in Fig. 1. The weighted in-
put zl

j (Fig. 1) is then converted to the output activation al
j

by the sigmoid activation function σ . To estimate the per-
formance of C-ANN, the quadratic cost function Cquadratic is
commonly used in the literature as follows:

Cquadratic =
1
2

∥∥yyy−aaaL∥∥2
(6)

where yyy is the vector of actual outputs corresponding to an
input x and aaaL is the vector of activations of the last (output)
layer L when x is input. Using the SGD-BP algorithm and the
chain rule, the C-ANN model can be trained by propagating
backward errors at each layer, which are defined as follows
(Nielsen, 2015):

δ
L
j =

∂Cquadratic

∂ zL
j

=
∂Cquadratic

∂aL
j

σ
′ (zL

j
)
=
(
y j−aL

j
)

σ
′ (zL

j
)

(7)

for the last layer L and

δ
l
k =

∂Cquadratic

∂ zl
k

= ∑
j

wl+1
jk δ

l+1
j σ

′
(

zl
k

)
(8)

for layer l (l = 1,2 . . . ,(L−1)). Following the SGD-BP algo-
rithm, the weights and biases of C-ANN model (as illustrated
in Fig. 1) are updated to improve the performance of C-ANN
(Nielsen, 2015; Goodfellow et al., 2016).
However, Eq. (7) and Eq. (8) causes the learning slow-down
and vanishing gradient problems of C-ANN as discussed in
Section 1. In fact, due to its characteristic, the derivative of
sigmoid function gets very small when the sigmoid function
(i.e. output activation) is close to zero or one as depicted in
Fig. 2. Therefore, the error δ L

j in Eq. (7) might be very small
even though C-ANN does not make a good prediction (i.e.
y j − aL

j is large). However, it is expected that a prediction
tool is able to learn faster when it is decisively wrong. This
phenomenon is referred to the learning slow-down problem
of C-ANN model (Nielsen, 2015; Goodfellow et al., 2016).
Moreover, the derivative of the sigmoid function varies in
range of [0,0.25] as shown in Fig. 2b. Consequently, prop-
agating backward the errors following Eq. (8) with the sig-
moid function results in smaller and smaller errors in the ear-
lier layers. This implies that weights and biases in the earlier
layers are adjusted slower, which does not improve the learn-
ing process (Goodfellow et al., 2016; Nielsen, 2015). This
phenomenon is known as the vanishing gradient problem,
one of the main problems of training deep neural networks
with the C-ANN (Schmidhuber, 2015).

3.2 The development of HO-DNN

The HO-DNN is developed in this section taking into account
the limitation of C-ANN model discussed in the previous sec-
tion. Firstly, the HO-DNN in this study is developed based
on a new, high order neuron, which is motivated by the sec-
ond order neuron presented in Fan et al. (2018). The structure
of the high order neuron is presented in Fig. 3 in which the
weighted input zl

j is expressed as follows:

zl
j = σ1

(
zl,1

j

)
σ2

(
zl,2

j

)
+σ3

(
zl,3

j

)
(9)

where σ1, σ2 and σ3 are the activation function 1, 2 and 3
in Fig. 3, which can be selected to account for nonlinear re-
lationship between the components of the input activations,
thereby building up a more complex and abstract model. De-
spite the fact that the HO-DNN model has triple the parame-
ters as the C-ANN, this does not present a considerable com-
putational difficulty. The new, high order neuron is more
flexible and can cover the second order neuron proposed by
Fan et al. (2018) as a special case with σ1,2,3 is the linear
function. Moreover, the new neuron can take into account
higher nonlinear approximations by choosing σ1,2,3 as any
nonlinear functions. It is also worth noting that Fan et al.
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Figure 3: The structure of a neuron in the proposed HO-DNN model.

(2018) used the sigmoid function as an activation (from the
weighted input zl

j to the output activation al
j, Fig. 3) and the

quadratic cost function for the SO-ANN model , which indi-
cates that the SO-ANN model still suffers from the learning
slow-down and vanishing gradient problems.
Secondly, the cross-entropy cost function is used to address
the learning slow-down problem in this study as follows:

CCE = ∑
j

y j lnaL
j +(1− y j) ln

(
1−aL

j
)

(10)

Similar to Eq. (6), y j is the actual output corresponding to
an input x and aL

j is the activation of the last (output) layer L
when x is input. Although the HO-DNN is fairly complicated
with the new neuron and cross-entropy cost function, it is
straightforward to implement the SGD-BP for training the
model. Indeed, following the SGD-BP algorithm and using
the chain rule, the error for the last layer L in the HO-DNN
is given as follows:

δ
L
j =

∂CCE

∂ zL
j

=
(
y j−aL

j
)

(11)

Eq. (11) shows that the rate at which the HO-DNN learns
(or updates its weights and biases) is solely governed by(

y j−aL
j

)
and the effect of derivative σ ′

(
zL
)

is eliminated,
compared to Eq. (7) of the C-ANN. Therefore, the HO-DNN
directly learns from the error between its prediction and ac-
tual output. Hence, the cross-entropy cost function can ac-
celerate the training process of the HO-DNN and help the
HO-DNN achieve better performance.
The error for the layer lth (l = 1,2 . . . ,(L−1)) is given as
follows:

δ
l
k =∑

j




wl+1,1
jk σ ′1

(
zl+1,1

j

)
σ2

(
zl+1,2

j

)

+wl+1,2
jk σ ′2

(
zl+1,2

j

)
σ1

(
zl+1,1

j

)

+2wl+1,3
jk σ

(
zl

k

)
σ ′3
(

zl+1,3
j

)


δ

l+1
j σ

′
(

zl
k

)

(12)

The detailed derivation of Eq. (12) is given in the Appendix
A.
Lastly, to overcome the vanishing gradient problem, the rec-
tified linear unit (ReLU) activation function is used in the
HO-DNN as depicted in Fig. 3. The ReLU activation is given
as follows:

σ (z) = max(0,z) (13)

Although the ReLU activation looks simple and linear, the
ReLU is genuinely a nonlinear approximation. In fact, the
ReLU activation is prevalent in deep learning researches due
to the advantage of its derivative:

σ
′ (z) =

{
0 if z≤ 0
1 if z > 0

(14)

As mentioned in Section 3.1, the SGD-BP algorithm works
by propagating backward the errors from the last layer L to
earlier layers (L−1) , . . . ,2,1 and the range of [0,0.25] of the
derivative of sigmoid activation creates the vanishing gradi-
ent problem. As shown in Eq. (14), the derivative of ReLU
is either one or zeros, which alleviate the vanish gradient
problem. It is worth mentioning that the ReLU still have its
problem, a so-called dying ReLU problem. The dying ReLU
problem occurs when a neuron is inactive and no longer use-
ful during training process (Goodfellow et al., 2016). The
dying ReLU activation can be solved by the leaky ReLU
activation (Karpathy, 2018). However, it is found that the
ReLU activation performs effectively in this study. There-
fore, the ReLU is used in this paper for the development of
HO-DNN. The activation σ1, σ2 and σ3 (Fig. 3) are cho-
sen as the linear function. Experimentally, it will be demon-
strated that this provides the best prediction of the compres-
sive strength of foamed concrete and high performance con-
crete in this study. However, it is believed that different ap-
plications might require different selection of activations in
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the HO-DNN. Therefore, it is important to have the general
framework to assure the versatility of the HO-DNN. It is im-
portant to note that the sigmoid function is used at the output
layer because of an intrinsic issue of using the ReLU activa-
tion with the cross-entropy cost function (Nielsen, 2015).
Following the SGD-BP algorithm (Nielsen, 2015), weights
and biases of the HO-DNN model are updated as follows:

wl,i
jk→ wl,i

jk−η
∂CCE

∂wl,i
jk

for i = 1,2,3

bl,i
j → bl,i

j −η
∂CCE

∂bl,i
j

for i = 1,2,3
(15)

where η is a learning rate, which is determined in Section 5;
∂CCE

∂wl,i
jk

and
∂CCE

∂bl,i
j

are given as follows:

∂CCE

∂bl,1
j

= δ
l
jσ
′
1

(
zl,1

j

)
σ2

(
zl,2

j

)
(16a)

∂CCE

∂bl,2
j

= δ
l
jσ1

(
zl,1

j

)
σ
′
2

(
zl,2

j

)
(16b)

∂CCE

∂bl,3
j

= δ
l
jσ
′
3

(
zl,3

j

)
(16c)

∂CCE

∂wl,1
jk

= δ
l
jσ
′
1

(
zl,1

j

)
σ2

(
zl,2

j

)
al−1

k (16d)

∂CCE

∂wl,2
jk

= δ
l
jσ1

(
zl,1

j

)
σ
′
2

(
zl,2

j

)
al−1

k (16e)

∂CCE

∂wl,3
jk

= δ
l
jσ
′
3

(
zl,3

j

)(
al−1

k

)2
(16f)

The detailed derivation of Eq. (16) is given in the Appendix
A.
The developed HO-DNN is implemented in the Python pro-
gramming language and can be found in the Appendix B.
The pseudo code of implementation is presented in Algo-
rithm 1. It is worth noting that at the beginning of the al-
gorithm, the weights and biases are initialised at each layer,
normally by Gaussian distribution with a mean of zero and a
standard deviation of one. However, this strategy of initiali-
sation might lead to the saturation of neurons as discussed in
Bengio (2012) and Nielsen (2015). Therefore, in this paper,
the weights and biases of a layer are initialised by a Gaussian
distribution with a mean of zero and a standard deviation of

1√
N

(N is the number of neurons of the layer) to alleviate the

saturation of neurons (Bengio, 2012). In Algorithm 1, when
all the training data is used, it is said that the training pro-
cess completes an epoch e and starts over with a new epoch.
When the pre-defined max epochs is reached, the training
process of HO-DNN is completed.

4 DATASET AND PERFORMANCE INDICATOR

4.1 Data collection

The HO-DNN developed in the previous section is used to
predict the compressive strength of foamed concrete through
a given dataset. The dataset of foamed concrete (Dataset 1)
consists of 177 testing results for different mixtures (den-
sity, water-to-cement ratio and sand-to-cement ratio). The
samples of the Dataset 1 waere consistently made of ordi-
nary Portland cement, water, sand and preformed foams, cur-
ing time of 28 days (Jones and McCarthy, 2005; Pan et al.,
2007; Kiani et al., 2016; Abd and Abd, 2017; Asadzadeh
and Khoshbayan, 2018). The range of density, w/c ratio
and s/c ratio were [430−2009] kg/m3, [0.26−0.83] and
[0−4.3], respectively. After developed and validated by
the Dataset 1, the trained HO-DNN is supposed to be ca-
pable of predicting the foamed concrete strength correctly.
Therefore, the trained HO-DNN was then exposed to a new
dataset (Dataset 1A), which is completely different to the
Dataset 1. The Dataset 1A consisting of 34 samples was
prepared in the laboratory, having a density and w/c ratio
in the range of [444−2066] kg/m3 and [0.3−0.7], respec-
tively. It is worth noting that the HO-DNN is trained in
the range of [430−2009] for density whilst the Dataset 1A
has the density in the range of [444−2066], outside of the
training range. It is accepted that it is not recommended to
use the HO-DNN for such extrapolation. However, for the
Dataset 1A, it is a very near extrapolation (i.e. the Dataset
1A slightly exceeds the training region). Indeed, after mil-
itarisation by Eq. (17), the training region is in the range
of [0−1] for density and the Dataset 1A is in the range of
[0.009−1.036] for the density. Therefore, it is assume that
the effect of such near extrapolation is negligible in this pa-
per. For the Dataset 1A, general purpose ordinary Portland
cement and a commercial foaming agent (Isochem S/X from
Isoltech, Italy) are used to fabricate three foamed concrete
groups: high, medium and low density. The cubic samples
of 50x50x50mm in size are cured in sealed plastic bags at
ambient temperature for 28 days. The uni-axial compressive
strength of foamed concrete is measured using the INSTRON
5569A machine. The displacement-controlled test is con-
ducted at a velocity of 0.03 mm/s to obtain the compressive
strength. The purpose of the Dataset 1A is to show that the
HO-DNN can obtain the reliable prediction of foamed con-
crete strength that the model has never been exposed, thereby
helping the design of foamed concrete mixture.
Furthermore, to demonstrate the efficacy and versatility
of the proposed HO-DNN model for different engineering
applications, the HO-DNN is validated through the other
dataset of high performance concrete (Dataset 2). The
Dataset 2 is retrieved from the machine learning bench-
mark repository at the University of California, Irvine and
consists of 1,133 testing results of high performance con-
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Algorithm 1 The pseudo code of HO-DNN

Begin
Input: Training dataset X
Initialise weights wl,i

jk and biases bl,i
j (i = 1,2,3)

while e ≤ max epochs do
for each data x in X do

Calculate zl
j . Using Eq. (9)

Calculate al
j = σ

(
zl

j

)
. Using ReLU activation Eq. (13)

Calculate the error δ L
j of the last layer L . Using Eq. (11)

Calculate the error δ l
j of the earlier layers l (l = 1,2 . . . ,(L−1)) . Using Eq. (12)

Update the weights wl,i
jk and biases bl,i

j (i = 1,2,3) . Using Eq. (15) and Eq. (16)
end for
Evaluate the cross-entropy cost of HO-DNN at epoch e . Using Eq. (10)
Evaluate the performance of HO-DNN at epoch e . Using Eq. (18)
e = e+1

end while
Output: Trained HO-DNN model

End

crete with different mixtures of cement, slag, fly ash, water,
super-plasticizer, fine and coarse aggregate and age of testing
(Yeh, 1998). The Dataset 2 was originally provided by Yeh
(1998) and subsequently contributed by other researchers
(Yeh, 2006). The Dataset 2 was extensively used in the lit-
erature (Bui et al., 2018; Rafiei et al., 2017a,b; Chou et al.,
2014; Chou and Pham, 2013; Mousavi et al., 2012) and the
information of the Dataset 2 was detailed in these references.
It is noted that the foamed concrete (and high performance
concrete for the Dataset 2) might exhibits a variation of com-
pressive strength due to the uncertainty of the preparation
and testing of concrete material (Gribniak et al., 2015, 2016).
However, the main objective of this study is to develop the
new Ho-DNN and demonstrate its efficiency and versatil-
ity. Therefore, it is assumed that the uncertainty of data is
neglected in this study. It is known that this assumption is
commonly accepted in the literature (Rafiei et al., 2017a,b;
Chou and Pham, 2013; Yaseen et al., 2018; Abd and Abd,
2017). Investigations on the influence of uncertainty on deep
neural network models can be found in literature (Gal, 2016;
Koziarski and Cyganek, 2017; Antoniades et al., 2018).
Finally, in order to avoid the magnitude difference between
inputs (e.g. density: 430-2009 kg/m3; w/c ratio: 0.26-0.83),
all data was normalised to the range of [0,1] using the fol-
lowing equation:

xnorm =
x− xmin

xmax− xmin
(17)

This data normalisation is crucial to avoid numerical diffi-
culties in the calculation because of the magnitude difference
between input values (Chou and Pham, 2013). The Dataset
1, 1A and 2 are available publicly in the Appendix B.

4.2 Performance Indicators

In this study, the accuracy of the proposed HO-DNN was as-
sessed by comparing the actual (y) and predicted (ypre) com-
pressive strength for the Dataset 1, 1A and 2. The correlation
coefficient (R), root mean square error (RMSE), mean abso-
lute error (MAE), relative root mean square error (RRMSE)
and relative mean absolute error (RMAE) were used as per-
formance indicators, as follows:

R =

n
∑

i=1
(yi− ȳ)

(
ypre

i − ȳpre
)

√
n
∑

i=1
(yi− ȳ)2 n

∑
i=1

(
ypre

i − ȳpre
)2

(18a)

RMSE =

√
1
n

n

∑
i=1

(
yi− ypre

i

)2 (18b)

MAE =
1
n

n

∑
i=1

∣∣yi− ypre
i

∣∣ (18c)

RRMSE =
RMSE

ȳ
×100 (18d)

RMAE =
MAE

ȳ
×100 (18e)

where n is the number of data; and ȳ and ȳpre are the mean
actual and predicted value, respectively.
The correlation coefficient R is used to quantify the degree of
linear dependence between the actual value and the predicted
value (Yaseen et al., 2018). When R is close to zero, it means
that there is no evidence of any relationship between the ac-
tual and predicted value whilst when R is close to 1, we are
close to a perfect fit between the actual and predicted value
(Chou and Pham, 2013). However, the result of R is not suffi-
cient to evaluate the accuracy of a model because it does not
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Table 1: The description of the C-ANN, SO-ANN and DO-DNN model

Model Number of Number of Learning Type of Activation Cost
hidden layers neurons per layer rate η neurons function function

C-ANN 1, 3, 6 30 0.01 Linear Sigmoid Quadratic
SO-ANN 1, 2 30 0.01 Second order Sigmoid Quadratic
HO-DNN 1, 2 30 0.01 High order ReLU Cross-entropy

significantly change when ypre
i is multiplied by a constant.

Therefore, RMSE and MAE are the additional indicators to
check the goodness-of-fit (in MPa units) of the ANN models.
Moreover, RRMSE and RMAE are employed to investigate
the percentage deviation of the actual and predicted data. In
general, the higher value of R and the lower value of RMSE,
MAE, RRMSE and RMAE result in a decrease of errors be-
tween the actual and predicted value, and thereby indicating
the accuracy of models.

5 RESULTS AND DISCUSSION

5.1 Comparative study

This section presents the application of the developed HO-
DNN for the prediction of foamed concrete strength. To
compare the performance of the HO-DNN, the C-ANN pre-
sented in Section 3.1 and the second order artificial neu-
ral network (SO-ANN), which was presented in Fan et al.
(2018), are used. The description of the C-ANN, SO-ANN
and HO-DNN is presented in Table 1. It is noted that the C-
ANN with three and six hidden layers and the SO-ANN, HO-
DNN with one and two hidden layers have the same number
of weights and biases, respectively. To construct and val-
idate the C-ANN, SO-ANN and HO-DNN, the data of the
Dataset 1 is randomly split into training data (80%), validat-
ing data (10%) and testing data (10%). To avoid the effect of
randomness of data, the same training, validating and testing
data were used for the three models in this study. That means
there models display the same level of randomness and un-
certainty of data. Therefore, the comparison of there models
is valid and informative. In this study, the training process
is completed when the max epochs is equal to 2000 (Algo-
rithm 1).
The effects of learning rate η and the number of neurons of

hidden layer are first investigated for the C-ANN model by
the validating data of Dataset 1. Fig. 4a shows the variation
of the quadratic cost (Eq. (6)) for validating data during the
training process. The C-ANN model is used with one hidden
layer, 30 neurons in the hidden layer and different learning
rate η = 1,0.1,0.01,0.001. Apparently, a large value of the
learning rate (η = 1,0.1) increases the resultant noise. This
is attributed to the fact that the model learns too fast and may
overshoot an expected minimum. On the contrary, this oscil-
lation of the result can be alleviated by using a small learning
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Figure 4: The effects of learning rate η (a) and the number of
neurons of hidden layer (b) on the performance of C-ANN.
The quadratic cost in evaluated using Eq. (6) for the validat-
ing data of the Dataset 1.

rate (η = 0.01,0.001). However, a very small learning rate
(η = 0.001) slows down the learning process, increasing the
training time until the solution process converges. Fig. 4a
shows the learning rate of 0.01 is appropriate for the C-ANN
in this study. The effect of the number of neurons of hid-
den layer is presented in Fig. 4b for the C-ANN with one
hidden layer and the learning rate of 0.01. Fig. 4b shows
that the number of neurons of hidden layer has negligible ef-
fect on the C-ANN, in which four cases are converged. It is
also observed in Fig. 4b that the 50 and 100-neuron case lead
to oscillating results. Therefore, the number of neurons of
hidden layers is 30 for the C-ANN as presented in Table 1.
Moreover, the variation of the quadratic cost (Fig. 4) for vali-
dating data during the training process shows that overfitting
problem does not occur in this study. Because the cost of
validating data decrease gradually during the training pro-
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Table 2: The comparison of the C-ANN, SO-ANN and HO-DNN models with different number of hidden layers (N layers) for
the validating data of the Dataset 1.

Model N layers R RMSE (MPa) MAE (MPa) RMMSE (%) RMAE (%)
C-ANN 1 0.9828 2.58 2.25 9.45 8.23
C-ANN 3 0.9639 4.52 3.83 16.55 14.04

(-1.92) (-75.08) (-70.61) (-75.13) (-70.60)
C-ANN 6 0.7177 12.79 11.36 46.82 41.59

(-26.97) (-395.43) (-405.39) (-395.45) (-405.35)
SO-ANN 1 0.9865 2.15 1.77 7.87 6.49

(0.38) (16.75) (21.16) (16.72) (21.14)
SO-ANN 2 0.9854 2.18 1.88 7.98 6.87

(0.26) (15.59) (16.48) (15.56) (16.52)
HO-DNN∗ 1 0.9877 2.15 1.67 7.87 6.11

(0.50) (16.76) (25.80) (16.72) (25.76)
HO-DNN∗ 2 0.9921 1.65 1.17 6.06 4.29

(0.95) (35.91) (47.89) (35.87) (47.87)
Values in parentheses indicate the improvement (%) compared to the C-ANN, N layers= 1.
∗ indicates that the performances are genuinely improved for a deep model.

cess (Marsland, 2015). In the same way, the learning rate
and number of neurons of the SO-ANN and HO-DNN are
0.01 and 30, respectively, as given in Table 1. It is noted that
the same learning rate and number of neurons assure the fair
comparison of C-ANN, SO-ANN and HO-DNN models.
Table 2 shows the comparison of the C-ANN, SO-ANN
and HO-DNN models with different number of hidden lay-
ers (N layers) for the validating data of the Dataset 1. As
aforementioned, the C-ANN (N layers= 3,6), the SO-ANN
(N layers= 1,2) and the HO-DNN (N layers= 1,2) have the
same number of weights of biases, respectively. It is shown
that the HO-DNN (N layers= 1,2) outperforms the SO-ANN
due to the advantages of cross-entropy cost and ReLU ac-
tivation functions. Moreover, the HO-DNN (N layers= 2)
achieves the lowest RMSE and MAE (1.65 and 1.17 MPa,
respectively), which exhibits approximately 36% and 48%
improvement compared to the C-ANN (N layers= 1). Ta-
ble 2 also demonstrates the vanishing gradient problem of
the C-ANN and SO-ANN. In fact, adding more hidden layers
does not improve, but genuinely degrade the performances of
C-ANN model as presented for the cases of N layers= 3,6
in Table 2. The same phenomenon can be observed for the
SO-ANN in Table 2, in which the performances of SO-ANN
with two hidden layers are worst than those of one hidden
layer. On the contrary, the proposed HO-DNN genuinely im-
proves its performances when adding more hidden layers as
shown in Table 2. That is why the present approach is named
as high order ”deep” neural network while the other models
are conventional and second order artificial neural network.
It is remarkable that the HO-DNN with two hidden layers
can break the 0.9900 barrier of the correlation coefficient R
which is not possible with the C-ANN and SO-ANN.

R
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Figure 5: The comparison of the C-ANN, SO-ANN and HO-
DNN for the testing data of the Dataset 1: (a) root mean
square error (RMSE) Eq. (18b) and (b) mean absolute error
(MAE) Eq. (18c).

After the architecture (e.g. number of hidden layer, number
of neurons, learning rate) of the models is determined using
the validating data, the C-ANN (N layers= 1), the SO-ANN
(N layers= 1) and the HO-DNN (N layers= 2) are validated
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Figure 6: The correlation between the actual and predicted
foamed concrete strength of the Dataset 1 using the C-ANN
and HO-DNN model.

for the testing data of the Dataset 1 in Fig. 5. It is shown
that the HO-DNN is better than the C-ANN and SO-ANN
in the prediction of foamed concrete strength for the test-
ing data of Dataset 1. In fact, the HO-DNN produces the
smallest RMSE and MAE (2.12 and 1.54 MPa, respectively).
On the other hand, the C-ANN provides the prediction at a
lowest level of accuracy with the highest RMSE and MAE
(3.14 and 2.62 MPa, respectively). Fig. 6 shows the correla-
tion between the actual and predicted compressive strength
of foamed concrete for the training, validating and testing
data of the Dataset 1 using the C-ANN (N layers= 1) and
HO-DNN (N layers= 2). It is obvious that the HO-DNN
achieves the most reliable prediction as shown in Fig. 6 as
well as Table 2 and Fig. 5. This can be attributed to the use
of high order neurons in the HO-DNN, incorporating with the
ReLU and cross-entropy cost functions. In fact, it is known
that the compressive strength of foamed concrete is a highly
nonlinear function of its density and constituents (Ngo et al.,
2017; Nguyen et al., 2017, 2018). The high order neurons
enable the HO-DNN to account for the higher order rela-
tionship between neurons rather than the linear inner prod-
uct of the C-ANN whilst the ReLU and cross-entropy cost
function improve the training process and enable a genuinely
deep neural network model. As a result, the HO-DNN model
outperforms the C-ANN and SO-ANN models in predicting
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Figure 7: The correlation between the actual and predicted
compressive strength of the Dataset 2 using the C-ANN and
HO-DNN model.

the foamed concrete strength of the Dataset 1.
To demonstrate the efficacy and versatility of the proposed
HO-DNN method for different engineering applications, the
HO-DNN, SO-ANN and C-ANN are tested through the
Dataset 2 of the compressive strength of high performance
concrete. The architecture of HO-DNN, SO-ANN and C-
ANN is identical with the previous example of the Dataset 1.
The Dataset 2 is randomly split into training data (90%) and
testing data (10%) (Bui et al., 2018; Chou and Pham, 2013).
Table 3 shows the performance of the proposed HO-DNN in
the prediction of the Dataset 2. The performance of the HO-
DNN is compared with the C-ANN, SO-ANN and other ML
methods reported in the literature including Gene Expression
Programming (GEP) (Mousavi et al., 2012), Multi-Gene Ge-
netic Programming (M-GGP) (Gandomi et al., 2013), En-
semble Model Artificial Neural Network-Support Vector Re-
gression (ANN-SVR) (Chou and Pham, 2013), Smart Firefly
Algorithm–based Least Squares SVR (SFA-LSSVR) (Chou
et al., 2016) and Modified Firefly Algorithm-based Artificial
Neural Network (MFA-ANN) (Bui et al., 2018). Table 3
shows that the proposed HO-DNN obtains the best predic-
tion for the Dataset 2 with the correlation coefficient R of
0.97, the root mean square error RMSE of 4.05 MPa and the
mean absolute error MAE of 2.85 MPa, compared to other
methods. In general, the RMSE and MAE of the HO-DNN
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Table 3: The comparison of performance and improvement rates of the HO-DNN for the testing data of the Dataset 2.

Model Performance Improved by HO-DNN (%)
R RMSE (MPa) MAE (MPa) R RMSE MAE

GEP+ 0.91 - 5.20 6.59∗ - 45.19∗

M-GGP+ 0.90 7.31 5.48 7.78∗ 44.60∗ 47.99∗

ANN-SVR+ 0.94 6.17 4.24 3.19 34.36∗ 32.78∗

SFA-LSSVR+ 0.94 5.62 3.86 3.19 27.94 26.17
MFA-ANN+ 0.95 4.85 3.41 2.11 16.49 16.42
C-ANN (present) 0.90 7.17 5.59 7.78∗ 43.51∗ 49.02∗

SO-ANN (present) 0.93 5.82 4.50 4.30 30.41∗ 36.67∗

HO-DNN (present) 0.97 4.05 2.85 - - -
+ indicates the results are obtained from the literature.
∗ indicates significant improvements by HO-DNN (≥ 5% for R, ≥ 30% for RMSE and MAE).

Table 4: The comparison of C-ANN, SO-ANN, HO-DNN and two empirical equations in predicting the compressive strength of
the Dataset 1A.

Model R RMSE (MPa) MAE (MPa) RMMSE (%) RMAE (%)
Hoff 0.9911 4.89 2.559 31.58 16.48

Nambiar 0.9913 3.17 1.75 20.46 11.31
C-ANN 0.9937 2.11 1.39 13.66 8.96

SO-ANN 0.9951 1.90 1.29 12.26 8.35
HO-DNN 0.9978 1.30 0.91 8.38 5.89

are about 17%-45% and 16%-49%, respectively, better than
those of other methods. Whilst the results of SO-ANN are
comparable with those of GEP (Mousavi et al., 2012) and
M-GGP (Gandomi et al., 2013) methods. Fig. 7 depicts the
correlation between the actual and predicted strength of the
Dataset 2 using the HO-DNN and C-ANN models. It is ob-
served that by using the HO-DNN, the predicted strengths are
closer to the actual strength, compared to the C-ANN model.
The obtained results for the Dataset 1 and Dataset 2 show
that the proposed HO-DNN provides a reliable and versatile
prediction tool for engineering applications.

5.2 Accuracy of the proposed HO-DNN on the new
Dataset 1A

In the previous section, the proposed HO-DNN was validated
through the Dataset 1 and Dataset 2 from the literature. It was
shown that the HO-DNN can deliver the best performance
in predicting the foamed concrete strength of the Dataset
1. In order to achieve a higher degree of confidence and
demonstrate that the proposed HO-DNN is genuinely capa-
ble of aiding researchers and engineers in the practical design
of foamed concrete, the trained HO-DNN model was tested
with the Dataset 1A for foamed concrete in this section. The
obtained results are compared with two empirical equations
presented in Section 2, the Hoff’s equation Eq. (1) and Nam-
biar’s equation Eq. (2). It is accepted that the Hoff’s and
Nambiar’s equations are commonly used to predict the com-

pressive strength of foamed concrete in the mixture design
of foamed concrete. The Hoff’s equation Eq. (1) is used with
σ0 = 115 MPa, b= 2.7 as given by Hoff (1972) and the Nam-
biar’s equation is used with σ0 = 105.14 MPa, b = 2.68 as
given by Nambiar and Ramamurthy (2008). Table 4 presents
the comparison of the trained C-ANN, trained SO-ANN,
trained HO-DNN models and two empirical equations in the
prediction of the Dataset 1A. The correlation between the ac-
tual and predicted strength of the Dataset 1A is depicted in
Fig. 8 using the C-ANN, HO-DNN and Hoff’s and Nambia’s
equations. Due to the small number of data in the Dataset
1A (34 data), it is easy for all methods (Hoff’s, Nambiar’s,
C-ANN, SO-ANN and HO-DNN) to obtain a high value for
the correlation coefficient R (Table 4). However, the rela-
tive errors (RRMSE and RMAE) of Hoff’s, Nambiar’s, C-
ANN and SO-ANN methods are higher than 10%, indicat-
ing a low level of prediction accuracy. It can be observed
in Fig. 8 that Hoff and Nambiar (Fig. 8a and Fig. 8b) equa-
tions can provide the good prediction of low strength values
group but not high strength values group. On the contrary,
the HO-DNN model is able to predict accurately the com-
pressive strength of the Dataset 1A with an acceptable rel-
ative error (less than 8.38% in Table 4). Based on the ex-
amples of the Dataset 1 and Dataset 1A, one can conclude
that the proposed HO-DNN provides a reliable and accurate
tool to predict the compressive strength of foamed concrete.
Achieving the RRMSE of 8.38% and the RMAE of 5.89%
for the Dataset 1A, the proposed HO-DNN model can realis-
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Figure 8: The correlation between the actual and predicted compressive strength of the Dataset 1A.

tically benefit the design of foamed concrete by reducing the
laboratory work required.

5.3 Sensitivity analysis

With the reliable HO-DNN model presented in the previous
sections, a sensitivity analysis (SA) can be conducted to ex-
amine the effect of density, w/c ratio and s/c ratio on the com-
pressive strength of foamed concrete. In order to conduct the
sensitivity study, the compressive strength of foamed con-
crete was determined by changing one input variable, whilst
other variables are kept constant at the average values (Kiani
et al., 2016). For instance, to examine the effect of density,
density is varied from 430 kg/m3 to 2009 kg/m3 and the w/c
and s/c ratios were held constant at 0.405 and 1.167, respec-
tively. Once the data for the SA study was created, the data
was fed into the trained HO-DNN model to obtain the com-
pressive strength. For each input variable, a corresponding
SA parameter can be simply evaluated as follows (Gandomi
et al., 2011):

Ii = fmax (xi)− fmin (xi) (19a)

SAi =
Ii

∑
i

Ii
×100 (19b)

in which fmax (xi) and fmin (xi) are the maximum and mini-
mum predicted strength corresponding to the input variable

xi whilst other input variables are kept constants at their av-
erage values. Fig. 9 shows the SA results of the compressive
strength of foamed concrete with respect to density, w/c ratio
and s/c ratio. As shown in Fig. 9, the compressive strength of
foamed concrete is strongly influenced by its density which
has the SA parameter of about 44%. This can be attributed to
the fact that air voids in foamed concrete, which reduce den-
sity, collapse and coalesce into macro-cracks inside materials
under mechanical load, leading to a decrease in the compres-
sive strength (Hajimohammadi et al., 2018; Nguyen et al.,
2018). Fig. 9 also shows that the w/c ratio is the second im-
portant parameter with a SA parameter of about 34.5%, fol-
lowed by the s/c ratio with a SA parameter of about 21.5%.
In fact, the similar observation can be also found in the liter-
ature (Kiani et al., 2016; Ramamurthy et al., 2009)

6 CONCLUSIONS

In this paper, a deep, high order neural network (HO-DNN)
was presented for predicting the compressive strength of
foamed concrete (Dataset 1, Dataset 1A) and high perfor-
mance concrete (Dataset 2). Particularly, this study pro-
posed a new, high order neuron for the deep neural network
model to account for nonlinear relationship between input
activations at layers. Furthermore, the cross-entropy cost
and ReLU activation functions were used to develop the HO-
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Figure 9: The sensitivity analysis for the compressive
strength of foamed concrete.

DNN to improve the performances and alleviate the vanish-
ing gradient problem when training a deep neural network
model. The accuracy of the proposed HO-DNN in predicting
the compressive strength of the Dataset 1 and Dataset 2 is
obtained and compared with a conventional artificial neural
network (C-ANN), a second order artificial neural network
(SO-ANN) proposed by Fan et al. (2018) and other methods
from previous studies (for Dataset 2).
The higher order neuron, cross-entropy cost and ReLU ac-
tivation functions significantly improved the performances
of the HO-DNN, compared to the C-ANN and SO-ANN.
The cross-entropy cost function helped the proposed HO-
DNN to learn quickly and more accurately. The ReLU ac-
tivation function alleviates the vanishing gradient problem
and genuinely improved the performance of the HO-DNN
when training multiple hidden layers. For the Dataset 1,
the HO-DNN outperformed the C-ANN and SO-ANN in the
prediction of foamed concrete strength with the remarkable
improvements of 36% (RMSE) and 48% (MAE) compared
to the C-ANN model. Notably, the HO-DNN model was
able to break the 0.99 barrier of the correlation coefficient R
which was not possible with the C-ANN and SO-ANN. For
the Dataset 2, the developed HO-DNN was better than other
methods presented in the previous studies. The improvement
rates of RMSE and MAE were approximately 50% for Gene
Expression Programming method, Multi-Gene Generic Pro-
gramming method and C-ANN method.
To further demonstrate the accuracy of the HO-DNN in the
prediction of foamed concrete strength, the trained HO-DNN
model (by the Dataset 1), was validated through the Dataset
1A obtained from the laboratory. The comparison between
the trained HO-DNN with two empirical equations showed
that the HO-DNN can predict the foamed concrete strength
with a high level of accuracy. Having the reliable HO-DNN
model, a sensitivity analysis (SA) was conducted to inves-
tigate the effects of the input variables on the compressive
strength of foamed concrete. It was shown that density is the
most important factor affecting the compressive strength of

foamed concrete with a SA parameter of about 44.2%, fol-
lowed by w/c ratio (34.4%) and s/c ratio (21.4%).
Whilst the proposed HO-DNN model was used to predict the
compressive strength of concrete material in this study, it can
be used to estimate other properties of concrete such as ther-
mal conductivity, flexural strength. Therefore, the proposed
framework can support researcher and engineers in mixture
design optimisation of concrete. Moreover, it is desirable to
investigate the application of the HO-DNN for different en-
gineering problems in future studies.
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A Appendix A

The detailed derivation of the HO-DNN model are given as
follows:
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B Appendix B

The Dataset 1, Dataset 1A, Dataset 2 and the developed HO-
DNN model can be downloaded from https://figshare.

com/s/6424e3931fd5a82bbd3a
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