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Abstract: This paper presents a new stochastic 

computational model for determining freeway capacity 
reduction as a result of lane-changing activity. The 
probability density function for the maximum flow that can 
be sustained on a freeway for a given lane-changing 
activity level is obtained. The obtained results can be used 
to support freeway management strategies aiming to 
mitigate the negative consequences of lane-changing in 
freeway capacity. A pilot test using empirical data 
obtained from the B-23 freeway accessing the city of 
Barcelona proves the validity of the modelling approach. 

 
 

1 INTRODUCTION 
 
Freeway congestion is a recurrent phenomenon on 

freeways around the world. When demand exceeds 
capacity, congestion arises. This cause-effect relationship 
is not deterministic, as freeway capacity is affected by 
multiple random factors. Capacity is defined as the 
maximum sustained flow that can be supported by an 
infrastructure, and should be seen as a stochastic variable. 
Supporting this stochastic approach, several works have 
found that traffic breakdown can happen at the same 
freeway section for significantly different flow levels 
(Elefteriadou et al., 1995; Lorenz & Elefteriadou, 2000; 
Minderhoud et al., 1997; Muñoz & Daganzo, 2002; 
Okamura et al., 2000; Persaud et al., 1998; Yeon, et al., 
2009). In this context, stochastic capacity estimation 
methods have received increased attention (Geistefeldt & 
Brilon, 2009; Ozbay & Ozguven, 2007; Polus & 
Pollatschek, 2001) and stochasticity has been incorporated 
into traffic management tools (Jia et al., 2011). Many 
factors may affect freeway capacity. For instance, adverse 
weather conditions have a negative impact and 
relationships between a reduced capacity and rainfall 
intensity have been established (Brilon et al., 2005; 
Highway Capacity Manual, 2010; Ibrahim & Hall, 1994; 
Lamm et al., 1987; Smith et al., 2004). Freeway capacity 

also depends on the prevailing drivers' typology, being larger 
when drivers are mainly commuters instead of occasional 
drivers (Highway Capacity Manual, 2010). Although less 
studied, lane-changing intensity is another factor 
contributing to the variability of freeway capacity (Cassidy 
et al., 2010; Menendez & Daganzo, 2007). 

Beyond stochasticity, it has also been proven that when 
traffic breaks down, freeway capacity is reduced. This 
harmful phenomenon, known as "capacity drop", has been 
repeatedly observed around the world (Banks, 1991; Cassidy 
& Rudjanakanoknad, 2005; Cassidy & Bertini, 1999; Chung 
et al., 2007; Hall & Agyemang-Duah, 1991; Oh & Yeo, 
2012; Patire & Cassidy, 2011; Srivastava & Geroliminis, 
2013; Yuan et al., 2015). The typical capacity drop in active 
freeway bottlenecks ranges from 3% to 18% (Oh & Yeo, 
2012). While the existence of the capacity drop has been 
extensively demonstrated, the traffic mechanism behind it is 
still under debate. In the literature, two traffic characteristics 
closely related to capacity reductions have been explored: i) 
lane-changing, and ii) vehicles’ sluggish acceleration when 
leaving a queue. 

On the one hand, lane-changing activity has been found to 
cause capacity reductions near bottlenecks in different 
scenarios. In Cassidy and Rudjanakanoknad (2005) 
systematic lane-changing from the shoulder to faster lanes 
was found to cause traffic breakdown. This usually happens 
near ramp merge junctions, where the capacity drop is 
dependent on the lane-changing induced by large clusters of 
vehicles entering the freeway (Elefteriadou et al., 2005). 
Also, Patire and Cassidy (2011) observed a significant flow 
reduction after a lane-changing increase due to speed 
variations between lanes. The massive lane-changing 
happening at speed drops generates traffic disturbances, 
which end up in generalized queueing on all lanes 
(Hatakenaka et al., 2004). In contrast, when a HOV lane is 
activated on a congested freeway, it smoothens traffic, even 
in the adjacent general-purpose lanes, reducing the amount 
of lane-changing and increasing the freeway throughput 
(Cassidy et al., 2010; Menendez & Daganzo, 2007). 
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On the other hand, vehicles’ sluggish acceleration has 
also been found to be related to the capacity drop (Chen et 
al., 2014; Goñi-Ros et al., 2016; Knoop et al, 2009; Laval 
& Daganzo, 2006; Leclercq et al., 2011; Yuan et al., 2019). 
Vehicles changing lanes near bottlenecks are observed to 
create larger gaps in the arriving lane due to their limited 
acceleration when moving from a slow to a faster lane. 
This leads to a total throughput reduction. These findings 
are in accordance with Yuan et al. (2015), where it is 
reported that the slower the speed in the queue, the larger 
the capacity drop. 

The negative effects of lane-changing are not limited to 
being a main capacity drop contributor. Also, they trigger 
traffic oscillations (Mauch & Cassidy, 2002; Wang & 
Coifman, 2008) and stop and go waves (Ahn & Cassidy, 
2007; Oh and Yeo, 2015). Moreover, lane changes are 
found to globally increase delay (Coifman et al., 2006), as 
the time saved in the exiting lane is smaller than the 
induced delay in the arriving lane. 

In spite of all these very laudable observations and 
findings, the lack of adequate and reliable empirical 
databases has been a recurrent problem in order to increase 
our knowledge on lane-changing behavior and its effects. 
This situation implies that few modeling approaches are 
found in the literature, mainly due to the difficulties in 
their validation. In one of the first attempts (Laval and 
Daganzo, 2006) proposed a model with few parameters in 
order to allow calibration with few data; still, authors 
acknowledged that it remained to be validated when 
empirical data was available. Other researchers performed 
ad-hoc experiments to validate their lane-changing 
models. Take as an example (Sun & Kondyli, 2010; Sun 
& Elefteriadou, 2012) where an instrumented vehicle‐
based experiment was designed to analyze urban lane‐
changing scenarios. Alternatively, (Marczak et al., 2014) 
conducted a descriptive empirical analysis of a trajectory 
data set from a freeway weaving section and constructed a 
lane-changing database. This data has been used to 
validate several models attempting to reproduce the 
macroscopic lane-changing effects on freeway capacity 
(Marczak et al., 2015; Chen & Ahn, 2018). 

In light of this data scarcity, big efforts have been made 
to construct reliable databases to support the research 
community. Take as an example the NGSIM project 
(Federal Highway Administration, 2006, 2015). 
Unfortunately, the freeway traffic trajectories database 
resulting from the project, suffers from large errors in the 
lateral vehicle position (Punzo, et al., 2011). Thus, directly 
estimating lane-changing from NGSIM database implies 
big errors. In order to correct this issue, Montanino and 
Punzo (2015) did a meticulous data filtering job to 

improve lane assignment in the NGSIM dataset. Still, some 
errors remain as Coifman and Li (2017) point out. This later 
work highlights some sources of the errors, like vehicles 
(mostly motorcycles) traveling on the hard shoulder, or in 
between lanes. Still, the NGSIM database has been used to 
validate either macroscopic (Jin, 2010) and microscopic 
lane-changing models (Jin et al., 2019). 

In conclusion, to date, the relationship between freeway 
capacity and lane-changing activity has only been quantified 
for a handful of different flows and particular freeway 
configurations, precluding researchers to develop and 
calibrate stochastic lane-changing models. The lack of an 
analytical model, yielding quantitative knowledge, has also 
prevented traffic flow optimization in terms of lane-
changing. 

One possibility to overcome this limitation is to use 
Bayesian networks or Markov chains to simulate additional 
data. Examples of this type of solution can be found in 
different research fields, including civil engineering and 
transportation operations research (Kosgodagan et al., 2017; 
Yuen & Huang, 2018; Huang & Beck, 2018; Ghofrani et al., 
2019). The applications in safety related research are 
especially relevant, because fatal accidents are fortunately a 
rare occurrence and thus scarce in the datasets. Take as 
examples the works of (Castillo et al., 2017a; Castillo et al., 
2017b; de Oña et al., 2011; Deublein et al., 2015; Hossain & 
Muromachi, 2012) in the field of road safety, and (Castillo et 
al., 2016a; Castillo et al., 2016b) in that of railway safety. 
Bayesian networks are also used to forecast traffic flows 
(Mihaylova et al., 2007; Sun et al., 2006; Yin et al., 2002; Lv 
et al., 2015). In spite of the recent increased interest on these 
data driven techniques, to the authors’ best knowledge this is 
the first work using them to analyze the stochastic 
relationship between freeway capacity and lane-changing. 

In the present paper, a Bayesian inference computational 
approach is proposed to obtain a stochastic model relating the 
lane-changing normalized ratio (i.e. the expected number of 
lane-changes of one vehicle in one km of travel) and the 
maximum observed freeway flow. The model needs to be 
calibrated with empirical data, and a pilot test with data from 
the B-23 freeway, accessing the city of Barcelona (Soriguera 
& Sala, 2014; Soriguera et al., 2017) is presented in the 
paper. The proposed modelling approach should not be 
interpreted as a causal model to estimate the number of lane-
changes given some explicative factors, but a model which 
establishes the effects of lane-changing activity (whatever 
their reasons are) on freeway capacity. The modeling results 
quantify to what extend lane-changing needs to be restricted 
in order to achieve larger capacities at freeways. Having 
better knowledge on capacity dependencies could be used for 
improved traffic management strategies (Hashemi & 
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Abdelghany, 2018; Tajalli & Hajbabaie, 2018), and more 
accurate short-term traffic predictions (Liu, et al., 2018; 
Yao, et al., 2017). For instance, such strategies could be 
applied at critical links of the freeway network, for 
instance at bridges or tunnels, which are typical 
bottlenecks whose physical expansion is extremely 
expensive. Capacity could be increased by applying 
dynamic lane-changing limitations, because typically 
there is no need for mandatory lane changing in these 
freeway stretches. These findings represent advances to 
the current knowledge and specifically in the state-of-the-
art in the application of computational methods to traffic 
flow modeling. 

The reminder of the paper is organized as follows. 
Because, the modeling approach is data driven, a 
descriptive analysis of lane-changing behavior is needed 
first, in order to postulate a candidate analytical model. 
This is done in Sections 2 and 3. Section 2 presents the 
traffic database, including a description of the methods 
used to process and aggregate the data. Next, Section 3 
presents a descriptive analysis of the database, unveiling 
the relationship between the peaking of lane-changing and 
congestion shockwaves. Section 4 actually deals with the 
computational modeling, addressing the stochastic relation 
between lane-changing rates and the average flow per lane. 
The proposed model yields the probability density 
function for capacity. Finally, Section 5 outlines and 
highlights some of the conclusions obtained from the 
analysis. 

 
 

2 THE EMPIRICAL DATABASE 
 
This section contains a description of the database used 

in order to calibrate and validate the proposed stochastic 
model. Data was collected on the B-23 freeway accessing 
the city of Barcelona from the south-west (Figure 1). 
Measurements took place on the last 13 Km stretch of the 
freeway in the inbound direction towards the city, during 
7 different days (namely Day#1 to Day#7). In order to 
ensure similar demands and traffic conditions, data was 
only collected with good weather (clear skies) on 
Tuesdays, Wednesdays and Thursdays during June, 2013. 
See (Soriguera & Sala, 2014) for a complete description of 
the data collection process and access to the database. 

Figure 1 shows the lane-changing video surveillance 
zones (red interlane lines) and the traffic detectors close to 
them (grey vertical lines). Traditional traffic data (e.g. 
flow, average speed and detector occupancy as a proxy for 
traffic density) are obtained from detectors, either using 
traditional double loops or the newer non-intrusive 

devices. In any case, they are point detectors, in the sense that 
their measurements are taken on a freeway section of less 
than 10 m. long. Thus, the spatial coverage of the 
measurements is limited, and spatial variables can only be 
indirectly derived from the measurements of consecutive 
detectors. This surveillance scheme is not suitable for 
measuring lane changes, which need to be observed over 
space and time. To that end, video camera surveillance is 
used. Detection zones were set over the camera coverage 
along the line dividing the lanes. Details about the retrieval 
of lane-changing data from video recordings, the different 
techniques used and their errors are provided in (Sala et al., 
2019). Note that motorbike lane changes were discarded, as 
they travel quite often in-between lanes, especially in 
congestion, and generally represent a source of errors in lane-
changing data (Coifman & Li, 2017). In spite of this, note 
that motorbikes may impact the lane-changing behavior of 
surrounding vehicles. The analysis of such impacts would 
require additional video surveillance and data treatment, and 
it is left as an issue for further research. Finally, because 
some detection zones include, or are in the proximity of, 
on/off-ramps and weaving areas (e.g. detection zone 2309), 
two types of lane-changes may happen: i) mandatory lane-
changes in order to change route, and ii) discretionary lane-
changes in order to better accommodate drivers’ preferences. 
Unfortunately, the available database does not discriminate 
lane-changes by their motivation. 

 
  2.1 Configuration of the detection zones 

Each lane-changing detection zone has its distinct layout 
with respect to its neighboring traffic detectors. We can 
distinguish between three groups of configurations: I) 
detection zones in between traffic detectors. II) zones with 
only one detector at its downstream end; III) zones with one 
detector within the detection zone, without any other nearby 
detector, neither up- nor downstream. Therefore, there are 
camera detection zones with additional data from 2 detectors 
(Type I) and others with data from just one detector (Types 
II and III). Figure 2 defines the configuration of these types 
of detection zones. The parameters for each detection zone in 
the present case study are shown in Table 1. 

 
  2.2 Available data and aggregation procedures 

Traffic variables measured by punctual detectors (i.e. flow, 
occupancy and average speed) were available per lane and 
for periods of 60 seconds. In turn, lane-changing maneuvers 
were available for each pair of adjacent lanes and without any 
spatial or temporal aggregation (i.e. individual maneuvers 
with their precise time and location were recorded). If 
needed, these data can be aggregated by section (i.e. all 
lanes), space, and/or time. 
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Figure 1.  B-23 test site schematic layout and lane numbering. Note: Traffic direction goes from left to right; On- / Off-

ramp representations mean that there is at least one of this type of junctions in between detectors. 
 

 
Figure 2.  Different detection zone layouts. *In Type II detection zones, only one of the detectors (D1 or D2) is available. 

 
Table 1 

Configuration of the B-23 freeway detection zones. 
Detection 

Zone* 
Layout 

type D1* D2* 𝑑௅஼ 
[m] 

𝑑௨
[m]

𝑑ௗ
[m]

2304 I 08 ETD 07 ETD 72 210 69

2305 I 11 ETD 10 ETD 290 25 125

2306 II -- 13 ETD 126 -- 57

2309 I 20 ETD 19 ETD 80 40 213

2310 I 24 ETD 22 ETD 134 150 195

2312 III 30 ETD -- 230 65 165

*Refers to the alias used in the traffic management center 
to identify the detector (see Figure 1). 

 
Some caution is necessary when dealing with the less 

familiar lane-changing data. 𝑛 is defined as the sectional 
aggregated number of lane-changing maneuvers on a 
particular detection zone and during a particular 
observation period. Then, 𝑛 is influenced by: i) the 
distance encompassed by the detection zone, 𝑑௅஼; ii) the 
duration of the observation period, Δ𝑡; and iii) the average 
sectional traffic flow during the same period, 𝑞ሺ୼௧ሻ. This 
reflects the fact that, for a given freeway stretch under 
stationary traffic conditions, the longer the detection zone 
and the observation period, the more lane-changes are 
expected to be observed. In addition, the higher the traffic 
flow (i.e. veh/unit time), the larger the number of 

candidates to change lanes. 
In order to normalize the lane-changing count (𝑛), two 

aggregated variables are proposed. First, the lane changing 
flow ሺ𝑠ሻ [maneuvers/unit timeꞏunit space], defined as in 
Equation 1. 

 
𝑠 ൌ

௡

ௗಽ಴൉୼௧
   (1) 

 
ሺ𝑠ሻ expresses the number of measured lane-changing 

maneuvers (𝑛), extrapolated to one km of freeway during an 
observation period of one hour. This allows comparing the 
measurements at different test sites (i.e. with different 
lengths and different durations of observation). 

Second, in order to take into account the effect of different 
circulating flows, the lane-changing normalized ratio ሺ𝑟ሻ 
[unit space-1] is defined as: 

 
𝑟 ൌ

௦

௤ሺ೩೟ሻ
    (2) 

 
ሺ𝑟ሻ is simply a normalized version of ሺ𝑠ሻ considering the 

average traveling flow during the observation period, 𝑞ሺ୼௧ሻ. 
ሺ𝑟ሻ defines the expected number of lane-changes of one 
vehicle in one km of travel. Note that for Type I detection 
zones, 𝑞ሺ୼௧ሻ is computed using the arithmetic mean of the 
vehicle counts at the two limiting detectors. 

 
 

Legend XX ETD Lane-changing 
video surveillance 
(detection zone)

Analysis section Traffic detector 

2309

Coastal beltway off-ramp 

30 ETD 24 ETD 22 ETD 20 ETD 19 ETD

2312 
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2 
3 
4 

13 ETD 11 ETD 10 ETD 8 ETD 7 ETD

2306 2305 2304 2310 

1
2
3

𝑑௨ 𝑑ௗ 𝑑௅஼  𝑑௨ 𝑑ௗ 
Traffic 

direction 
𝑑௅஼Type I) and II)* 

Type III) 
layout 

 D1  D2 D1

Traffic detector

Detection zone
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3 DESCRIPTIVE ANALYSIS: CONGESTION, 
SHOCKWAVES AND LANE-CHANGING 

 
The proposed descriptive analysis consists in the 

adequate processing and plotting of the previous data. This 
allows unveiling several interesting relationships between 
traffic states and lane-changing activity. Data processing 
includes the construction and plot of oblique cumulative 
curves. These curves were introduced by Cassidy and 
Windover (1995) and allow observing with richer detail 
many traffic features. Oblique cumulative curves, 𝑋෠ሺ𝑡ሻ, 
are obtained by plotting the cumulative sum of the 
sectional aggregation of the variable under analysis, 𝑋ሺ𝑡ሻ, 
but subtracting a background value, 𝑏଴, close to the 
average magnitude of the variable during the period (see 
Equation 3). 

 
𝑋෠ሺ𝑡ሻ ൌ 𝑋ሺ𝑡ሻ െ 𝑏଴𝑡  (3) 

 
The logic behind oblique cumulative curves is that by 

eliminating the large cumulative average, the plot 
magnifies the rate of change of the variable instead of 
showing the fairly constant increase of the cumulative 
sum. Oblique curves of flow, 𝑁෡ሺ𝑡ሻ, occupancy, 𝑇෠ሺ𝑡ሻ, and 
lane changing, 𝐿෠ሺ𝑡ሻ, are used (see Figures 3, 4 and 5), 
because they are especially suited to detect congestion, 
and allow unveiling the particular behavior of lane-
changing in each period. In the following subsections, the 
detailed insights obtained from the temporal, spatial and 
corridor wide empirical analyses are presented. 

 
  3.1 Lane-changing peaks in congested periods 

From the analysis of the database, it is found that lane 
changing recurrently peaks in congested periods. In 
addition, this phenomenon is particularly intense when 
transitioning between free flow and congested regimes. 
The previous assertions are supported by the evidences 
presented in Figure 3. For the sake of briefness, only few 
examples are presented, but the same behavior has been 
observed in every single congestion episode. 

Figure 3 consists of three cumulative oblique curves, 
𝑁෡ሺ𝑡ሻ, 𝑇෠ሺ𝑡ሻ and 𝐿෠ሺ𝑡ሻ. 𝑁෡ሺ𝑡ሻ is the cumulative count curve 
(i.e. the total number of vehicles that have crossed the 
section since the beginning of observation). 𝑇෠ሺ𝑡ሻ 
represents the same concept but considering the 
occupancy (i.e. the total cumulative time all vehicles spent 
on the detector since the beginning of observation). 
Finally, 𝐿෠ሺ𝑡ሻ represents again the same concept but 
considering lane-changing maneuvers for the entire 
detection zone, including all lane pairs. Congestion is 
detected from these plots as an increase of the slope of the  

 
Figure 3.  Flow, 𝑁෡ሺ𝑡ሻ, occupancy, 𝑇෠ሺ𝑡ሻ, and lane-

changing, 𝐿෠ሺ𝑡ሻ, oblique cumulative plots in congested 
periods. (a), (b) and (c) correspond to different days and 
detection zones. Note: 1) Congested periods are shaded in 
light grey; 2) Background subtraction rates, 𝑏଴, for 𝑁෡ሺ𝑡ሻ, 
𝑇෠ሺ𝑡ሻ and 𝐿෠ሺ𝑡ሻ are respectively: a) 4700 [veh/h], 1800 [s/h], 
380 [veh/h]; b) 5000 [veh/h], 3000 [s/h], 45 [veh/h]; c) 4600 
[veh/h], 1900 [s/h], 240 [veh/h]. 

(a)

(b)

(c)
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T-curve without an equivalent increase in the slope of the 
N-curve (i.e. an increase of occupancy not corresponding 
with a simultaneous increase in flow). These periods are 
identified by visual inspection of the curves, as proposed 
in Cassidy and Windover (1995). In order to ease 
observations in Figure 3, congestion is shaded in light 
grey. Clearly, lane-changing rates increase in congestion, 
as shown by the increase of the slope of the 𝐿෠ሺ𝑡ሻ during 
these periods. 
 

  3.2 Lane-changing peaks in traffic regime transitions 
It is also found that the highest peaking of lane-changing 

rates happens during traffic regime transitions (i.e. from 
congestion to free-flowing or vice versa). Figure 4 shows 
the same previous oblique cumulative curves (as in Figure 
3) for detection zone 2305. Figure 4a considers traffic data 
from the downstream detector (i.e. 10 ETD). Three peaks 
in the lane-changing rate (i.e. slope of the 𝐿෠ሺ𝑡ሻ curve) are 
observed (i.e. around 8:00; between 8:20 and 9:10; and 
between 9:40 and 9:50 approximately). In contrast, data 

from detector 10 ETD exhibits free-flowing conditions 
during the whole observation period (see Figure 4a). 

The issue in detection zone 2305 is that while the 
downstream detector location (i.e. 10 ETD) is not congested, 
actually there is congestion within detection zone. A 
bottleneck exists, caused by the off-ramp located within the 
zone (see Figure 1). This off-ramp ends at a roundabout, 
which during peak periods reaches capacity and queues 
appear. These queues spill-back into the freeway mainline, 
spreading into the rightmost lanes and eventually congesting 
the entire freeway trunk. This can be observed in Figure 4b, 
equivalent to Figure 4a but considering data from the 
upstream detector (i.e. 11 ETD). It can be seen that 
congestion reaches detector 11 ETD three times, which 
approximately match the three surges in the lane-changing 
rates. The spatial analysis of lane-changing reveals that most 
maneuvers are located at the traffic regime transitions (i.e. at 
traffic shockwaves, around the back of the queue and around 
the bottleneck – head of the queue). 

 
 
 

 
Figure 4.  Effects of the bottleneck within detection zone 2305. Traffic data source: (a) Downstream detector 10 ETD; (b) 

Upstream detector 11 ETD. Note: 1) Congested periods are shaded in light grey; 2) Background subtraction rates, 𝑏଴, for 𝑁෡ሺ𝑡ሻ, 
𝑇෠ሺ𝑡ሻ and 𝐿෠ሺ𝑡ሻ are respectively: a) 3500 [veh/h], 950 [s/h], 380 [veh/h]; b) 4500 [veh/h], 2000 [s/h], 380 [veh/h]. 

 
 
Further evidence is provided in Figure 5, again equivalent 

to Figures 3 and 4 but for detection zone 2304. In Figure 5, 
lane-changing peaks between 9:10-9:20. This is precisely 
when a congestion dissolve shock wave travels from the 
upstream to the downstream detector in the section. This 

can be seen because at 9:10 the upstream section starts free 
flowing (Figure 5b), while the dissolving shockwave 
travelling in the direction of traffic reaches the downstream 
detector shortly after, at 9:20 (Figure 5a). 

 
 

(a) (b)
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Figure 5.  Flow, occupancy and lane-changing oblique cumulative plots during traffic regime transitions. (a) Downstream 

detector 07 ETD. (b) Upstream detector 08 ETD. Note: 1) Congested periods are shaded in light grey; 2) Background 
subtraction rates, 𝑏଴, for 𝑁෡ሺ𝑡ሻ, 𝑇෠ሺ𝑡ሻ and 𝐿෠ሺ𝑡ሻ are respectively: 4000 [veh/h], 2000 [s/h], 110 [veh/h] for both parts a) and b). 

 
4 THE STOCHASTIC RELATIONSHIP 

BETWEEN LANE-CHANGING AND FREEWAY 
CAPACITY 

 
From the descriptive analysis in the previous sections, it 

was observed that, as the average flow per lane (𝑞ത) 
increases, the maximum lane-changing normalized ratio 
(𝑟) decreases. In other words, for a given 𝑟, there exists a 
maximum flow that can be sustained, and this flow 
decreases with the increase in 𝑟. In the present section, it 
is postulated that this relationship, like many others 
involving freeway capacity, is stochastic in nature. 
Furthermore, data suggest that the relationship is 
heteroscedastic, specifically meaning that a larger 
variance of 𝑟 is observed for smaller average flows. 

 
  4.1 The stochastic model 

The stochastic relationship between 𝑟 and the maximum 
observed flows, can be modeled by an analytical function 
where some of the parameters follow a probabilistic 
distribution. The proposed stochastic model describes 𝑟 as 
a heteroscedastic normal distribution where the mean and 
standard deviation decay polynomially with the average 
flow per lane, 𝑞ത. This is: 

 
𝑟ሾ𝑖ሿ ~ 𝒩ሺ𝜇ሾ𝑖ሿ, 𝜎ଶሾ𝑖ሿሻ   (4) 

 
where 𝑖 ൌ 1 ൊ 𝑁 refers to sectional observations of 𝑞തሾ𝑖ሿ 
and 𝑟ሾ𝑖ሿ, and Equations 5 and 6 define, respectively, the 
polynomial decay of the mean ሺ𝜇ሻ and standard deviation 
ሺ𝜎ሻ of the normal distribution of 𝑟. 
 

𝜇ሾ𝑖ሿ ൌ 𝛼 ൉ |𝑄 െ 𝑞തሾ𝑖ሿ|ఊ       𝛼, 𝛾 ൒ 0;    𝑄 ൒ 𝑞ത ൒ 0 (5) 

 
𝜎ሾ𝑖ሿ ൌ 𝛽 ൉ |𝑄 െ 𝑞തሾ𝑖ሿ|ఋ       𝛽, 𝛿 ൒ 0;    𝑄 ൒ 𝑞ത ൒ 0 (6) 

 
According to the modeling assumptions, 𝜇 and 𝜎 are 

modeled considering three random hyperparameters: 𝛼, 𝛽 
and 𝑄. 𝛼 and 𝛽 represent the decay rate of 𝜇 and  𝜎, 
respectively, while 𝑄 is the theoretical maximum per lane 
capacity in the absence of lane-changing. Note that 𝑄 is 
generally not observable given the current conditions on 
freeways, and could only be observed by enforcing 𝑟 ൌ 0. In 
turn, 𝛾 and 𝛿 represent two deterministic calibration 
parameters defining the polynomial specification of the 
model. Figure 6 shows the graphical representation of this 
stochastic model and its dependencies. 

 

 
Figure 6. Graphical model of the relationship between the 

lane-changing normalized ratio, 𝑟, and the average flow per 
lane, 𝑞ത. 

 
Bayesian inference is applied in order to derive the 

posterior probability distribution of 𝑟 for a given average 
flow per lane, 𝑞ത. The posterior distribution can then be used 

(a) (b)

𝑖 in 1: 𝑁 

  

 𝜎ሾ𝑖ሿ ൌ 𝛽 ൉ |𝑄 െ 𝑞തሾ𝑖ሿ|ఋ 

𝜇ሾ𝑖ሿ ൌ 𝛼|𝑄 െ 𝑞തሾ𝑖ሿ|ఊ𝑞തሾ𝑖ሿ 

𝑟ሾ𝑖ሿ ~ 𝒩ሺ𝜇ሾ𝑖ሿ, 𝜎ଶሾ𝑖ሿሻ

𝛼 𝑄 

𝛽 

𝛾

𝛿



 Sala and Soriguera (2019) 8 

 

to estimate the parameters of the model and to predict the 
distribution and simulate new data points. In the Bayesian 
approach two antecedents are needed: a prior probability 
distribution and a likelihood function derived from a 
statistical model for the empirical data. Then, the posterior 
distribution can be solved via Bayes theorem: 

 
𝑝ሺ𝜇, 𝜎|𝑹, 𝛼, 𝛽, 𝑄, 𝛾, 𝛿ሻ ൌ 

 

ൌ
𝑝ሺ𝑹|𝜇, 𝜎, 𝛼, 𝛽, 𝑄, 𝛾, 𝛿ሻ𝑝ሺ𝜇, 𝜎|𝛼, 𝛽, 𝑄, 𝛾, 𝛿ሻ

𝑝ሺ𝑹|𝛼, 𝛽, 𝑄, 𝛾, 𝛿ሻ
∝ 

 
∝ 𝑝ሺ𝑹|𝜇, 𝜎, 𝛼, 𝛽, 𝑄, 𝛾, 𝛿ሻ𝑝ሺ𝜇, 𝜎|𝛼, 𝛽, 𝑄, 𝛾, 𝛿ሻ (7) 

 
where: 
 𝑹 is the sample, a set of data points (i.e. 𝑟ሾ𝑖ሿ, 𝑞തሾ𝑖ሿ for 

𝑖 ൌ 1 ൊ 𝑁) 
 𝑝ሺ𝜇, 𝜎|𝑹, 𝛼, 𝛽, 𝑄, 𝛾, 𝛿ሻ is the sought posterior 

distribution of the parameters defining the distribution 
of 𝑟 after considering the observed data. 

 𝑝ሺ𝑹|𝜇, 𝜎, 𝛼, 𝛽, 𝑄, 𝛾, 𝛿ሻ is the likelihood (or sampling 
distribution); the distribution of the observed data 
conditional on their parameters. 

 𝑝ሺ𝜇, 𝜎|𝛼, 𝛽, 𝑄, 𝛾, 𝛿ሻ is the prior distribution, the 
distribution of parameters before any data is observed. 

 𝑝ሺ𝑹|𝛼, 𝛽, 𝑄, 𝛾, 𝛿ሻ is the marginal likelihood (or model 
evidence), a normalization factor which does not 
affect the relative probabilities in the estimation of the 
model. 

 
The prior distribution is obtained from Equations 5 and 

6, and assuming distributions for 𝛼, 𝛽 and 𝑄. These are 
chosen to be non-informative (i.e. very wide distributions) 
so that this does not affect the model calibration process, 
being the empirical data what drives the results. A 
𝐺𝑎𝑚𝑚𝑎ሺ0.001, 0.001ሻ distribution is chosen for 𝛼 and 𝛽, 
because it is positive-definite and suitable for the small 
values expected for these parameters. For 𝑄, a 
𝑁𝑜𝑟𝑚𝑎𝑙 ሺ2300, 1000ሻ is selected. This selection 
responds to the fact that the distribution should be centered 
around the a-priori capacity value. This is set to 2300 
veh/h/lane following the HCM (Highway Capacity 
Manual, 2010) recommendation for a freeway with a free 
flow speed of 60mph (~100Km/h), which is approximately 
observed in most of the B-23 freeway. The probabilities of 
negative values are negligible in this case. In turn, the 
values for 𝛾 and 𝛿 are calibrated through a sensitivity 
analysis selecting the polynomial specification that best 
fits the available data (see Section 4.3) 

To predict the distribution of a new, unobserved data 
point, 𝑅෨ ൌ ሺ𝑟,෥ 𝑞ത෨ሻ, the posterior predictive distribution is 

used. This can be computed as the distribution of the new 
data point, marginalized over the posterior. This is: 

 
𝑝൫𝑅෨|𝑹, 𝛼, 𝛽, 𝑄, 𝛾, 𝛿൯ ൌ 

ൌ ׬ 𝑝൫𝑅෨|𝜇, 𝜎൯ 𝑝ሺ𝜇, 𝜎|𝑹, 𝛼, 𝛽, 𝑄, 𝛾, 𝛿ሻ  (8) 
 
However, a generally simpler alternative to computing the 

integral in Equation 8 is to use sampling algorithms based on 
Monte Carlo Markov Chain techniques (MCMC). These 
algorithms rely on the fact that it is possible to compute any 
statistic of the posterior distribution as long as there are 
enough simulated samples from that distribution. The theory 
of MCMC techniques guarantees convergence, meaning that 
the samples generated will converge to a stationary 
distribution that is the target joint posterior that we are 
interested in (Gilks et al., 1996). In order to reach 
convergence, MCMC sampling needs to be applied for a 
large number of iterations. In addition, because the early 
iterations are biased, these samples need to be discarded. The 
discarded iterations are often referred to as the “burn-in” 
period (Yildirim, 2012). 

Gibbs sampling represents an efficient inference MCMC 
algorithm (Gelfand & Smith, 1990). The benefit of Gibbs 
sampling is that given a Bayesian network (e.g. like the one 
in Figure 6) it is simpler to sample from conditional 
distributions than to marginalize by integrating over a joint 
distribution. Gibbs sampling implies taking realizations of 
the distribution of each variable (in turn), conditional on the 
current values of the other variables. This sampling 
constitutes a Markov chain whose stationary distribution is 
the sought posterior joint distribution (Gelman et al., 2014). 

It should be noted, however, that the proposed modeling 
approach is not the only alternative. For instance, the model 
specification could have followed the structure of GARCH-
type models (i.e. Generalized AutoRegressive Conditional 
Heteroskedasticity (Engle, 1982)) or any other that 
presumably could be successful in the modeling of the 
relationship between lane-changing and average flow. In 
such cases, MCMC techniques can be applied on top of these 
models being advantageous on grounds of generality, 
accuracy and flexibility with respect to traditional estimation 
methods, like maximum likelihood, or the generalized 
method of moments (Vrontos et al., 2000). The number of 
different modelling alternatives could be large, and 
comparison between them would be interesting and left as an 
issue for further research. 

 
  4.2 Model calibration for the B-23 case study 

Figure 7 summarizes step-by-step the proposed modeling 
approach, from the measurement of the input data to the 
model calibration. Note that the proposed Bayesian inference 
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stochastic model was implemented in the OpenBUGS 
computing language, facilitating the coding of the model. 
This statistical modeling environment is especially suited 
to perform Bayesian inference using Gibbs sampling when 
fed with sample data and a candidate analytical model 
(Lunn et al., 2009). 10,000 iterations of the Gibbs sampler 
were run to ensure convergence of the algorithm, while the 
first 1,000 iterations were discarded as the burn-in period. 

 

 
Figure 7. Step-by-step flowchart of the proposed 

methodology. Note: *Implemented in OpenBUGS. 
 
Figure 8 shows the calibration results of the proposed 

stochastic model, when fed with data from detection zones 
2304, 2305, 2306 and 2310, which are the ones with the 
best lane-changing data quality. The average flow per lane, 
(𝑞ത), is plotted with respect to the lane-changing 
normalized ratio (𝑟). Recall that 𝑞ത is computed by dividing 
the total sectional flow, 𝑞, by the number of lanes. In turn, 
𝑟 represents the expected number of lane-changes for one 
vehicle traveling one km (see Equation 2). All data points 
are computed for aggregation periods of ∆𝑡 ൌ 3 min. Data 
points are split in two separate sets representing free-
flowing and congested traffic regimes, leading to two 
different calibrations of the model. They are represented, 
respectively, above and below the horizontal axis in Figure 
8. In addition, Figure 8 shows the estimation for different 
percentiles of the distribution of 𝑟, and their variability. 
Note the narrow range between the 10th and 90th 
percentiles of these estimates (i.e. dotted lines in Figure 8) 

indicating an equivalently narrow distribution of the 
calibrated stochastic parameters. This proves the good fit of 
the model (see Figure 9 and Table 2). Wider distributions 
were obtained for other polynomial model specifications, 
indicative of a poorer fit (see Section 4.3). 

 

 
Figure 8. Lane-changing normalized ratio (𝑟) versus 

average flow per lane (𝑞ത). Note: 1) All data points represent 
3 min aggregation periods. 2) Data above the horizontal axis 
represent free-flowing traffic states. Data below the 
horizontal axis represent congested or transitional traffic 
states (i.e. at least one detector shows congestion during the 
whole or part of the 3 min period). 3) The two dotted lines 
beside percentile estimations show their 10% (down) and 
90% (up) confidence intervals. 

 

 

Traffic observation 

Retrieve and filter lane-
changing and flow data 

Is data 
reliable? 

no 

Aggregate the data and 
compute 𝑞ത and 𝑟 

Run the Bayesian inference 
module* to calibrate the model 

Obtain a stochastic model to assess the 
effects of lane-changing on freeway capacity

yes 

a)
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Figure 9. Probability density functions of the stochastic 

parameters 𝛼, 𝛽 and 𝑄 for the free-flowing and congested 
models. Note: The non-informative a-priori distributions 
are also presented (dashed blue series). This is aimed to 
show the robustness of the model to the input parameters. 

 
Table 2 

Calibrated parameters of the stochastic 𝑟, 𝑞ത models 
Parameter Mean CV 

𝛼௙௙ 6.856 ൉ 10ିଷ 0.02363 
𝛾௙௙ 0.56  
𝛽௙௙ 2.672 ൉ 10ିଷ 0.03217 
𝛿௙௙ 0.58  
𝑄௙௙ 2339 𝑣𝑒ℎ/ℎ 8.937 ൉ 10ିଷ 

𝛼௖௢௡௚ 7.539 ൉ 10ିସ 0.04032 
𝛾௖௢௡௚ 0.94  
𝛽௖௢௡௚ 9.104 ൉ 10ିସ 0.05331 
𝛿௖௢௡௚ 0.80  
𝑄௖௢௡௚ 2319 𝑣𝑒ℎ/ℎ 0.01145 

*Subscripts “𝑓𝑓” and “𝑐𝑜𝑛𝑔” refer to free-flowing and 
congested traffic. CV is the coefficient of variation (i.e. 
standard deviation to mean ratio). 

 
  4.3 Sensitivity analysis 

Before further analyzing the results from the previous 
calibration of the model, a sensitivity analysis is presented 
in this section aiming to discuss the robustness and validity 
of the proposed model specification. To that end, different 
model specifications, in terms of the values of the 
polynomial rates (i.e. 𝛾 and 𝛿), are tested and compared. 

Comparison between Bayesian models is addressed using 
the deviance information criterion (DIC), which assesses the 
fit of the model to data taking into account the model 
complexity in terms of the effective number of parameters 
(Spiegelhalter et al., 2002). The deviance, 𝐷ሺ𝜇, 𝜎ሻ, is defined 
from the likelihood function as: 

 
𝐷ሺ𝜇, 𝜎ሻ ൌ െ2𝑙𝑜𝑔ሾ𝑝ሺ𝑹|𝜇, 𝜎, 𝛼, 𝛽, 𝑄, 𝛾, 𝛿ሻሿ (9) 

 
And the effective number of parameters, 𝑝஽, is: 
 

𝑝஽ ൌ 𝐷ഥ െ 𝐷ሺ𝜇̅, 𝜎തሻ   (10) 
 

where 𝜇̅ and 𝜎ത are the expected values for the parameters of 
the normal distribution of 𝑟. Then, the DIC is calculated as 
in Equation 11. 

 
𝐷𝐼𝐶 ൌ 𝐷ഥ ൅ 𝑝஽   (11) 

 
The concept is that models with smaller DIC should be 

preferred. Note that the models that receive the highest 
support from the data are those with the lowest values of 𝐷ഥ. 
In addition, models are also penalized by 𝑝஽, compensating 
the fact that models with more parameters tend to fit data 
more easily (François & Laval, 2011). 

Figure 10 summarizes the different DIC’s obtained for 
models with 𝛾 and 𝛿 ranging from 0.5 to 1.1. The sensitivity 
analysis in this range is enough, as it includes the models 
with minimum DIC, which are the ones selected. For free-
flowing traffic regimes, a minimum DIC of -842.7 is 
obtained for 𝛾௙௙ ൌ 0.56 and 𝛿௙௙ ൌ 0.58. For congested 
traffic states, the minimum DIC is -35.9 is obtained for 
𝛾௖௢௡௚ ൌ 0.94 and 𝛿௖௢௡௚ ൌ 0.80. 

In addition, the 𝜇ሾ𝑖ሿ ൌ 1 𝑞തሾ𝑖ሿ⁄  model specification was 
also analyzed. This aims to analyze the fact that, with the 
previous definitions of 𝑞ത and 𝑟 and if the number of lane-
changes (𝑛) is kept constant, the lane-changing normalized 
ratio (𝑟) would decrease with the flow, by definition, in the 
shape of 1/𝑞ത instead of the polynomial decay (see Equations 
1 and 2). The 1/𝑞ത model specification was tested and resulted 
with larger DIC, showing the poorer performance of this 
model. In any case, it should be noted that a constant lane-
changing count (𝑛) with increasing flows, actually represent 
a decrease in the unitary lane-changing activity. This means 
that, in spite of the definitions and variables used, the 
obtained insights are meaningful and representative of traffic 
behavior. 

 

b) 

c) 
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Figure 10. Sensitivity analysis of the model specification 
with respect to the polynomial rates 𝛾 and 𝛿. Note: 
Deviance Information Criterion (DIC) is used as a goodness 
of fit measure. Lower DIC implies better fit. 

 
  4.4 Discussion of obtained results 

Results in Figure 8 show that, for a given flow level, 
different 𝑟 values can be observed. Note that data from 
different freeway sections are included in Figure 8, and 
lane-changing is influenced by the presence of mergings 
and divergings with mandatory lane-changing and 
weaving sections. However, there exists an upper bound 
for the observed 𝑟, which decreases as the average flow 
per lane (𝑞ത) increases. This happens for both, free-flowing 
and congested traffic regimes. The possible explanation 
behind this relationship is that in free-flowing conditions, 
for larger flows, the opportunities to change lane became 
rarer, because traffic is fairly dense and therefore lane-
changing becomes more difficult and, at the same time, 
less rewarding since not much can be gained by changing 
lanes. Still, lane-changing might be necessary in these 
dense traffic conditions due to the presence of a slow 

vehicle, random fluctuations in lane density, change in the 
lane geometry, etc. In such cases, this implies the increase of 
𝑟, which might lead to the traffic breakdown, a reduction of 
the circulating flow, the increase of the variance of speed and 
density across lanes, and a further increase of the lane-
changing. The observed upper bound in 𝑟 quantifies the 
threshold beyond which higher lane-changing activity would 
lead to a flow reduction. In other words, if 𝑟 increases beyond 
this threshold, the maximum flow that can be observed is 
smaller. 

From the model results, it is particularly interesting the 
analysis of the parameter 𝑄, the theoretical maximum 
capacity for the freeway section in ideal conditions, with no 
lane-changing activity (i.e. 𝑠 ൌ 𝑟 ൌ 0; the model crossing 
with the horizontal axis in Figure 8). Before analyzing the 
obtained results, it should be understood that this scenario 
could be only observed by forbidding lane-changing activity 
in the target stretch. So far, this has not been possible, and 
the empirical validation of the model for 𝑟 tending to 0 
remains as an issue for further research. In spite of this, 
Figure 9c shows the resulting probability density functions 
for 𝑄 according to the stochastic model, in free-flowing and 
congested conditions. In free-flowing 𝑄 is slightly larger, 
illustrating the capacity drop phenomenon in congested 
conditions. Furthermore, note that capacities larger than that 
currently observed at freeways could theoretically be 
achieved in the absence of lane-changing. Actually, almost 
the whole probability free-flowing distribution corresponds 
to values larger than those proposed in the HCM (2010) for 
the observed conditions in the test site (e.g. 2300 veh/hꞏlane). 
This result unveils the potential of lane-changing restriction 
policies in improving traffic flow efficiency. 

 

 
Figure 11. Maximum lane-changing per km and hour 

between any pair of lanes, 𝑠̅, as a function of the average flow 
per lane, 𝑞ത. Note: the 97.5th percentile of the distribution of 𝑟 
is considered as the upper lane-changing bound. 𝑠̅ is obtained 
by multiplying 𝑟’s 97.5th percentile times 𝑞ത. 

 
To that end, Figure 11 is proposed as a tool to support 

traffic management strategies involving lane-changing 

a) 

b) 
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restrictions. This figure shows the maximum number of 
lane-changes that can take place if a certain flow value is 
to be sustained. Note that the percentile 97.5th of the free-
flowing 𝑟 distribution was selected to represent the upper 
bound for lane-changing. The free-flowing distribution is 
chosen because any traffic management strategy must aim 
to keep or recover free-flowing traffic conditions. Also 
note that for most of the flows, the maximum acceptable 
lane-changing activity is lower or equal in free-flowing 
than in congested conditions. The 97.5th percentile 
selection is rather arbitrary, and any other percentile could 
be used, yielding to the same conceptual results but with 
different values, as discussed later. In Figure 11, the 
normalized lane-changing ratio (𝑟) is shown together with 
the per lane lane-changing flow (𝑠̅) [lane-
changes/kmꞏhꞏlane]. 𝑠̅ is simply obtained by multiplying 
the 𝑟’s 97.5th percentile, times the corresponding average 
flow, 𝑞ത. This results in a lane-changing model for the 
97.5th percentile of 𝑠̅. From this model it can be seen that 
for small flows, an increase of 𝑞ത results in a decrease of 𝑟 
but an increase of 𝑠̅. This means that, even if each vehicle 
is less likely to change lanes (lower 𝑟), this is compensated 
by the increasing number of vehicles in the freeway, so 
that the 𝑠̅ can be higher. Results for flows lower than 800 
veh/(hꞏlane) should be taken with caution and are not 
represented in Figure 11 as few data were collected in this 
region. Nevertheless, Figure 11 is more interesting for 
flows higher than that of the tipping point (in this case a 
maximum of 𝑠̅ ൌ 837 [lane-changes/kmꞏhꞏlane], 
corresponding to 𝑟 ൌ 0.56 [lane-changes/vehꞏkm] when 
the circulating flow is 1492 [veh/hꞏlane]) from where the 
increase of flow does not longer compensate the reduction 
of 𝑟. In this region, Figure 11 can be interpreted as the 
maximum lane-changing activity that can happen in order 
to maintain a throughput level. If 𝑠̅ (or 𝑟) goes above this 
threshold, the flow will inevitably decrease. 

Given the previous interpretation, the model could be 
useful for lane-changing control applications, as it 
determines the maximum acceptable number of lane-
changes in order to ensure a desired throughput of the 
freeway section (see Figure 12). Note that the percentile 
chosen for the upper bound of 𝑟 would represent a tuning 
parameter of the control algorithm. In the previous 
example, the 97.5th percentile was chosen. This responds 
to a compromise between the reliability and the severity of 
the control strategy. Smaller percentiles would increase 
the reliability in the achievement of the desired flows at 
the cost of a more restrictive policy, while larger ones 
would behave in the opposite way: being less reliable but 
also less restrictive. In fact, the model provides the 𝑟 
distribution for any 𝑞ത. So, in a particular application, any 

desired probability level could be chosen in the tuning of the 
control algorithm. This concept is similar to the Sustained 
Flow Index (SFI) that addresses the trade-off between flow 
and reliability (Shojaat et al., 2016). 

 

 
Figure 12. Step-by-step flowchart of the proposed lane-

changing control application. 
 
In practice, with the current technology installed in most 

freeways, everything different from all-or-nothing control 
(i.e. allow or prohibit) lane-changing might be difficult to 
implement. In light of this limitation, one strategy could be 
to prohibit lane-changing when traffic flow reaches a level 
where small lane-changing ratios could lead to traffic 
breakdown. Actually, this may be enough in most of the real-
world situations, as the objective would be to achieve the 
maximum possible capacity, 𝑄. An alternative to explore 
could be the management of vehicles' desired speeds. This 
control strategy might modify vehicles' speed distribution 
and consequently impact lane-changing rates. This could be 
attempted by using dynamic speed limit (DSL) strategies to 
achieve more uniform travelling speeds and reduce lane-
changing rates. In such case, strict enforcement all along the 
freeway section (e.g. travel time control) would be needed. 
Otherwise, DSL may lead to the opposite behavior (i.e. 
increase of lane-changing rates) (Soriguera et al., 2017). In 
the next future, with the advent of V2I communications, 
Advanced Driver-Assistance Systems (ADAS) and vehicle 
automation, lane-changing control could be feasible by 
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flow data 
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efficiently distributing lane-changing maneuvers amongst 
vehicles in time and space so that the target lane-changing 
ratio (𝑟) could be precisely matched. 

 
 

5 CONCLUSIONS 
 

Lane-changing activity is one of the major disruptors in 
freeway traffic and a key contributor to traffic instabilities 
and capacity drop. The research presented in this paper 
supports this disruptor role of lane-changing in freeways. 
It has been observed, for multiple locations and days, that 
lane-changing activity peaks during congestion. Even 
more, the largest concentration of lane-changes is 
generally located around shockwaves, at the transition 
between traffic states. Although no direct evidence has 
been found confirming that lane-changing activity triggers 
congestion episodes, a clear relationship between the 
maximum lane change activity and the maximum average 
flow per lane has been observed. The lower the maximum 
lane-changing rate, the larger the maximum flow per lane 
that can be sustained. 

In order to model these qualitative observations, a 
Bayesian inference stochastic approach is used. This 
enables to define analytically the relationship between the 
freeway capacity reduction and the lane-changing activity. 
Specifically, the normalized lane-changing rate (𝑟) is 
defined by a heteroscedastic normal distribution with 
mean and standard deviation decreasing with the average 
flow per lane (𝑞ത). This model is useful to determine the 
maximum lane-changing rate that can be supported in 
order to ensure a given freeway throughput. 

These findings quantify the prevailing theories in the 
literature arguing that lane-changes are an important 
traffic disruptor that can trigger congestion. In 
consequence, largest flows can only be achieved with very 
low lane-changing rates, as any disruption is enough to 
breakdown traffic in this highly synchronized flow. 
Therefore, the theoretical maximum flow (i.e. the 
capacity) would be achieved in the no lane-changing 
scenario. For this ideal scenario, the proposed stochastic 
model is used to derive the probability density function for 
capacity. The obtained capacity values are somehow larger 
than the ones empirically observed and proposed in 
manuals. This confirms the potential of lane-changing 
control strategies during peak periods in order to improve 
traffic efficiency. Otherwise, lane-changing can 
potentially make traffic unstable leading to a capacity 
reduction (i.e. a capacity drop). Obviously, such control 
strategies must deal with the existence of mandatory lane-
changes near diverging segments. 
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