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Abstract: Quantitative description of perspective geometries is a challenging task due to the 

complexities of geometric shapes. In this paper, we address this gap by proposing a new methodology 

based on variational autoencoders (VAE) to derive low-dimensional and exploitable parameters of 

the perspective road geometry. Firstly, road perspective images were generated based on different 

alignment scenarios. Then, a VAE was built to create a regularized and exploitable latent space from 

the data. The latent space is a compressed representation of perspective geometry, from which six 

latent parameters were derived. Without prior expert knowledge, four of the latent parameters were 

found to represent distinctive attributes of the geometry, such as visual curvature, slope, sight 

distance and curve direction. The latent parameters provided quantitative measurements of how the 

design scheme looks like in perspective view. It was found that a road with low accident rate has low 

values for codes 4 and 5, high values for code 3, and low variance for codes 3 and 6. The trained VAE 

model also ensured accurate generation of the perspective images by decoding the latent parameters. 

https://doi.org/10.1111/mice.12594
https://doi.org/10.1111/mice.12594
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Modeling and interpreting road geometry from a driver's perspective using variational autoencoders  

 

This article is protected by copyright. All rights reserved. 

 

2 

Overall, this research advances the understanding of road design by considering the driver’s 

perception.  

 

Keywords: geometry, driver view, variational autoencoder, road design 

1 INTRODUCTION 

Road geometry affects a driver's perception of the driving environment. A predictable and 

recognizable road layout supports driver expectations about the road type they are driving on and the 

safe driving behaviour that is expected of them (Stelling-Konczak et al., 2010; Janssen et al., 2006). In 

China, 68% of crashes with serious injuries between 2012 and 2016 were in mountainous areas, where 

the roads have complicated geometry and topographical conditions (Yu et al., 2018). Crash statistics 

on more than 2000 crash reports from California and Maryland showed that improper visual search 

prior to left turns causes a great proportion of accidents in younger and less experienced drivers 

(McKnight & McKnight, 2003). Driver-oriented infrastructure design has been found to reduce both 

occurrence and consequences of human error (Zheng et al., 2017; Mackie et al., 2013). For safety 

reasons, the visual perception of road infrastructure needs to be designed to meet the expectation that 

drivers have about the upcoming features (Čičković, 2016). The self-explaining road concept focuses 

on promoting safe behavior simply through design, where road infrastructure is designed in line with 

road users' expectations (Walker et al., 2013; Theeuwes & Godthelp, 1995). 

The geometry of road layouts are closely related to driving behaviors, including speed, lane departure 

and crashes (Letty et al., 2009; Eustace et al., 2016; Banihashemi, 2016; Gargoum & El-Basyouny, 

2016). For example, unexpected changes in road alignment lead to abrupt changes in driving speed 

(Yu et al., 2018; Donnell et al., 2009). The overlapping of horizontal and vertical curves provides 

more curvature information than the traditional highway design plan (Fildes & Triggs, 1982). Hassan 

et al. (2002) pointed out that overlapping crest curves make the horizontal curvature appear sharper, 

while overlapping sag curves make the horizontal curvature appear less sharp. In order to ensure 

appropriate visual representation of combined alignments, several qualitative design guidelines are 

available, such as the American Association of State Highway and Transportation Officials 

(AASHTO, 2018) and the Transportation Association of Canada (TAC, 2017). Geometric consistency 

is enhanced by uniformity and continuity in design (AASHTO, 2018; TAC, 2017). 

Traditionally, engineers have utilized effective parameters to describe the road in 3D, such as 

horizontal curvature, vertical slope, etc., which are practical. These design parameters have also been 

studied to build relationships with road safety, where safety criteria are determined to guide road 

design. Driver perspective view is essential in road design. However, it is currently not possible to 

objectively examine the quality of a road from a driver’s perspective, as the geometries are more 

irregular and complex. To fill this gap, it is important to determine how to describe the perspective 

road geometry objectively. In the paper, we propose using a machine leaning algorithm, variational 

autoencoder (VAE), to learn regularized latent codes from data. The codes are low-dimensional 

representations of perspective geometry. Meanwhile, the VAE model is able to generate perspective 

images from the latent codes. 
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2 LITERATURE REVIEW 

2.1 Current design practice and limitations 

Traditional geometric design practice involves independent design of horizontal and vertical 

alignments, where alignments are described by parameters such as horizontal curvature, vertical slope 

and vertical curve radius. Transportation authorities such as the American Association of State 

Highway and Transportation Officials (AASHTO) and the Transportation Association of Canada 

(TAC) provide general design guidelines that enhance the 3D representation of the combined 

alignments (AASHTO, 2018; TAC, 2017). One limitation is there is no specific regulation for 

quantitative coordination of combined alignments. Designers depend on their professional skills to 

visually interpret the roadway from the driver's point of view. There is no guarantee that the combined 

geometry from traditional design is a satisfactory and safe design (Gibreel et al., 1999). Poor 

superposition of horizontal and vertical alignments can jeopardize driver's information perception or 

cause hazardous driving behavior, e.g. sharp horizontal curvature with upward steep slope could lead 

to limited sight distance and abrupt speed changes (Wang et al., 2018).  

In the past decades, the rapid development of road design software has enabled efficient generation of 

virtual road scenes from a driver's perspective (Autodesk, 2013; Eliseev et al., 2017). Real-time 

display of 3D geometry which matches traditional 2D design profiles is now a mature technology. 

Currently, many design agencies are using computer visualization to check the quality of combined 

alignments. It is also a convenient and intuitive way to show design schemes to others. However, the 

safety assessment for driver view geometry is mainly based on expert's experience. There is limited 

research quantifying the quality of the perspective geometry. For example, 3D sight distance is a 

substitute index to judge the safety of design from the driver's view (Jung et al., 2018; Ma et al., 

2018). However, computation of this index is complex and information such as curve direction and 

sharpness is not taken into account, essential elements influencing driving performance. Since drivers 

derive their driving styles mainly from their perception of the road, it is important to consider the 

combined geometry from the driver's point of view in early stages of the design process. 

 

2.2 Driver view geometry studies 

It is important to extract features of the perspective alignments in order to quantitatively analyze their 

effects on driving behavior. Several models have been put forward to describe the geometry, 

including the straight line-parabola model (Jung & Kelber, 2005), the modified hyperbola model 

(Jung & Kelber, 2005), the cyclotron line model (Kang et al., 2010) and the Catmull-Rom spline 

model (Loose et al., 2009). These models fit the alignment using complex equations. It is unclear how 

the equation parameters are related to road design.  

Some of the key papers were published by Yu et al (2016, 2018), where the drivers' visual lane was 

fitted with Catmull-Rom spline. The length and curvature of the visual curve were extracted as shape 

parameters. With these new geometric parameters, accident-prone locations on two-lane mountain 

highways were analyzed and safety reliability for vehicles turning right from urban major roads onto 
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minor ones were evaluated. These two shape parameters for visual curves are easy to understand. 

However, they are based on the researcher's decisions (cf. observer bias) and only represent limited 

attributes of the driver view geometry. Moreover, reconstructing the perspective view using the length 

and curvature parameters is not possible. Wang et al. (2019) studied middle-aged drivers' subjective 

categorization for combined alignment and found that drivers distinguish the road categories based on 

visual characteristics of alignment. Experiments revealed that drivers divide the visual mountainous 

alignment into three distinct and non-overlapping subjective categories. However, no quantitative 

descriptions of the visual geometry in each category were presented. 

 

2.3 Variational autoencoder 

Properly optimized feature extraction is the key to effective model construction (Guyon & Elisseeff, 

2006). A common approach for unsupervised feature extraction is through autoencoders (AE), first 

introduced by Hinton et al. (2013). AE is a neural network architecture composed of an encoder and a 

decoder, creating a bottleneck in the middle. As data passes through the neural network, the process of 

encoding reduces the dimensions of input data, while decoding reconstructs the data from the 

compressed representation. The output of the encoder is also referred to as the latent space, containing 

a reduced number of new features extracted from the original data. Instead of using labels, input data 

themselves guide how to train the neural network, by minimizing the difference between the input and 

reconstructed data (reconstruction loss). Therefore, AE is an unsupervised machine learning 

algorithm.  

VAE is an extension of AE where the latent space is trained to be regularized (Doersch, 2016). The 

term variational refers to the variational inference method in statistics, which is closely related to 

regularization. The output of VAE’s encoder is enforced to follow a Gaussian distribution during 

training, by which way the latent space is regularized. A regularized latent space means it represents 

separate attributes that interact nonlinearly in the original data (Tran et al., 2017; Kempinska & 

Murcio, 2019; Krajewski et al., 2018). Therefore, this compressed feature vector is generally more 

interpretable. For example, the latent space of VAE trained on MNIST dataset can represent 

independent attributes of the characters, such as content, slope and width of the writing (Doersch, 

2016). Moreover, the decoder is trained to take random points from latent distributions instead of 

direct single values to reconstruct the data.  The decoder works in a similar way as a generator in 

Generative Adversarial Networks (GANs) (Radford et al., 2016). 

Advanced methodologies based on machine learning enable understanding the inherent structure of 

complex and large-scale data.  Convolutional neural networks have been used to solve complex 

computer vision tasks, such as feature extraction, image generation, object detection and classification 

(Krizhevsky et al., 2012; Rafiei & Adeli 2017a; Dai et al., 2019; Ma et al., 2019; Wijnands et al., 

2019; Antoniades et al., 2018; Molina-Cabello et al., 2018; Hua et al., 2019; Zhao, Adeli et al., 2019; 

Zhao, Honnoral et al., 2019). Machine learning is increasingly used in civil engineering research 

(Rafiei & Adeli, 2016, 2017b, 2018). 

It is difficult to fully model the driver view geometry based on traditional methods. To fill this gap, 

the paper proposes a new approach to model driver view geometry based on VAE. Instead of fitting 
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the alignments as curves, the neural network is designed to find a regularized set of latent parameters 

for the perspective road images directly. The main contributions of this paper are as follows: 

 A new method to objectively analyze road geometry from a driver's perspective is developed. 

 Complex perspective geometry is mapped in low-dimensional and meaningful codes, 

providing quantitative measurements of the road geometry. 

 The new approach can generate realistic geometry, given specific latent codes. 

 

3 METHODOLOGY 

3.1 Perspective view mapping 

Perspective mapping is a linear mapping, which generates realistic transformations in line with how 

the human eyes process images (Hearn & Baker, 1997). It enables transforming a point in the 3D 

coordinate system to a point in the 3D camera's (driver eye) coordinate system, and then projecting it 

to a point in the 2D image coordinate system. Let [ ]c c c cP X Y Z  be a point on the road, 

[ ]r r r rP X Y Z be a point representing the camera, ' [ 1]cP u v  the same point of 
cP  in the projected 2D 

plane , M  the rotation matrix determined by the orientation (
3 3 

) of the camera and 
,c fK   the 

intrinsic parameters matrix of the camera. Their combination maps a 3D point 
cP  into the perspective 

view '

cP   as described in Eq. (1). 
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 (1) 

To ensure the validity and generality of the perspective view, unified model assumptions that match 

driver vision were used. In the model, eye level was 1.08m above surface, positioned in the center of 

the driving lane. The aspect ratio was set as 4:3 (width:height) and the focal distance was 50mm with 

40° horizontal and 27°vertical angle of aperture (Kühn & Jha, 2006). An illustration of perspective 

mapping is shown in Figure 1.  
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Figure 1 Perspective mapping 

 

3.2 Road geometry data 

In this study, the road geometry is produced according to the design specification (AASHTO, 2018). 

Therefore, the geometry used is not from a real road but still practical in engineering practices. 

Different geometries are taken into account. The minimum curve radius included is 60m, while the 

maximum curve radius is 1500m. 21 different kinds of curve radii are considered including tangent. 

Nine kinds of vertical slopes are included, ranging from -7% to 7%. A total of 100.92km road was 

designed with a cross-sectional width a of 3.5m. Geometric summaries are provided in Table 1. As 

shown in Figure 2, one horizontal curve is combined with nine different vertical slopes to produce 

different combined alignments  

In order to map the geometry into perspective images, at the first step, 3D points were identified on 

the roads based on the design parameters. The points were selected with 10m intervals along the 

horizontal alignment. The hypothetical camera (driver eye) was set above each point with line of sight 

pointing to the direction of the route tangent (i.e., assumed driving direction). The 3D points in front 

the camera were transformed into perspective space using the mapping method described in section 

3.1. The perspective points within vanishing points were kept. Then, the points were connected by 

straight segments to show continuous geometries. Each location corresponded to a distinctive 

perspective geometry. Therefore, sequences of realistic driver view images were obtained. To expand 

the number of samples, images were produced along both directions of the road and flipped 

horizontally (Shorten & Khoshgoftaar, 2019). The final dataset contains 30,000 samples of 

perspective images. 

As the focus is on the road geometric shape, grayscale images were produced to reduce memory 

requirements. It was found that views of road geometry close to the driver were very similar across all 

images, while the geometries in the distance showed more variation. However, the perspective 

mapping has the effect that more distant objects appear smaller (Hearn & Baker, 1997). The original 

size of the images was 400 300  pixels. To focus on the variations in geometry, the central square part 

was cropped, resulting in an image size of 256 256 . Each pixel is one of 256 different shades of gray 

with 0 representing black and 255 showing white. To train the neural network, pixel values were 

normalized into values between 0 and 1. Data processing procedures were implemented using python-

3.7.3 (Python Software Foundation, 2019). 
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Table 1 Summary of road geometries 

Parameters 

Horizontal radius (m) 
Min 60 

Max 1500 

Vertical slope 
Min -7% 

Max 7% 

Length (km)  100.92 

Cross-sectional width 

(m) 
 3.5 

 

 

Figure 2 Road geometry combination 

 

 

3.3 Variational autoencoder 

The perspective geometries formed the inputs to the encoder function of a VAE (Figure 3). To 

minimize the loss between the original inputs and reconstructed ones, weights in all network layers 

are updated during training. The latent space of the VAE is enforced to follow Gaussian distributions. 

In practice, the encoder is trained to return the mean and the covariance matrix that describe these 

distributions. Each latent value is sampled from the distribution and fed into the decoder. The 

regularization is imposed by penalizing the difference between the latent distribution and a standard 

Gaussian distribution, measured by Kullback-Leibler (KL) divergence (Kullback, 1978). Both local 

and global regularization are ensured through the mean and variance of the distribution, 

independently. Generally, enforcing high regularization penalties leads to a better organized latent 

space but higher reconstruction errors. However, the tradeoff between KL divergence and the 

reconstruction error can be adjusted. An extension of VAE, VAE  , incorporates a weight factor   

in the loss function. A higher value of    emphasizes the KL divergence, leading to a more 

regularized latent space. 

The network architecture of the VAE used is presented in   
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Table 2. In the encoder, 2D convolution layers encoded the images by reducing dimensionality and 

increasing feature depth, followed by a fully connected layer. As the output dimensions of the encoder 

are much smaller than the input dimensions, the encoder output forms a condensed representation of 

the input image. Specifically, the outputs of the encoder are multiple latent distributions, each 

described by a mean and log variance. These latent distributions capture the variations of extracted 

features in the input imagery. Latent codes were randomly sampled from these distributions. In the 

decoder, a fully connected layer and 2D transposed convolution layers reconstructed the images to 

their original size. Leaky ReLU activation functions were used in all layers, except the final layer 

which used the sigmoid function (Xu et al., 2015). Implicit paddings were used on both sides of the 

input for each convolution or transposed convolution layer. 

The imagery used in this study has a size of 256 256  pixels with pixel values in the range [0, 1). The 

reconstruction loss is calculated as the sum of squared errors between pixels in the original image and 

the reconstructed image. The customized loss function for the VAE is formulated as 

256 256

,

1 1

( || )i j KL

i j

X D Q P
 

    (2) 

Where
,i jX   is the squared error for pixel  ,i j  , Q is the latent distribution, P is the standard Gaussian 

distribution and ( || )KLD Q P  denotes the KL divergence loss. 
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Table 2 Neural network architecture for VAE (see Figure 3 for an abstract graphical representation) 

 

 

Figure 3 VAE architecture 

 

The latent code is sampled using the following equation 

c e     (3) 

Layer Encoder Decoder 

Hidden 

layer 

Conv2d-(N8, K3, S2, P1), BN2(N8), 

LReLU 

Conv2d-(N8, K3, S2), BN2(N8), Leaky 

ReLU 

Conv2d-(N16, K3, S2), BN2(N16), Leaky 

ReLU 

Conv2d-(N32, K3, S2), BN2(N32), Leaky 

ReLU 

Conv2d-(N64, K3, S2), BN2(N64), Leaky 

ReLU 

Conv2d-(N128, K3, S2), BN2(N128) 

Leaky ReLU 

Reshape-(BS, -1) 

FC-(N1024), BN1(N1024), Leaky ReLU 

Reshape-(BS, 128, 4, 4) 

Deconv2d-(N128, K4, S2), BN2(128), Leaky 

ReLU 

Deconv2d-(N128, K4, S2), BN2(128), Leaky 

ReLU 

Deconv2d-(N128, K4, S2), BN2(128), Leaky 

ReLU 

Deconv2d-(N64, K4, S2), BN2(64), Leaky 

ReLU 

Deconv2d-(N64, K4, S2),BN2(64), Leaky ReLU 

Deconv2d-(N64, K4, S2), BN2(64), Leaky 

ReLU 

Output 

layer 

FC-(N (latent dimension)x2), BN1((latent 

dimension) x2), Leaky ReLU 

Deconv2d-(N1, K3, S1), Sigmoid 

Note: N-number of channels/neurons, BS-batch size, K-kernel size, S-stride, FC- fully connected layer, Conv2d-

2D convolution layer, Deconv2d-2D Transposed convolution layer, BN2-2D batch normalization, BN1-1D 

batch normalization. 
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Where c  is the latent code,   and  are the mean and standard deviation of the latent distribution 

and e  is a random value from a normal distribution. 

To avoid overfitting, L2 regularization was added into all weight matrixes with decay rate equal to 

0.01. Batch normalizations were implemented to improve the stability of the neural network. The 

driver view images were randomly split into training and testing datasets with a ratio of 4:1. The VAE 

was trained with various latent dimensions for comparison. Further, several experiments were 

4  , a good balance between regularity in 

the latent space and reconstruction performance was achieved. We used Pytorch 1.2.0 to train the 

network on four P100 Nvidia GPUs with batch size of 32. Adam optimizer (Kingma & Ba, 2015) was 

used and the learning rate was 42 10 . The models were trained for 300 epochs, before which all 

models converged.  

 

4 RESULTS 

4.1 Network performance 

The network performances for VAE models with different latent spaces are displayed in Figure 4. 

Testing losses are approximately equal to the training losses. The calibrated neural network showed 

good robustness, meaning it can be applied to new visual geometries not used for training. It is 

evident that latent dimension four is a turning point for the overall loss and reconstruction loss. As the 

latent dimension increases, the KL divergence increases and reconstruction loss decreases. The model 

loss with four or more latent codes is much smaller than that with three or fewer latent codes. Finally, 

the VAE model with six latent dimensions was chosen since it has the smallest overall loss. The 

average training and testing losses are 166.23 and 165.35, respectively. Reconstruction loss 

constitutes the largest part of these losses (i.e., 165.53 and 164.65). 

The model's ability to accurately reconstruct driver view geometry is essential. Examples of the 

original images and their reconstructions are presented in Figure 5. The reconstruction losses were 

also compared for images with different numbers of visual curves, such as tangent, one curve and two 

curves. These categories were determined by human judgement. In each category, 80 images, 

containing different vertical slopes, were selected and average reconstruction losses were calculated. 

The tangent images have the lowest average reconstruction loss (87.63), while images showing two 

curves have the highest average reconstruction loss (212.51). Images with one curve have an average 

reconstruction loss of 163.42. 

 



 

Modeling and interpreting road geometry from a driver's perspective using variational autoencoders  

 

This article is protected by copyright. All rights reserved. 

 

11 

 

Figure 4 Network performance.  

 

  

(a) tangent (b) one curve 

 

(c) two curves 

Figure 5 Visual geometries and the reconstructed 

images in difference categories: a) tangent, b) one 

curve, c) two curves (left: original, right: 

reconstruction) 

 

The values of latent codes are mainly between -2 and 2. As mentioned above, latent codes were 

random samples from the latent distributions. In feature extraction, it is more convenient to use a 

single value for each code than to utilize the distribution. Therefore, to map a complex image into 

latent codes, we randomly sampled 10 sets of latent codes from the latent distribution and chose the 

set with the smallest reconstruction loss as the latent codes. It should be noted that it is necessary to 
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use the latent distribution rather than direct latent code during training to maintain both the regularity 

of the latent space and the generative ability of the decoder. 

 

4.2 Regularization of latent space 

A regularized representation enables separation of attributes that interact nonlinearly in the original, 

high-level data (Tran et al., 2017). Regularity in latent space can also be visually presented, since 

changes in the latent codes result in variations in the decoded data. One specification for visually 

judging the regularity is: the higher the proportion of latent codes that can lead to distinct changes in 

the visual image, the better the regularity. When gradually changing the value of a latent parameter 

while keeping the other latent codes constant, a smooth variation in one (and only one) attribute is 

expected due to the nature of continuous latent representation. 

Figure 6 shows the regularized representation of latent codes. A perspective image was encoded to six 

latent codes. One code at a time was replaced with a value ranging from -2 to 2, which were then 

decoded to perspective images. Most of the attributes can be expressed by four of the latent codes. 

Latent codes 1 and 2 do not have obvious impact on decoded perspective images. This is consistent 

with Figure 4, showing that the VAE models with four or more latent dimensions have similar loss 

values. 

It is shown that variations on latent code 3 lead to different visual curvatures. When gradually 

decreasing code 3 from 2 to -2, the visual curvature increases. Similarly, latent code 4 captures 

variations in visual slope. In particular, the vertical slope increases when latent code 4 increases, 

resulting in reduced sight distance. Variations in latent code 5 also result in different visual curvature 

and sight distance, where the visual curvature increases as the latent code progresses from -2 to 2. It is 

found that latent code 6 only influences curve direction, where negative values correspond to left 

turns, positive values represent right turns and zero value associates with tangent. 

Continuous variations in visual geometry are apparent with continuous changes in latent codes. 

Further, each code is correlated with a distinct attribute of road geometry. Therefore, these latent 

parameters are regularized representations of the driver view geometry. Note that these visual 

interpretations of curvature and slope are not necessarily the 2D horizontal curvature and vertical 

slope. They are based on the visual effect of combined horizontal and vertical alignments, reflecting 

what the geometry looks like from a driver's perspective. 

The distributions of the latent codes can be used to create a wide variety of latent parameter 

combinations. Corresponding driver view geometries can be generated with the decoder, including 

geometries not present in the training dataset. This is especially useful for data augmentation. 
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(a) Latent code 1 (b) Latent code 2 

  

(c) Latent code 3 (d) Latent code 4 

  

(e) Latent code 5 (f) Latent code 6 

Figure 6 Regularized representation of latent codes.  An original image was encoded into latent codes to form the basis, 

where codes 1 to 6 are  [-0.738, -0.805, 0.701, 0.941, -0.729, 0.517]. For each set of five images, only one latent code is 

changed, and others are kept consistent with the original code vector. The varying latent code is assigned a value of -2, -1, 0, 

1, 2 from left to right. For example, in (a) code 1, the first image corresponds to latent codes [-2.000, -0.805, 0.701, 0.941, -

0.729, 0.517], while the second corresponds to [-1.000, -0.805, 0.701, 0.941, -0.729, 0.517] 

 

4.3 Relations with traditional design parameters 

The practical meanings of latent parameters are further explained by comparing them to traditional 2D 

parameters. The plots of latent codes against different horizontal curves and vertical slopes are shown 

in Figures 7 and 8, respectively. In Figure 7, the perspective images are taken at 100m before the 

midpoints of horizontal curves, then the images are encoded into latent codes by the VAE model. 

There are observed relations between horizontal curve radius and latent codes 3, 5 and 6. As the 

absolute value of curve radius decreases, latent code 3 decreases and latent code 5 increases. When 

the road curves left, shown as a negative radius, latent code 6 is positive. In contrast, right turn curves 

lead to negative values for latent code 6. The absolute value of latent code 6 for all visual curves is 

consistently larger than 0.5. There is no distinct relationship between horizontal curve radius and 

latent codes 1, 2 and 4. In Figure 8, the perspective images are taken on vertical slopes with consistent 

horizontal curve radius of 600m. Latent codes 3, 4 and 5 show obvious relations to vertical slope, 

while latent codes 1, 2 and 6 have no clear 
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Figure 7 Latent code plots for different horizontal 

curve radiuses with vertical slope equals zero 

 

 

Figure 8 Latent code plots for different vertical slopes 

with horizontal radius equals 600m 

association with vertical slope. As the absolute value of vertical slope increases, latent codes 3 and 4 

increase, while latent code 5 decreases. 

The variations of latent codes against different horizontal and vertical design parameters are 

consistent with the variations of perspective images against different latent codes. For example, when 

the absolute value of the left turn curve radius increases, the value of latent code 3 increases (Figure 

7). A large horizontal curve radius leads to smaller visual curvature in perspective images. In Figure 

6, increasing values of latent code 3 result in a more moderate visual curvature. Hence, the latent 

codes capture attributes of the perspective geometries that are related to traditional design parameters. 

Plots of the latent codes as well as the curvature and altitude of a 5km mountainous highway are 

shown in Figure 9. This road contains many curves, variations in slope and combinations of horizontal 
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and vertical curves. The latent codes represent parameters calculated in one direction from abscissa 0 

to abscissa 5000. 

The existence of visual curves is correctly reflected in latent code 6, where a large negative value 

indicates a right turn and a large positive value represents a left turn. The traditional curvature plot 

shows that 38% of the road consists of circular curves and 27% are transition curves. However, 91% 

of the absolute values of latent code 6 are larger than 0.5, where the latent code reveals more 

curvature information than the design parameter does. This is reasonable since the latent codes cover 

a section of road geometry and the horizontal curve is recognizable by drivers before a curve actually 

starts. Moreover, the altitude plot shows the slopes are stable before abscissa 2000, while latent codes 

3, 4 and 5 show dramatic variations, especially when there are changes in horizontal curvature. 61% 

of latent code 3 values are negative and 54% of latent code 5 values are positive, meaning over half of 

the alignment show sharp visual curvatures. Horizontal curvature with slope could lead to limited 

sight distance (Wang et al., 2018), which is captured in these latent codes. The visual information 

predicted by latent codes is consistent with previous research, stating that superposition of horizontal 

and vertical alignments provides more curvature information (Fildes & Triggs, 1982). 

A comparison of these latent codes between accident sites and non-accident sites was performed using 

a 40km two-lane divided mountainous highway in Zhejiang, China. 39 dangerous, crash-prone roads 

were determined in two driving directions according to historical crash records from 2011 to 2013. 

The mean length of crash-prone roads was 432m (SD=102.23m). In addition, 39 normal road sections, 

non-crash-prone roads, were randomly selected (length: M=432m, SD=102.23m). The mean and 

standard deviation of latent codes on each road were calculated. A t-test showed that the mean of 

latent code 3 on crash-prone roads are significantly lower than on normal roads (p<0.01). Further, the 

means of latent codes 4 and 5 are significantly higher than on normal roads (p<0.05). This indicates 

that crash-prone roads have a sharper visual curvature, steeper slope and shorter sight distance than 

normal roads. Furthermore, the standard deviation of latent codes 3 and 6 are significantly higher on 

crash-prone roads than on normal roads (p<0.05). Hence, crash-prone roads show more variation in 

perspective geometry. Meanwhile, the mean of horizontal curvature on crash-prone roads show 

significantly higher values than on normal roads (p<0.05). However, the standard deviation of 

horizontal curvature, and the mean and standard deviation of vertical slope show no significant 

difference (p>0.05). In summary, good perspective road quality is characterized by low values for 

codes 4 and 5, high values for code 3, and low variance for codes 3 and 6. 

 

These analyses show that the latent parameters provide new means for road design assessment by 

considering a whole section of road from the driver's perspective. Also, the direct overlapping effects 

of horizontal and vertical alignments are captured in the parameters. 
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Figure 9 Latent parameters, curvature and altitude of a 

5km mountainous highway in Zhejiang, China 

 

 

5 DISCUSSION 

By changing the dimension of the latent space, architecture of encoder and decoder, weight of KL 

divergence and diversity of training dataset, various experiments were performed. Although the 

results vary, slightly different settings of these hyper-parameters still lead to a disentangled, 

exploitable latent space. Finally, the model with the best interpretation of neural network outputs was 

present.  

As shown in Figure 10, the road design parameters are used to produce perspective images. The 

alignment used can be a design plan or an existing road. For existing road, numbers of studies have 

been done on extracting design parameters using technologies such as GPS and Lidar (Holgado-Barco 

et al., 2015; Ai et al., 2015; Rasdorf et al.,_2012). Once the road geometry is obtained, perspective 

road images can be produced using the methodology proposed. The VAE compressed the geometric 

information stored in perspective images into low-dimensional space. No prior expert knowledge was 

imposed when training the model. However, the latent parameters were found to contain visually 

interpretable meanings. The compressed latent space purely represents the perspective geometric 

information by six parameters. Our study has shown that such parameters are meaningful, especially 

since no quantitative assessment for perspective geometry was previously available. The regularized 

latent parameters correspond to a distinct visual characteristic, e.g. visual curvature, indication of 
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curve direction and sight distance. Engineers can obtain an objective assessment of the design scheme 

from a driver’s perspective through these latent parameters in the early stages of design. 

  

 

Figure 10 Flow chart for producing latent codes and 

generating new perspective image. 

 

In addition to feature extraction through the encoder, the VAE also enables generating realistic 

imagery using the decoder. With the enhanced regularity in the latent space, a gradual change in each 

latent code will lead to a change in the corresponding geometric attribute, shown in Figure 6. 

Therefore, controlled generation of visual geometry is possible. Changing the primary design scheme 

by varying specific latent codes could lead to a series of design schemes for comparison, assisting 

with choosing the optimum design. The generation process is very quick with the trained VAE model. 

The change of road environment from complex to monotonous has a negative impact on distance 

estimation and reaction time (Liu & Wu, 2009; Zhao & Rong, 2012). Indications are that such bias 

can be applied to road safety assessment by identifying the occurrence of complex design. 

The training dataset was created based on a driver eye height of 1.08m, which is the appropriate eye 

height for passenger vehicle drivers (AASHTO, 2018). For different road users, there are various eye 

heights, leading to different shapes of the perspective images at the same site. In road design practice, 

different types of road user, such as car drivers and truck drivers, are usually considered 

independently. Therefore, a distinct VAE model could be used for each type of driver, based on a 

dataset with specific eye height. 

Studies on risk-compensation behaviors indicated that a good design condition, such as large 

curvature and small slope, is not always a safe design, since such design is associated with higher 

speeds and subsequently higher safety risks. In contrast, poor road conditions can lead to higher 

driving cautions and decreased speeds, thereby resulting in lower crash rates (Mannering, 2009; Labi, 

2011, 2016). Overall, a satisfactory geometry is to deliver correct road information to guide safe 

driving behaviour. Driving behavior is continuously influenced by the perception of road geometry. 

The quality of perspective road can be assessed by the values and variances of latent parameters. 

    The training dataset was created based on a driver eye height of 1.08m, which is the appropriate eye 

height for passenger vehicle drivers (AASHTO, 2018). The eye height will vary for different road 

users, leading to different shapes of the perspective images at the same site. In road design practice, 

different types of road users, such as car and truck drivers, are usually considered independently. 
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Therefore, a distinct VAE model could be used for each type of driver, based on a dataset with 

specific eye height. 

There are a few limitations in this research. Firstly, cross-sections and road environments are not 

considered. This could be explored in future research by adding more attributes to the images. 

Secondly, a challenge related to machine learning algorithms is to explain their results (Došilović et 

al., 2018). In this research, the obtained latent codes represent geometric features with physical 

meanings related to road design. However, more work is needed to interpret them from a road safety 

perspective. Finally, the generation quality of complex visual geometry (e.g., multiple curves) could 

be further improved. 

 

6 CONCLUSIONS 

Interpretation and modeling of road geometry from a driver's perspective were the main objectives of 

this study. Starting from traditional 2D design schemes, the alignment was mapped into perspective 

geometries. Then, a VAE model, an unsupervised machine learning algorithm, was built to extract 

low-dimensional features of the geometry as well as generate realistic samples with controlled 

attributes. A complete translation from traditional design parameters to latent parameters was 

obtained. 

This paper utilizes machine learning algorithms to quantitatively model perspective road geometry. 

VAE was applied to directly extract latent features for perspective images. The derived six latent 

parameters are well regularized and exploitable, as they correlate to a combination of geometric 

attributes. The latent parameters also showed relations with road crashes.  

The latent parameters provide quantitative measurements of the perspective view of a design scheme, 

in line with driver's visual perception. Indications are that they are valuable parameters to assist with 

road safety assessments. Overall, our research is useful for transportation engineers aiming to improve 

road design in the perspective of road users. In future research, in-depth analysis of the correlation 

between crashes, driving speed and the latent parameters could advance our understanding of safe 

road design. 
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