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Abstract: Quantitative description of perspective geometries is a challenging task due to the
complexities of geometric shapes. In this paper, we address this gap by proposing a new methodology
based on vagiational autoencoders (VAE) to derive low-dimensional and exploitable parameters of
the perspective road geometry. Firstly, road perspective images were generated based on different
alignment § . Then, a VAE was built to create a regularized and exploitable latent space from
the data. space is a compressed representation of perspective geometry, from which six
latent para ere derived. Without prior expert knowledge, four of the latent parameters were
found to rinresent distinctive attributes of the geometry, such as visual curvature, slope, sight

distanc irection. The latent parameters provided quantitative measurements of how the
design SM like in perspective view. It was found that a road with low accident rate has low
values for codes 4 and 5, high values for code 3, and low variance for codes 3 and 6. The trained VAE
model also@accumw generation of the perspective images by decoding the latent parameters.
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Modeling and interpreting road geometry from a driver's perspective using variational autoencoders

Overall, this research advances the understanding of road design by considering the driver’s
perception.

T
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1 INTR@BREETION

Road geon‘hﬁts a driver's perception of the driving environment. A predictable and

recognizabl@road¥ayout supports driver expectations about the road type they are driving on and the
safe drivinggbehawdbur that is expected of them (Stelling-Konczak et al., 2010; Janssen et al., 2006). In
C

China, 68% hes with serious injuries between 2012 and 2016 were in mountainous areas, where

the roads h@ve licated geometry and topographical conditions (Yu et al., 2018). Crash statistics
on more th crash reports from California and Maryland showed that improper visual search
prior to leff ses a great proportion of accidents in younger and less experienced drivers
(McKnight & McKiight, 2003). Driver-oriented infrastructure design has been found to reduce both
occurrence nsequences of human error (Zheng et al., 2017; Mackie et al., 2013). For safety
reasons, th

drivers hav e upcoming features (Citkovié, 2016). The self-explaining road concept focuses
on promoting safe behavior simply through design, where road infrastructure is designed in line with
road users' jons (Walker et al., 2013; Theeuwes & Godthelp, 1995).

mherception of road infrastructure needs to be designed to meet the expectation that

The geometry of toad layouts are closely related to driving behaviors, including speed, lane departure
and cra y ¢t al., 2009; Eustace et al., 2016; Banihashemi, 2016; Gargoum & El-Basyouny,
2016). For exa unexpected changes in road alignment lead to abrupt changes in driving speed

; Donnell et al., 2009). The overlapping of horizontal and vertical curves provides
more curvature intormation than the traditional highway design plan (Fildes & Triggs, 1982). Hassan
et al. (2002) pointed out that overlapping crest curves make the horizontal curvature appear sharper,
while oversgng sag curves make the horizontal curvature appear less sharp. In order to ensure
appropriat presentation of combined alignments, several qualitative design guidelines are
available, sfeh aShe American Association of State Highway and Transportation Officials
(AASHTO d the Transportation Association of Canada (TAC, 2017). Geometric consistency
is enhanced by uniformity and continuity in design (AASHTO, 2018; TAC, 2017).

horizontal curvature, vertical slope, etc., which are practical. These design parameters have also been
studied ‘H
design. Dril ective view is essential in road design. However, it is currently not possible to

tionships with road safety, where safety criteria are determined to guide road

objectively examing the quality of a road from a driver’s perspective, as the geometries are more
irregular a ex. To fill this gap, it is important to determine how to describe the perspective

road geom ctively. In the paper, we propose using a machine leaning algorithm, variational

E), to learn regularized latent codes from data. The codes are low-dimensional
representation rspective geometry. Meanwhile, the VAE model is able to generate perspective
images from the latent codes.
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2 LITERALURE REVIEW

2.1 Curr ign practice and limitations
Traditiona gesdesign practice involves independent design of horizontal and vertical

alignmegtsghdagiggdlignments are described by parameters such as horizontal curvature, vertical slope
and verticaljcurve radius. Transportation authorities such as the American Association of State
Highway Z&portation Officials (AASHTO) and the Transportation Association of Canada
(TAC) proydde ral design guidelines that enhance the 3D representation of the combined
alignments\QAASHI'O, 2018; TAC, 2017). One limitation is there is no specific regulation for
quantitative coogrdination of combined alignments. Designers depend on their professional skills to

visually in tlie roadway from the driver's point of view. There is no guarantee that the combined
geometry @MY traditional design is a satisfactory and safe design (Gibreel et al., 1999). Poor
superpositi izontal and vertical alignments can jeopardize driver's information perception or
cause hazardous ing behavior, e.g. sharp horizontal curvature with upward steep slope could lead
to limited stance and abrupt speed changes (Wang et al., 2018).

In the past Scades, the rapid development of road design software has enabled efficient generation of

virtual roa rom a driver's perspective (Autodesk, 2013; Eliseev et al., 2017). Real-time
display of eoictry which matches traditional 2D design profiles is now a mature technology.
Currently, % ign agencies are using computer visualization to check the quality of combined
alignments. It is also a convenient and intuitive way to show design schemes to others. However, the

ent tor driver view geometry is mainly based on expert's experience. There is limited
research quanti the quality of the perspective geometry. For example, 3D sight distance is a
substitutesifdCx to judge the safety of design from the driver's view (Jung et al., 2018; Ma et al.,
2018). However, computation of this index is complex and information such as curve direction and
sharpness is not taken into account, essential elements influencing driving performance. Since drivers
derive theiﬁiiving styles mainly from their perception of the road, it is important to consider the
combined from the driver's point of view in early stages of the design process.

O

2.2 Driveypmiesmgeometry studies
It is import@nt to extract features of the perspective alignments in order to quantitatively analyze their

effects on driving behavior. Several models have been put forward to describe the geometry,

includin t line-parabola model (Jung & Kelber, 2005), the modified hyperbola model
(Jung & K 5), the cyclotron line model (Kang et al., 2010) and the Catmull-Rom spline
model (Loose et alF 2009). These models fit the alignment using complex equations. It is unclear how

the equatio eters are related to road design.

papers were published by Yu et al (2016, 2018), where the drivers' visual lane was
11-Rom spline. The length and curvature of the visual curve were extracted as shape
parameters. With flfese new geometric parameters, accident-prone locations on two-lane mountain

highways were analyzed and safety reliability for vehicles turning right from urban major roads onto
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minor ones were evaluated. These two shape parameters for visual curves are easy to understand.
However, they are based on the researcher's decisions (cf. observer bias) and only represent limited
attributes of the driver view geometry. Moreover, reconstructing the perspective view using the length
and curvHeters is not possible. Wang et al. (2019) studied middle-aged drivers' subjective
categorizatigagf@icombined alignment and found that drivers distinguish the road categories based on
visual cha @ 5 of alignment. Experiments revealed that drivers divide the visual mountainous
alignment MtEMIFSEIdIRtinct and non-overlapping subjective categories. However, no quantitative
descriptionssofithenyisual geometry in each category were presented.

L

2.3 Vari@utoencoder
Properly opti feature extraction is the key to effective model construction (Guyon & ElisseefT,

2006). A cmproach for unsupervised feature extraction is through autoencoders (AE), first
i

introduced n et al. (2013). AE is a neural network architecture composed of an encoder and a
decoder, creati ottleneck in the middle. As data passes through the neural network, the process of
encoding reduces the dimensions of input data, while decoding reconstructs the data from the
compresse ntation. The output of the encoder is also referred to as the latent space, containing
a reduced new features extracted from the original data. Instead of using labels, input data

themselvestfguide how to train the neural network, by minimizing the difference between the input and
reconstructed data (reconstruction loss). Therefore, AE is an unsupervised machine learning
algorithm.

VAE is an eXtenston of AE where the latent space is trained to be regularized (Doersch, 2016). The

term va rs to the variational inference method in statistics, which is closely related to
regularization. utput of VAE’s encoder is enforced to follow a Gaussian distribution during
training way the latent space is regularized. A regularized latent space means it represents
separat at interact nonlinearly in the original data (Tran et al., 2017; Kempinska &

Murcio, 2019; Krajewski et al., 2018). Therefore, this compressed feature vector is generally more
interpretabs. For example, the latent space of VAE trained on MNIST dataset can represent
independe es of the characters, such as content, slope and width of the writing (Doersch,
2016). Morg
direct singl
Generative A

he decoder is trained to take random points from latent distributions instead of

sito reconstruct the data. The decoder works in a similar way as a generator in
arial Networks (GANs) (Radford et al., 2016).

Advanced fethodologies based on machine learning enable understanding the inherent structure of

comple =Scale data. Convolutional neural networks have been used to solve complex
comput i s, such as feature extraction, image generation, object detection and classification
(Krizhevs 012; Rafiei & Adeli 2017a; Dai et al., 2019; Ma et al., 2019; Wijnands et al.,
2019; Antoniades & al., 2018; Molina-Cabello et al., 2018; Hua et al., 2019; Zhao, Adeli et al., 2019;
Zhao, Hon 1., 2019). Machine learning is increasingly used in civil engineering research
(Rafiei & Adghi 6,2017b, 2018).

ully model the driver view geometry based on traditional methods. To fill this gap,
new approach to model driver view geometry based on VAE. Instead of fitting
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the alignments as curves, the neural network is designed to find a regularized set of latent parameters
for the perspective road images directly. The main contributions of this paper are as follows:

. Wd to objectively analyze road geometry from a driver's perspective is developed.
* Co spective geometry is mapped in low-dimensional and meaningful codes,
pro ntitative measurements of the road geometry.

e BheW@WEapProach can generate realistic geometry, given specific latent codes.

L

3MET LOGY

3.1 Pers vgiview mapping

Perspectiv igo is a linear mapping, which generates realistic transformations in line with how
the human eyes pr@kess images (Hearn & Baker, 1997). It enables transforming a point in the 3D
coordinate 0 a point in the 3D camera's (driver eye) coordinate system, and then projecting it

P=[X7Y

r ror

to a point i image coordinate system. Let P =[X_ Y, Z ] be a point on the road,
oint representing the camera, P =[u v1] the same point of P. in the projected 2D

plane , M gfion matrix determined by the orientation (6,,,) of the camera and K_, the

0 0
=10 f, ¢ ||0 cos(f,) sin(f,) |x
1|0 —sin(6) cos(6y)

0 0
cos(l%)h(@y) cos(d,) sin(d.)) O )
0

0 —sin(6,) cos(6,) 0 |x

sin(0,) @ 0,) 0 0 1

To ensthy and generality of the perspective view, unified model assumptions that match
driver visi sed. In the model, eye level was 1.08m above surface, positioned in the center of
the driving lane. aspect ratio was set as 4:3 (width:height) and the focal distance was S0mm with
40° horizontal and 27°vertical angle of aperture (Kiihn & Jha, 2006). An illustration of perspective

mapping i in Figure 1.
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Perspective view

L Figure 1 Perspective mapping

L]
I

3.2 Roadjgeomgtry data
In this study, oad geometry is produced according to the design specification (AASHTO, 2018).

Therefore, etry used is not from a real road but still practical in engineering practices.
Different are taken into account. The minimum curve radius included is 60m, while the

maximum 3ius is 1500m. 21 different kinds of curve radii are considered including tangent.
Nine kinds of verti@al slopes are included, ranging from -7% to 7%. A total of 100.92km road was
designed ss-sectional width a of 3.5m. Geometric summaries are provided in Table 1. As
shown in Fj ne horizontal curve is combined with nine different vertical slopes to produce
different cgbined alignments

In order to paa
the roads based

geometry into perspective images, at the first step, 3D points were identified on
e design parameters. The points were selected with 10m intervals along the
horizontal alfgn®@ént. The hypothetical camera (driver eye) was set above each point with line of sight

pointin tion of the route tangent (i.e., assumed driving direction). The 3D points in front
the camera sformed into perspective space using the mapping method described in section

3.1. The ve points within vanishing points were kept. Then, the points were connected by
straight show continuous geometries. Each location corresponded to a distinctive
perspective geometry. Therefore, sequences of realistic driver view images were obtained. To expand

the numbetsf samples, images were produced along both directions of the road and flipped

horizontall n & Khoshgoftaar, 2019). The final dataset contains 30,000 samples of
perspective g

As the focu e road geometric shape, grayscale images were produced to reduce memory
requiremen found that views of road geometry close to the driver were very similar across all
images, whille the geometries in the distance showed more variation. However, the perspective
mappin ct that more distant objects appear smaller (Hearn & Baker, 1997). The original
size of tlHas 400x300 pixels. To focus on the variations in geometry, the central square part
was cropp ing in an image size of 256x256. Each pixel is one of 256 different shades of gray

with 0 representingiblack and 255 showing white. To train the neural network, pixel values were
normalize ues between 0 and 1. Data processing procedures were implemented using python-

3.7.3 (P%are Foundation, 2019).
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Table 1 Summary of road geometries

Parameters
H Min 60

Horizontal
Max 1500
Min 7%

Vertlcarsl
Max 7%
Length (KrQ 100.92

C t dth

ross-sectional wi 35

Road geometry combination

3.3 Varigtional autoencoder
The perspel metries formed the inputs to the encoder function of a VAE (Figure 3). To

minimize thé™o
uing

etween the original inputs and reconstructed ones, weights in all network layers

are updated aining. The latent space of the VAE is enforced to follow Gaussian distributions.
In practice, the"encoder is trained to return the mean and the covariance matrix that describe these
distribution§: atent value is sampled from the distribution and fed into the decoder. The
regulari osed by penalizing the difference between the latent distribution and a standard

Gaussian distributign, measured by Kullback-Leibler (KL) divergence (Kullback, 1978). Both local
and glotwation are ensured through the mean and variance of the distribution,
independertig® rally, enforcing high regularization penalties leads to a better organized latent
space but higher rg@onstruction errors. However, the tradeoff between KL divergence and the
reconstruction errQi can be adjusted. An extension of VAE, g—VAE , incorporates a weight factor g

on. A higher value of g emphasizes the KL divergence, leading to a more

regulariz space.

The network architecture of the VAE used is presented in
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Table 2. In the encoder, 2D convolution layers encoded the images by reducing dimensionality and
increasing feature depth, followed by a fully connected layer. As the output dimensions of the encoder
are much smaller than the input dimensions, the encoder output forms a condensed representation of
the inpuHciﬁcally, the outputs of the encoder are multiple latent distributions, each
described byqammean and log variance. These latent distributions capture the variations of extracted
features in @ imagery. Latent codes were randomly sampled from these distributions. In the
decoder, a fi §6ted layer and 2D transposed convolution layers reconstructed the images to
their originaissizemiicaky RelLU activation functions were used in all layers, except the final layer
which use;ie sigmoid function (Xu et al., 2015). Implicit paddings were used on both sides of the
lution or transposed convolution layer.

input for e

The imagefguseddn this study has a size of 256x256 pixels with pixel values in the range [0, 1). The
reconstruction is calculated as the sum of squared errors between pixels in the original image and
the reconsmage. The customized loss function for the VAE is formulated as

75A 25A

: c X, +BD, (0| P) ()
i=l j=1

Where X, Euared error for pixel (i, Jj) » Qs the latent distribution, P is the standard Gaussian

distributio (O|| P) denotes the KL divergence loss.

(O
=
-
O
L
e
-
<
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Table 2 Neural network architecture for VAE (see Figure 3 for an abstract graphical representation)

Layer Encoder Decoder
Hidden #onde—(NS, K3, S2, P1), BN2(N8), FC-(N1024), BN1(N1024), Leaky ReLU
layer U

Reshape-(BS, 128, 4, 4)

N8, K3, S2), BN2(N8), Leaky
» mmReit) Deconv2d-(N128, K4, S2), BN2(128), Leaky

ReLU
h2d—(N16, K3, S2), BN2(N16), Leaky

U Deconv2d-(N128, K4, S2), BN2(128), Leaky
ReLU
2d-(N32, K3, S2), BN2(N32), Leaky
U Deconv2d-(N128, K4, S2), BN2(128), Leaky
ReLU
2d-(N64, K3, S2), BN2(N64), Leaky

Deconv2d-(N64, K4, S2), BN2(64), Leaky
ReLU
2d-(N128, K3, S2), BN2(N128)

Deconv2d-(N64, K4, S2),BN2(64), Leaky ReLU

ReLU
Deconv2d-(N64, K4, S2), BN2(64), Leaky

pe-(BS, -1) ReLU

Output (latent dimension)x2), BN1((latent Deconv2d-(N1, K3, S1), Sigmoid
layer sion) x2), Leaky ReLU

of channels/neurons, BS-batch size, K-kernel size, S-stride, FC- fully connected layer, Conv2d-
Deconv2d-2D Transposed convolution layer, BN2-2D batch normalization, BN1-1D

Encoder l':

| -— L"'itel"lt i
Real Visual Geometry ' E Distribution
Reconstruction loss S »
+ KL Divergence T
e Decoder ' Sample
e = _‘ 3
S 4== Latent Code

Generated Geometry |

Figure 3 V@ture

code is sampled using the following equation

c=pu+o-e (3)
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10

Modeling and interpreting road geometry from a driver's perspective using variational autoencoders

Where c is the latent code, 4 and o are the mean and standard deviation of the latent distribution

and e is a random value from a normal distribution.

To avoiM, L2 regularization was added into all weight matrixes with decay rate equal to
0.01. Batch ngsmalizations were implemented to improve the stability of the neural network. The

i ere randomly split into training and testing datasets with a ratio of 4:1. The VAE
s latent dimensions for comparison. Further, several experiments were
performed to set hyperparameter [ of the VAE. With g =4, a good balance between regularity in

network on Tour 0 Nvidia GPUs with batch size of 32. Adam optimizer (Kingma & Ba, 2015) was
rate was 2x107*. The models were trained for 300 epochs, before which all

4 RESULTS i

4.1 Netw formance
The netwo

erformances for VAE models with different latent spaces are displayed in Figure 4.
Testing losses are approximately equal to the training losses. The calibrated neural network showed
good robu aning it can be applied to new visual geometries not used for training. It is
evident thafllat mension four is a turning point for the overall loss and reconstruction loss. As the
latent dimension increases, the KL divergence increases and reconstruction loss decreases. The model
loss wi or more latent codes is much smaller than that with three or fewer latent codes. Finally,
the VAE mode six latent dimensions was chosen since it has the smallest overall loss. The
averag testing losses are 166.23 and 165.35, respectively. Reconstruction loss
constitutes the largest part of these losses (i.e., 165.53 and 164.65).

The modelability to accurately reconstruct driver view geometry is essential. Examples of the

original iml their reconstructions are presented in Figure 5. The reconstruction losses were
also compay images with different numbers of visual curves, such as tangent, one curve and two
curves. The gories were determined by human judgement. In each category, 80 images,
containing different vertical slopes, were selected and average reconstruction losses were calculated.
The tange have the lowest average reconstruction loss (87.63), while images showing two
curves ichest average reconstruction loss (212.51). Images with one curve have an average

reconstruc* n los?f 163.42.
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Figure 4 Network performance.

N
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P

e
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eometries and the reconstructed
images imdifference categories: a) tangent, b) one

curvg, ¢) twg curves (left: original, right:
Heconstruction)

Figure

The values of latgag codes are mainly between -2 and 2. As mentioned above, latent codes were
from the latent distributions. In feature extraction, it is more convenient to use a
ach code than to utilize the distribution. Therefore, to map a complex image into
latent codes, we omly sampled 10 sets of latent codes from the latent distribution and chose the

set with the smallest reconstruction loss as the latent codes. It should be noted that it is necessary to
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use the latent distribution rather than direct latent code during training to maintain both the regularity
of the latent space and the generative ability of the decoder.

T

4.2 Regu ion of latent space

A regulari ation enables separation of attributes that interact nonlinearly in the original,
high-level data (Tran et al., 2017). Regularity in latent space can also be visually presented, since
changes 1n ghe latent codes result in variations in the decoded data. One specification for visually
judging th ity is: the higher the proportion of latent codes that can lead to distinct changes in
the visual ingage the better the regularity. When gradually changing the value of a latent parameter
while keepllag the @gther latent codes constant, a smooth variation in one (and only one) attribute is

expected due e nature of continuous latent representation.

Figure 6 shewsithefregularized representation of latent codes. A perspective image was encoded to six
latent codes. One code at a time was replaced with a value ranging from -2 to 2, which were then
decoded to@ve images. Most of the attributes can be expressed by four of the latent codes.
Latent cod do not have obvious impact on decoded perspective images. This is consistent
with Figureﬂing that the VAE models with four or more latent dimensions have similar loss
values.

It is shown t jations on latent code 3 lead to different visual curvatures. When gradually
decreasing(€o om 2 to -2, the visual curvature increases. Similarly, latent code 4 captures
i

variations i lope. In particular, the vertical slope increases when latent code 4 increases,

resultinggi sight distance. Variations in latent code 5 also result in different visual curvature
and sight where the visual curvature increases as the latent code progresses from -2 to 2. It is
found that 1 e 6 only influences curve direction, where negative values correspond to left
turns, p s represent right turns and zero value associates with tangent.

Continuous variations in visual geometry are apparent with continuous changes in latent codes.
Further, ea@l code is correlated with a distinct attribute of road geometry. Therefore, these latent

parameters are regularized representations of the driver view geometry. Note that these visual

interpretatig
slope. The

rvature and slope are not necessarily the 2D horizontal curvature and vertical
ed on the visual effect of combined horizontal and vertical alignments, reflecting
what the geo ooks like from a driver's perspective.

The distribisi the latent codes can be used to create a wide variety of latent parameter
combinatias. CO?sponding driver view geometries can be generated with the decoder, including

geometri sent in the training dataset. This is especially useful for data augmentation.

-

<
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(b) Latent code 2

(d) Latent code 4

- B

m Latent code 5 (f) Latent code 6
Figure 6 Reguldtizedrepresentation of latent codes. An original image was encoded into latent codes to form the basis,

where codes -0.738, -0.805, 0.701, 0.941, -0.729, 0.517]. For each set of five images, only one latent code is
changed, and others ar@kept consistent with the original code vector. The varying latent code is assigned a value of -2, -1, 0,
1, 2 from left i r example, in (a) code 1, the first image corresponds to latent codes [-2.000, -0.805, 0.701, 0.941, -
0.729, 0.517], while the second corresponds to [-1.000, -0.805, 0.701, 0.941, -0.729, 0.517]

C

4.3 Relatig

th traditional design parameters

The practical % gs of latent parameters are further explained by comparing them to traditional 2D
parameters. The'plots of latent codes against different horizontal curves and vertical slopes are shown
in Figu “respectively. In Figure 7, the perspective images are taken at 100m before the

midpoints o
There ar

tal curves, then the images are encoded into latent codes by the VAE model.

ed relations between horizontal curve radius and latent codes 3, 5 and 6. As the
absolut rve radius decreases, latent code 3 decreases and latent code 5 increases. When
the road curves left, shown as a negative radius, latent code 6 is positive. In contrast, right turn curves
lead to negfitive values for latent code 6. The absolute value of latent code 6 for all visual curves is
consistent%hwan 0.5. There is no distinct relationship between horizontal curve radius and

d 4. In Figure 8, the perspective images are taken on vertical slopes with consistent

This article is protected by copyright. All rights reserved.
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g P g g V persp g

R ) . o o
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o " . .- . ° . 3 :. : . .® .
. - - .
code 1 code 2 code 3
2 2g 2
L . . . _~.:~::.
e * TN e . e
R o w0 St S e e w0 4w e
. i oe o.:"_' o
code 4 code § code 6
Figure ng€ode plots for different horizontal

curve radiuses with vertical slope equals zero

slope o o o
% -5% 1 1 1% 1 3
N ¢ . .\ . ° . ‘
code | code 2 coﬂe 3
IOPeV 1 1 : 1% ', : 1 3
e * g %e ,

code 4 code 5 code 6

Figure 8 de plots for different vertical slopes

ontal radius equals 600m
associatio ical slope. As the absolute value of vertical slope increases, latent codes 3 and 4
increas i t code 5 decreases.

The VariHent codes against different horizontal and vertical design parameters are
consistent i ariations of perspective images against different latent codes. For example, when
the absolute value Bf the left turn curve radius increases, the value of latent code 3 increases (Figure
7). A large al curve radius leads to smaller visual curvature in perspective images. In Figure
of latent code 3 result in a more moderate visual curvature. Hence, the latent

6, increasing

codes ¢ ibutes of the perspective geometries that are related to traditional design parameters.

Plots of the laten
shown in Figure 9. This road contains many curves, variations in slope and combinations of horizontal

odes as well as the curvature and altitude of a Skm mountainous highway are
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and vertical curves. The latent codes represent parameters calculated in one direction from abscissa 0
to abscissa 5000.

The exiWal curves is correctly reflected in latent code 6, where a large negative value
indicates a Tight turn and a large positive value represents a left turn. The traditional curvature plot
shows that @ e road consists of circular curves and 27% are transition curves. However, 91%
of the abso[lig les.0f latent code 6 are larger than 0.5, where the latent code reveals more
curvatugg ipformation than the design parameter does. This is reasonable since the latent codes cover
a section ofgroad geometry and the horizontal curve is recognizable by drivers before a curve actually
starts. Mor; altitude plot shows the slopes are stable before abscissa 2000, while latent codes
3,4 and 5 si®w atic variations, especially when there are changes in horizontal curvature. 61%
of latent code 3 vallies are negative and 54% of latent code 5 values are positive, meaning over half of
the alignment show sharp visual curvatures. Horizontal curvature with slope could lead to limited

sight distari€e (Wallg et al., 2018), which is captured in these latent codes. The visual information
predicted byal@tenfCodes is consistent with previous research, stating that superposition of horizontal

and Verticzjnts provides more curvature information (Fildes & Triggs, 1982).

A compari

se latent codes between accident sites and non-accident sites was performed using

a 40km two, iided mountainous highway in Zhejiang, China. 39 dangerous, crash-prone roads
were deterilined in two driving directions according to historical crash records from 2011 to 2013.
The mean | crash-prone roads was 432m (SD=102.23m). In addition, 39 normal road sections,
non-crash- ds, were randomly selected (length: M=432m, SD=102.23m). The mean and
standard dayia f latent codes on each road were calculated. A t-test showed that the mean of

latent code 3 on Crash-prone roads are significantly lower than on normal roads (p<0.01). Further, the
means s 4 and 5 are significantly higher than on normal roads (p<0.05). This indicates
ds have a sharper visual curvature, steeper slope and shorter sight distance than
urthermore, the standard deviation of latent codes 3 and 6 are significantly higher on
crash-p an on normal roads (p<0.05). Hence, crash-prone roads show more variation in
perspective geometry. Meanwhile, the mean of horizontal curvature on crash-prone roads show
signiﬁcantg higher values than on normal roads (p<0.05). However, the standard deviation of

that crash-pron
normal

horizontal , and the mean and standard deviation of vertical slope show no significant
difference In summary, good perspective road quality is characterized by low values for
codes 4 and alues for code 3, and low variance for codes 3 and 6.

These a that the latent parameters provide new means for road design assessment by
consider section of road from the driver's perspective. Also, the direct overlapping effects
of horizont; rtical alignments are captured in the parameters.

<
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Figure 9 Latent piameters, curvature and altitude of a
Skm ifious highway in Zhejiang, China

5 DISCU
By cha ension of the latent space, architecture of encoder and decoder, weight of KL

divergence and diversity of training dataset, various experiments were performed. Although the
results Var;slightly different settings of these hyper-parameters still lead to a disentangled,

Curvature(1/m)

exploitabl ace. Finally, the model with the best interpretation of neural network outputs was
present.

As shown rD 10, the road design parameters are used to produce perspective images. The
alignment be a design plan or an existing road. For existing road, numbers of studies have
been done @Qn extracting design parameters using technologies such as GPS and Lidar (Holgado-Barco
et al., 2015, ., 2015; Rasdorf et al., 2012). Once the road geometry is obtained, perspective
road ieroduced using the methodology proposed. The VAE compressed the geometric
informatio in perspective images into low-dimensional space. No prior expert knowledge was

imposed when traifling the model. However, the latent parameters were found to contain visually
interpretab ngs. The compressed latent space purely represents the perspective geometric
parameters. Our study has shown that such parameters are meaningful, especially

information b

since ng l@

latent parame

ative assessment for perspective geometry was previously available. The regularized
orrespond to a distinct visual characteristic, e.g. visual curvature, indication of
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curve direction and sight distance. Engineers can obtain an objective assessment of the design scheme
from a driver’s perspective through these latent parameters in the early stages of design.

Perspective
mapping

Road
alignment

VAE

Figure 108Flow ghart for producing latent codes and
generating new perspective image.

In addition e extraction through the encoder, the VAE also enables generating realistic
imagery usj coder. With the enhanced regularity in the latent space, a gradual change in each
latent code will lead to a change in the corresponding geometric attribute, shown in Figure 6.
Therefore, €ontrolled generation of visual geometry is possible. Changing the primary design scheme
by varying ifigglatent codes could lead to a series of design schemes for comparison, assisting
with choosipggthe@ptimum design. The generation process is very quick with the trained VAE model.
The changglo @ environment from complex to monotonous has a negative impact on distance
estimation a#id ion time (Liu & Wu, 2009; Zhao & Rong, 2012). Indications are that such bias

d safety assessment by identifying the occurrence of complex design.

can be

The training d; was created based on a driver eye height of 1.08m, which is the appropriate eye
height vehicle drivers (AASHTO, 2018). For different road users, there are various eye
heights, leading to different shapes of the perspective images at the same site. In road design practice,
different types of road user, such as car drivers and truck drivers, are usually considered
independe)\:hefore, a distinct VAE model could be used for each type of driver, based on a
dataset with specific eye height.

Studies on @ pensation behaviors indicated that a good design condition, such as large

curvature and Shall slope, is not always a safe design, since such design is associated with higher
speeds an sequently higher safety risks. In contrast, poor road conditions can lead to higher
driving decreased speeds, thereby resulting in lower crash rates (Mannering, 2009; Labi,
2011, 201;. Overgl, a satisfactory geometry is to deliver correct road information to guide safe
driving behaviour. Driving behavior is continuously influenced by the perception of road geometry.

The qualit ective road can be assessed by the values and variances of latent parameters.

The trai aset was created based on a driver eye height of 1.08m, which is the appropriate eye
height for r vehicle drivers (AASHTO, 2018). The eye height will vary for different road
users, | different shapes of the perspective images at the same site. In road design practice,
different type

ad users, such as car and truck drivers, are usually considered independently.
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Therefore, a distinct VAE model could be used for each type of driver, based on a dataset with
specific eye height.

There aWtations in this research. Firstly, cross-sections and road environments are not
considered."This could be explored in future research by adding more attributes to the images.
Secondly,
al., 2018).
meaninﬁ rmroad design. However, more work is needed to interpret them from a road safety
perspectivggFinally, the generation quality of complex visual geometry (e.g., multiple curves) could
be further iL

fige related to machine learning algorithms is to explain their results (Dosilovi¢ et
ch, the obtained latent codes represent geometric features with physical

6 CON SIONS

SCl

Interpretati odeling of road geometry from a driver's perspective were the main objectives of
this study. Starting¥rom traditional 2D design schemes, the alignment was mapped into perspective

U

geometries. Then, a VAE model, an unsupervised machine learning algorithm, was built to extract
low-dimengronal teatures of the geometry as well as generate realistic samples with controlled
attributes. te translation from traditional design parameters to latent parameters was
obtained.

[

d

This paper Gtil
VAE w
parame
attributes.

achine learning algorithms to quantitatively model perspective road geometry.
directly extract latent features for perspective images. The derived six latent
well regularized and exploitable, as they correlate to a combination of geometric

The parameters also showed relations with road crashes.

M

The lat
in line with driver's visual perception. Indications are that they are valuable parameters to assist with

s provide quantitative measurements of the perspective view of a design scheme,

road safety@ssessments. Overall, our research is useful for transportation engineers aiming to improve

I

road desig rspective of road users. In future research, in-depth analysis of the correlation
between cr: iving speed and the latent parameters could advance our understanding of safe
road desig

-
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