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Abstract: In the United States, to ensure the railroad 

safety and keep its efficient operation, regular track 

inspections on track component defects are required by the 

Federal Railroad Administration (FRA). Various types of 

inspection equipment have been applied, such as ground 

penetrating radar, laser, and LiDAR, but they are usually 

very expensive and require extensive training and rich 

experience to operate. To date, track inspections still heavily 

rely on manual inspections which are low-efficient, 

subjective, and not as accurate as desired, especially for 

missing and broken track components, such as spikes, clips, 

and tie plates. To address this issue, a real-time pixel-level 

rail components detection framework to inspect track timely 

and accurately is proposed in this study. The first public rail 

components image database, including rails, spikes, and 

clips, is built and released online. A real-time pixel-level 

detection framework with improved real-time instance 

segmentation models is developed. The improved models 

leverage fast object detection and highly accurate instance 

segmentation. Backbones with more granular levels and 

receptive fields are implemented in the proposed models. 

Compared with the original YOLACT and Mask R-CNN 

models, the proposed models are able to: 1) achieve 59.9 

bbox mAP, and 63.6 mask mAP with the customized dataset, 

which are higher than the other models, and 2) achieve a 

real-time speed which is over 30 FPS processing a high-

resolution video (1080×1092) with a single GPU. The fast 

processing speed can quickly turn inspection videos into 

useful information to assist track maintenance. The railroad 

track components image dataset can be accessed at 

https://github.com/jonguo111/Rail_components_image_data 

1 INTRODUCTION 

Periodic inspection on the railroad track components is 

essential to maintain railroad safety and keep efficient 

operations. According to the Federal Railroad 

Administration (FRA) safety database (FRA, 2018a), there 

were 546 accidents associated with track defects in 2018, 

resulting in over $97 million financial loss and uncountable 

negative social impact. Out of the 546 accidents, there are 48 

accidents caused by missing spikes, clips, and broken rails, 

leading to around $10 million damages. In the United States, 

FRA mandates regular track inspections as part of the early 

warning strategy (FRA, 2018b). Unfortunately, to date, most 

of the track inspection work, except for the track geometry 

measurement, is still very labor- and time-intensive, 

especially for inspecting missing track components. Due to 

the nature of the manual inspection, the results of inspecting 
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missing components could be very low-efficient and 

expensive. Based on Liu et al. (2014), except for the labor 

cost, the speed of inspection is around 15 to 20 mph and the 

average inspection cost per hour per vehicle is almost 300 

dollars. Even with the manned-inspection vehicles, the 

expected annual inspection cost is easily millions of dollars, 

let alone a considerable amount of the missing track 

components is manually inspected by walking crew. This 

issue is more pronounced with the Class I railroad mainlines 

due to the saturated traffic volume and limited windows for 

inspection and maintenance, leading to accidents and even 

derailments. For example, broken spikes caused a 120-car 

Norfolk Southern train derailment at Vandergrift, PA, which 

spilled between 3,000 and 4,000 gallons of crude oil 

(Hardway, 2014). Therefore, the automated rail track 

components inspection is very meaningful for the railroad 

industry as pointed out by the FRA (Saadat et al., 2018). 

In the past few years, many efforts have been devoted to 

developing automatic track inspection systems. Yang et al. 

(2011) demonstrated a Direction Field (DF)-based method 

for detecting absent fasteners. The DF was extracted as the 

feature element for recognition and the weight coefficient 

matrix was obtained based on the Linear Discriminant 

Analysis (LDA). Their detection approach performed well 

on low-resolution images with 320×240 pixels taken from 

high-speed railways, but the performance on high-resolution 

images was not mentioned. Li et al. (2012) reported a real-

time visual inspection system (VIS) for discrete surface 

detects. VIS can detect rail defects with a speed of 216 km/h. 

But the system was not tested on other track components. 

Resendiz et al. (2013) used Gabor filters and the multiple 

signal classification (MUSIC) to perform periodicity 

detection on the track components. However, their proposed 

method cannot handle both detection and segmentation 

simultaneously. Feng et al. (2013) proposed a new 

probabilistic structure topic model (STM) to detect partially 

worn and missing fasteners. Compared with other methods 

such as support-vector machine (SVM) and AdaboostSTM, 

STM was more robust and can achieve a higher precision on 

the detection of fasteners with different orientations and 

illumination conditions. Unfortunately, STM was very 

demanding in computational power, thus, it cannot perform 

an end-to-end test. Aytekin et al. (2015) developed a real-

time railway fastener detection system using a high-speed 3-

D laser range finder. On one hand, the system can detect the 

railway fasteners with a speed of 100 km/h. On the other 

hand, the system was not tested with other track components.  

Earlier computer vision algorithms such as edge detection, 

Adaboost, SVM, and others, have been applied to detect 

track components and improved inspection efficiency. 

However, there is still room for improvement in terms of 

accuracy, efficiency, speed, end-to-end test, and robustness. 

Recently, the convolutional neural network (CNN), which 

automatically learns input features efficiently, has been 

extremely successful in computer vision development. It has 

become popular with the increased size of training data and 

improved computation power (Pan & Yang, 2020). Since 

the early 2000s, CNNs have dominated object detection, 

semantic segmentation, instance segmentation, multiple 

object tracking (MOT), and other similar work (LeCun et al., 

2015). Several CNNs with high accuracy and efficiency, 

have been successfully developed and adopted in the field. 

In terms of object detection, there are mainly two categories, 

one-stage detector and two-stage detector (Jiao et al., 2019). 

YOLO (Redmon et al., 2016) is the typical one-stage 

detector that works in real-time with high inference speed, 

and 30 FPS is a key factor to determine whether a model can 

perform “live task” or not. For the two-stage detectors, Fast 

R-CNN (Girshick, 2015) is the most typical one, which has 

high accuracy on the object localization and recognition. In 

terms of instance segmentation, Mask R-CNN (He et al., 

2017), a state-of-the-art model, is very accurate on object 

detection, whereas its processing speed is relatively low. To 

fill the gap, YOLACT (Bolya, Zhou, Xiao & Lee, 2019) 

separated instance segmentation into two parallel tasks and 

achieved over 30 FPS processing speed on MS COCO (Lin 

et al., 2014) with only one GPU. 

With the significant progress in neural network and 

computer vision, infrastructure damage detection methods, 

based on machine learning and computer vision, have been 

successfully applied in civil engineering (Adeli, 2001; Rafiei 

and Adeli, 2017; Cha et al., 2018; Rafiei and Adeli, 2018; 

Perez-Ramirez et al., 2019; Yeum et al., 2019; Cao et al., 

2020). For instance, in bridge damage detection, researchers 

have conducted bridge health inspections by using the 

Bayesian optimized deep learning model (Liang, 2019), 

concrete bridge surface damage detection by using the 

improved YOLOv3 (C. Zhang, Chang, & Jamshidi, 2020), 

and crack evaluation of a high-rise bridge by using a 

modified SegNet (Jang, An, Kim, & Cho, 2020). For 

pavement assessment and crack detection, CrackNet and 

CrackNet-V for pixel-level cracking detection on 3D asphalt 

images were developed (Fei et al., 2019; A. Zhang et al., 

2017). Jeong et al. (Jeong, Jo, & Ditzler, 2020) assessed the 

pavement roughness by using an optimized CNN. For 

concrete structure damage evaluation, there were studies on 

the reinforced concrete building damage detection using 

ResNet-50 and ResNet-50-based YOLOv2 (Pan & Yang, 

2020), pixel-level multiple damage detection of concrete 

structure by using a fine-tuned DesNet-121 (Li, Zhao, & 

Zhou, 2019), and concrete crack detection by using context-

aware semantic segmentation (X. Zhang, Rajan, & Story, 

2019). Moreover, health condition monitoring of civil 

infrastructure has widely been using CNNs, such as 

infrastructure condition assessment using DCNNs (Wu et al., 

2019) and the estimation of wind-induced responses using a 

CNN model (Oh, Glisic, Kim, & Park, 2019). However, few 

studies implement the cutting-edge CNN models on railroad 

track inspection and detection. Gibert et al. (2015, 2016) 

attempted to use the DCNN model, which was developed for 

semantic image segmentation, in railway ties and fasteners 

inspection. The target objects needed to be classified on 

multiple levels and cannot perform a real-time and end-to-

end test. 
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Figure 1 Content of this study 

 

Wu et al. (2018) built a novel visual inspection model for rail 

surface defects using UAV images and gray stretch 

maximum entropy. Due to limited performance under 

visibility and environmental variations, the model has few 

field applications. Later, Wu et al. (2019) proposed a deep 

learning-based method to improve the inspection on track 

fasteners using UAV images. However, it only focused on 

object detection but not segmentation, leaving it hard to 

characterize the damage shape of a certain track component.   

Up to now, track component detection is still a very 

challenging task due to the complex environmental 

condition, small or tiny objects, and limited training data. 

Besides, the railroad track could appear to be very similar, 

but there would also be some variations. For example, the 

spikes and clips may be quite different from each other 

depending on the types. Also, the appearance of the same 

components would change based on the surrounding 

environment, considering the track would go through 

different remote/rural areas. This study proposes a computer 

vision-based pixel-level track components detection system 

by using the improved one-stage instance segmentation 

model and prior knowledge, aiming to inspect the rail 

components in a rapid, accurate, and convenient fashion. The 

proposed network extracts the input features from the 

improved backbone, predicts objects in different scales 

utilizing feature pyramid network, and generates high-

quality masks by assembling prototype generation and mask 

coefficient. As Figure 1 shows, three major tasks are 

conducted in this study: 1) data preparation, 2) training & 

validation, and 3) prediction & comparison with other state-

of-the-art models. In this study, the contributions and 

novelties include: 1) The first public railroad components 

dataset, which includes a total of 1000 images, is built and 

released online for free access. It may prompt the 

implementation of cutting-edge deep learning models in the 

railroad application. 2) Real-time instance segmentation 

models with fast speed and high accuracy are firstly 

improved and utilized in railroad research. Testing results 

show the improved models outperform the original models. 

In the future, when it is implemented on a  

mobile computing board which has enough computational 

power, the current “walking inspection” in the railroad could 

be replaced, and the future inspection work can be more 

efficient and accurate. 3) The effects of different illumination 

conditions on predictions are discussed. The testing results 

verified the illumination condition would influence the 

performance of the models, and the improved models work 

better than the original models under low-visibility 

conditions.  

 

2 METHODOLOGY 

 

2.1 Proposed neural network architecture 

To accurately identify multiple railroad track components, 

YOLACT-Res2Net-50 and YOLACT-Res2Net-101, which 

adapt a new backbone architecture compared to the original 

models, are proposed and evaluated in this study. Figure 2 

presents the main structure of the proposed models. 

Specifically, the main structure includes backbone (feature 

extractor), feature pyramid network (FPN), prediction head 

(generating anchors), and Protonet (predicting k prototype 

masks). In general, instance segmentation is more difficult 

than object detection since it heavily relies on feature 

localization to generate masks, resulting in low speed and 

impractical in field applications. Nevertheless, the YOLACT 

type model separates the instance segmentation into two 

parallel tasks. One is responsible for generating prototype 

masks using the Protonet (a fully convolutional network) 

over the entire image, and the other one focuses on predicting 

anchors and mask coefficients by using prediction head. 

These two tasks are assembled by a linear combination, and 

the outputs are generated with a threshold. In this way, the 

model improves inference speed and mask quality. 

 
2.2 Backbone structure 

In object detection, the backbone acts as the main feature 

extractor, which takes images or videos as input and yields 

corresponding feature maps (Jiao et al., 2019). According to 

the specific needs of detection accuracy and efficiency, 

different backbones can be developed for a model after a 

modification or tuning. For high accuracy, a deep and  
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Figure 2 The main structure of the proposed models 

 

 

densely connected backbone, such as the ResNet and 

DenseNet, can be employed in the model. Considering the 

speed and efficiency, lightweight backbones, such as the 

MobileNet and EfficientNet, would be preferred. In this 

study, to improve the detection performance, a new 

backbone, Res2Net, with a stronger multi-scale 

representation capability is implemented into the proposed 

models, YOLACT-Res2Net-50 and YOLACT-Res2Net-

101. More details are presented in the following sections.  

 

2.2.1 ResNet-50 & ResNet-101 

ResNet-50 and ResNet-101 backbone (He et al., 2016) are 

adopted in the original YOLACT models. As the name 

indicates, ResNet-50 and ResNet-101 include 50 layers and 

101 layers, respectively. To reduce the inference 

computations, the bottleneck structure is introduced in the 

ResNet. Figure 3 shows the bottleneck design for ResNet-50 

and ResNet-101. As shown in Figure 3, with the bottleneck 

design, the first 1×1 convolution reduces a 256-dimension 

channel to a 64-dimension channel, and it is recovered by a 

1×1 convolution at the end. 

Figure 4 shows the main structure of the ResNet-50. It 

consists of five stages, which are Conv1, Layer1, Layer2, 

Layer3, and Layer4, respectively, corresponding to C1 to C5 

shown in Figure 2. Due to the limitation on the space, C1 and 

C2 are not plotted in Figure 2. From Layer1 to Layer4, each 

block contains three convolutional layers, which represent 

the bottleneck module. Specifically, there are 3, 4, 6, and 3 

stacked blocks in ResNet-50. Similarly, in ResNet-101, there 

are 3, 4, 23, and 3 stacked blocks. Furthermore, after Conv1, 

Layer1, Layer2, Lay3, and Layer4, the input image size 

becomes 1/2, 1/4, 1/8, 1/16, and 1/32 of the original image 

size, respectively.  

 
Figure 3 Structure of bottleneck design 

 
2.2.2 Res2Net-50 & Res2Net-101 

Res2Net (Gao et al. 2019) is a new backbone architecture 

which can improve the multi-scale representation capability 

at a granular level. Figure 5 shows the architecture of the 

Res2Net bottleneck which plays an important role in the new 

backbone. In this bottleneck structure, the original 3×3 filter 

of n channels shown in Figure 3 is replaced with a set of 

smaller filter groups. Each group has w channels. Note, 

n=w×s, where s represents the scale. As shown in Figure 5, 

following the 1×1 convolution, the feature maps are evenly 

split into s subsets. xi is one of the subsets which has 1/s 

number of channels and the same spatial size with inputs. For 

each feature subset xi (i ≥2), there is a 3×3 convolution 

corresponding to it, namely as Ki (). While for x1 and y1 =x1, 

there is no convolution. Each output feature map, yi, is the 

output of Ki (). The calculations are summarized in Equation 

(1). During the following model training and evaluation in 

this study, w is assigned to 26 and s is assigned to 4.  
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Figure 4 Main structure of ResNet-50 
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where yi is the output feature map, xi is the input feature map, 

Ki is the convolution corresponding to xi.  

 

To better show the improved network architecture, Table 

1 presents the detailed parameters of the proposed 

YOLACT-Res2Net-50 backbone. As shown in Figure 4, 

there are five stages: Conv1, Layer1, Layer2, Layer3, and 

Layer4. The main difference is the bottleneck structures 

shown in Figure 3 and Figure 5. It also can be referred in the 

filter size shown in Table 1. The original filters are changed 

from [1×1, 3×3, 1×1] to [1×1, 3×3, 3×3, 3×3, 1×1]. 

Meanwhile, from x2 to x4, there are convolutional processes 

with each kernel. This way, as the literature (Gao et al., 2019) 

mentioned, the range of receptive fields for each network 

layer will increase. Therefore, the model will have better 

detection performance. Besides, it is worth noting that the 

introduced feature sets cause changes in the output channels. 

 
2.3 FPN structure 

To detect objects on multiple scales, Feature Pyramid 

Network (FPN) (Lin. et al., 2017) has widely been using in 

many object detection and segmentation models. Typically, 

the composition of an FPN includes a bottom-up pathway, a 

top-down pathway, and lateral connections. The bottom-up 

pathway is the feed-forward computation for the backbone to 

extract features in the inputs. The assembly of convolution 

layers with the same output feature size is denoted as the 

stage in the FPN. Specifically, the backbone, as shown in 

Figure 1, {C3, C4, C5} is the output of the last residual 

blocks in the stage of Layer2, Layer3, and Layer4, 

respectively. When layers go up, the spatial resolution 

decreases. In terms of the top-down pathway, it constructs 

the high-resolution layers from higher layers in the pyramid 

which are semantically strong, but not precise. Hence, the 

later connections are then used to merge the features from 

the bottom-up pathway and top-down pathway for a better 

prediction on the object locations. The original set of feature 

output in the FPN is {P3, P4, P5}, 

 
Figure 5 Structure of. Res2Net bottleneck (scale=4) 

 

corresponding to {C3, C4, C5}. In the YOLACT type 

models, to increase the detection performance on the small 

objects, P5 is upsampled to P6 and P7 with one-fourth 

dimensions; meanwhile, P2 is omitted.  

 

2.4 Prototype generation 

To improve the operation speed, instance segmentation is 

achieved by two parallel tasks in the original and improved 

models. One of the parallel tasks, generating prototype 

masks, is completed by Protonet. It is worth noting Protonet 

is a fully connected network (FCN), which is attached to the 

P3 layer in the FPN. The architecture of Protonet can be seen 

in Figure 2. In this branch, k Protonet masks without loss 

computations are proposed for the entire image. To improve 

the instance segmentation performance, we increase the k 

from 32 to 64 in the proposed models. A nonlinear activation 

function, ReLU, is used to keep the outputs from Protonet 

unbounded and generate more interpretable prototypes. It 

also needs to mention that the number of prototype masks are 
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Table 1 The detailed specifications of backbone of proposed Res2Net-50 

Layer Type Filter size Stride Output channels Output size 

Input image     512 

Conv1  7×7 2 64 256 

Layer1 

Max pooling 3×3 2 64 128 

bottleneck 

1 1,  104

3 3,  26

3 3,  26 3

3 3,  26

1 1,  256

 
 


 
  
 
 

  

  256 128 

Layer2 bottleneck 

1 1,  208

3 3,  52

3 3,  52 4

3 3,  52

1 1,  512

 
 


 
  
 
 

  

  512 64 

Layer3 bottleneck 

1 1,  416

3 3,  104

3 3,  104 6

3 3,  104

1 1,  1024

 
 


 
  
 
 

  

  1024 32 

Layer4 bottleneck 

1 1,  832

3 3,  208

3 3,  208 3

3 3,  208

1 1,  2048

 
 


 
  
 
 

  

  2048 16 

 

independent of the number of categories; thus, it can lead to 

a distributed representation for the generated prototypes. 

Example prototype images generated by the proposed 

YOLACT-Res2Net-50 are shown in Figure 6. The high-

resolution prototypes are beneficial for mask quality and 

detection performance on small objects. 

 

2.5 Mask coefficient and assembly 

The other parallel task of instance segmentation is to 

generate mask coefficients in anchor-based object detectors 

(prediction head). Unlike RetinaNet, the original and 

improved models use a shallower predictor and adopt a mask 

coefficient branch. As Figure 2 shows, in the prediction head, 

there are 4+c+k coefficients per anchor. To subtract the 

generated prototypes, the tanh activation function is applied. 

The masks are generated by assembling Protonet output and 

mask coefficients using a linear combination. A sigmoid 

nonlinearity is applied to generate final masks. Equation (2) 

shows the mentioned steps. During the training and 

evaluation process, the final masks are cropped with the 

ground truth bounding boxes and predicted bounding boxes, 

respectively. 

 

( )TM PC=
 

(2) 

where P is an h×w×k matrix of prototype masks and C is a 

n×k matrix of mask coefficients for n instances surviving 

NMS and score thresholding.  

 

2.6 Loss functions 

Three loss functions, including mask loss, classification 

loss, and box regression loss, are used in data training. 

Specifically, the mask loss applies pixel-wise binary cross-

entropy (BCE) loss function to calculate the loss between the 

assembled Masks M and the ground truth masks Mgt. Mask 

loss is expressed in Equation (3). For classification loss and 

box regression loss, the functions are shown in Equation (4) 

and (5). The corresponding weights for these three loss 

functions are 1, 1.5, and 6.125, respectively.  

( , )mask gtL BCE M M=  (3) 

where M is the assembled masks, Mgt is the ground truth 

masks 
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Figure 6 Prototype image generation 
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j j i i j j i ig g d d g g d d= − = −  (4) 

 
1
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ˆ( , , ) ( )
N

k m m

loc ij L i j

i Pos m cx cy w h

L x l g x smooth l g
 

= −   

where l is the predicted box, g is the ground truth, (cx, cy), w, 

and h is the center, width, and the height of the default 

bounding box (d). N is the number of matched defaulted 

boxes. If N=0, then the loss is 0. 𝑥𝑖𝑗
𝑘 = {1,0} to be an indicator 

of matching the i-th default bounding box and j-th ground 

truth bounding box of category k.  

0ˆ ˆ( , ) log( ) log( )
N

p p

conf ij i i

i pos i Neg

L x c x c c
 

= − −   

(5) exp( )
ˆwhere  

exp( )

p

p i

i p

ip

c
c

c
=


 

where c is the softmax loss over multiple classes 

confidences.  

 

3 EXPERIMENTS AND RESULTS 

 

To validate the performance of the proposed models and 

compare them with the original models having their default 

backbones, five models are trained and tested in this study. 

Specifically, the original models are YOLACT-ResNet-50 

and YOLACT-ResNet-101. The improved models are 

named as YOLACT-Res2Net-50 and YOLACT-Res2Net-

101. In addition, Mask R-CNN, which represents the high 

mask quality and the high accuracy on object detection, is 

trained and evaluated, aiming to improve the comparison 

between Mask R-CNN and the improved models. For the 

original models and the improved models, the training 

processes are completed in the same module. For Mask R-

CNN, MMDetection (Chen et al., 2019) which is an open-

source object detection toolbox based on Pytorch, is adopted 

for friendly usage, training, and evaluation. The detection 

results generated from different models are evaluated based 

on MS COCO evaluation metric (Lin et al., 2014) aiming to 

compare the results fairly and comprehensively. The 

validation curves generated from the training and validation 

process of the original and improved models are plotted and 

discussed. For Mask R-CNN, since there are differences 

between different training modules, only AP, AP50, and AP75 

are compared and evaluated in Table 3. 

 

3.1 Data set preparation 

The images are saved from video frames recorded on an 

iPhone® 8 smartphone with a 12-megapixel main camera 

which has a single wide-angle lens with an f/1.8 aperture. 

The videos are taken from a railroad section besides 300 

Main St. Columbia, SC. The section is between GPS 

coordinates [33.988208, -81.025973] and [33.989474, -

81.025942]. The smartphone is held in hand and the video is 

taken at a walking speed along the track. A total of 30 

minutes of video is recorded and saved on the smartphone. 

The original video resolution is 1920×1080 and the 

converted image size is set to 512×512 to meet the training 

image size requirement. Three types of rail components, 

including rail, spike, and clip are included in the image 

database. To prevent overfitting, the training images are 

processed with image augmentation, including mirroring, 

rotation (90°), and the combination of rotation (180°) and 

gaussian noise. A popular labeling tool, labelme (Wada, 

2016) is employed to generate the annotation files.  

The output JSON files are converted to COCO format 

based on the prepared code for training, validation, and 

evaluation. Figure 7 shows the ground truth and the labeling 

mask. Note that the background is category 0. The rail, clip, 

and spike represent category 1, category 2, and category 3, 

respectively. The category IDs should be correctly associated 

with the class names. Otherwise, the detection results will 

have the wrong labels. Following the general ratio of the 

cross-validation principle and previous studies (Zhang, 

Rajan & Story, 2019; Li, Zhao & Zhou, 2019 ), the ratio 

between the training set and test set is set to 8:2. A total of 

1000 images, which are released online for free access, are 

used for training and test. To reduce the bias and ensure the 

training processes are statistically significant, the 5-fold 

cross-validation is performed in the training procedure. 

Specifically, 1000 images are randomly split into 5 folds and 

each fold contains 200 images. Each group is taken as a test 

set and the remaining groups are considered as the training 

set. Totally, 25 training and tests are for the entire dataset. 

The evaluation results including the mean values and 

standard deviations are shown in Table 3. 
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(a)   (b) 

Figure 7 Example of original jpg image and label result (a) 

Ground truth (b) instance label visualization 

 

3.2 Training and validation 

Transfer learning is a convenient timesaving method to 

train deep learning models. Since multiple models need to be 

trained and evaluated, transfer learning, other than training 

individual models from scratches, is employed in the test. 

Pre-trained weights for the backbones of the proposed 

models and original models are implemented in the model 

initialization stage. Because the new backbones are adapted 

in the original models, the dictionary of key and value in the 

pre-trained weight file needs to be updated with the proposed 

network structure. To avoid program running errors and 

make sure the training is successfully started, new functions 

are written to filter the unused layers (such as some batch 

normalization layers) in pre-trained weight files and make 

the proposed architecture correspond to the original settings.  

Generally, the training process aims to minimize the 

overall loss by optimizing the model parameters (Wang & 

Cheng, 2020). In other words, the lower the overall loss is, 

the better the model is. In this study, the popular stochastic 

gradient descent (SGD) optimizer is applied to train the 

improved models. Table 2 shows the training 

hyperparameters. The training iteration is 10k and the initial 

learning rate is 10-3. The learning rate is a vital 

hyperparameter in model performance. A small value will 

result in a long training process, and a large value will lead 

to hasty and unstable training. In this study, the initial 

learning rate is divided by 10 at iterations 2k, 6k, and 7k by 

using a weight decay of 5×10-4 and a momentum of 0.9.  

To configure and expedite the model training, the Pytorch 

library developed by Facebook and the packages of CUDA 

10.2 with Cudnn 7.6.5 developed by NVIDIA are included 

in this study. All the training processes are accomplished in 

a lab server. The server system is CentOS 7.2 with Inter i7 

CPU. The GPU is NVIDIA 1080 Ti with driver 440.33. The 

training time for each model takes around 1 to 1.5 hours. 

Figure 8 shows the validation accuracy of a test model on a 

randomly selected training set. Figure 8 (a) clearly shows the 
proposed models outperform the original model in terms of 

the validation accuracy of the bounding box. The original 

model has the lowest validation accuracy value, which is 

57.65, while the proposed YOLACT-Res2Net-50 has the 

highest validation accuracy value, which is 61.65. In Figure 

8 (b), the validation accuracies of the mask are close among 

Table 2 Training hyperparameters for our proposed models 

Hyperparameters  Value 

Input size 512 × 512 

Initial learning rate 10-3 

Weight decay 5 × 10-4 

Momentum  0.9 

Iterations 10k 

Batch size 8 

 

 

 
(a) 

 

 
(b) 

Figure 8 Representative validation accuracy of original 

YOLACT models and proposed YOLACT-Res2Net-50 and 

YOLACT-Res2Net-101 

 

these four models. Still, the proposed YOLACT-Res2Net-

101 has the highest value of 59.32 and the original model has 

the lowest value of 57.95. 

 

3.3 Detection performance evaluation 

In this study, COCO mAP (mean average precision), a 

common metric in measuring the accuracy of object 

detectors, is applied to evaluate the detection performance of 

different models. Before analyzing the mAP results, its 

important components of intersection over union (IoU) and 

average precision (AP) need to be explained. IoU  
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Figure 9 The definition of IoU 

 

measures the overlap between the predicted boundary and 

the ground truth. Figure 9 shows the definition of IoU. 

Generally, the IoU threshold of 0.5 is to determine if the 

prediction is a true positive or a false positive. AP is the 

averaged precision across all values of recall between 0 and 

1, and it can be calculated by taking the area under the 

precision recall (PR) curve. Note AP is averaged over all 

categories, therefore there is no difference between mAP and 

AP in this study. The calculation of precision and recall are 

introduced in Equation (6) and (7). From our training logs, 

the representative PR curves of the improved models and the 

original models can be seen in Figures 11 and 12. Table 3 

shows the COCO mAP results of all trained models.  

TP
Precision

TP FP
=

+
 (6) 

TP
Recall

TP FN
=

+
  (7) 

where TP is true positive, TN is true negative, FP is false 

positive, and FN is false negative. 

 

Typically, the precision-recall curve shows the 

relationship between precision and recall of different 

thresholds. Figures 10 and 11 are plotted with the thresholds 

of 50% and 75%, respectively. A high area corresponds to a 

high recall and a high precision in each class. Meanwhile, a 

high precision indicates the detection has more relevant 

results than the irrelevant cases and a high recall means the 

model returns most of the relevant results. In Figure 10 and 

Figure 11, with a threshold of 50%, all the areas are over 0.97 

except for the result of YOLACT-ResNet-50. When the 

threshold is 75%, the best detection of the rail is from 

YOLACT-Res2Net-50, of which the area is 0.616. Similarly, 

the best detection on the clip is from YOLACT-Res2Net-

101, and the best detection on the spike is from YOLACT-

Res2Net-50. Based on these results, it is reasonable to 

believe the improved models outperform the original models. 

To evaluate the detection performance on a wider scale, the 

MS COCO evaluation matric with AP50 and AP75 are 

performed and shown in Table 3. It shows that the proposed 

models, YOLACT-Res2Net-50 and YOLACT-Res2Net-101 

have competitive performance in the detection of bounding 

boxes and masks. For detecting bounding boxes, considering 

the AP values, the proposed models outperform the original 

models by 3 AP and 2.5 AP, respectively. While 

Mask R-CNN achieves the highest AP value, 63.9. With a 

50% IoU threshold, there is not much difference in AP values 

between different models. While, the improved models 

perform better when the IoU threshold is 75%. The proposed 

models outperform the original models by 5.8 AP and 7 AP, 

respectively. Meanwhile, Mask R-CNN has the highest AP 

value, 76.7. Regarding the standard deviation (SD), all the 

models have low SD values with different training and 

testing sets, indicating the bounding box prediction results 

are solid, reliable, and statistically significant. The improved 

models are more effective on the bounding box prediction 

compared to the original ones.  

In terms of the instance segmentation performance, the 

proposed models are able to improve the mask accuracy 

compared to the original models and Mask R-CNN. For the 

AP values, YOLACT-Res2Net-101 has the highest mask AP 

value, which is 2.6 higher than the value of the original one. 

YOLACT-Res2Net-50 improves AP by 4 compared to its 

original model. Regarding the performance of instance 

segmentation with an IoU threshold of 50%, the proposed 

models both achieve AP50 of 97.3 which are higher than the 

values of the original models and Mask R-CNN. When the 

IoU threshold is 75%, YOLACT-Res2Net-50 achieves the 

AP75 of 69.7 which is 3.2 higher compared to the value of its 

original model. While, the proposed YOLACT-Res2Net-101 

model has a lower AP75 value which is 3.9 lower compared 

to its original model. Since the AP value computation needs 

different thresholds, although the proposed model performs 

a bit worse with one of the thresholds, overall it still performs 

very well. For the SD values on mask detection, it can be 

found that they are lower on the AP50 but are higher on the 

AP75. This needs to be considered for future improvement.  

The detection strategy of Mask R-CNN is to propose lots 

of candidate proposals, so Mask R-CNN performs better on 

the bounding box and it has been proved to be effective as 

shown in Table 3. However, as a trade-off, from Figure 12 it 

can be seen the detection speed of Mask R-CNN is much 

lower compared to YOLACT models. The average inference 

speed of Mask R-CNN is 5.3 FPS with a standard deviation 

of 0.36, while the original and improved models inference 

time is close to or over 30 FPS, indicating a possible real-

time application in the field inspection. The inference speeds 

of the proposed YOLACT-Res2Net-50 and YOLACT-

Res2Net-101 models are 35.9 FPS (SD=0.65) and 28.4 FPS 

(SD=0.92), respectively. They are slightly slower compared 

to the original models which have 40.3 FPS (SD=0.40) and 

32.4 FPS (SD=0.76). The possible reason could be that more 

receptive fields cost more computational power and this 

leads a potential optimization research in the future. In short, 

the proposed YOLACT-Res2Net-50 performs the best on 

bounding box detection in a real-time speed, and YOLACT-

Res2Net-101 has the best mask accuracy. 

 

3.4 Influence of the light condition 

In the field practice, environmental conditions are 

complex, and the track components are relatively small, 

making visual inspections very challenging. Besides, the 
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(a)     (b)     (c) 

 

 
(d)     (e)     (f) 

Figure 10 Representative precision-recall curves of YOLACT-ResNet-50 and YOLACT-ResNet-101 on each category. (a)-(c): rail, 

clip, and spike on YOLACT-ResNet-50; (d)-(f): rail, clip, and spike on YOLACT-ResNet-101 

 

 
(a)     (b)     (c) 

 

 
(d)     (e)     (f) 

Figure 11 Representative precision-recall curves of YOLACT-Res2Net-50 and YOLACT-Res2Net-101 on each category. (a)-(c): rail, 

clip, and spike on YOLACT-Res2Net-50; (d)-(f): rail, clip, and spike on YOLACT-Res2Net-101 
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Table 3 COCO mAP results with different models in this study on custom dataset. 
 Method AP SD AP50 SD AP75 SD 

bbox 

YOLACT-Res2Net-50 59.4 2.4 97.7 1.6 65.6 6.2 

YOLACT-Res2Net-101 59.9 2.2 97.9 1.2 67.3 5.2 

YOLACT-ResNet-50 56.4 1.8 97.1 1.4 59.8 5.1 

YOLACT-ResNet-101 57.4 1.9 97.1 1.9 60.3 3.9 

Mask R-CNN 63.9 3.4 97.6 1.5 76.6 7.7 

mask 

YOLACT-Res2Net-50 63.2 7.3 97.3 1.7 69.7 12.8 

YOLACT-Res2Net-101 63.6 6.8 97.3 1.9 64.4 12.7 

YOLACT-ResNet-50 59.6 6.6 96.5 1.8 66.5 12.0 

YOLACT-ResNet-101 61.0 6.9 96.5 2.5 68.3 12.3 

Mask R-CNN 61.6 6.6 97.2 1.6 64.4 12.7 
      Note: AP50 is AP @ IoU = 0.5; AP75 is AP @ IoU = 0.75; SD is standard deviation. 

 

 

 
Figure 12 Detection speed of different models  

 

inspection window has been reducing due to the busier 

timetables. Therefore, any detection model has to be robust 

enough to accommodate harsh environmental conditions for 

field applications. One of the typical challenges in the field 

is the light condition. To test the detection performance 

under different light conditions, five different light 

intensities are used on the 24-bit depth images, which are 

original light, light-10%, light-30%, light-50%, and light-

70%. Figure 13 shows the testing results under the selected 

five visibility conditions. 

Looking at the ground truth with naked eyes, there are 

obvious differences between the normal and dimmed 

conditions. As the light decreases, the image background 

becomes darker, and the rail components are blended into the 

background. It is indeed challenging to distinguish the rail 

components by naked eyes without sufficient light as shown 

in the first row in Figure 13. Furthermore, the specific image 

presented in Figure 13 is taken during a rain, making it more 

troublesome for detection. In this particular image, there are 

five spikes, one rail, and four clips. The results of the 

detection accuracy of each model under different light 

conditions are presented in Figure 14. For YOLACT-

ResNet-50, in the first four light conditions, it successfully 

detects all the spikes and the clips. However, it cannot detect 

the rail and add a mask on it. In the darkest condition, light-

70%, it missed two spikes. YOLACT-ResNet-101 is similar 

to YOLACT-ResNet-50. It also fails to detect the rail, 

meanwhile, it misses three spikes under the light-70% 

condition. Regarding the proposed YOLACT-Res2Net-50, 

except for the last condition, it successfully detects the rails 

and adds the masks on them. Under the light-70% condition, 

it misses one spike. The proposed YOLACT-Res2Net-101 

also performs well under each condition. It detects the rails 

and adds mask on them under four different light conditions, 

but it misses three spikes in the darkest condition. It is worth 

noting that the last model, Mask R-CNN has good 

performance in different light conditions. It detects three 

rails out of all rails. Meanwhile, it just misses two spikes in 

the darkest condition.  

Overall, our improved models outperform the original 

models and Mask R-CNN under five lighting conditions. It 

should be mentioned that the test image is randomly selected 

from the image set. To some extent, it can reflect the real 

performance in the field practice. Currently, limited by the 

training data, other types of track components are not 

included. In the future, the detection performance can be 

improved with more data and further enhancement of the 

model. 

 

4 CONCLUSIONS 

 

This study presents the improved real-time instance 

segmentation models and their application on the railroad 

track component detection. The improved models are 

developed based on a fully convolutional model which 

includes backbone, FPN, Protonet, and prediction head. The 

input features are extracted by the improved backbone and 

the FPN structure is responsible for detecting objects on 

different scales. The instance mask is generated by two 

parallel tasks. One is accomplished by the Protonet and the 

other one is achieved by the prediction head which also 

generates the anchors for bounding boxes. To accelerate the 

detection speed, the fast NMS is applied. During the training, 

the first track components image database is built. A total of 

1,000 images are used for training and validation. Cross-

validation is performed to validate these experiments are 

statistically significant. Five models, including the two 

proposed models and three other popular models, are trained  
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Figure 13 Representative detection results on the different light condition 1: Ground truth; 2: YOLACT-Res2Net-50; 3: YOLACT-

Res2Net-101; 4: YOLACT-ResNet-50; 5: YOLACT-ResNet-101; 6: Mask R-CNN 
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Figure 14 Detection accuracy under different illuminations. 

 

and evaluated based on precision-curve and MS COCO 

evaluation metrics. Experimental results show our proposed 

models outperform the state-of-the-art models on detection 

accuracy. 

To our best knowledge, our study is the first attempt to apply 

real-time instance segmentation with high accuracy and real-

time speed (>30 FPS) on a single GPU, which is a more 

challenging task compared with object detection, semantic 

segmentation, and previous instance segmentation (inference 

speed < 30 FPS), in the railroad inspection and even civil 

engineering. Under the real-time speed condition that requires a 

processing speed above 30 FPS, the proposed models 

outperform the original models and the Mask R-CNN model in 

terms of detection accuracy of the bounding box and mask. In 

the future, when the improved model implemented on  

a cost-efficient mobile computing board that has enough 

computational power, the inspection on the rail track 

components can be more cost-effective, efficient, and 

accurate. Under the different light conditions, our 

proposed models outperform the other models, proving 

the robustness on low visibility conditions. This study 

demonstrated the possibility of applying the cutting-edge 

deep learning technology into the railroad track 

components inspections, paving the road for future 

applications. However, there is indeed room for 

improvement. Future extensions will focus on building 

the first comprehensive railroad image database and 

improving detection without compromising speed.  
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