
Automatic railroad track components inspection using real-time instance segmentation 1

Automatic railroad track components

inspection using real-time instance

segmentation

Feng Guo, Yu Qian*

Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC, USA

Yunpeng Wu

School of Traffic and Transportation, Beijing Jiaotong University, Beijing, China

Zhen Leng

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

&

Huayang Yu

Department of Civil and Environmental Engineering, South China University of Technology, Guangdong, China

Abstract: In the United States, to ensure the railroad

safety and keep its efficient operation, regular track

inspections on track component defects are required by the

Federal Railroad Administration (FRA). Various types of

inspection equipment have been applied, such as ground

penetrating radar, laser, and LiDAR, but they are usually

very expensive and require extensive training and rich

experience to operate. To date, track inspections still heavily

rely on manual inspections which are low-efficient,

subjective, and not as accurate as desired, especially for

missing and broken track components, such as spikes, clips,

and tie plates. To address this issue, a real-time pixel-level

rail components detection framework to inspect track timely

and accurately is proposed in this study. The first public rail

components image database, including rails, spikes, and

clips, is built and released online. A real-time pixel-level

detection framework with improved real-time instance

segmentation models is developed. The improved models

leverage fast object detection and highly accurate instance

segmentation. Backbones with more granular levels and

receptive fields are implemented in the proposed models.

Compared with the original YOLACT and Mask R-CNN

models, the proposed models are able to: 1) achieve 59.9

bbox mAP, and 63.6 mask mAP with the customized dataset,

which are higher than the other models, and 2) achieve a

real-time speed which is over 30 FPS processing a high-

resolution video (1080×1092) with a single GPU. The fast

processing speed can quickly turn inspection videos into

useful information to assist track maintenance. The railroad

track components image dataset can be accessed at

https://github.com/jonguo111/Rail_components_image_data

1 INTRODUCTION

Periodic inspection on the railroad track components is

essential to maintain railroad safety and keep efficient

operations. According to the Federal Railroad

Administration (FRA) safety database (FRA, 2018a), there

were 546 accidents associated with track defects in 2018,

resulting in over $97 million financial loss and uncountable

negative social impact. Out of the 546 accidents, there are 48

accidents caused by missing spikes, clips, and broken rails,

leading to around $10 million damages. In the United States,

FRA mandates regular track inspections as part of the early

warning strategy (FRA, 2018b). Unfortunately, to date, most

of the track inspection work, except for the track geometry

measurement, is still very labor- and time-intensive,

especially for inspecting missing track components. Due to

the nature of the manual inspection, the results of inspecting

This is the peer reviewed version of the following article: Guo, F, Qian, Y, Wu, Y, Leng, Z, Yu, H. Automatic railroad track components inspection using real-time instance
segmentation. Comput Aided Civ Inf. 2021; 36(3): 362–377, which has been published in final form at https://doi.org/10.1111/mice.12625. This article may be used for non-
commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise
transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed,
obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article
or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.

This is the Pre-Published Version.

https://github.com/jonguo111/Rail_components_image_data

2 Guo et al.

missing components could be very low-efficient and

expensive. Based on Liu et al. (2014), except for the labor

cost, the speed of inspection is around 15 to 20 mph and the

average inspection cost per hour per vehicle is almost 300

dollars. Even with the manned-inspection vehicles, the

expected annual inspection cost is easily millions of dollars,

let alone a considerable amount of the missing track

components is manually inspected by walking crew. This

issue is more pronounced with the Class I railroad mainlines

due to the saturated traffic volume and limited windows for

inspection and maintenance, leading to accidents and even

derailments. For example, broken spikes caused a 120-car

Norfolk Southern train derailment at Vandergrift, PA, which

spilled between 3,000 and 4,000 gallons of crude oil

(Hardway, 2014). Therefore, the automated rail track

components inspection is very meaningful for the railroad

industry as pointed out by the FRA (Saadat et al., 2018).

In the past few years, many efforts have been devoted to

developing automatic track inspection systems. Yang et al.

(2011) demonstrated a Direction Field (DF)-based method

for detecting absent fasteners. The DF was extracted as the

feature element for recognition and the weight coefficient

matrix was obtained based on the Linear Discriminant

Analysis (LDA). Their detection approach performed well

on low-resolution images with 320×240 pixels taken from

high-speed railways, but the performance on high-resolution

images was not mentioned. Li et al. (2012) reported a real-

time visual inspection system (VIS) for discrete surface

detects. VIS can detect rail defects with a speed of 216 km/h.

But the system was not tested on other track components.

Resendiz et al. (2013) used Gabor filters and the multiple

signal classification (MUSIC) to perform periodicity

detection on the track components. However, their proposed

method cannot handle both detection and segmentation

simultaneously. Feng et al. (2013) proposed a new

probabilistic structure topic model (STM) to detect partially

worn and missing fasteners. Compared with other methods

such as support-vector machine (SVM) and AdaboostSTM,

STM was more robust and can achieve a higher precision on

the detection of fasteners with different orientations and

illumination conditions. Unfortunately, STM was very

demanding in computational power, thus, it cannot perform

an end-to-end test. Aytekin et al. (2015) developed a real-

time railway fastener detection system using a high-speed 3-

D laser range finder. On one hand, the system can detect the

railway fasteners with a speed of 100 km/h. On the other

hand, the system was not tested with other track components.

Earlier computer vision algorithms such as edge detection,

Adaboost, SVM, and others, have been applied to detect

track components and improved inspection efficiency.

However, there is still room for improvement in terms of

accuracy, efficiency, speed, end-to-end test, and robustness.

Recently, the convolutional neural network (CNN), which

automatically learns input features efficiently, has been

extremely successful in computer vision development. It has

become popular with the increased size of training data and

improved computation power (Pan & Yang, 2020). Since

the early 2000s, CNNs have dominated object detection,

semantic segmentation, instance segmentation, multiple

object tracking (MOT), and other similar work (LeCun et al.,

2015). Several CNNs with high accuracy and efficiency,

have been successfully developed and adopted in the field.

In terms of object detection, there are mainly two categories,

one-stage detector and two-stage detector (Jiao et al., 2019).

YOLO (Redmon et al., 2016) is the typical one-stage

detector that works in real-time with high inference speed,

and 30 FPS is a key factor to determine whether a model can

perform “live task” or not. For the two-stage detectors, Fast

R-CNN (Girshick, 2015) is the most typical one, which has

high accuracy on the object localization and recognition. In

terms of instance segmentation, Mask R-CNN (He et al.,

2017), a state-of-the-art model, is very accurate on object

detection, whereas its processing speed is relatively low. To

fill the gap, YOLACT (Bolya, Zhou, Xiao & Lee, 2019)

separated instance segmentation into two parallel tasks and

achieved over 30 FPS processing speed on MS COCO (Lin

et al., 2014) with only one GPU.

With the significant progress in neural network and

computer vision, infrastructure damage detection methods,

based on machine learning and computer vision, have been

successfully applied in civil engineering (Adeli, 2001; Rafiei

and Adeli, 2017; Cha et al., 2018; Rafiei and Adeli, 2018;

Perez-Ramirez et al., 2019; Yeum et al., 2019; Cao et al.,

2020). For instance, in bridge damage detection, researchers

have conducted bridge health inspections by using the

Bayesian optimized deep learning model (Liang, 2019),

concrete bridge surface damage detection by using the

improved YOLOv3 (C. Zhang, Chang, & Jamshidi, 2020),

and crack evaluation of a high-rise bridge by using a

modified SegNet (Jang, An, Kim, & Cho, 2020). For

pavement assessment and crack detection, CrackNet and

CrackNet-V for pixel-level cracking detection on 3D asphalt

images were developed (Fei et al., 2019; A. Zhang et al.,

2017). Jeong et al. (Jeong, Jo, & Ditzler, 2020) assessed the

pavement roughness by using an optimized CNN. For

concrete structure damage evaluation, there were studies on

the reinforced concrete building damage detection using

ResNet-50 and ResNet-50-based YOLOv2 (Pan & Yang,

2020), pixel-level multiple damage detection of concrete

structure by using a fine-tuned DesNet-121 (Li, Zhao, &

Zhou, 2019), and concrete crack detection by using context-

aware semantic segmentation (X. Zhang, Rajan, & Story,

2019). Moreover, health condition monitoring of civil

infrastructure has widely been using CNNs, such as

infrastructure condition assessment using DCNNs (Wu et al.,

2019) and the estimation of wind-induced responses using a

CNN model (Oh, Glisic, Kim, & Park, 2019). However, few

studies implement the cutting-edge CNN models on railroad

track inspection and detection. Gibert et al. (2015, 2016)

attempted to use the DCNN model, which was developed for

semantic image segmentation, in railway ties and fasteners

inspection. The target objects needed to be classified on

multiple levels and cannot perform a real-time and end-to-

end test.

Automatic railroad track components inspection using real-time instance segmentation 3

Figure 1 Content of this study

Wu et al. (2018) built a novel visual inspection model for rail

surface defects using UAV images and gray stretch

maximum entropy. Due to limited performance under

visibility and environmental variations, the model has few

field applications. Later, Wu et al. (2019) proposed a deep

learning-based method to improve the inspection on track

fasteners using UAV images. However, it only focused on

object detection but not segmentation, leaving it hard to

characterize the damage shape of a certain track component.

Up to now, track component detection is still a very

challenging task due to the complex environmental

condition, small or tiny objects, and limited training data.

Besides, the railroad track could appear to be very similar,

but there would also be some variations. For example, the

spikes and clips may be quite different from each other

depending on the types. Also, the appearance of the same

components would change based on the surrounding

environment, considering the track would go through

different remote/rural areas. This study proposes a computer

vision-based pixel-level track components detection system

by using the improved one-stage instance segmentation

model and prior knowledge, aiming to inspect the rail

components in a rapid, accurate, and convenient fashion. The

proposed network extracts the input features from the

improved backbone, predicts objects in different scales

utilizing feature pyramid network, and generates high-

quality masks by assembling prototype generation and mask

coefficient. As Figure 1 shows, three major tasks are

conducted in this study: 1) data preparation, 2) training &

validation, and 3) prediction & comparison with other state-

of-the-art models. In this study, the contributions and

novelties include: 1) The first public railroad components

dataset, which includes a total of 1000 images, is built and

released online for free access. It may prompt the

implementation of cutting-edge deep learning models in the

railroad application. 2) Real-time instance segmentation

models with fast speed and high accuracy are firstly

improved and utilized in railroad research. Testing results

show the improved models outperform the original models.

In the future, when it is implemented on a

mobile computing board which has enough computational

power, the current “walking inspection” in the railroad could

be replaced, and the future inspection work can be more

efficient and accurate. 3) The effects of different illumination

conditions on predictions are discussed. The testing results

verified the illumination condition would influence the

performance of the models, and the improved models work

better than the original models under low-visibility

conditions.

2 METHODOLOGY

2.1 Proposed neural network architecture

To accurately identify multiple railroad track components,

YOLACT-Res2Net-50 and YOLACT-Res2Net-101, which

adapt a new backbone architecture compared to the original

models, are proposed and evaluated in this study. Figure 2

presents the main structure of the proposed models.

Specifically, the main structure includes backbone (feature

extractor), feature pyramid network (FPN), prediction head

(generating anchors), and Protonet (predicting k prototype

masks). In general, instance segmentation is more difficult

than object detection since it heavily relies on feature

localization to generate masks, resulting in low speed and

impractical in field applications. Nevertheless, the YOLACT

type model separates the instance segmentation into two

parallel tasks. One is responsible for generating prototype

masks using the Protonet (a fully convolutional network)

over the entire image, and the other one focuses on predicting

anchors and mask coefficients by using prediction head.

These two tasks are assembled by a linear combination, and

the outputs are generated with a threshold. In this way, the

model improves inference speed and mask quality.

2.2 Backbone structure

In object detection, the backbone acts as the main feature

extractor, which takes images or videos as input and yields

corresponding feature maps (Jiao et al., 2019). According to

the specific needs of detection accuracy and efficiency,

different backbones can be developed for a model after a

modification or tuning. For high accuracy, a deep and

4 Guo et al.

Figure 2 The main structure of the proposed models

densely connected backbone, such as the ResNet and

DenseNet, can be employed in the model. Considering the

speed and efficiency, lightweight backbones, such as the

MobileNet and EfficientNet, would be preferred. In this

study, to improve the detection performance, a new

backbone, Res2Net, with a stronger multi-scale

representation capability is implemented into the proposed

models, YOLACT-Res2Net-50 and YOLACT-Res2Net-

101. More details are presented in the following sections.

2.2.1 ResNet-50 & ResNet-101

ResNet-50 and ResNet-101 backbone (He et al., 2016) are

adopted in the original YOLACT models. As the name

indicates, ResNet-50 and ResNet-101 include 50 layers and

101 layers, respectively. To reduce the inference

computations, the bottleneck structure is introduced in the

ResNet. Figure 3 shows the bottleneck design for ResNet-50

and ResNet-101. As shown in Figure 3, with the bottleneck

design, the first 1×1 convolution reduces a 256-dimension

channel to a 64-dimension channel, and it is recovered by a

1×1 convolution at the end.

Figure 4 shows the main structure of the ResNet-50. It

consists of five stages, which are Conv1, Layer1, Layer2,

Layer3, and Layer4, respectively, corresponding to C1 to C5

shown in Figure 2. Due to the limitation on the space, C1 and

C2 are not plotted in Figure 2. From Layer1 to Layer4, each

block contains three convolutional layers, which represent

the bottleneck module. Specifically, there are 3, 4, 6, and 3

stacked blocks in ResNet-50. Similarly, in ResNet-101, there

are 3, 4, 23, and 3 stacked blocks. Furthermore, after Conv1,

Layer1, Layer2, Lay3, and Layer4, the input image size

becomes 1/2, 1/4, 1/8, 1/16, and 1/32 of the original image

size, respectively.

Figure 3 Structure of bottleneck design

2.2.2 Res2Net-50 & Res2Net-101

Res2Net (Gao et al. 2019) is a new backbone architecture

which can improve the multi-scale representation capability

at a granular level. Figure 5 shows the architecture of the

Res2Net bottleneck which plays an important role in the new

backbone. In this bottleneck structure, the original 3×3 filter

of n channels shown in Figure 3 is replaced with a set of

smaller filter groups. Each group has w channels. Note,

n=w×s, where s represents the scale. As shown in Figure 5,

following the 1×1 convolution, the feature maps are evenly

split into s subsets. xi is one of the subsets which has 1/s

number of channels and the same spatial size with inputs. For

each feature subset xi (i ≥2), there is a 3×3 convolution

corresponding to it, namely as Ki (). While for x1 and y1 =x1,

there is no convolution. Each output feature map, yi, is the

output of Ki (). The calculations are summarized in Equation

(1). During the following model training and evaluation in

this study, w is assigned to 26 and s is assigned to 4.

Automatic railroad track components inspection using real-time instance segmentation 5

Figure 4 Main structure of ResNet-50

1

 1;

() 2;

() 2 .

i

i i i

i i i

x i

y K x i

K x y i s−

=

= =
 +

 (1)

where yi is the output feature map, xi is the input feature map,

Ki is the convolution corresponding to xi.

To better show the improved network architecture, Table

1 presents the detailed parameters of the proposed

YOLACT-Res2Net-50 backbone. As shown in Figure 4,

there are five stages: Conv1, Layer1, Layer2, Layer3, and

Layer4. The main difference is the bottleneck structures

shown in Figure 3 and Figure 5. It also can be referred in the

filter size shown in Table 1. The original filters are changed

from [1×1, 3×3, 1×1] to [1×1, 3×3, 3×3, 3×3, 1×1].

Meanwhile, from x2 to x4, there are convolutional processes

with each kernel. This way, as the literature (Gao et al., 2019)

mentioned, the range of receptive fields for each network

layer will increase. Therefore, the model will have better

detection performance. Besides, it is worth noting that the

introduced feature sets cause changes in the output channels.

2.3 FPN structure

To detect objects on multiple scales, Feature Pyramid

Network (FPN) (Lin. et al., 2017) has widely been using in

many object detection and segmentation models. Typically,

the composition of an FPN includes a bottom-up pathway, a

top-down pathway, and lateral connections. The bottom-up

pathway is the feed-forward computation for the backbone to

extract features in the inputs. The assembly of convolution

layers with the same output feature size is denoted as the

stage in the FPN. Specifically, the backbone, as shown in

Figure 1, {C3, C4, C5} is the output of the last residual

blocks in the stage of Layer2, Layer3, and Layer4,

respectively. When layers go up, the spatial resolution

decreases. In terms of the top-down pathway, it constructs

the high-resolution layers from higher layers in the pyramid

which are semantically strong, but not precise. Hence, the

later connections are then used to merge the features from

the bottom-up pathway and top-down pathway for a better

prediction on the object locations. The original set of feature

output in the FPN is {P3, P4, P5},

Figure 5 Structure of. Res2Net bottleneck (scale=4)

corresponding to {C3, C4, C5}. In the YOLACT type

models, to increase the detection performance on the small

objects, P5 is upsampled to P6 and P7 with one-fourth

dimensions; meanwhile, P2 is omitted.

2.4 Prototype generation

To improve the operation speed, instance segmentation is

achieved by two parallel tasks in the original and improved

models. One of the parallel tasks, generating prototype

masks, is completed by Protonet. It is worth noting Protonet

is a fully connected network (FCN), which is attached to the

P3 layer in the FPN. The architecture of Protonet can be seen

in Figure 2. In this branch, k Protonet masks without loss

computations are proposed for the entire image. To improve

the instance segmentation performance, we increase the k

from 32 to 64 in the proposed models. A nonlinear activation

function, ReLU, is used to keep the outputs from Protonet

unbounded and generate more interpretable prototypes. It

also needs to mention that the number of prototype masks are

6 Guo et al.

Table 1 The detailed specifications of backbone of proposed Res2Net-50

Layer Type Filter size Stride Output channels Output size

Input image 512

Conv1 7×7 2 64 256

Layer1

Max pooling 3×3 2 64 128

bottleneck

1 1, 104

3 3, 26

3 3, 26 3

3 3, 26

1 1, 256

 256 128

Layer2 bottleneck

1 1, 208

3 3, 52

3 3, 52 4

3 3, 52

1 1, 512

 512 64

Layer3 bottleneck

1 1, 416

3 3, 104

3 3, 104 6

3 3, 104

1 1, 1024

 1024 32

Layer4 bottleneck

1 1, 832

3 3, 208

3 3, 208 3

3 3, 208

1 1, 2048

 2048 16

independent of the number of categories; thus, it can lead to

a distributed representation for the generated prototypes.

Example prototype images generated by the proposed

YOLACT-Res2Net-50 are shown in Figure 6. The high-

resolution prototypes are beneficial for mask quality and

detection performance on small objects.

2.5 Mask coefficient and assembly

The other parallel task of instance segmentation is to

generate mask coefficients in anchor-based object detectors

(prediction head). Unlike RetinaNet, the original and

improved models use a shallower predictor and adopt a mask

coefficient branch. As Figure 2 shows, in the prediction head,

there are 4+c+k coefficients per anchor. To subtract the

generated prototypes, the tanh activation function is applied.

The masks are generated by assembling Protonet output and

mask coefficients using a linear combination. A sigmoid

nonlinearity is applied to generate final masks. Equation (2)

shows the mentioned steps. During the training and

evaluation process, the final masks are cropped with the

ground truth bounding boxes and predicted bounding boxes,

respectively.

()TM PC=

(2)

where P is an h×w×k matrix of prototype masks and C is a

n×k matrix of mask coefficients for n instances surviving

NMS and score thresholding.

2.6 Loss functions

Three loss functions, including mask loss, classification

loss, and box regression loss, are used in data training.

Specifically, the mask loss applies pixel-wise binary cross-

entropy (BCE) loss function to calculate the loss between the

assembled Masks M and the ground truth masks Mgt. Mask

loss is expressed in Equation (3). For classification loss and

box regression loss, the functions are shown in Equation (4)

and (5). The corresponding weights for these three loss

functions are 1, 1.5, and 6.125, respectively.

(,)mask gtL BCE M M= (3)

where M is the assembled masks, Mgt is the ground truth

masks

Automatic railroad track components inspection using real-time instance segmentation 7

Figure 6 Prototype image generation

ˆ ˆlog() log()

w h

j jw h

j jw h

i i

g g
g g

d d
= =

ˆ ˆ() / () /cx cx cx w cy cy cy h

j j i i j j i ig g d d g g d d= − = − (4)

1

, , ,

ˆ(, ,) ()
N

k m m

loc ij L i j

i Pos m cx cy w h

L x l g x smooth l g

= −

where l is the predicted box, g is the ground truth, (cx, cy), w,

and h is the center, width, and the height of the default

bounding box (d). N is the number of matched defaulted

boxes. If N=0, then the loss is 0. 𝑥𝑖𝑗
𝑘 = {1,0} to be an indicator

of matching the i-th default bounding box and j-th ground

truth bounding box of category k.

0ˆ ˆ(,) log() log()
N

p p

conf ij i i

i pos i Neg

L x c x c c

= − −

(5) exp()
ˆwhere

exp()

p

p i

i p

ip

c
c

c
=

where c is the softmax loss over multiple classes

confidences.

3 EXPERIMENTS AND RESULTS

To validate the performance of the proposed models and

compare them with the original models having their default

backbones, five models are trained and tested in this study.

Specifically, the original models are YOLACT-ResNet-50

and YOLACT-ResNet-101. The improved models are

named as YOLACT-Res2Net-50 and YOLACT-Res2Net-

101. In addition, Mask R-CNN, which represents the high

mask quality and the high accuracy on object detection, is

trained and evaluated, aiming to improve the comparison

between Mask R-CNN and the improved models. For the

original models and the improved models, the training

processes are completed in the same module. For Mask R-

CNN, MMDetection (Chen et al., 2019) which is an open-

source object detection toolbox based on Pytorch, is adopted

for friendly usage, training, and evaluation. The detection

results generated from different models are evaluated based

on MS COCO evaluation metric (Lin et al., 2014) aiming to

compare the results fairly and comprehensively. The

validation curves generated from the training and validation

process of the original and improved models are plotted and

discussed. For Mask R-CNN, since there are differences

between different training modules, only AP, AP50, and AP75

are compared and evaluated in Table 3.

3.1 Data set preparation

The images are saved from video frames recorded on an

iPhone® 8 smartphone with a 12-megapixel main camera

which has a single wide-angle lens with an f/1.8 aperture.

The videos are taken from a railroad section besides 300

Main St. Columbia, SC. The section is between GPS

coordinates [33.988208, -81.025973] and [33.989474, -

81.025942]. The smartphone is held in hand and the video is

taken at a walking speed along the track. A total of 30

minutes of video is recorded and saved on the smartphone.

The original video resolution is 1920×1080 and the

converted image size is set to 512×512 to meet the training

image size requirement. Three types of rail components,

including rail, spike, and clip are included in the image

database. To prevent overfitting, the training images are

processed with image augmentation, including mirroring,

rotation (90°), and the combination of rotation (180°) and

gaussian noise. A popular labeling tool, labelme (Wada,

2016) is employed to generate the annotation files.

The output JSON files are converted to COCO format

based on the prepared code for training, validation, and

evaluation. Figure 7 shows the ground truth and the labeling

mask. Note that the background is category 0. The rail, clip,

and spike represent category 1, category 2, and category 3,

respectively. The category IDs should be correctly associated

with the class names. Otherwise, the detection results will

have the wrong labels. Following the general ratio of the

cross-validation principle and previous studies (Zhang,

Rajan & Story, 2019; Li, Zhao & Zhou, 2019), the ratio

between the training set and test set is set to 8:2. A total of

1000 images, which are released online for free access, are

used for training and test. To reduce the bias and ensure the

training processes are statistically significant, the 5-fold

cross-validation is performed in the training procedure.

Specifically, 1000 images are randomly split into 5 folds and

each fold contains 200 images. Each group is taken as a test

set and the remaining groups are considered as the training

set. Totally, 25 training and tests are for the entire dataset.

The evaluation results including the mean values and

standard deviations are shown in Table 3.

8 Guo et al.

(a) (b)

Figure 7 Example of original jpg image and label result (a)

Ground truth (b) instance label visualization

3.2 Training and validation

Transfer learning is a convenient timesaving method to

train deep learning models. Since multiple models need to be

trained and evaluated, transfer learning, other than training

individual models from scratches, is employed in the test.

Pre-trained weights for the backbones of the proposed

models and original models are implemented in the model

initialization stage. Because the new backbones are adapted

in the original models, the dictionary of key and value in the

pre-trained weight file needs to be updated with the proposed

network structure. To avoid program running errors and

make sure the training is successfully started, new functions

are written to filter the unused layers (such as some batch

normalization layers) in pre-trained weight files and make

the proposed architecture correspond to the original settings.

Generally, the training process aims to minimize the

overall loss by optimizing the model parameters (Wang &

Cheng, 2020). In other words, the lower the overall loss is,

the better the model is. In this study, the popular stochastic

gradient descent (SGD) optimizer is applied to train the

improved models. Table 2 shows the training

hyperparameters. The training iteration is 10k and the initial

learning rate is 10-3. The learning rate is a vital

hyperparameter in model performance. A small value will

result in a long training process, and a large value will lead

to hasty and unstable training. In this study, the initial

learning rate is divided by 10 at iterations 2k, 6k, and 7k by

using a weight decay of 5×10-4 and a momentum of 0.9.

To configure and expedite the model training, the Pytorch

library developed by Facebook and the packages of CUDA

10.2 with Cudnn 7.6.5 developed by NVIDIA are included

in this study. All the training processes are accomplished in

a lab server. The server system is CentOS 7.2 with Inter i7

CPU. The GPU is NVIDIA 1080 Ti with driver 440.33. The

training time for each model takes around 1 to 1.5 hours.

Figure 8 shows the validation accuracy of a test model on a

randomly selected training set. Figure 8 (a) clearly shows the
proposed models outperform the original model in terms of

the validation accuracy of the bounding box. The original

model has the lowest validation accuracy value, which is

57.65, while the proposed YOLACT-Res2Net-50 has the

highest validation accuracy value, which is 61.65. In Figure

8 (b), the validation accuracies of the mask are close among

Table 2 Training hyperparameters for our proposed models

Hyperparameters Value

Input size 512 × 512

Initial learning rate 10-3

Weight decay 5 × 10-4

Momentum 0.9

Iterations 10k

Batch size 8

(a)

(b)

Figure 8 Representative validation accuracy of original

YOLACT models and proposed YOLACT-Res2Net-50 and

YOLACT-Res2Net-101

these four models. Still, the proposed YOLACT-Res2Net-

101 has the highest value of 59.32 and the original model has

the lowest value of 57.95.

3.3 Detection performance evaluation

In this study, COCO mAP (mean average precision), a

common metric in measuring the accuracy of object

detectors, is applied to evaluate the detection performance of

different models. Before analyzing the mAP results, its

important components of intersection over union (IoU) and

average precision (AP) need to be explained. IoU

Automatic railroad track components inspection using real-time instance segmentation 9

Figure 9 The definition of IoU

measures the overlap between the predicted boundary and

the ground truth. Figure 9 shows the definition of IoU.

Generally, the IoU threshold of 0.5 is to determine if the

prediction is a true positive or a false positive. AP is the

averaged precision across all values of recall between 0 and

1, and it can be calculated by taking the area under the

precision recall (PR) curve. Note AP is averaged over all

categories, therefore there is no difference between mAP and

AP in this study. The calculation of precision and recall are

introduced in Equation (6) and (7). From our training logs,

the representative PR curves of the improved models and the

original models can be seen in Figures 11 and 12. Table 3

shows the COCO mAP results of all trained models.

TP
Precision

TP FP
=

+
 (6)

TP
Recall

TP FN
=

+
 (7)

where TP is true positive, TN is true negative, FP is false

positive, and FN is false negative.

Typically, the precision-recall curve shows the

relationship between precision and recall of different

thresholds. Figures 10 and 11 are plotted with the thresholds

of 50% and 75%, respectively. A high area corresponds to a

high recall and a high precision in each class. Meanwhile, a

high precision indicates the detection has more relevant

results than the irrelevant cases and a high recall means the

model returns most of the relevant results. In Figure 10 and

Figure 11, with a threshold of 50%, all the areas are over 0.97

except for the result of YOLACT-ResNet-50. When the

threshold is 75%, the best detection of the rail is from

YOLACT-Res2Net-50, of which the area is 0.616. Similarly,

the best detection on the clip is from YOLACT-Res2Net-

101, and the best detection on the spike is from YOLACT-

Res2Net-50. Based on these results, it is reasonable to

believe the improved models outperform the original models.

To evaluate the detection performance on a wider scale, the

MS COCO evaluation matric with AP50 and AP75 are

performed and shown in Table 3. It shows that the proposed

models, YOLACT-Res2Net-50 and YOLACT-Res2Net-101

have competitive performance in the detection of bounding

boxes and masks. For detecting bounding boxes, considering

the AP values, the proposed models outperform the original

models by 3 AP and 2.5 AP, respectively. While

Mask R-CNN achieves the highest AP value, 63.9. With a

50% IoU threshold, there is not much difference in AP values

between different models. While, the improved models

perform better when the IoU threshold is 75%. The proposed

models outperform the original models by 5.8 AP and 7 AP,

respectively. Meanwhile, Mask R-CNN has the highest AP

value, 76.7. Regarding the standard deviation (SD), all the

models have low SD values with different training and

testing sets, indicating the bounding box prediction results

are solid, reliable, and statistically significant. The improved

models are more effective on the bounding box prediction

compared to the original ones.

In terms of the instance segmentation performance, the

proposed models are able to improve the mask accuracy

compared to the original models and Mask R-CNN. For the

AP values, YOLACT-Res2Net-101 has the highest mask AP

value, which is 2.6 higher than the value of the original one.

YOLACT-Res2Net-50 improves AP by 4 compared to its

original model. Regarding the performance of instance

segmentation with an IoU threshold of 50%, the proposed

models both achieve AP50 of 97.3 which are higher than the

values of the original models and Mask R-CNN. When the

IoU threshold is 75%, YOLACT-Res2Net-50 achieves the

AP75 of 69.7 which is 3.2 higher compared to the value of its

original model. While, the proposed YOLACT-Res2Net-101

model has a lower AP75 value which is 3.9 lower compared

to its original model. Since the AP value computation needs

different thresholds, although the proposed model performs

a bit worse with one of the thresholds, overall it still performs

very well. For the SD values on mask detection, it can be

found that they are lower on the AP50 but are higher on the

AP75. This needs to be considered for future improvement.

The detection strategy of Mask R-CNN is to propose lots

of candidate proposals, so Mask R-CNN performs better on

the bounding box and it has been proved to be effective as

shown in Table 3. However, as a trade-off, from Figure 12 it

can be seen the detection speed of Mask R-CNN is much

lower compared to YOLACT models. The average inference

speed of Mask R-CNN is 5.3 FPS with a standard deviation

of 0.36, while the original and improved models inference

time is close to or over 30 FPS, indicating a possible real-

time application in the field inspection. The inference speeds

of the proposed YOLACT-Res2Net-50 and YOLACT-

Res2Net-101 models are 35.9 FPS (SD=0.65) and 28.4 FPS

(SD=0.92), respectively. They are slightly slower compared

to the original models which have 40.3 FPS (SD=0.40) and

32.4 FPS (SD=0.76). The possible reason could be that more

receptive fields cost more computational power and this

leads a potential optimization research in the future. In short,

the proposed YOLACT-Res2Net-50 performs the best on

bounding box detection in a real-time speed, and YOLACT-

Res2Net-101 has the best mask accuracy.

3.4 Influence of the light condition

In the field practice, environmental conditions are

complex, and the track components are relatively small,

making visual inspections very challenging. Besides, the

10 Guo et al.

(a) (b) (c)

(d) (e) (f)

Figure 10 Representative precision-recall curves of YOLACT-ResNet-50 and YOLACT-ResNet-101 on each category. (a)-(c): rail,

clip, and spike on YOLACT-ResNet-50; (d)-(f): rail, clip, and spike on YOLACT-ResNet-101

(a) (b) (c)

(d) (e) (f)

Figure 11 Representative precision-recall curves of YOLACT-Res2Net-50 and YOLACT-Res2Net-101 on each category. (a)-(c): rail,

clip, and spike on YOLACT-Res2Net-50; (d)-(f): rail, clip, and spike on YOLACT-Res2Net-101

Automatic railroad track components inspection using real-time instance segmentation 11

Table 3 COCO mAP results with different models in this study on custom dataset.
 Method AP SD AP50 SD AP75 SD

bbox

YOLACT-Res2Net-50 59.4 2.4 97.7 1.6 65.6 6.2

YOLACT-Res2Net-101 59.9 2.2 97.9 1.2 67.3 5.2

YOLACT-ResNet-50 56.4 1.8 97.1 1.4 59.8 5.1

YOLACT-ResNet-101 57.4 1.9 97.1 1.9 60.3 3.9

Mask R-CNN 63.9 3.4 97.6 1.5 76.6 7.7

mask

YOLACT-Res2Net-50 63.2 7.3 97.3 1.7 69.7 12.8

YOLACT-Res2Net-101 63.6 6.8 97.3 1.9 64.4 12.7

YOLACT-ResNet-50 59.6 6.6 96.5 1.8 66.5 12.0

YOLACT-ResNet-101 61.0 6.9 96.5 2.5 68.3 12.3

Mask R-CNN 61.6 6.6 97.2 1.6 64.4 12.7
 Note: AP50 is AP @ IoU = 0.5; AP75 is AP @ IoU = 0.75; SD is standard deviation.

Figure 12 Detection speed of different models

inspection window has been reducing due to the busier

timetables. Therefore, any detection model has to be robust

enough to accommodate harsh environmental conditions for

field applications. One of the typical challenges in the field

is the light condition. To test the detection performance

under different light conditions, five different light

intensities are used on the 24-bit depth images, which are

original light, light-10%, light-30%, light-50%, and light-

70%. Figure 13 shows the testing results under the selected

five visibility conditions.

Looking at the ground truth with naked eyes, there are

obvious differences between the normal and dimmed

conditions. As the light decreases, the image background

becomes darker, and the rail components are blended into the

background. It is indeed challenging to distinguish the rail

components by naked eyes without sufficient light as shown

in the first row in Figure 13. Furthermore, the specific image

presented in Figure 13 is taken during a rain, making it more

troublesome for detection. In this particular image, there are

five spikes, one rail, and four clips. The results of the

detection accuracy of each model under different light

conditions are presented in Figure 14. For YOLACT-

ResNet-50, in the first four light conditions, it successfully

detects all the spikes and the clips. However, it cannot detect

the rail and add a mask on it. In the darkest condition, light-

70%, it missed two spikes. YOLACT-ResNet-101 is similar

to YOLACT-ResNet-50. It also fails to detect the rail,

meanwhile, it misses three spikes under the light-70%

condition. Regarding the proposed YOLACT-Res2Net-50,

except for the last condition, it successfully detects the rails

and adds the masks on them. Under the light-70% condition,

it misses one spike. The proposed YOLACT-Res2Net-101

also performs well under each condition. It detects the rails

and adds mask on them under four different light conditions,

but it misses three spikes in the darkest condition. It is worth

noting that the last model, Mask R-CNN has good

performance in different light conditions. It detects three

rails out of all rails. Meanwhile, it just misses two spikes in

the darkest condition.

Overall, our improved models outperform the original

models and Mask R-CNN under five lighting conditions. It

should be mentioned that the test image is randomly selected

from the image set. To some extent, it can reflect the real

performance in the field practice. Currently, limited by the

training data, other types of track components are not

included. In the future, the detection performance can be

improved with more data and further enhancement of the

model.

4 CONCLUSIONS

This study presents the improved real-time instance

segmentation models and their application on the railroad

track component detection. The improved models are

developed based on a fully convolutional model which

includes backbone, FPN, Protonet, and prediction head. The

input features are extracted by the improved backbone and

the FPN structure is responsible for detecting objects on

different scales. The instance mask is generated by two

parallel tasks. One is accomplished by the Protonet and the

other one is achieved by the prediction head which also

generates the anchors for bounding boxes. To accelerate the

detection speed, the fast NMS is applied. During the training,

the first track components image database is built. A total of

1,000 images are used for training and validation. Cross-

validation is performed to validate these experiments are

statistically significant. Five models, including the two

proposed models and three other popular models, are trained

12 Guo et al.

Figure 13 Representative detection results on the different light condition 1: Ground truth; 2: YOLACT-Res2Net-50; 3: YOLACT-

Res2Net-101; 4: YOLACT-ResNet-50; 5: YOLACT-ResNet-101; 6: Mask R-CNN

Automatic railroad track components inspection using real-time instance segmentation 13

Figure 14 Detection accuracy under different illuminations.

and evaluated based on precision-curve and MS COCO

evaluation metrics. Experimental results show our proposed

models outperform the state-of-the-art models on detection

accuracy.

To our best knowledge, our study is the first attempt to apply

real-time instance segmentation with high accuracy and real-

time speed (>30 FPS) on a single GPU, which is a more

challenging task compared with object detection, semantic

segmentation, and previous instance segmentation (inference

speed < 30 FPS), in the railroad inspection and even civil

engineering. Under the real-time speed condition that requires a

processing speed above 30 FPS, the proposed models

outperform the original models and the Mask R-CNN model in

terms of detection accuracy of the bounding box and mask. In

the future, when the improved model implemented on

a cost-efficient mobile computing board that has enough

computational power, the inspection on the rail track

components can be more cost-effective, efficient, and

accurate. Under the different light conditions, our

proposed models outperform the other models, proving

the robustness on low visibility conditions. This study

demonstrated the possibility of applying the cutting-edge

deep learning technology into the railroad track

components inspections, paving the road for future

applications. However, there is indeed room for

improvement. Future extensions will focus on building

the first comprehensive railroad image database and

improving detection without compromising speed.

14 Guo et al.

ACKNOWLEDGEMENTS

This study is partially supported by the faculty startup funding

provided by the College of Engineering and Computing at the

University of South Carolina.

REFERENCES

Adeli, H. (2001). Neural networks in civil engineering: 1989-

2000. Computer‐Aided Civil and Infrastructure Engineering,

16(2), 126-142.

Aytekin, Ç., Rezaeitabar, Y., Dogru, S., & Ulusoy, I. (2015).

IEEE Transactions on Systems, Man, and Cybernetics: Systems,

45(7), 1101-1107.

Bolya, D., Zhou, C., Xiao, F., & Lee, Y. J. (2019). YOLACT:

real-time instance segmentation. Paper presented at the

Proceedings of the IEEE International Conference on Computer

Vision.

Cao, R., Leng, Z., Hsu, S. C., & Hung, W. T. (2020).

Modelling of the pavement acoustic longevity in Hong Kong

through machine learning techniques. Transportation Research

Part D: Transport and Environment, 83, 102366.

Cha, Y. J., Choi, W., Suh, G., Mahmoudkhani, S. &

Büyüköztürk, O. (2018), Autonomous Structural Visual

Inspection Using Region‐Based Deep Learning for Detecting

Multiple Damage Types, Computer‐Aided Civil and

Infrastructure Engineering, 33(9), 731-747.

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Xu,

J. (2019). MMDetection: Open mmlab detection toolbox and

benchmark. arXiv preprint arXiv:1906.07155.

Dake, L. (2016). Mosier Oil Train Derailment Costs Near $9

Million.

Fei, Y., Wang, K. C., Zhang, A., Chen, C., Li, J. Q., Liu, Y.,

Li, B. (2019). Pixel-level cracking detection on 3D asphalt

pavement images through deep-learning-based CrackNet-V.

IEEE Transactions on Intelligent Transportation Systems.

Feng, H., Jiang, Z., Xie, F., Yang, P., Shi, J., & Chen, L.

(2013). Automatic fastener classification and defect detection in

vision-based railway inspection systems. IEEE transactions on

instrumentation and measurement, 63(4), 877-888.

FRA. (2018a). Train accidents by cause from FRA F 6180.54.

Retrieved from

https://safetydata.fra.dot.gov/OfficeofSafety/publicsite/Query/i

nccaus.aspx

FRA. (2018b). Track and Rail and Infrastructure Integrity

Compliance Manual. Retrieved from

https://railroads.dot.gov/sites/fra.dot.gov/files/fra_net/17940/C

M%20Vol%20II%20Ch1%202018.pdf

Gao, S., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H.,

& Torr, P. H. (2019). Res2net: A new multi-scale backbone

architecture. IEEE transactions on pattern analysis and machine

intelligence.

Gibert, X., Patel, V. M., & Chellappa, R. (2016). Deep

multitask learning for railway track inspection. IEEE

Transactions on Intelligent Transportation Systems, 18(1), 153-

164.

Giben, X., Patel, V. M., & Chellappa, R. (2015,

September). Material classification and semantic

segmentation of railway track images with deep

convolutional neural networks. In 2015 IEEE

International Conference on Image Processing (ICIP)

(pp. 621-625). IEEE.

Girshick, R. (2015). Fast R-CNN. Paper presented at

the Proceedings of the IEEE international conference on

computer vision.

Hardway, A. (2014). Train carrying oil, propane

derails in Vandergrift. Retrieved from

https://www.wtae.com/article/train-carrying-oil-

propane-derails-in-vandergrift/7464992

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017).

Mask R-CNN. Paper presented at the Proceedings of the

IEEE international conference on computer vision.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep

residual learning for image recognition. Paper presented

at the Proceedings of the IEEE conference on computer

vision and pattern recognition.

Jang, K., An, Y. K., Kim, B., & Cho, S. (2020).

Automated crack evaluation of a high‐rise bridge pier

using a ring‐type climbing robot. Computer‐Aided Civil

and Infrastructure Engineering.

Jeong, J. H., Jo, H., & Ditzler, G. (2020).

Convolutional neural networks for pavement roughness

assessment using calibration‐free vehicle dynamics.

Computer‐Aided Civil and Infrastructure Engineering.

Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z.,

& Qu, R. (2019). A Survey of Deep Learning-Based

Object Detection. IEEE Access, 7, 128837-128868.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep

learning. nature, 521(7553), 436-444.

Li, Q., & Ren, S. (2012). A real-time visual inspection

system for discrete surface defects of rail heads. IEEE

Transactions on Instrumentation and Measurement,

61(8), 2189-2199.

Li, S., Zhao, X., & Zhou, G. (2019). Automatic pixel‐

level multiple damage detection of concrete structure

using fully convolutional network. Computer‐Aided

Civil and Infrastructure Engineering, 34(7), 616-634.

Liu, X., Dick, C. T., & Saat, M. R. (2014). Optimizing

ultrasonic rail defect inspection to improve transportation

safety and efficiency. In T&DI Congress 2014: Planes,

Trains, and Automobiles (pp. 765-774).

Liang, X. (2019). Image‐based post‐disaster

inspection of reinforced concrete bridge systems using

deep learning with Bayesian optimization. Computer‐

Aided Civil and Infrastructure Engineering, 34(5), 415-

430.

 Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan,

B., & Belongie, S. (2017). Feature pyramid networks for

object detection. Paper presented at the Proceedings of

the IEEE conference on computer vision and pattern

recognition.

Automatic railroad track components inspection using real-time instance segmentation 15

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,

Ramanan, D., Zitnick, C. L. (2014). Microsoft coco: Common

objects in context. Paper presented at the European conference

on computer vision.

Oh, B. K., Glisic, B., Kim, Y., & Park, H. S. (2019).

Convolutional neural network‐based wind‐induced response

estimation model for tall buildings. Computer‐Aided Civil and

Infrastructure Engineering, 34(10), 843-858.

Pan, X., & Yang, T. (2020). Postdisaster image‐based damage

detection and repair cost estimation of reinforced concrete

buildings using dual convolutional neural networks. Computer‐

Aided Civil and Infrastructure Engineering.

Perez-Ramirez, C. A., Amezquita-Sanchez, J. P., Valtierra-

Rodriguez, M., Adeli, H., Dominguez-Gonzalez, A. & Romero-

Troncoso, R. J. (2019), Recurrent Neural Network Model with

Bayesian Training and Mutual Information for Response

Prediction of Large Buildings, Engineering Structures, 178, 603-

615.

Rafiei, M. H. & Adeli, H. (2017), A Novel Machine Learning‐

Based Algorithm to Detect Damage in High‐Rise Building

Structures, The Structural Design of Tall and Special Buildings,

26(18), e1400.

Rafiei, M. H. & Adeli, H. (2018), A Novel Unsupervised

Deep Learning Model for Global and Local Health Condition

Assessment of Structures, Engineering Structures, 156, 598-607.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016).

You only look once: Unified, real-time object detection. Paper

presented at the Proceedings of the IEEE conference on

computer vision and pattern recognition.

Resendiz, E., Hart, J. M., & Ahuja, N. (2013). Automated

visual inspection of railroad tracks. IEEE transactions on

intelligent transportation systems, 14(2), 751-760.

Saadat, S., Sherrock, E., & Zahaczewski, J. (2018).

Autonomous Track Geometry Measurement Technology

Design, Development, and Testing (No. DOT/FRA/ORD-

18/06). United States. Federal Railroad Administration. Office

of Research, Development, and Technology.

Sawadisavi, S., Edwards, J. R., Resendiz, E., Hart, J. M.,

Barkan, C. P., & Ahuja, N. (2009). Machine-vision inspection of

railroad track. Paper presented at the Proceedings of the TRB

88th Annual Meeting, Washington, DC.

Tom Roadcap, M. D., J. Riley Edwards. (2018). Broken

Spikes in Premium Fastening Systems.

Wada, K. (2016). labelme: Image Polygonal Annotation with

Python.

Wang, M., & Cheng, J. C. (2020). A unified convolutional

neural network integrated with conditional random field for pipe

defect segmentation. Computer‐Aided Civil and Infrastructure

Engineering, 35(2), 162-177.

Wu, R. T., Singla, A., Jahanshahi, M. R., Bertino, E., Ko, B.

J., & Verma, D. (2019). Pruning deep convolutional neural

networks for efficient edge computing in condition assessment

of infrastructures. Computer‐Aided Civil and Infrastructure

Engineering, 34(9), 774-789.

Wu, Y., Qin, Y., Wang, Z., & Jia, L. (2018). A UAV-based

visual inspection method for rail surface defects. Applied

sciences, 8(7), 1028.

Wu, Y., Qin, Y., Wang, Z., Ma, X., & Cao, Z. (2020).

Densely pyramidal residual network for UAV-based

railway images dehazing. Neurocomputing, 371, 124-

136.

Xia, Y., Xie, F., & Jiang, Z. (2010). Broken railway

fastener detection based on adaboost algorithm. Paper

presented at the 2010 International Conference on

Optoelectronics and Image Processing.

Yang, J., Tao, W., Liu, M., Zhang, Y., Zhang, H., &

Zhao, H. (2011). An efficient direction field-based

method for the detection of fasteners on high-speed

railways. Sensors, 11(8), 7364-7381.

Yeum, C. M., Choi, J. & Dyke, S. J. (2019),

Automated Region-of-Interest Localization and

Classification for Vision-Based Visual Assessment of

Civil Infrastructure, Structural Health Monitoring, 18(3),

675-689.

Zhang, A., Wang, K. C., Li, B., Yang, E., Dai, X.,

Peng, Y., Chen, C. (2017). Automated pixel‐level

pavement crack detection on 3D asphalt surfaces using a

deep‐learning network. Computer‐Aided Civil and

Infrastructure Engineering, 32(10), 805-819.

Zhang, C., Chang, C. c., & Jamshidi, M. (2020).

Concrete bridge surface damage detection using a single‐

stage detector. Computer‐Aided Civil and Infrastructure

Engineering, 35(4), 389-409.

Zhang, X., Rajan, D., & Story, B. (2019). Concrete

crack detection using context‐aware deep semantic

segmentation network. Computer‐Aided Civil and

Infrastructure Engineering, 34(11), 951-971.

