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Abstract
For obtaining maps of good precision by the spatial inference method, the distribution of sampling sites in

geographical and feature space is very important. For a regional variable with trends, the predicting error

comes from trend estimation, variogram estimation and spatial interpolation. Based on the cLHS (condi-

tioned Latin hypercube Sampling) method, a sampling method called scLHS (spatial cLHS) considering all

these three aspects with the help of ancillary data is proposed in this article. Its advantage lies in simultane-

ously improving trend estimation, variogram estimation and spatial interpolation. MODIS data and simu-

lated data were used as sampling fields to draw sample sets using scLHS, cLHS, cLHS with x and y

coordinates as covariates, simple random and spatial even sampling methods, and the distribution and pre-

diction errors of sample sets from different methods were evaluated. The results showed that scLHS per-

formed well in balancing spreading in geographic and feature space, and can generate points pairs with

small distances, and the sample sets drawn by scLHS produced smaller mapping error, especially when

there were trends in the target variable.

1 Introduction

In natural resource and environment surveys, maps describing the spatial distribution and vari-

ation of the target variable need to be created (Graniero and Robinson 2003). To create maps

by sampling, values of the target variable at unvisited locations need to be predicted using the

observed data at sampling sites (Brus and De Gruijter 1997). In practice, the target regional

variables to be mapped are often non-stationary, for example terrain (Lloyd and Atkinson

2002). In such cases, Universal Kriging is one of the most frequently used mapping methods

(Chen and Li 2012). In mapping using Universal Kriging, Brus and Heuvelink (2007) thought

that both the trend estimation error and the spatial interpolation errors needed to be mini-

mized. In addition, a precise variogram is of no less importance. Hengl et al. (2004) pointed

out that the overall interpolation error depends upon the coverage of the sample in both feature

space (also called attribute space, which often consists of target variables or ancillary variables)
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and geographical space. With development of data acquisition technology such as remote sens-

ing, many exhaustive data are available to act as ancillary variables to guide sampling (Marti-

nez et al. 2010; Mulder et al. 2013). Focusing on a sampling method for mapping non-

stationary target variables with the help of ancillary data, the scLHS (spatially conditioned

Latin Hypercube Sampling) is put forward in this study to obtain samples with good coverage

in both spaces, retain points pairs with small distances which are important for variogram esti-

mation, and produce maps with small errors.

The remainder of the article is organized as follows. Section 2 reviews the related work.

Section 3 presents details of the scLHS method and the evaluation criteria for distribution of

sample sets in feature and geographical space. Section 4 introduces the empirical study using a

simulated dataset and a MODIS dataset to illustrate scLHS. Section 5 discusses the advantages

and applicable conditions of scLHS. Finally, Section 6 draws the conclusions.

2 Related Work

Sampling is a method for selecting a subset of representative individuals from a population to esti-

mate characteristics of the whole population. It is called spatial sampling in a spatial context,

where a two-dimensional area is treated as population. A good spatial sampling method tries to

obtain inferences of higher quality with less cost. A sampling strategy consists of two parts, a

design p and an estimator t, donated by (p, t). ‘Design’ refers to the procedure determining the

sample selection, while ‘estimator’ points to the procedure to calculate inferences from the sample

(Brus and Heuvelink 2007). Gruijter et al. (2006) thought that the design-based method was a

combination of probability sampling and design-based inference, whereas the model-based

method was a combination of purposive sampling and model-based inference. In the design-based

method, the values in the interested region are regarded as unknown but fixed and the primary

source of randomness comes from the chosen sampling sites (De Gruijter and Ter Braak 1990;

S€arndal et al. 2003). In model-based sampling, on the other hand, the values in the interested

region are regarded as one realization of a stochastic model. The randomness in this method is

introduced by the stochastic models which define superpopulations (Gruijter et al. 2006; Haining

2003). The design-based method is more suitable for tackling “how much” questions, for example

estimating global quantities including the frequency distribution of the target variable and the

parameters of this distribution, such as the mean, the standard deviation or quantiles. The model-

based method is more suitable for “where” questions, such as predicting values of un-sampled

sites, or estimating the parameters of the superpopulation (Wang et al. 2010). Thus, when the

sampling purpose is to generate a map, the model-based is frequently employed .

In the model-based method, besides simple purposive sampling such as square grids, trian-

gular grids, transect and nested sampling, optimization models serving certain purposes have

also been put forward to generate an optimal sampling plan, such as a minimal Kriging var-

iance model, optimized spatial coverage model and a feature space coverage model (Wang

et al. 2012). In the minimal Kriging variance optimization model, one example is postulating

an optimum model of average Kriging interpolation error and then generating the sampling

pattern using SSA (Spatial Simulated Annealing) (Bertolino et al. 1983; Van Groenigen et al.

1999). It requires an accurate variogram which is often unknown before sample design, so in

practical sampling the other two kinds of model are used more often. To place the sampling

sites as evenly as possible in space, Stevens (2006) proposed the mean squared distance criteria

based on the Thiessen polygon. Van Groenigen and Stein (1998) utilized the SSA to realize the

MMSD (Minimization of the Mean of the Shortest Distances) criteria, to minimize the mean

736 B Gao, Y Pan, Z Chen, F Wu, X Ren and M Hu

VC 2016 John Wiley & Sons Ltd Transactions in GIS, 2016, 20(5)



distances of un-sampled sites to the nearest sampling site. Chen et al. (2012) proposed to gener-

ate even sampling designs within a given irregular polygon via simulating the movements of

some ideal homogeneous point charges. For another pattern of spatial coverage, Groenigen

(1997) put forward the WMSD (Weighted Mean of the Shortest Distances) criteria to give dif-

ferent weights to different parts. Many spatial sampling methods considering feature space cov-

erage are also suggested. McBratney et al. (1999) introduced the variance quad-tree method in

which the study area is divided into four equally sized strata recursively until the variation of

each stratum reach certain threshold, and each stratum is then sampled independently. Hengl

et al. (2004) proposed the ER (Equal Range stratification) design to allocate points uniformly

over the attribute range by sampling proportionally to the distribution of the ancillary variable.

The LHS (Latin hypercube sampling) provides an efficient way to sample multiple variables

according to their distributions by constituting a Latin hypercube of multi-dimensions (McKay

et al. 2000). Based on this, Minasny and McBratney (2006) put forward the more practical

cLHS (conditioned Latin hypercube method) to get combinations of the ancillary values that

correspond to existing sites. Because coverage in geographic space is not specially considered,

the feature space coverage optimization models mentioned above are more suitable for sam-

pling for regression or global parameter estimation, rather than spatial interpolation to create a

map reflecting the spatial distribution of the target variable.

For mapping of non-stationary target variables, some efforts have been made in sampling

design to improve the precision. Lin et al. (2011) combined the cLHS method and variance

quad-tree to sample geographical and feature space at the same time. Similarly Simbahan and

Dobermann (2006) proposed to firstly stratify using ancillary data and then combine

MMSD1WM (Warrick-Myers criterion) optimization to draw a sample for variogram estima-

tion and interpolation in one time. However, the determinant trends of the target variable can-

not be adequately dealt with by simply stratifying. Brus and Heuvelink (2007) proposed a

sampling method comprising coverage in geographic and feature space, based on the Universal

Kriging model. This method is good at sampling optimization for non-stationary areas, but it

requires the Universal Kriging model (variogram and structure of trend) to be known before

sampling, a requirement which may not be satisfied in some cases. So there is still a lack of fea-

sible sampling design methods for mapping non-stationary target variables.

3 Methodology

3.1 Conditioned Latin Hypercube Sampling

LHS was initially developed to reduce the number of sample sets required in Monte Carlo

simulation by stratifying the variables and drawing representative sample sets (Brus and

Heuvelink 2007; Iman and Conover 1980; McKay et al. 2000). It has been widely used to esti-

mate the uncertainty of prediction models and for conditional simulations (Florian 1992;

Minasny and McBratney 2006).

LHS first stratifies each variable independently into continuous intervals (strata) according

to its CDF (Cumulative Distribution Function) in such a way that the integration of the cumu-

lative distribution of every interval is equal. Then sampling units are drawn randomly from

each interval; usually the number of divided intervals equals the sample size and only one unit

is selected in each interval. Finally, units obtained for each of the variables are paired with each

other either in a random way or based on some rules to constitute a sample.

When using ancillary data to guide sampling in feature space, the LHS method cannot be

directly used because it may arrive at combinations of values that do not correspond to any existing

A Spatial Conditioned Latin Hypercube Sampling Method for Mapping 737

VC 2016 John Wiley & Sons Ltd Transactions in GIS, 2016, 20(5)



point in the real world. So the cLHS method was put forward by Minasny and McBratney (2006)

to search through the data to find a sample to best meet the requirements of LHS. In cLHS an

objective function is designed and optimized using the SSA to achieve optimized sampling patterns.

cLHS samples each ancillary variable independently; therefore, simply treating the x and y

coordinates as ancillary variables cannot guarantee even coverage in geographical space which

is a combination of x and y coordinates. As illustrated in Figure 1, which presented an extreme

case of one best pattern of cLHS using x and y coordinates as ancillary variables, good coverage

in x and y coordinates independently cannot guarantee good coverage in geographical space.

3.2 Geographically Stratified Sampling Method

Parallel to cLHS which stratifies the feature space, the geographically stratified sampling

method firstly divides the study area into strata and then draws sites from each stratum. One

important method is the stratified simple random sampling from compact geographical strata

of equal size (Brus et al. 1999), which can be realized by the R package called spcosa developed

by Walvoort et al. (2010) based on k-means. The spcosa can divide the study area into an arbi-

trary number of compact sub-areas of equal size, as shown in Figure 2b. To improve geographi-

cal coverage, the number of sub-areas is set equal to the sample size. By partitioning the study

area into compact sub-areas with equal size and randomly drawing one site from each, geo-

graphical coverage can be improved, especially when the sample size is not very small.

The geographical stratification can also be simplified by using a regular grid, such as square

or rectangular, as shown in Figure 2c. For a rectangular study area, this grid stratification sam-

pling can be achieved by following three steps:

Step1: Divide the area in to Row by Col grids (noted as Row* Col), where Row and Col

are the number of rows and columns respectively, and Row*Col equals the sample size or is

the nearest number to the sample size. The division is realized in following steps:

1. Compute the Row and Col according to the sample size and the width and height of the

whole area:

Row 5 round

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� height

width

r !
(1)

Figure 1 An extreme case of the spatial coverage of cLHS using x and y coordinates as ancillary
variables
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Col 5 round

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� width

height

s !
(2)

where n is the sample size, and round is a function that rounds a decimal number into

an integer.

2. Compute the distance step to divide the study area:

xstep 5
width

Col
(3)

ystep 5
height

Row
(4)

where xstep is the distance step to divide the area along the lateral axis, and ystep is the

distance step along the vertical axis.

Figure 2 Sampling design results selected by geographically stratified sampling for a rectangular
study area
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3. Divide the study area into Row* Col grids. The grid with row number equaling i

and column number equaling j can be defined by two corner points, the left

lower: minx1 j21ð Þ�xstepð Þ; miny1 i21ð Þ�ystepð Þ½ �, and right upper: minx1j�xstepð Þ;½
miny1i�ystepð Þ�.

Step2: Randomly draw one site from each grid.

Step3: If Row*Col is larger than sample size, remove (Row*Col- n) sites randomly; else

draw left sampling sites (n-Row* Col) randomly from the whole area.

For study areas that do not take a rectangular shape, grids can also be divided, except that

the grids on the boundary would be cut to irregular cells.

Figure 2 shows the sampling results of drawing 14 sites from the study area using cLHS

with x and y coordinates as ancillary variables, spcosa and regular grid stratification combined

with spatial random sampling. With the restriction of the stratum boundary, the latter two

stratified sampling methods can improve the geographical coverage.

3.3 scLHS

The scLHS proposed here is evolved from the cLHS (Minasny and McBratney 2006) by adding

spatial evenly distributed objectivity to the objective function. It utilizes the continuous and

category auxiliary data to guide a sampling design to approach even coverage in feature space,

and at the same time employs the geographically stratified sampling mentioned above to consti-

tute a spatial coverage objectivity to emphasize even coverage in geographical space. The objec-

tive function to be optimized is:

O 5 wcoOco 1 wcaOca 1 wsOs 1 wcorOcor (5)

where O is the overall objectivity to be optimized, Oco, Oca, Os and Ocor are the sub-objective

function of continuous auxiliary variables, category auxiliary variables, spatial coordinates and

correlation respectively. wco, wca, ws and wcor are the corresponding weight of each sub-

objectivity. Oco is computed as follows:

Oco5
XI

i51

XV

v51

jgðqi
v � zv < qi11

v Þ21j (6)

where gðqi
v � zv < qi11

v Þ is a function to give the number of sampling sites falling between qi
v

and qi11
v , i represents the ith interval and v represents the vth variable, and I and V are the total

number of intervals and variables, respectively. The ideal situation is that only one sampling

site falls in each interval, so the objective value of Oco is zero. Oca is computed by:

Oca 5
XV

v51

XC

c51

���� gðzvcÞ
n

2pvc

���� (7)

where gðzvcÞ represents the number of sampling sites in the cth category of variable v, n is the

sample size, Pvc is the proportion of category c in variable v, and C is the number of categories.

Os is constituted in a similar way to the auxiliary variables, to place one sampling site in each

compact strata. It is computed as:

Os 5
Xh

k51

jg½ðx; yÞ 2 Sk�21j (8)
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where h is the number of strata divided and Sk is kth compact stratum, g½ðx; yÞ 2 Sk� represents

the number of sites falling inside Sk. For the simplified square or rectangular grid stratification,

Os can be computed using the following equation:

Os 5
XRow

i51

XCol

j51

jgðxi � x � xi11 and yj � y � yj11Þ2@j (9)

where the g function gives the number of sampling sites falling inside the grid defined by corner

points ðxi; yiÞ and ðxi11; yi11Þ, Row and Col are the row number and column number of the

grids, and @ is a rate computed by dividing the sample size with the product of row number

and column number. It means that the average points in each grid and its value is near one

because the number of grids (Row*Col) equals the sample size or is the nearest number to the

sample size. The Ocor is computed

Ocor 5
XV

v51

XV

u51

jcvu2tvuj (10)

where cvu and tvu are the correlation of variable v and u of sample and population, respectively.

For the weights of the sub-objectivities, if the distribution in feature space is more important,

then wco, wca, and wcor can be set larger than ws, otherwise if distribution in geographical space

is more important, ws should be a larger value. If the correlation between the continuous auxil-

iary variables is larger than the category auxiliary variables, wco should be set larger than wca,

otherwise wca should be larger. wcor can be set near to wco and wca, for example, as the average

of wco and wca. If distributions in both feature and geographical space are important, and the

correlations between each of the ancillary variables and the target variable are close, equal

weights can be adopted.

The optimization algorithm is realized using SSA. As shown in Figure 3, The following five

steps should be implemented:

Step 1: Prepare the data: choose related data as ancillary variables, divide the continuous

ancillary variable into h (h equals the sample size) intervals according to the CDF (Cumulative

Distribution Function), divide the study area into h compact strata with the same size, compute

the correlation matrix of the ancillary variables, define the initial temperature T and cooling

rate a which are both annealing parameters working together to control the annealing process,

set the weights and stopping criterion.

Step 2: Generate the initial sample: select n sites randomly as sample S1, set S 5 S1; com-

pute the correlation matrix of sample, and use Equations (5) through (10) to compute the over-

all objectivity O;

Step 3: Disturb sample S to produce a new sample S2; compute the new overall objectivity

Onew;

Step 4: Judge whether to accept the new sample according to the Metropolis criterion: if

the objectivity O is improved, accept the new pattern; if not, perform an annealing schedule to

generate a random number rand between 0 and 1 and compute Metro 5 Exp(O-Onew/T), if

rand< Metro, accept the new sample, Set S 5 S2, O 5 Onew, otherwise discard it;

Step 5: Judge the stopping criterion: if the stopping criterion is not satisfied, set T 5 T*a,

and then go to Step 3; otherwise finish optimization and give out the final pattern.

By optimizing the spreading in feature and geographical space, and adding randomness to

the location of the sampling sites, scLHS can generate a sample with good coverage in both
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spaces and retain points pairs with small distances. It aims to give more precise interpolation

results with one sampling.

The Q-Q (Quantile-Quantile plot) and P-P (Probability-Probability) plot can compare the

distribution of the sample and its population by plotting the quantiles/probabilities of the sam-

ple and the corresponding quantiles/probabilities of its population as a scatter diagram. To

quantify the representativeness of a sample, the deviation index was defined to be the RMSE

obtained from fitting the line y5x to points in the Q-Q plot or P-P plot (Pan et al. 2015):

d 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i51

ðqi2QiÞ2

n

vuuut
(11)

where d is the deviation index, qi is the quantile/probability of the ith sampling unit, and Qi is

the corresponding quantile/probability of the population. The deviation index quantifies the

information of one plot using one number, thus facilitating a comparison between different

results and simplifying the results’ presentation. The smaller the deviation index, the better the

sample represents the distribution of the population in feature space.

Figure 3 Chart flow of optimization algorithm of scLHS
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The spatial evenness index is defined based on the Theissen polygons around sampling sites

to evaluate the spatial coverage by:

E 5
AXN

i51

����Si2Ŝ

����
(12)

where A is the total area of the interested region and Si is the area of the Theissen polygon

around sample site i. Ŝ is the mean value of all Si. For a certain study area, the numerator A is

fixed. The denominator measures the differences among the areas of the Theissen polygons. If

the sampling sites are more evenly distributed in geographical space, the differences among the

areas of the Theissen polygons are smaller, and E becomes larger. On the contrary, if the sam-

pling sites are less evenly distributed, sites cluster in some part and distribute sparsely in other

parts, the Theissen polygons around the sites differs more in area, the denominator becomes

larger and E becomes smaller. So, a larger evenness index indicates that the sampling sites are

more evenly distributed in geographical space.

The points pairs with small distance are more critical for precise variogram estimation. To

evaluate the ability of different methods to retain pairs with small distance, the DIPPSD (Distri-

bution Index of Points Pairs with Small Distances) is defined. Like estimating the variogram,

the points pairs are divided into non-overlapping distance groups. The DIPPSD is computed as:

DIPPSD5
pg1�NgXNg

i51

pgi

(13)

where Ng is the number of distance groups, pgi is the number of points pairs belonging to the

group Ni, and pg1 is the number of points pairs belonging to be first distance group. The larger

the DIPPSD, the more points pairs with small distance are retained. Because only the number

of points pairs in the first distance group is counted, DIPPSD cannot reflect the distribution of

points pairs.

4 Case Study

4.1 Datasets and Experiments

Two exhaustive datasets were used as the sampling field to demonstrate the efficiency and the

applicability of the suggested method. The first one is a 400*400 pixels subset of the level 2

product MOD09 of MODIS over the Henan Province of China on 5th April, 2010 (Figure 4)

downloaded from the NASA website (http://ladsweb.nascom.nasa.gov/data/search.html). The

seventh band was used as the target variable and the first band and fifth bands are used as ancil-

lary variables. The correlation coefficients between target variable and ancillary variable are

0.75 and 0.89, respectively. The 3D view of the seventh band in Figure 4d shows an obvious

trend in which the value goes higher from the nearer corner to the further corner. The other

data set is an image with 100*100 pixels in size created using Sequential Gaussian conditional

simulation function of Gslib (http://www.gslib.com/). During the simulation, arsenic (As) con-

tents of 78 sites, randomly selected from 400 collected data of heavy metal contents of the top-

soil of Shunyi District of Beijing of China, were used as hard data, and a spherical variogram

model with Cc equaling 0.8, hMax equaling 15 and hMin equaling 8 was used. Three ancillary
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data were also generated by disturbing the hard data and changing the parameters of the spatial

variogram. The correlation coefficients between the target variable and ancillary variables are

0.71, 0.58 and 0.57, respectively. The simulated sampling field and ancillary data are listed in

Figure 5. The upper left image is the target variable, and the others are the ancillary data.

MATLAB R2009a was employed to draw sample sets from both datasets using the spatial

random, MMSD, cLHS, cLHSXY (the cLHS method that use x and y coordinates as covariates,

besides the ancillary variables) and scLHS methods, and to analyse the sampling results. The

DACE (Design and Analysis of Computer Experiments), a Matlab toolbox for Kriging models

developed by Hans Bruun Nielsen et al. (http://www2.imm.dtu.dk/~hbni/dace/) was used for

the mapping. For MODIS data, the variogram of interpolation was estimated from each sam-

ple, but for the simulated data, a known variogram was set.

Two experiments were carried out, one is comparing scLHS with other sampling methods

to illustrate its efficiency, the other is comparing different weights of the sub-objective function

of scLHS to discuss the selection of weights. In the former experiment, the weight of each

Figure 4 MODIS data

744 B Gao, Y Pan, Z Chen, F Wu, X Ren and M Hu

VC 2016 John Wiley & Sons Ltd Transactions in GIS, 2016, 20(5)

http://www2.imm.dtu.dk/~hbni/dace


sub-objective were set to 1, and in the latter experiment, different weights was set for the sub-

objectivity of the feature and geographical space.

The flow chart of the former experiment is presented in Figure 6. The experiment was

implemented in the following four steps. (1) Sampling: drawing five sample sets with size of

200, 250, 300, 350 and 400 from the seventh band of the MODIS data and six sample sets

with size of 25, 50, 75, 100, 125 and 150 from the simulated data under different sampling

methods; (2) Spreading Evaluation: evaluating and comparing the distribution in feature space

and geographical space of sample sets of different methods; (3) Comparing distribution of

Points pairs: compute the DIPPSD to compare the ability to retain points pairs with small dis-

tances; (4) Inference: interpolating the study area using Universal Kriging with the sample sets

and comparing the RMSEs, with a second order trend fitted in the MODIS data, and no trend

was removed for the simulated data.

In the latter experiment, the weights of the sub-objectives of the feature space stay the same

(from 0.1 to 0.9), but the ratio between them and the weight of sub-objective of the geographi-

cal space (from 0.9 to 0.1) keeps varying. It was implemented in the following steps. (1) define a

variable w and set w 5 0.1; (2) set wco, wca, ws and wcor to equal w, set ws 5 1-w, employ scLHS

Figure 5 Simulated data
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to draw five sample sets with size of 200, 250, 300, 350 and 400 from the 7th band of MODIS

data and six sample sets with size of 25, 50, 75, 100, 125 and 150 from the simulated data; (3)

map the study area using Universal Kriging with the sample sets and compute the mean and

standard error of the RMSEs of the different sample sets; (4) if w� 0.9, set w 5 w 1 0.1 and go

to step (2), otherwise finish the experiment and output the means and standard error of the

RMSEs of the different sample sets.

4.2 Comparing Different Sampling Methods

4.2.1 Distribution in feature and geographical space

The deviation index between the sample sets and the population is presented in Figure 7, where

the horizontal axis is the sample size, and the vertical axis is the corresponding deviation index.

For both the simulated data and MODIS data, except cLHS which only considers the distribu-

tion in feature space, scLHS performs better than cLHSXY, MMSD or the simple random

method. For the simulated data, scLHS sometimes performs better than cLHS. The reason may

be that the correlation between the ancillary and target variable of the simulated data is low,

and according to Tobler’s law that “everything is related to everything else, but near things are

more related to each other” (Tobler 1970), pursuit of good coverage of geographical space can

also improve the coverage of feature space. This also explains why MMSD performs better

than the simple random method. The results of cLHSXY are not stable, and are worse than

cLHS and scLHS most of the time. Although the only goal of cLHSXY is to evenly cover the

distribution of each ancillary variable (including ancillary data and coordinates), due to the

Figure 6 Flow chart of experiment for MODIS and simulated data
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low correlation with the target variable, the coordinates in fact play as disturbance factors

which most of time decrease the performance of cLHSXY.

To map the study area with the target property, the even distribution of sampling sites in

geographical space is very important. The spatial evenness indices of different methods are

listed in Tables 1 and 2. Except for the MMSD method, scLHS produces sampling sets with the

highest evenness index, while cLHSXY make little improvement in geographical coverage.

By comparing the deviation indexes and spatial evenness indexes of different methods in

both datasets, the coverage of sample sets from different methods in geographical and feature

space is summarized in Table 3. It demonstrates that scLHS is good at balancing between cov-

erage in geographical and feature space, while cLHS is only optimal in coverage of feature

space and MMSD is only optimal in coverage of geographical space. The simple random sam-

pling method performs worst in terms of coverage of both spaces. cLHSXY has limited

Figure 7 Deviation index in feature space
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balancing ability, only a little better than MMSD in coverage of feature space, and a little better

than cLHS in coverage of geographical space.

The DIPPSD of the sample sets from the MODIS data is shown in Figure 8, where point

pairs were classified into 21 distance groups, and the size for each group is 20 pixels except for

the last one (points pairs with distance larger than 400 were all classified into the last distance

group). scLHS can retain points pairs with small distance which are more critical for a precise

variogram estimation, although slightly fewer than cLHS, Random and cLHSXY. MMSD can-

not produce such points pairs when the sample size is small.

4.2.2 Prediction error

Sample sets of different size drawn under simple random, MMSD, cLHS, cLHSXY and scLHS

methods were used to predict values of un-sampled sites of the study area using Universal Krig-

ing with DACE. For MODIS data because the sample size is large enough for variogram esti-

mation, the parameters of the variograms were estimated from each sample after a trend of

Table 1 Spatial evenness index of sample sets from MIDIS data

Method
Sample
size5 200

Sample
size5 250

Sample
size5 300

Sample
size5 350

Sample
size5 400

MMSD 12.10 10.18 9.04 3.24 53.71
scLHS 3.30 3.25 3.45 3.24 4.05
cLSHXY 2.35 2.54 2.38 2.52 2.57
cLHS 2.50 2.27 2.57 2.37 2.40
Random 2.41 2.38 2.25 2.51 2.37

Table 2 Spatial evenness index of sample sets from simulated data

Method
Sample
size5 25

Sample
size5 50

Sample
size5 75

Sample
size5 100

Sample
size5 125

Sample
size5 150

MMSD 38.48 23.19 55.53 30.40 54.30 23.88
scLHS 4.01 3.25 4.73 4.26 3.46 3.18
cLSHXY 3.34 2.85 2.45 3.006 2.47 2.68
cLHS 2.43 2.57 2.72 2.25 2.00 2.46
Random 1.96 1.93 2.76 2.59 2.16 2.27

Table 3 Distribution in geographical and feature space

Distribution scLHS cLHSXY cLHS Random MMSD

Coverage of feature space **** *** ***** * **
Coverage of geographical space **** *** ** * *****

Note: the number of stars represent the rank, the more stars, the better the coverage
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second order is removed. For the simulated data a known variogram is set and no trends were

removed because no trends were added when generating the data.

The predicted values were compared to the true value of the original data and the RMSEs

were computed. The results in Figure 9 show that scLHS can produce samples with smaller pre-

diction errors in both the simulated data and MODIS data cases. What is more, the advantage

over other methods in predicting is more obvious in MODIS data where a universal trend exits.

The RMSEs of sample sets of cLHSXY is not stable, because simply treating x and y coordi-

nates as variables in cLHS cannot guarantee good spatial coverage and at the same time

impedes the coverage in feature space.

4.3 Comparing the different weights of each sub-objectivity

The mean and standard deviation of RMSEs of prediction using sample sets drawn by scLHS with

different weights are presented in Figure 10, where the left and right vertical axis are the mean

and standard deviation of the RMSEs, respectively; the lower horizontal axis is the weight of sub-

objectives of feature space, and the upper horizontal axis is the weight of sub-objective of geo-

graphical space. From Figure 10a it can be found that for MODIS data, equal weights for all sub-

objectives produce the best prediction results, and other unequal weights, either larger weights for

sub-objectives of feature space, or larger weights for sub-objectives of geographical space, produce

worse prediction results. For the simulated data in Figure 10b, when the weights of sub-objectives

of feature space are between 0.3 and 0.6, the prediction results are better than other cases. Again,

equal weights for all sub-objectives is one of the best weight settings.

The results show that for both MODIS data and the simulated data, it is a good idea to

set equal weights for sub-objectivities in scLHS. The results are reasonable for the following

reasons. For prediction of MODIS data, a second order trend needs to be fitted besides the spa-

tial interpolation; distributions in both feature and geographical space are important. For the

simulated data, although there is no trend, the spatial variation is not as stationary as that

required by Kriging and will produce large prediction errors in areas with greater spatial varia-

tion if the sampling sites are evenly distributed in geographical space. To avoid such large

Figure 8 DIPPSD of sample sets from MODIS data
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prediction errors, the spreading of the sample in feature space also needs to be emphasized, to

place more sites in areas with greater spatial variation.

5 Discussion

5.1 Advantages of scLHS

By utilizing ancillary data, scLHS optimizes the distribution of the sample in both feature and

geographical space. Its advantage lies in improving trend estimation, variogram estimation and

spatial interpolation at the same time and thus improving the total mapping precision. Com-

pared with optimization methods in feature space such as cLHS, it can avoid spatial clustering

which can impede the mapping precision of the whole area. Compared with even coverage

Figure 9 RMSE of prediction
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methods such as MMSD, scLHS can depict the feature space better and produce more precise

regression models to remove the trends, and at the same time increase the number of points

pairs of small distance by allowing the sampling site to locate anywhere in each spatial stratum.

Thus the trends-estimation error and the variogram-estimation error are smaller. Also as a pur-

posive sampling method, the consideration of the distribution in feature and geographical space

makes it more efficient than probability sampling, such as the spatial random method, most of

the time (Brus and De Gruijter 1997; Gruijter et al. 2006). Theoretically, simply adding the x

and y coordinates of the sampling sites as covariates to cLHS cannot guarantee good coverage

in geographical space, and at the same time impedes the coverage in feature space. The case

studies demonstrate that cLHSXY is worse than scLHS in coverage of both geographical and

feature space, and also in mapping precision.

Figure 10 Mean and standard deviation of RMSEs of scLHS with different weights
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In scLHS, the relative importance of different sub-objectives can be adjusted by changing

the corresponding weights. By setting the weight of sub-objectivity of geographical space to

zero, the scLHS becomes cLHS, and by setting the weights of sub-objectivities of feature space

to zero, the scLHS becomes geographically stratified sampling. In many practical cases, the spa-

tial stationary required by Ordinary Kriging cannot be satisfied, thus besides covering the geo-

graphical space as evenly as possible, either a trend needs to be fitted or more sampling sites

need to be placed in areas with greater spatial variation, to improve the mapping precision.

scLHS is flexible in balancing the coverage of geographical and feature space.

5.2 Applicable Conditions

From the deviation index in Figure 7, it can be seen that the feature space coverage of cLHS is

much better in MODIS than in the simulated data because the correlations between the ancil-

lary variables and the target variable are higher in the former. Although scLHS can sometimes

improve feature space coverage by optimizing geographical space coverage when the ancillary

variables have low correlation with the target variable, it still requires ancillary variables of

high correlation. In the spatial prediction results in Figure 9, the advantage of scLHS in draw-

ing samples for mapping is more in MODIS data than in the simulated data. The reason is that

one of the merits of scLHS is that it reduces the trend estimation error. For the MODIS data,

there exist obvious trends, thus the improvement in mapping is obvious. However, for the

simulated data, no obvious trend exists and known variograms are used, the benefit is limited.

When the variogram is not known beforehand, to estimate the parameters of the vario-

gram from the sample is also required. To estimate the variogram, Davis and Borgman (1979,

1982) suggest that the number of points pairs in each distance class should be as large as possi-

ble, and at the same time the pairs with small distance are more critical for precise estimation.

The results show that the scLHS can generate many more points pairs with small distance than

MMSD, although fewer than other methods. What needs to be stressed here is that in order to

estimate the variogram from sampling results of scLHS, the sample size must be large enough.

The basic requirements, as advised by Webster and Oliver (1993), are that 150 locations can

suffice in many situations and 225 in most isotropic applications. At the same time to meet the

needs of spatial interpolation, the simple size should satisfy the following inequation:

n � A

R2
0

(14)

where A represents the area of the study region and R0 represents the correlation distance. To

use scLHS to estimate the variogram and map the study area, the sample size should be equal

or larger than that given by Equation (14) and that suggested by Webster and Oliver (1993).

In the case of MODIS data, because a trend of second order exists and the prediction

errors come from trend-fitting and spatial interpolation, the distribution of samples in both fea-

ture and geographical space should be emphasized. In the case of simulated data, because spa-

tial variation is not stationary, the coverage in feature space also needs to be considered,

although the weights for sub-objectivities of feature space should not be larger than the weight

of sub-objectivity of geographical space. The weights of scLHS should be adjusted according

to specific condition, and lager weights should be set to the corresponding sub-objectivities if

the coverage in feature or geographical space is to be emphasized more. If the study area is sta-

tionary and a variogram is known, the weights for sub-objectivities of feature space can be set
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to zero, and if the regression method is used to produce the map, the weight for sub-objectivity

of geographical space should be set to zero.

6 Conclusions

With guidance from ancillary data, scLHS performs well in balancing between spreading in

geographic space and feature space, and can retain points pairs with small distance which are

crucial for variogram estimation. By considering the spatial coverage, it can be used to draw

sample for spatial interpolation using Kriging compared with the ER and cLHS sampling meth-

ods which only consider coverage in feature space. Also, the optimal coverage in feature space

results in a reduction of the trend estimation error (Brus and Heuvelink 2007) and thus can

reduce the error of mapping when trends exist. scLHS completes all these in one step compared

with the two-step procedure proposed by Hengl et al. (2004). Unlike the method to reduce

Mean Universal Kriging Variance proposed by Brus and Heuvelink (2007), it does not need a

Universal Kriging model before sampling design. What is more, in scLHS the relative impor-

tance of coverage in feature and geographical space can be adjusted flexibly.

The gain in prediction precision of scLHS can be strengthened when obvious trends exist. In

addition, the correlations between ancillary variables and target variable affect the optimal cover-

age of the feature space of the target variable; the higher the correlation, the better the coverage

and the higher the estimation precision. Sufficient sample size is required to estimate the parame-

ters of the spatial variogram using a sample of the scLHS. The cases in this article showed that if

distribution in both feature and geographical space should be emphasized, equal weights for sub-

objectives are proper.

As far as we can see, three improvements of scLHS need to be further studied in future: (1)

adding WM criteria (Warrick and Myers 1987) into the overall objective function to minimize

the difference between the actual distribution of distance groups of points pairs and the prese-

lected distribution and to improve the estimation of the variogram; (2) studying the weight of

different sub-objectives under different sampling aims and different population characteristics;

and (3) giving out the ancillary variable selecting criteria based on the correlation coefficient

and employing methods such as PCA (Principal Component Analysis) to reduce the dimension

of ancillary variable when they are plenty.
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