Total 3D-viewshed Map: Quantifying the Visible Volume in Digital Elevation Models

A. R. Cervilla,* S. Tabik,* J. Vías, ${ }^{\dagger}$ M. Mérida ${ }^{\dagger}$ and L. F. Romero*
*Department of Computer Architecture, University of Málaga
${ }^{\dagger}$ Department of Geography, University of Málaga

Abstract

The 3D perception of the human eye is more impressive in irregular land surfaces than in flat land surfaces. The quantification of this perception would be very useful in many applications. This article presents the first approach to determining the visible volume, which we call the 3D-viewshed, in each and all the points of a DEM (Digital Elevation Model). Most previous visibility algorithms in GIS (Geographic Information System) are based on the concept of a 2D-viewshed, which determines the number of points that can be seen from an observer in a DEM. Extending such a 2D-viewshed to 3D space, then to all the DEM-points, is too expensive computationally since the viewshed computation per se is costly. In this work, we propose the first approach to compute a new visibility metric that quantifies the visible volume from every point of a DEM. In particular, we developed an efficient algorithm with a high data and calculation re-utilization. This article presents the first total-3Dviewshed maps together with validation results and comparative analysis. Using our highly scalable parallel algorithm to compute the total-3D-viewshed of 4 million points DEM on Xeon Processor E52698 takes only 1.3 minutes.

1 Introduction

A total-3D-viewshed map that indicates the visible volume at each and all the points of a DEM as perceived by the human eye would solve real-world problems in a large number of applications, for example (i) for finding the most impressive sites to locate a viewer or outlook in a natural park (ii) for situating forest fire watchtowers in environmental planning (iii) for assessing wildness quality and distribution in protected landscapes (Carver et al. 2012), (iv) for determining routes with the best and largest views for hiking trails in nature tourism, v) for determining the minimum number of observes that provide the maximum coverage (Cervilla et al. 2015b), (vi) for analyzing the visual impact in tourism and archeology (Ogburn 2006) to name few.

The (2D-)viewshed is the most common parameter for visibility analysis in GIS. It consists of determining the visible points from one or a few number of viewpoints. Viewshed algorithms were integrated into popular GIS-software at an early stage in their evolution but have not been adapted yet to process large amounts of point-of-views. On the other hand, the continuous production of large and high resolution DEMs is creating a permanent demand for better and more efficient viewshed algorithms.

[^0]The common viewshed computation strategies have additional limitations due to their oversimplification of the geometrical problem. They use a binary model to classify the DEMpixels as visible, 1 , or invisible, 0 , which limits the perception of possible impacts in invisible points (Bishop 2003; Fisher 1996). Visibility assessments based on viewshed information cannot be reliable in all real-world applications because the viewshed per se is not a complete measure. Viewshed provides an idea of the number of visible points in a DEM. It does not integrate any information about the visible volume or where visible elements start to be so (Bishop 2003). The viewshed computation may produce very similar results in areas with very different roughness. In the example depicted in Figure 1, the observer perceives exactly the same 2Dviewshed, $=1 \mathrm{hm}^{2}$, from the two sites but a completely different 3D-viewshed, $167 \mathrm{hm}^{3}$ in the hilly area and $4 h m^{3}$ in the plain area, where $h m^{2}$ and $h m^{3}$ stand for square and cubic hectometer.

An accurate computation of the 3D-viewshed is a very complicated task and demands huge computational resources. This is the reason why only very few works treat this topic (Fisher-Gewirtzman et al. 2013). An intuitive approximation of the 3D-viewshed of a visible cell can be the pyramid whose base is that visible cell and whose vertex is the observer. This solution is not practical because most viewshed algorithms were initially designed for one single viewpoint and have very low computational scalability when the number of viewpoints increases.

This work presents a scalable total 3D-viewshed algorithm able to compute the visible volumes for all the points of the DEM, with a time complexity $O\left(n^{1.5}\right)$ where n is the total number of the DEM points. The key ideas behind this algorithm can be enumerated as follows:

- It analyzes all the DEM points by azimuthal direction (sector).
- It analyzes the visibility of the points in a sliding window called Band-of-Sight (BS), which is implemented as a dynamic linked list data structure.
- It calculates the 3D-viewshed as the visible volume of air delimited from the top by the roof, which is the imaginary surface that connects the observer with the horizon curve (see Figure 2). The roof can be also considered as the locus of all segments that connect the observer with all the points of the horizon.

This article is organized as follows. A review of related viewshed algorithms is provided in Section 2. A general description of the proposed 3D-viewshed algorithm is given in Section 3. The keys of the total 3D-viewshed computation are provided in Section 4. The computation results are provided in Section 5. The numerical results, validation and comparisons are given in Section 6 and finally conclusions in Section 7.

2 Related Visibility Works

The visibility computation methods proposed in the literature can be divided into two levels, first-level methods that focus on computing the visible 2D-areas from one point, known as viewshed, and second-level applications that use the first-level methods to define new useful metrics to some specific fields.

2.1 2D-Visibility Algorithms

Visibility determination in DEMs is a key requirement in several fields, in geometric information systems, computer graphics and robotics among others. The common goal to these applications is to accurately determine the visible portion of space as seen from a given point or

Figure 1 The 3D-perception of an observer located at 6 km from two sites: one hilly site and one plain site. The observer sees in both sites the same 2D-viewshed ($1 \mathrm{hm}^{2}$) but different 3Dviewshed: $167 \mathrm{hm}^{3}$ in the hilly area and $4 \mathrm{hm}^{3}$ in the plain area.

Figure 2 (a) Given a point POV and its horizon curve, (b) the roof of POV is the imaginary surface that connects that observer with its horizon curve.
from a set of points. Most existent solutions are based on the common Line-of-Sight (LOS) approach, published initially by (Travis et al. 1975; Mees 1977), to determine whether a target is visible from an observer. Since then, a large number of variations and optimizations of the
LOS methods have been proposed to compute viewshed in DEMs, e.g. R3, R2, Xdraw and van Krevelds radial sweep algorithm (Franklin et al. 1994; Kreveld 1996).

As LOS methods were initially designed for one point/observer, extending them to compute more global and complex maps in 2D-space demands high computational resources. In particular, using LOS-methods to compute the total-viewshed map, which consists of computing the number of visible $h m^{2}$ at each and all the points of the DEM, has a computational cost
greater than $O\left(n^{2}\right)$ (De Floriani and Magillo 1993, 1994; Miller et al. 1995; Miller 89 2001). Some works managed lowering the computational complexity of viewshed computation 9 to $O(n \cdot \log (n))$ without reducing the accuracy (Tabik et al. 2013; 2015; Stewart 1998). They distribute the space around the points of the DEM into a discrete number of sectors, usually 360 of 1°, and analyze the horizon or viewshed of all the points by sector.

2.2 3D-Visibility metrics

The qualitative and quantitative evaluation of the impact of the visibility in specific applications requires developing new and objective metrics based on the 2D-visibility methods. For example, to estimate the economical value of an apartment in an urban environment, the authors in Fisher-Gewirtzman et al. (2013) define a metric called density, which measures the volume of visible space at a point. They subdivide the target urban area into smaller voxels and apply a spatial intersection, i.e., a LOS approach, between the observer, the DEM and the voxel. A similar voxel-based approach was used in Suleiman et al. (2011) to calculate the 3Disovit of a point in closed urban areas. The goal is to detect the obstacles that limit the vision field of that point. Another similar voxel-based method was utilized in Carver et al. 2012 and in Carver and Washtell (2012) for assessing wildness quality and distribution in protected landscapes. To characterize the topographic form of a landscape, the authors in Yokoyama et al. 2002 defined the openness index, which determines the dominant 3D-geometrical form of a location in a DEM. The authors simplified the calculation by dividing the space around the target into eight sectors.

All the previously cited works propose solutions for one single point or at most for a small number of points in a small closed voxel or a square. Our own work is different from these works in that it calculates the all-to-all visible volume in a DEM. The output of our algorithm is a total-visible volume map, where each pixel in the map indicates the number of visible hm^{3} from that point in the corresponding DEM.

3 Overview of our Total-3D-viewshed Model

Terrains in GIS are commonly represented by n-points-grid called Digital Elevation Model 115 (DEM). Each point of the grid is localized by its latitude x, longitude y and height h coordinates. The aim of this work is to compute the total-3D-viewshed in n-points DEMs where n is very large. This section provides the main concepts that make the proposed algorithm highly efficient.

The visible volume from a specific observer with coordinates (x, y, h) can be calcu- 120 lated by analyzing all the points around that observer in $S=360$ equiangular directions 121 separated by 1° one from the other $\left(\vec{S}_{i}\right.$ with $\left.i=1,2 \ldots, 360\right)$. See Figure 3 for illustration. 122 We demonstrated in a previous work (Tabik et al. 2015) that values of $S \in\left[\begin{array}{lll}90 & 360\end{array}\right]$ are 123 enough to ensure reliability of the results without excessively affecting the performance. 124 The impact of S on the accuracy of the results can be verified using the code provided 125 through this link (Cervilla et al. 2015a). The approach of analyzing the points by sector 126 was introduced for the first time to compute the horizons in Cabral et al. (1987). The set 127 of points that have to be considered in each direction \vec{S}_{i} is critical to both accuracy and 128 performance. In Cabral et al. (1987), the authors considered only the points situated in the 129 central line of the sector. A number of subsequent works increased the size of the sampling 130 by incorporating all the points of the sector to the analyzed dataset and storing the points 131 with the highest elevations into a complex and costly convex hull tree (Stewart 1998; 132

Figure 3 The 3D-viewshed from an observer is calculated by analyzing the 360 equiangular directions of directional vectors \vec{S}_{i} with $i=1,2 \ldots, 360$.

Tabik et al. 2011; 2013). In this work, we use a more efficient and simpler data structure 133 called Band of Sight (BS), which is a sliding window formed by the nearest points from 134 direction \vec{S}_{i} within a specific distance. Direction \vec{S}_{i} is comparable with one LOS.

Note that the azimuthal sectorization of the viewshed involves a linear loss of precision in distant locations. These losses are not critical in many applications, because the human eye perception and signal intensity are inversely proportional to the square of the distance ($I=\frac{P}{4 \pi d^{2}}$, where P is the power of the signal). In addition, according to Maloy and Dean (2001), the visi- 139 bility problem is numerically unstable and differences of up to 50% in viewshed computation 140 are considered as acceptable. It is worth to mention that the error incurred by the sector discre- 141 tization is of the order of magnitude of the azimuthal error $\left(1^{\circ} / 360^{\circ}\right)$, while the error incurred 142 by the digital representation of the terrain itself due to the influence of the neighborhood of the point-of-view is huge $\left(45^{\circ} / 360^{\circ}\right)$.

The BS window provides enough information along \vec{S}_{i} and the representativeness of its 145 points is inversely proportional to the distance between the observer and the target. The subset 146 of points that forms BS represents a narrow window of points of rectangular shape aligned with the axis whose directional vector is \vec{S}_{i} as shown in Figure 4. In the longitudinal axis, \vec{S}_{i}, BS-window reaches the limits of the DEM and in the transverse axis POV is placed exactly in the center of the sector. BS is characterized by its constant size $b w$, i.e. the number of points it holds.

Figure 4 The points visible to an observer in direction \vec{S}_{i} and $-\vec{S}_{i}$ are calculated by analyzing the bw points of the band-of-sight (the shaded area). The animation that shows how the BS points are processed is provided through this link: https://www.youtube.com/watch? $\mathrm{v}=\mathrm{Ohs} 8 \mathrm{ioy} \mathrm{YpX0}$

A naive implementation of the 3D-viewshed algorithm would be expressed as an 157 outer loop that iterates over all the points POV of the terrain and an inner loop that 158 sweeps the 360 azimuthal directions. See Algorithm 1. In this work, we used a highly effi- 159 cient algorithm that permutes the outer and inner loops in order to achieve a good mem- 160 ory management while maintaining a high level of parallelism, as will be shown in next 161 sections.

Once the S_{i} direction is selected an inner loop computes the 3D-viewshed at every point of the DEM in two directions \vec{S}_{i} and $\vec{S}_{i}^{o}=-\vec{S}_{i}$ as can be seen in Algorithm 2. The 164 order in which the points are analyzed is critical to the performance. A naive ordering 165 would be according to the natural ordering of the points, for example, from North to 166 South and then from East to West following its storage ordering in memory. This strategy 167 only takes into account the locality of the observer and omits the locality of the other 168 points. However, sweeping the DEM-points in the perpendicular direction to \vec{S}_{i} will main- 169 tain a good locality of both the observer and the viewed points. Using this ordering, 170 the total 3D-viewshed computation can be carried out as described in Algorithm 3. Where 171 analyzePoint $\left(P O V, P, S_{i}\right)$ is a procedure that analyzes whether point, P belonging to BS , is 172 visible from POV in sector S_{i}; in case P is visible it calculates the corresponding viewshed 173 and 3D-viewshed. This procedure is explained in details in Section 4. A flow chart of the 174 proposed 3D-viewshed algorithm is depicted in Figure 5.

```
Algorithm 1 Naïve Algorithm
```

```
for (POV=0, POV<n, POV++)
```

for (POV=0, POV<n, POV++)
for each Si (i=0,i<360;i++)
for each Si (i=0,i<360;i++)
total_VV(POV) += compute_VV (POV, 到)

```
    total_VV(POV) += compute_VV (POV, 到)
```

```
Algorithm 2 Locality aware Algorithm
for each Si (i=0; i<180; i++)
    /*sort BS points in \vec{S}
    sort_BSpoints( ( }\mp@subsup{\vec{S}}{i}{
    for POV=0; POV<n; POV++
    update(BS)
    total_VV(POV)+= compute_VV(POV, 到)
```


Algorithm 3 Our Algorithm

for each $S_{i}(i=0 ; i<180 ; i++)$
/* sort the $B S$ points in direction $\overrightarrow{S_{i}^{\perp}} * /$
sort_BSpoints ($\overrightarrow{S_{i}^{\perp}}$)
for POV=0; POV $<\mathrm{n}$; POV++
update (BS)
/* Sweep the BS-points in direction \vec{S}_{i} starting
from POV* /
for $\mathrm{P}=\mathrm{POV}$. next to POV.last analyzePoint (POV, P, \vec{S}_{i})
/* Sweep the BS-points in direction $\overrightarrow{S_{i}^{o}}$ starting from POV* /
for $P=P O V$.previous to POV.first
analyzePoint (POV, P, $\overrightarrow{S_{i}^{o}}$)

4 The Keys of Total 3D-viewshed Computation

Our approach computes the 3D-viewshed of all the points of the DEM by two directions in 177 three main phases. For each couple of directions \vec{S}_{i} and \vec{S}_{i}^{o} the profile of a viewpoint is projected 178 onto the vertical plane, then a 2D-reconstruction is performed in the horizontal plane using the 179 concept of visible ring sectors and finally the 3D-viewshed is determined. At the end of the 180 sector-iterative process the 3D-viewshed of all the points in the 360 sectors is obtained. An effi- 181 cient implementation of this approach requires an appropriate BS-data structure. This section 182 provides insights on how the points are managed in the BS data structure and how the visible 183 ring-sectors and 3D-viewshed are computed.

4.1 Maintenance of the Band-of-Sight Data Structure

The points of BS are implemented in a linked-list data-structure with circular queue to ease its 186 dynamic management. This structure holds the geographical location of the BS-points using 187 their ordering along \vec{S}_{i}. This linked-list contains a set of $b w=2 \cdot b w+1$ points, where $b w$ is the 188 number of points in each side of BS-axis. Initially, this data structure is empty. During the first 189 iterations, the structure is filled up till it reaches a stable state. Once stabilized, the size of the 190 data structure is fixed, and in each iteration a new point is added to the structure while an other 191

Figure 5 Flow chart of our 3D-viewshed algorithm.

Figure 6 Generation of profile of the BS points.
point is eliminated. The cost of inserting and eliminating points from the linked list is very 192 small.

For each specific sector, the BS-data structure is evicted once all the points of the DEM are 194 processed.

4.2 Visible Ring-sectors Computation

The 3D-viewshed algorithm processes data within BS as if all the points were aligned along the 1 axis of BS, see Figure 6. Indeed, the BS data structure is composed of two subsets, the points located in one side of POV and in the opposite side (along the longitudinal axis). The points of BS are analyzed in direction \vec{S}_{i} then in direction $-\vec{S}_{i}$ from the closest to the farthest point from 200

Figure 7 Ring sector of point profile
POV. This analysis is based on the heights of the points of BS and their distance from POV to 20 find out whether they are visible. In this way, the concept of visible segments is defined. The 202 visible segments determines the visibility along the axis of the BS and can be considered as a 203 representative statistical sample of a 2D-surface of ring-sector shape.

Each visible segment is characterized by two points, the point where the segment starts 20 $S R S$ and the point where the segment ends ERS, shown in Figure 7.

4.3 3D-viewshed Algorithm

For each sector and for each point, the $b w$ points of the BS are analyzed in one direction then 208 in the opposite direction to determine all visible segments in that sector, i.e. find their start- and 209 end-visible segment points. Once the visible segments are calculated, a good approximation of 210 the visible volumes can be obtained. A visible volume which corresponds to one visible ring- 211 sector is bounded, (1) from the top, by the plane formed by the observer and the skyline in the 212 sector, (2) from the two lateral sides by the vertical planes that delimit the sector, (3) from the 213 front side by the visible ring sector, (4) from the bottom by the plane that connects the observer 214 and the start of the visible ring sector.

We consider that the visible volume in one sector is the summation of m stacked visible 216 sub-volumes. The number m also corresponds to the number of visible segments. Hence, each 217 visible sub-volume is calculated in two steps: i) first, the visible triangle is calculated then ii) its 218 solid revolution is computed. In particular, the 2D projection of a visible sub-volume in the ver- 219 tical plane that passes through the directional vector \vec{S}_{i} can be approximated by the triangle 220 formed by three points, the start $S R S_{i}$ and end $E R S_{i}$ of the visible segment and the observer 221 POV, as depicted in Figure 8(a) and (b). As the visible ring-sectors can be approximated by 222 rotating the visible segment to the left and right sides around a vertical axis of the observer, the 223 visible volume associated to each visible ring-sector can also be approximated by the volume 224 built using a 0.5° solid revolution of the visible triangle to the left and to the right as shown in 225 Figure 8(b).

According to Pappus' Centroid Theorem the volume V of a solid of revolution generated 227 by rotating the surface S around an external vertical axis is equal to the product of the area $S 228$ and the distance traveled by its geometric centroid. (The details on how to apply Pappus' Cent- 229 roid Theorem are provided in Section 8). Suppose $h_{P O V}, h_{S R S i}$ and $h_{E R S i}$ the heights of the 230

Figure 8 The main concepts for the 3D-viewshed computation.
observer POV and the start and end of the i th visible segment, respectively. $d_{S R S i}$ and $d_{E R S i}$ cor- 231 respond to the distances between the observer and the start and end of the its visible segment. 232 C is the distance between the observer and the centroid. An approximation of the correspond- 233 ing visible volume is:

$$
\begin{align*}
& V=\frac{p i \cdot C}{360} \cdot\left|\left(d_{E R S i}\left(h_{S R S i}-h_{P O V}\right)-d_{S R S i}\left(h_{E R S i}-h_{P O V}\right)\right)\right| \tag{1}\\
& C=\left(d_{S R S i}+d_{E R S i}\right) / 3
\end{align*}
$$

The pseudo code of the 3D-viewshed computation kernel is shown in Algorithm 4. Where nrs() 235 is an array that stores the number of visible sectors at each point POV. The flag visible_area 236 and the parameter max are global variables used to distinguish whether the point P belongs to 237 a visible of invisible segment.

Notice that $d_{S R S i}, h_{S R S i}, d_{E R S i}$ and $h_{E R S i}$ are stored in an array of structure, i.e. $d_{S R S i}$ corre- 239 sponds to $R S(i)$.start. h and $h_{E R S i}$ corresponds to $R S(i)$.end.d.

5 Computational Analysis

This section provides theoretical and experimental analysis of the performance of our algo- 242 rithm. For the theoretical analysis we use the simple roofline model described in Williams et al. 243 (2009), which estimates the maximum Gflops/s reachable by an algorithm on a specific com- 244 puting system. To calculate this roofline performance, one needs first to calculate the opera- 245 tional intensity, OI, which measures the number of floating point operations necessary for each 246 byte-read-from-DRAM considering that the Band-of-sight fits in cache. For our algorithm 247 $O I=\frac{(2 \sqrt{n}+n r \times 2 \times 10) \times n}{16 \times n}$. Where nrs stands for the total number of visible segments per direction 248 per sector. nrs is two orders of magnitude smaller than $b w$; its mean value for the case study 249 analyzed in this work is around 6 in each direction. The obtained value of $O I=257$ flops/byte 250 means that our algorithm is clearly computer bound.

Experimentally, computing the total 3D-viewshed map of a 2000×2000 points-DEM 252 using 1001-points band-of-sight on a Sandy Bridge E5-2620 takes 23 seconds per sector which 253 represents 10% of the theoretical peak performance. Calculating the total-3D-viewshed of the 254

```
Algorithm 4 3D-viewshed kernel
analyzePoint(POV,P,&max,&visible){
    float dist = ( }\mp@subsup{d}{P}{}-\mp@subsup{d}{POV}{})\mathrm{ ;
    float height = ( }\mp@subsup{h}{P}{}-\mp@subsup{h}{POV}{})\mathrm{ ;
    float angle =height/dist;
    bool this_visible = angle > max
    bool SRS = this_visible &&! visible_area
    bool ERS =! this_visible&&visible_area
    if SRS then
        store_srs(dist)/* store start-ring-sector in array* /
        hSRS}=\mathrm{ height;
        d}\mp@subsup{|}{RS}{}=\mathrm{ dist;
        nrs(POV, s)++
    end
    if ERS then
        store_ers(dist);/* store end-ring-sectors in array* /
        h}\mp@subsup{\mp@code{ERS}}{}{=}=\mathrm{ height;
        dERS}=\mathrm{ dist;
        /* 3D-viewshed in a sector * /
        V+=( }\mp@subsup{d}{ERS}{}+\mp@subsup{d}{SRS}{})\cdot|\mp@subsup{d}{ERS}{}\cdot\mp@subsup{h}{SRS}{}-\mp@subsup{d}{SRS}{}\cdot\mp@subsup{h}{ERS}{}
    end
    visible_area=this_visible
    max = max(angle,max)
```

same DEM on a dual Socket Xeon Processor E5-2698 takes in parallel only 1.5 minutes, 15255 second per sector. This result is reasonable since 25% of the involved floating points operations 256 (to analyze one point) are sequential divisions due to algorithmic constraints. We evaluated 257 vectorizing the loops that analyze the points of BS and found that this strategy, in spite of 258 improving the throughput of the floating points operations, drastically penalizes the L1 cache 259 management due to the use of a new auxiliary array.

6 Comparisons and Results

This section provides 1) the 2D-viewshed and 3D-viewshed maps at one point, 2) a comparison 262 between our 3D-viewshed and three alternative methods and 3) a comparative study between 263 total 2D-viewshed and total 3D-viewshed maps. Bear in mind that this article introduces the 264 3D-viewshed metric for the first time and proposes the first algorithm to compute total 3D- 265 viewshed maps. 266

6.1 Single-point 3D-viewshed

The maps shown in this subsection consider that the observers are located at a height of two 2 meters above the DEM. Figure 9(a) plots the viewshed at a viewpoint of UTM coordinates 269 $X=4063890$ and $Y=324530$, European Datum 1950, UTM zone 30N, in Sierra de la Nieves, 270 Malaga, Spain. Grey and red colors refer to visible and invisible areas. Figure 9(b) shows the 27
(a)

(b)

(c)

Figure 9 (a) A 2000×2000-points DEM of resolution $10 \times 10 \mathrm{~m}^{2}$ of a hilly area in Málaga, Spain, (b) the 2D-viewshed at point of UTM coordinates $X=4063890$ and $Y=324530$, UTM zone $30 N$. Grey and red colors show visible and invisible areas from that point. (b) The 3D-viewshed at the same point-of-view (black star), where blue and red pixels indicate respectively a large and small number of visible meters of the column of air situated above each visible pixel from that point-ofview.

3D-viewshed at the same point, where green and white color pixels indicate the value of the 272 visible volume of air contained in the 3D-column whose base a cell of the 2D-viewhed. As it 27 can be observed, the visible volume information provides a better perception of the real extent 274 of a visible area, e.g. the valley in white color in Figure 9(b).

6.2 Single-point 3D-viewshed Versus Three Alternative Methods

The 3D-viewshed algorithm presented in this article uses the same sampling points we intro- 27 duced in the total 2D-viewshed algorithm published in Tabik et al. (2015). In Tabik et al. (2015) we demonstrated that the results of our 2D-viewshed algorithm are very similar to the state-of-art GIS-software, namely ArcMap and GRASS viewshed tools. The 3D-viewshed is a new concept that has not been implemented yet in any software. Current GIS-software provides tools that only calculate i) the direct volume comprised between a horizontal plan and the DEM and ii) the invisible shaded volumes from the sun-point-of-view but do not calculate the volume visible to an observer. Therefore, for validation purposes we suggest comparing our algorithm with three alternative approaches: two methods based on our 2D-viewshed presented in Tabik et al. (2015) and the third approach based on the 2D-viewshed calculated by the public Software GRASS (GRASS Development Team 2012).

287
In particular, the first method calculates the volume visible to an observer as the volume of the 288 oblique pyramids whose base are the visible cells in the 2D-viewshed. The second computes the vol- 289 ume visible to an observer as the volume of the visible air column situated above each cell and the 290 third calculates the volume visible to an observer as the volume of the pyramids whose base are the 291 visible cells in GRASS 2D-viewshed. We also provide our code to test and compare the four 3D- 29 viewsheds of a given point through this URL (Cervilla et al. 2015a). This code calculates the 3D- 293 viewshed for any point using GRASS 2D-viewshed and compares it with our results. 294

Table 1 shows the results of the 3D-viewshed (in hm^{3}) using the algorithm proposed in this article and the three alternative approaches in three viewpoints from the DEM of Malaga, Spain. The location of each one of the three analyzed viewpoints is shown in Figure 10.

Table 1 A comparison between the visible-volume calculated using our 3D-viewshed (in hm^{3}) and the three alternative approaches in three viewpoints from the DEM of Malaga, Spain

| | our 3D-viewshed | pyramid
 based on
 our 2D-viewshed
 $($ Tabik et al., 2015) | air column
 based on
 our 2D-viewshed
 (Tabik et al., 2015)
 (in hm | pyramid
 based on
 GRASS-viewshed |
| :--- | :--- | :--- | :--- | :--- | :--- |
| E | N | $\left(\right.$ in hm ${ }^{3}$) | (in hm ${ }^{3}$) | |

Figure 10 The black stars show the three selected viewpoints, from Malaga, Spain, used for the comparison.

As we can see from these results, the differences between the four approaches in the three analyzed points are less than 10%. This small difference shows that the 3 D -viewshed calculated by our algorithm is within the margin of error already achieved by the 2 D -Viewshed we presented in Tabik et al. (2015).

6.3 Total 3D-viewshed

To better appreciate the differences between the information given by the total 2D-viewshed
F11 and total 3D-viewshed models. Figure 11(a) shows two DEMs of two terrains with different characteristics, a coastal area (left) and a hilly area (right) from Malaga, Spain. Both DEMs have 2000×2000-points and $10 \times 10 \mathrm{~m}^{2}$ resolution. Figure $11(\mathrm{~b})$ shows the total 2Dviewshed maps of both DEMs, where each point of the map represents the number of hm^{2} visible from that point of the DEM. Figure 11(c) shows the total 3D-viewshed maps of both DEMs, where each point of the map represents the number of hm^{3} visible from that point of the DEM.

Figure 11 (a) Two DEMs of a coastal area (right) and hilly area (left), (b) their respective total 2D-viewshed maps, where each point shows the number of $h m^{2}$ and (c) their respective total 3D-viewshed maps plotted in log scale and where each point shows the number of hm^{3}. The shown legends are common for the left and right Figures.

As can be observed from these Figures, the points with the highest 2D-viewshed 311 index have not necessarily the highest 3D-viewshed index and vice versa. 312 Furthermore, points with low viewshed index may have a high 3D-viewshed index and 313

Figure 12 Distribution of the viewshed and 3D-viewshed points-values with respect to the maximum value in the coastal area of the city of Malaga, Spain.
vice versa, e.g. the sea points have a high 2D-viewshed values and very low 3D-314 viewshed values.
F12 To visualize these differences more clearly, Figure 12 plots the distribution of the viewshed 316 index values and the 3D-viewshed index values with respect to the maximum values on the cos- 317 tal area of the city of Malaga. The X-axis shows the interval of values with respect to the maxi- 318 mum value, e.g. $(5 \% 10 \%)$ represents the viewshed or 3D-viewshed values greater than $5 \% \times 319$ maximum value and smaller then $10 \% \times$ maximum value. The Y -axis plots the proportion of 320 points whose values belongs to a specific interval. As we can observe from Figure 12 around 321 60% of the points have 3D-viewshed smaller than $\% 5$ of the maximum value. 322

This can be explained by the fact that the sea points have low visible volumes and also the 323 maximum 3D-viewshed in this case study is too high with respect to the lowest values. 324

7 Conclusions

This article introduced the new concept of 3D-viewshed to quantify the visible volume for a 326 large number of observers in a Digital Elevation Model. In particular, we developed a parallel 327 algorithm with a high data and calculation reutilization suitable to compute total 3D-328 viewshed, i.e. the visible volume at every point of the DEM, in big high resolution DEMs. 329 These maps open the possibility for several applications in many fields: for example, for locat- 330 ing the sites with the most impressive 3D-views in land surfaces in tourism or the houses (or 331 balconies) with the largest 3D-viewsheds in urbanism. In addition, the information computed 332 by our model and stored in a simple array, i.e. ring-sector array, can be used to compute other 333 metrics such as the openness index defined in Yokoyama et al. (2002).References335
Bishop I D 2003 Assessment of visual qualities, impacts, and behaviours, in the landscape, by using measures of 336visibility. Environment and Planning B 30: 677-88337
Cabral B, Max N, and Springmeyer R 1987 Bidirectional reflection functions from surface bump maps. Computer 338
Graphics 21: 273-81Carver S and Washtell J 2012 Real-time visibility analysis and rapid viewshed calculation using a voxel-based340 modelling approach. In Proceedings of the Twentieth Annual GIS Research UK Conference, Lancaster, 341 United Kingdom
Carver S, Comber A, McMorran R, and Nutter S 2012 A GIS model for mapping spatial patterns and distribution 343
of wild land in Scotland. Landscape and Urban Planning 104: 395-409 344
Cervilla A R, Tabik S, and Romero L F 2015a Code for testing and validating the 3D-viewshed algorithm. WWWdocument, http://www.ac.uma.es~siham/Test.tar.gz346
Cervilla A R, Tabik S, and Romero L F 2015b Siting multiple observers for maximum coverage: An accurate 347
approach. Procedia Computer Science 51:356-65 348
De Floriani L and Magillo P 1993 Algorithms for visibility computation on digital terrain models. In Proceedings 349
of the ACM/SIGAPP Symposium on Applied Computing, Indianapolis, Indiana: 380-87 350
De Floriani L and Magillo P 1994 Visibility algorithms on triangulated digital terrain models. International Jour- 351nal of Geographical Information Systems 8: 13-41Fisher P F 1996 Extending the applicability of viewsheds in landscape planning. Photogrammetric Engineering353and Remote Sensing 62: 1297-302354
Fisher-Gewirtzman D, Shashkov A, and Doytsher Y 2013 Voxel based volumetric visibility analysis of urbanenvironments. Survey Review 45: 451-61
Franklin W R, Ray C K, and Mehta S 1994 Geometric Algorithms for Siting of Air Defense Missile Bat- 357356
teries. Columbus, OH, Battelle, Columbus Division, Technical Report (Contract No. DAAL03-86-D-

1) 359
GRASS Development Team 2012 Geographic Resources Analysis Support System (GRASS GIS) Software. WWW 360
document, http://grass.osgeo.org 361
Kreveld M V 1996 Variations on sweep algorithms: Efficient computation of extended viewsheds and clas- 362
sifications. In Proceedings of the Seventh International Symposium on Spatial Data Handling, Coim- 363
bra, Portugal 364
Maloy M A and Dean D J 2001 An accuracy assessment of various GIS-based viewshed delineation techniques. 365
Photogrammetric Engineering and Remote Sensing 67: 1293-98 366
Mees R M 1977 Computer Evaluation of Existing and Proposed Fire Lookouts. Albany, CA, US Department of 367
Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station 368
Miller D R 2001 A method for estimating changes in the visibility of land cover. Landscape and Urban Planning 36954: 93-106370
Miller D R, Brooker N A, and Law A N R 1995 The calculation of a visibility census for Scotland. In Proceedings 371
of the Esri International User Conference, Palm Springs, California 372
Ogburn D E 2006 Assessing the level of visibility of cultural objects in past landscapes. Journal of Archaeological 373
Science 33: 405-13 374
Stewart A J 1998 Fast horizon computation at all points of a terrain with visibility and shading applications. 375
IEEE Transactions on Visualization and Computer Graphics 4: 82-93 376
Suleiman W, Joliveau T, and Favier E 2011 3D urban visibility analysis with vector GIS data. In Proceedings of 377
Nineteenth GIS Research UK Symposium, Portsmouth, United Kingdom 378
Tabik S, Cervilla A R, Zapata E, and Romero L F 2015 Efficient data structure and highly scalable algorithm for 379total-viewshed computation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
380Sensing 8: 304-10381
Tabik S, Romero L F, and Zapata E L 2011 High-performance three-horizon composition algorithm for large- 382
scale terrains. International Journal of Geographical Information Science 25: 541-55 383
Tabik S, Zapata E, and Romero L F 2013 Simultaneous computation of total viewshed on large high resolution 384grids. International Journal of Geographical Information Science 27: 804-14 385Travis M R, Elsner G H, Iverson W D, and Johnson C G 1975 VIEWIT: Computation of Seen Areas, Slope, and386
Aspect for Land-use Planning. Berkeley, CA, US Department of Agriculture, Forest Service General Techni- 387cal Report No. PSW-11/1975
Williams S, Waterman A, and Patterson D 2009 Roofline: An insightful visual performance model for multicore 389
architectures. Communications of the ACM 52(4): 65-76 390image processing to digital elevation models. Photogrammetric Engineering and Remote Sensing 68:
Yokoyama R, Shirasawa M, and Pike R J 2002 Visualizing topography by openness: A new application of 391
257-66 393

Appendix

F13 As depicted in Figure 13, the surface of a triangle can be calculated as $S=\frac{\vec{a} \times \vec{b}}{2}$. According to ${ }^{3955}$ Pappus' second theorem, the complete volume of revolution of that triangle is: $V=2 \times \pi \times c \times S$ 39 where c is the distance between the centroid and the point of the triangle from which the external 398397

Figure 13 The surface S and the solid of revolution V obtained when rotating S around an external axis.
rotation axis passes through, which can be approximated as $c=\left(d_{S R S i}+d_{E R S i}\right) / 3$, for a revolution of
$1^{\circ}, V$ can be calculated as

$$
\begin{aligned}
& V=\frac{0.66 \times \pi}{360} \times c \times \vec{a} \times \vec{b} \\
& V=\frac{0.66 \times \pi}{360} \times c \times\left|\left(d_{E R S i}\left(h_{S R S i}-h_{P O V}\right)-d_{S R S i}\left(h_{E R S i}-h_{P O V}\right)\right)\right|
\end{aligned}
$$

AUTHOR QUERY FORM

Dear Author,
During the preparation of your manuscript for publication, the questions listed below have arisen. Please attend to these matters and return this form with your proof.
Many thanks for your assistance.

Query References	Query	Remarks
AQ1	Please confirm that given names (red) and surnames/family names (green) have been identified correctly.	

WILEY

 Author Proof
[^0]: Address for correspondence: A.R. Cervilla, Department of Computer Architecture, University of Málaga, 29071 Málaga, Spain. E-mail: amrocer@uma.es
 Acknowledgements: This work was supported by the Ministry of Education and Science, Spain, under Project TIN2014-42253 and by Junta de Andalusia under Project TIN-08260.

