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Enhancing Data Privacy with Semantic Trajectories: A 
Raster-based Framework for GPS Stop/Move 

Management 

Yang Wang and David McArthur 

Abstract 

Tracking facilities on smart phones generate enormous amount of GPS trajectories which 

provides new opportunities for study movement patterns and improve transportation 

planning. Converting GPS trajectories into semantically meaningful trips is attracting 

increasing research efforts with respect to the development of algorithms, frameworks 

and software tools. There are however few works focused on designing new semantic 

enrichment functionalities taking privacy into account. This paper presents a raster based 

framework which not only detects significant stop locations, segments GPS records into 

stop/move structure, brings semantic insights to trips but also provides possibilities to 

anonymize users’ movements and sensitive stay/move locations into raster cells/regions 

so that a multi-level data sharing structure is achieved for a variety of data sharing 

purposes. 

1. Introduction  

The proliferation of smartphones has made it feasible to collect movement data, in the form 

of GPS trajectories, for a large number of people, generating new opportunities to study 

movement patterns and improve transportation planning (Liao 2007b, Hwang et al. 2013, Liu 

et al. 2012). In its raw form, such data are not particularly useful to transport planners. 

Planners have traditionally worked with data from travel diaries or link-based sensors. Travel 

diaries may give mode-specific origin/destination matrices according to trip purpose. Road 

sensors may give information about vehicle speed on a given link. Similar information can be 

extracted from GPS records. To do this ethically and legally, the privacy of data subjects 

must be considered. 

Recent studies have considered the development of algorithms, frameworks and 

software tools to organize GPS records into semantically annotated trips (Alvares et al. 2007, 
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Zheng 2015, Yan et al. 2013). A semantic trajectory framework often processes GPS 

trajectories into a stop/move structure (Spaccapietra et al. 2008), where stop locations are 

used to infer the purpose of a trip while moves provide information about speed, direction, 

and mode of transport. 

GPS trajectories are highly sensitive personal data, revealing locations such as homes 

and workplaces, as well as information about routes and schedules. Studies on large volumes 

of mobile phone data demonstrate that small segment of visit sequences reveals peoples’ 

identity even the data is spatially and temporally coarsened (Zang & Bolot, 2011, De 

Montjoye et al, 2013). This poses a privacy threat as the complexity of location data makes it 

difficult to anonymize (Abul et al. 2008, De Montjoye et al. 2013). Trajectory mining 

frameworks tend not to consider privacy and data sharing, with Zheng (2015) being a rare 

exception. 

This paper presents a raster-based semantic trajectory development and management 

framework which facilitates data sharing while protecting privacy. The framework employs a 

raster sampling method to detect significant stops and segment GPS trajectories into a 

stop/move structure. The same process also aggregates GPS records into raster cells and 

supports a variety of anonymization methods such as 𝑘-anonymity, generalization methods 

(grid masking) and ‘stop/move’ spatial cloaking. The framework allows easy measurement of 

information loss. The contribution of the paper is developing a flexible data structure and 

framework which can transform raw GPS data into a form which is useful for planners. Data 

owners may wish to share or sell the output. A key focus of our research is therefore how to 

include functionality to anonymise data within our proposed framework. 

A review of previous work is presented in Section 2. Section 3 proposes a raster-

based framework and describes how it processes raw GPS trajectories into semantically 

enriched datasets. The multi-level data sharing scheme with trajectory anonymization 
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supported by the framework is described in section 4 which leads to the discussion and 

conclusion.  

2. Related Work 

Processing raw GPS trajectories normally starts with detecting stops. Recently, several 

trajectory processing frameworks have been developed on top of the threshold (Li et al. 

2008), feature-intersection (Bogorny et al. 2011), and density (Yan et al. 2013) stop detection 

methods. Other stop/stay-point detection methods such as density (Schoier & Borruso 2011, 

Hinneburg & Keim 1998, Ankerst et al. 1999, Campello et al. 2013) and threshold (Ashbrook 

& Starner 2002, Schuessler & Axhausen 2009, Srinivasan et al. 2009, Yan et al. 2013) adopt 

a ‘bottom-up’ strategy which scans and clusters GPS records into stop locations. As a result, 

pre-understanding of the GPS records is required to set suitable thresholds and parameters for 

specific cases e.g. different travel modes and study areas. 

 Once stops are detected, information such as points of interest (POI), road networks, 

and land-use are used to add contextual meaning and infer trip purposes using, for example, 

complex probability models for automatic semantic annotation (Yan et al. 2013). These 

frameworks, however, place emphasis on the overall processing of GPS trajectories with little 

concern for protecting data subjects’ privacy. Zheng (2015) summarizes a broad paradigm on 

mining insights from GPS records (Zheng et al. 2011, Yuan et al. 2011, Li et al. 2008, Zheng 

et al. 2008). Privacy concerns are also included but after stops/moves detection, hence, the 

trajectory processing and privacy protection are detached from the rest of the process. An 

interaction between managing GPS trajectories and anonymization is still unattended 

On the other hand, GPS anonymization techniques have mostly developed in parallel. 

Among them, mixing an individual with 𝑘-1 others is one of the most popular. For 

anonymizing movements, ‘Never Walk Alone’ (NWA) (Abul et al. 2008), publishes the 
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mean locations of a co-localised 𝑘 trajectories, within a given period.  As a cluster method, 

the association with road links, the semantics of the moving, is lost. Better privacy protection 

may involve a large decline in data utility and a loss of trip semantics (Yin et al. 2015).  

There are other anonymization methods which ‘blend’ stop points into larger stay 

zones (Huo et al 2012) or displace the GPS records (Armstrong et al. 1999, Kwan et al. 2004, 

Hampton et al. 2010, Zandbergen 2014). These techniques are less semantically-aware 

although, among them, location swapping (Zhang et al. 2017) tries to preserve semantics such 

as land cover and proximity to roads but there are increasing concerns about sensitive 

semantics being wrongly associated with the locations during anonymization (Seidl et al. 

2017).  

Generalisation-based methods, especially grid masking, are more relevant to our idea 

where trajectory points are aggregated or snapped to grid cells for publication (Leitner & 

Curtis 2006, Krumm 2007, Shi et al. 2009, Seidl et al. 2016). Seidl et al. (2016) and Sila-

Nowicka & Thakuriah (2016) note a compromise of travel pattern with larger masking size 

for better privacy protection. This issue can be addressed by organizing and publishing GPS 

records under a multilevel framework where trip semantics are preserved, retrievable, and 

even released based on data usage agreements made at different levels. 

3. A Raster based Framework for Developing and Managing GPS Trajectories 

3.1. The Overall Semantic Trajectory Management Data Framework 

The proposed framework uses raster cells as a unified data processing ‘vehicle’ which 

incorporates stop detection/annotation and trajectory anonymization/publication in a single 

framework. A raster-based stop detection algorithm (Section 3.2) is the core function that 

processes the GPS records into a stop/move structure while the raster cells are preserved 

throughout the processing and anonymization phase. As shown in Figure 1, there are three 
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layers in the framework: (a) the GPS records, (b) the unstructured layer where the segmented 

stop/move GPS records are denoted with ‘rastervalues’ from the stop detection and (c) the 

structured layer comprising the stop/move cells with aggregated trajectory attributes. 

Semantic annotation is conducted at the structured layer with contextual information such as 

land-use and road network data. 

3.2. Detecting Stops  

We firstly describe a top-down stop detection method. One of the major characteristics of the 

method is that it requires minimal parameter setting, with only the raster cell size and generic 

stop selection quantile breaks needing to be set. The method supports flexible post-processing 

functions which can improve the detection accuracy (see section 3.2.2) in some contexts. Our 

approach differs from existing raster approaches such as the kernel density approach (Thierry 

et al. 2013, Lei et al. 2011) as we are not sampling the density of GPS points but information 

such as total dwelling time.  

3.2.1. Method 

We calculate the estimated dwelling time inside a raster cell. If the duration between two 

consecutive GPS records is denoted as 𝑑𝑢𝑟(𝐺𝑃𝑆𝑖,𝐺𝑃𝑆𝑗), to remove the impact of ‘moving’ time 

in-between cells or inside cells, the indicator is defined as  

𝑑𝑢𝑟_𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝑇𝑟𝑎𝑣𝑒𝑙(𝐺𝑃𝑆𝑖,𝐺𝑃𝑆𝑗) = 𝑑𝑢𝑟(𝐺𝑃𝑆𝑖,𝐺𝑃𝑆𝑗) − 𝑒𝑠𝑡_𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒(𝐺𝑃𝑆𝑖,𝐺𝑃𝑆𝑗)  (1) 

where 𝑒𝑠𝑡_𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒(𝐺𝑃𝑆𝑖,𝐺𝑃𝑆𝑗) is the estimated travel time between point 𝑖 and 𝑗 calculated 

from travel speed observed before and after a given GPS record within a five-record window 

(we do not use a specific temporal window as the temporal gaps between the GPS records are 

not evenly distributed), 
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 𝑒𝑠𝑡_𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒(𝐺𝑃𝑆𝑖,𝐺𝑃𝑆𝑗) =  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐺𝑃𝑆𝑖,𝐺𝑃𝑆𝑗)

𝑚𝑒𝑎𝑛 (𝑠𝑝𝑒𝑒𝑑𝑤𝑖𝑛𝑑𝑜𝑤(𝑖,𝑗)  )
⁄   (2) 

where 𝑤𝑖𝑛𝑑𝑜𝑤(𝑖,𝑗) is < {𝐺𝑃𝑆𝑖−5, … , 𝐺𝑃𝑆𝑖}, {𝐺𝑃𝑆𝑗, … , 𝐺𝑃𝑆𝑗+5} >.   

The raster value for each grid cell is the sum of 𝑑𝑢𝑟_𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝑇𝑟𝑎𝑣𝑒𝑙(𝐺𝑃𝑆𝑖,𝐺𝑃𝑆𝑗)  

  < 𝑟𝑜𝑤𝑟  , 𝑐𝑜𝑙𝑢𝑚𝑛𝑐  , 𝑣 >𝑟∈𝑟𝑜𝑤𝑠,𝑐∈𝑐𝑜𝑙𝑢𝑚𝑛𝑠  (3) 

Where 𝑣 is 𝑠𝑢𝑚 (𝑑𝑢𝑟𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝑇𝑟𝑎𝑣𝑒𝑙(𝐺𝑃𝑆𝑖,𝐺𝑃𝑆𝑗)) if 𝑔𝑒𝑜𝑚(𝐺𝑃𝑆𝑖) ∈ 𝑐𝑒𝑙𝑙 < 𝑟𝑜𝑤𝑟  , 𝑐𝑜𝑙𝑢𝑚𝑛𝑐 >. 

We use Natural Break (𝐽𝑒𝑛𝑘𝑠) to group raster values into classes (other clustering 

methods, such as 𝑘-means, could also be used). To avoid setting the number of classes, 

goodness of variance fit (over 0.8) is adopted. Taking the ‘moves’ being clusters into the 

lower value class, we select the raster cells with values higher than the 25% quantile of the 

clustering result as stops (50% quantile selection is tested but 25% produces better results. It 

is treated as a generic fixed setting in the framework.) 

Post-processing functions are included, as illustrated in Figure 2. Firstly, segmenting 

GPS trajectories into a stop/move structure following people’s sequence of visits to the 

detected distinct stops, secondly, merging neighbouring stops together if they share an edge. 

The former transforms the trajectories into trips separated by detected stops and further 

supports the generation of the structured layer. The latter reduces the number of detected 

redundant stops significantly and reflects the fact that the GPS records around stops are 

clustered without a fixed shape. Other steps such as cleaning brief visits to neighbouring 

cells, detecting round-trips and eliminating intermediate travel stops are optional but can be 

performed to improve accuracy based on specific data processing requirements.  



 
 

7 
 

3.2.2. Testing the Method 

The method is illustrated using GPS records collected from the Catch! Smartphone app 

(http://www.travelai.info/catch.html). The app gathers GPS records with no user 

interventions and regularly synchronizes with a central server. As the app is developed for the 

general public, there is no travel survey facility. To obtain meaningful ground truth, we select 

three users with different travel behaviour/settings. The performance of the methods is 

verified with the ground truth worked out by manually selecting candidate stops confirmed 

with the users.  

As shown in Figure 3, User A (using an iPhone 6+) is located in a suburban area with 

the majority of trips to/from Glasgow city center being made by car. Trips in Case B (using a 

OnePlus One), are mostly within Glasgow by subway and walking. Case C (iPhone6) collects 

activities of a London resident with combined walking/underground/bus travel. These three 

cases represent the differences between a person with a simple travel pattern and travelers 

with multimodal, short/long trips in cities of different sizes and complexities. The data, with 

sensed sleep/non-moving/moving status and 1-2min frequency for moving, are cleaned to 

keep non-duplicated records with a consecutive speed of less than 200 km/h to concentrate on 

surface transport (Table 1). The method is illustrated using daily GPS trajectories for days 

which have more than 50 valid records.  

For comparison, we include a threshold-based method which selects stops from all the 

raster cells using both a long stay threshold (>5min) and a map matching method (Wang & 

McArthur, 2017). The threshold method represents one of the most commonly used stop 

detection methods linking with GPS segmentation. The map matching method represents a 

‘top-down’ method where GPS records at least 10 meters from the transport network for at 

least 5 minutes are detected as stops.  

http://www.travelai.info/catch.html
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A unified raster scale over the UK with cell size set to 0.00091 decimal degrees 

(roughly 60 meters) under WGS_1984 is adopted.  To measure accuracy, we take the 

detected stops (centroid of the cell shape) and compare their spatial proximity to the ground 

truth stop. The total number of detected stops that fall into a 100, 200, and 300-meter radius 

of a given actual stop are collected. The precision/recall are defined in formula (4) and (5). 

For the baseline methods, we sample their detection output using the raster template to ensure 

the precision/recall measurements are comparable. 

 𝑅𝑒𝑐𝑎𝑙𝑙 = ∑(𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑆𝑡𝑜𝑝𝑠)𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐵𝑎𝑛𝑑
∑ 𝐴𝑐𝑡𝑢𝑎𝑙 𝑆𝑡𝑜𝑝𝑠

  (4) 

 𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 = ∑(𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑆𝑡𝑜𝑝𝑠)𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐵𝑎𝑛𝑑
∑ 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑆𝑡𝑜𝑝𝑠

  (5) 

Figure 4 illustrates the precision/recall rates for the three methods and distance bands. 

The raster method is in red stars while the two baselines are in ‘green’ and ‘blue’ arrows. The 

darker the color the larger the distance band. The first row in Figure 4 illustrates the 

precision/recall rates of the raster sampling result. The bottom row incorporates the post-

possessing functions which improve both precisions and recalls to around 0.8 in three cases. 

Focusing on the bottom row, in Case A, where the travel patterns are simple, the three 

methods produce high precision/recall. The precision/recall of the raster method is relatively 

stable across cases, around 0.8, compared to the two baselines, which show dramatic 

differences in B and C where different travel modes and complex travel environments are 

analyzed. The map matching method performs less well with a complex network by 

producing a higher number of incorrectly detected stops, while the threshold method is 

sensitive to different scenarios.  

 Figure 5 presents a sensitivity analysis of cell size choice. Cell sizes are increased by 

a factor of 1.5 and 2 (cell sizes are roughly 60, 85, 110 meters) and their impact on 
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precision/recall rates for the raster method (orange) and threshold method (green). The arrow 

in between shows the sequence of the change from small to large. For simplification, we 

include the 100m distance band result. The patterns are preserved for the other distances 

considered. The recall rates, around 0.8, for the raster method settle higher than the threshold 

method, particularly in B and C. The raster method detects a higher number of stops around 

the ground truths. The precisions of the raster method are around 0.7-0.8 in the three cases 

and more stable than the threshold method when increasing the cell sizes. There is a drop in 

both precision and recall rates in Case A with 85m cells, perhaps due to changes in shapes 

when merging neighbouring stops.  

3.3. Structured Trajectory Stop/Move and Annotation 

To semantically annotate the detected ‘move’ cells for each trip, we perform a map matching 

process using Barefoot (https://github.com/bmwcarit/barefoot). As recognized in previous 

studies (Liao et al. 2007a, Kang et al. 2004), time is an important parameter in distinguishing 

significant locations. Similar to Siła-Nowicka et al. (2016), we annotate stop cells with the 

longest dwelling at night as ‘home’ and stops with the most visits during Monday-Friday as 

‘work’ and other stops as ‘others’ The semantics of a trip, in addition to GPS enter/leave time 

and stay durations, is attached to the stop/move cells, illustrated in Figure 1, where the 

resulting ‘move’ table has a ‘road’ field which contains the road’s osm_id. The ‘stop’ cells 

are denoted with ‘home’, ‘work’ and ‘others’ as trip purposes1. 

3.4. Querying Semantic Trip Information 

The framework supports semantic queries based on the annotated stops/moves in cells using 

the foreign keys, ‘startTripid’ and ‘endTripid’, in the stop table referencing to the ‘tripid’ in 

                                                           
1 The Catch! app, developed by TravelAI, has an online travel mode detection method which adds the 
travel mode as another part of semantics but is not reported here. 

https://github.com/bmwcarit/barefoot
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the move table (Figure 1) without performing spatial joins. A strength of using raster cells to 

index stops/moves is the convenient calculation of similarities between users if their trips 

spatially or semantically related. Given that all the ‘rasterids’ are initially referencing a pre-

defined raster template without a vector shape, a ‘rasterindex’ file (Figure 1) is created to 

convert all the stop/move raster cells into polygons for spatial queries such as the travel 

volume (not necessarily stops) around a museum at weekends.  

4. Data Anonymization for Multi-Level Data Sharing 

After describing the construction of the framework, we illustrate the flexibility of the 

framework in supporting generalizing, blurring and cloaking of the stops/moves. The three 

use cases are further used in this section to illustrate different data sharing strategies. 

Although user groups are small, they help to demonstrate our idea which is scalable if data 

are processed and managed in the same way. Our focus is not on discussing specific 

parameter but to show that the proposed framework supports multiple strategies and effective 

assessments of different settings. We report examples on the structured layer although some 

operations can be performed on the unstructured layer for simplification. 

4.1 Sharing Aggregated ‘Moves’ Information  

The framework splits the GPS trajectories into stop/move segments with derived trip 

purposes which offers the possibility of aggregating trips according to different 

spatiotemporal scales and trip purposes. Data in this format is a common input into transport 

planning models. Figure 6 shows the number of times each cell was visited on a home-based 

trip in Glasgow; where the whole coverage of activities is shown in blue cells and the 

selected moves are highlighted in yellow-red colors for time window Sunday (top) and 

Monday (bottom). Counts are low as there are only two users in Glasgow. 
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Releasing trip counts with a small number of users is potentially dangerous using the 

fine-grained time windows where re-identification can happen by linking distinct travel 

segments. Another approach is to share ‘moves’ of groups of users with 𝑘-anonymity which 

requires individual movements to be indistinguishable from 𝑘 − 1 users. It reduces the 

chance of re-identification even if the attacker has partial information about an individual. 

Under the proposed framework, overlapping ‘moves’ are identified by the same ‘cellid’ in the 

‘agg_move’ table on the structured layer. Noting that 𝑘-anonymity can be defined both 

spatially and temporally, Figure 7 demonstrates the ‘move’ cells shared by more than 2 users 

using our three cases in Glasgow within the 17:00-18:00 time window. The orange ‘move’ 

cells are identified as being shared by at least two users against the overall raster cells in blue. 

The associated underlying GPS records on the unstructured layer are further selected as 

shown in purple points. 𝑘-anonymity significantly reduces the volume of data available for 

sharing/publication especially with a small number of users. 

 An alternative generalization-based approach can be applied to the structured layer. 

With the move cells being annotated with roads through map matching with the road 

network, information such as travel time or speed can be aggregated to the road 

links/intersections. This allows the publication of average travel information instead of 

releasing raw GPS records. The released dataset is useful for planners focusing on traffic 

management. However, this strategy is still dangerous if the travel mode can be inferred from 

the travel speed, especially when the user group is small and speed on roads are dramatically 

different from user to user. 

4.2 Masking GPS Traces  

Anonymizing the ‘stops’ is also important as it is known that home/work locations (Golle & 

Partridge, 2009) and other sensitive locations (Sila-Nowicka & Thakuriah, 2016) can be used 

to infer an individual’s identity. The framework generalizes the stops from locations to raster 
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cells which is a grid-masking technique. The framework achieves stop detection, trajectory 

segmentation and grid-masking in one step with no need for an extra anonymization process.  

With enlarged cell sizes, stops and movements can be blurred into larger areas, shown 

in Figure 8. A trip, from ‘home’ to ‘others’, is detected using single (0.00091 decimal degree, 

about 60m), one and a half (about 85m) and double (about 115m) sized raster template 

respectively. To better preserve information about the trajectories while protecting privacy, 

Seidl et al. (2016) suggest a 30-50 meter cell size.  Sila-Nowicka and Thakuriah (2016) 

advise a 500-meter cell size if home/work locations are involved. Adjusting cell sizes during 

the stop detection phase may affect the accuracy of the stop locations. Another shortcoming 

is that enlarging cell sizes does not ensure sensitive locations being sufficiently ‘mixed’ into 

the surrounding area, for example, a building in the countryside with no nearby neighbours.   

4.3 Cloaking Sensitive ‘Stops/Moves’ 

GPS data provides detailed trajectories meaning that an attacker can identify the individual 

through not only their frequently visited places but also their frequently used routes. For 

example, assume an attacker knows that User A follows a routine between home and work 

during weekdays. Given the travel count map at the bottom of Figure 6, the attacker can infer 

User A is highly likely to be traveling from the south. Additionally, some non-routine trips 

are also potentially risky to share. For User A again with previous guess plus knowing A 

visited a park at a weekend (upper Figure 6), the attacker can locate A’s traces. We, therefore, 

test a strategy of cloaking both the top visited locations and most/least frequently used 

‘moves’. This strategy may reduce the utility of the data but makes it possible to share with a 

wider audience. The released data would still give insight into travel patterns. 
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4.3.1. Cloaking Sensitive ‘Stops’ 

We cloak the top 10 sensitive locations (a different number of locations can be used) by 

firstly classifying stops based on their trip purposes. Then we calculate the minimum distance 

radius that would blur the stops in the ‘home/work’ category into the 10 nearest buildings and 

the stops in the ‘other’ category into the 10 nearest points of interest. Figure 9 shows an 

example for User A where four major stops (in red color cells) are blurred into the different 

blurring radii (in dark blue cells) where the final cells within the blurring radii (in light blue 

color cells) are blocked from the final data release.  

This strategy intends to blur the stops into the environment with 𝑘-features. It protects 

the individual, e.g. A, by hiding his sensitive locations although A is potentially re-

identifiable based on the combined cloaked locations given the temporal sequence of visits. 

Coarsening the spatial scales can help by aggregating travel origin/destination to census 

zones but may lose trip information. Other methods such as applying location swapping may 

disturb the semantic meanings of the trips.   

4.3.2. Cloaking sensitive ‘moves’ 

To cloak ‘moves, we identify sensitive ‘moves’ as those ‘move’ cells that are traversed most 

frequently or very seldom. Two approaches are presented here to identify such moves. The 

first method (‘TopLocation’) selects the ‘top’ and ‘low’ use ‘move’ cells in relation to the 

frequency of the usage of their associated trip ‘stops’. We locate the raster cells of the top 

visited stops in the aggregated stop table when the frequency is above a threshold 𝑡 (15, 25, 

50, 95 percentile) in the overall visit distribution. We then randomly select the trips 

associated with these stops for cloaking until the travel counts of their stops reach the overall 

average trip visits. In the second method (‘TopMove’), we aggregate the number of unique 

trips travelled in a given ‘move’ cell then select those with trip counts above the 15, 25, 50, 

95 percentile 𝑡 of the overall ‘move’ cells trip counts. Trips that have over 50% of ‘moves’ 
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overlapping with the ‘top’ move cells enter a random selection ensures the top ‘move’ cells 

are not above the average trip counts. For both methods, we further cloak those ‘move’ cells 

that are associated with the stops visited by the users only once or the ‘moves’ travelled 

below twice as they indicates non-routine activities.   

Figure 10 includes the cloaking results for User B zoomed into the user’s main 

activity space symbolized with trip counts. We can see that a higher value of  𝑡 releases data 

which more closely resembles the full data. A good choice of 𝑡 would balance privacy 

protection and data utility such as  𝑡 = 75 and 𝑡 = 50 for ‘TopLocation’ and ‘TopMove’ 

methods respectively (how the framework accounts for information loss is included in the 

next section). 

 Cloaking moves has the potential to modify the overall travel pattern since users’ 

most common movements are cloaked to prevent a frequent activity attack while cloaking 

unusual travel helps prevent re-identification by analyzing outliers. These processes make the 

anonymization result less suitable for travel pattern analysis. 

4.4. Calculating information loss under the framework 

To assess threshold settings or comparing different anonymization methods, calculation of 

information loss is crucial. The framework provides convenient calculations of trip-based, 

spatial/temporal information loss. Trip-based information loss captures the percentage of trips 

that are eliminated from data publication (Formula 6). The anonymization also significantly 

affects the spatiotemporal coverage compared with the original. We take spatial aspect as a 

percentage change of a unique number of grid cells (Formula 7) since each cell represents the 

basic equal spatial unit covered by the GPS records. With the aggregated duration of each trip 

spent in every raster cell, the temporal aspect is calculated as a total trip duration loss 

(Formula 8).   



 
 

15 
 

𝐼𝑛𝑓𝑜𝐿𝑜𝑠𝑠𝑡𝑟𝑖𝑝 = 1 − ∑ 𝑟𝑒𝑙𝑎𝑠𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑡𝑟𝑖𝑝𝑠 
∑ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑠

  (6) 

𝐼𝑛𝑓𝑜𝐿𝑜𝑠𝑠𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 1 − ∑ 𝑟𝑒𝑙𝑎𝑠𝑒𝑑 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑒𝑙𝑙𝑠 
∑ 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑒𝑙𝑙

   (7) 

𝐼𝑛𝑓𝑜𝐿𝑜𝑠𝑠𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 1 − ∑ 𝑟𝑒𝑙𝑎𝑠𝑒𝑑 𝑐𝑒𝑙𝑙𝑠 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
∑ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑒𝑙𝑙𝑠 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

  (8) 

We can use this measurement of information loss to evaluate different settings of 

thresholds. For instance, in section 4.3.2, the parameter 𝑡 in both ‘TopLocation’ and 

‘TopMove’ methods. Figure 11 illustrates information loss from the three aspects for the two 

‘cloaking’ methods performed on home/work trips (Mondays-Fridays). A higher threshold 𝑡 

reduces the set of raster cells for cloaking, hence the overall information loss declines. 

‘TopMove’ method helps release more trips that covers larger spatial areas because 

‘TopLocation’ method has the higher possibility of cloaking trips that access to the main 

stops such as home/work and grocery shops. Both methods give significant temporal 

information loss especially in Case B and C.   

 Figure 12, on the other hand, compares the information loss taking all the 

demonstrated methods in the previous sections. The best anonymization method in this 

scenario is to cloak the sensitive stops which preserve the majority of movement information. 

Other methods, such as 𝑘-anonymity, are less applicable to users with low overlapping 

spatiotemporal activity, cloaking movements with ‘TopLocations’ involves higher 

information loss if users display highly regular travel patterns.  

5. Discussion and Conclusion  

With the increasing availability of GPS records, questions of how to process them in order to 

understand meanings of the trips and how to share this information without risking privacy 

may not be treated as separate but intertwined topics. This paper describes a raster-based 
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semantic trajectory development and management framework with facilities for data 

anonymization and data sharing.  

A raster-based stop detection algorithm, which samples higher dwelling time within 

raster cells with additional post-processing functions, is illustrated to have good performance 

for accurately detecting stops. This enables the construction of stop/move tables and supports 

complex semantic queries. Unlike other approaches where trajectory anonymization is 

detached from data processing, aggregating GPS records into raster templates does not 

introduce extra effort but is integrated into the framework. With GPS data organized into 

unstructured and structured layers, the framework supports data anonymization following, for 

example, 𝑘-anonymity, grid masking and spatial ‘stop/move’ cloaking methods. We also 

demonstrate its convenience in measuring trip, spatial and temporal information loss. Table 2 

summarizes means of protection, and information loss. Other methods, such as generalization 

using KDE maps, speed/wait time on roads and aggregating O/D to census areas are 

supported by the framework but not reported with particular emphasis.  

The proposed approach offers fast execution and minimal parameter and threshold 

setting. Regarding performance, the stop detection process does not require extra processing 

time as it is a common process in a GPS management framework. A time-consuming process 

is aggregating the GPS information to raster cells. If the cell size is small, the processing time 

will increase significantly when generating the structured layer. For choosing the cell size, we 

recommend taking the data anonymization into account where no less than 50-100 meters 

sized cells shall be considered. Assume peoples’ major activity happens 5km around the 

home, around 100 raster cells per user shall be processed. Although taking time to generate, 

the process is partially combined with the stop detection and the structured layer will further 

facilitate low-cost multi-level data sharing which proves to be worthwhile. 
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There are limitations of the framework. Firstly, the cell size affects the stop detection 

result. The result shows that the accuracy of detection declines when enlarging the cell size 

while larger cell sizes give higher privacy protection. The stability of the method may benefit 

from testing under a larger ground truth. A hierarchical sampling procedure would help to 

relieve signal jump errors and unstable sampling frequencies. Secondly, although employing 

an overall raster template ensures consistent spatial granularity, there is still an extra step to 

perform a vector-based spatial function using the pre-generated raster index file. Such a file 

has to be updated if stops are detected through several sampling processes. From the aspect of 

anonymization methods, larger user groups would be valuable to test threshold settings such 

𝑘-anonymity. As re-identification can be achieved on people’s combined routines, methods 

targeted for combined activity attack is interesting to explore in the future. A further 

discussion on fitting anonymized GPS data to some specific data analysis is also highly 

valuable.  
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Duration Sample 
Frequency 
On Moving 

Number 
of 

Valid 
Days 

Total Raw 
GPS Records 

Extracted 
GPS Records 

User A 2016/07/13-2016/08/10 1-2 mins 27 29439 15656 
User B 2016/11/12-2017/02/14 1-2 mins 42 13607 7780 
User C 2016/04/12-2017/12/01 1-2 mins 64 24215 16720 

Table 1. Summary of data cleaning of three users 

 

Method Description Protection Information 
loss 

Travel Count 
Aggregate on both 

temporal and special 
scales 

Hides individual 
travel details from 

aggregated numbers 

Loss of 
granularity of 

GPS 
information 
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𝒌-anonymity 
Mix individual users 

in 𝑘-1 groups of 
other users 

Hides individual in 
the crowd 

High, if users’ 
activities do not 

overlap in 
either/both 

spatial or/and 
temporal 
scale(s) 

Cloaking 
Sensitive 

Stops 

Apply different cloak 
radii based on 

semantic meanings 
of stops 

Hide sensitive 
location from other 

urban features 

Low, partial 
information loss 

on trips 

Cloaking 
Sensitive 
Moves 

Cloak frequent and 
non-routine  
movements 

Hide high/ low-
frequency activities 

High, travel 
pattern 

influenced 
Table 2. Example anonymization methods with descriptions 
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Figure 1. Overall stop/move trajectory data structure based on raster based stop detection and 

segmentation (Northern Ireland not included in the annotation process). 
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Figure 2. Illustrations of major post-processing functions. 
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Figure 3. Kernel Density Estimation (KDE) surface of the three use cases. 
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Figure 4. Precision/Recall plot for raster, threshold and map matching stop detection 

methods.  
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Figure 5. A comparison of precision/recall rates for the raster sampling method and threshold 

method  with different cell sizes (0.00091 decimal degrees under WGS_1984) increased by a 

factor of 1.5 and 2 (roughly 60, 85 and 110 meters). 
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Figure 6. Example of extracting home related trip counts for Glasgow area on Sundays (Top) 

and Mondays (Bottom) symbolized in trip counts against the whole raster coverage 

(RasterIndex) in blue.  
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Figure 7. Shared ‘move’ cells confirming to 2-anonymity in Glasgow within 17:00-18:00 

time window for use cases against the whole raster coverage (RasterIndex) in blue. 
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Figure 8. Grid-masking with different cell sizes.   
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Figure 9. Spatial cloaking frequently visited stops illustrated in User A example in Glasgow 

area. 
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Figure 10.  Cloaking results for the two ‘moves’ cloaking methods combined with ‘stop’ 

cloaking in use cases b for different values of 𝑡 
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Figure 11. Information loss for TopLocation and TopMove anonymization with different 𝑡 
from trip, spatial and temporal aspects. 

  



 
 

34 
 

 

Figure 12. Overall information loss comparing demonstrated methods from trip, spatial and 
temporal aspects. 

 


