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Abstract

Spatial data analysis (SDA) tools to efficiently handle and explore spatial data have become 

readily available. Although these SDA tools have their own strengths and purposes, they suffer 

from limited support in terms of a development environment offering easy customization and high 

extensibility, a strength of open source software. This paper presents a stand-alone software 

package for SDA in a geographic information systems (GIS) environment, called Spatial Analysis 

using ArcGIS Engine and R (SAAR), which provides an integrated GIS and SDA environment. A 

set of SDA tools in SAAR utilize functions in R using R.NET, while other tools were developed 

in .NET independent of R. SAAR provides an efficient working environment for both general and 

advanced GIS users. For general GIS users with limited programming skills, SAAR furnishes 

advanced SDA tools in a popular ArcGIS environment with graphical user interfaces. For 

advanced GIS users, SAAR offers an extensible GIS platform to help them customize and 

implement SDA functions with relatively little development effort. This paper demonstrates some 

functionalities of SAAR using census data for Texas counties.
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1. Introduction

A synergy arising from integrating spatial data analysis (SDA) techniques with Geographic 

Information Systems (GIS) has been discussed in the literature (e.g., Goodchild et al. 1992), 

revealing that an integration of these two components provides capabilities to efficiently 

handle spatial data for GIS, and to effectively visualize and explore data for SDA. Some 

well-known outcomes within this context include GeoDa and OpenGeoDa (Anselin et al. 

2006; Anselin and McCann 2009), CommonGIS (Andrienko et al. 2002, 2003), STARS 

(Rey and Janikas 2006), and GeoSurveillance (Yamada et al. 2009). These packages offer a 

wide array of SDA tools and GIS functions, each offering slightly different strengths 

according to its designed purpose. Regardless, these packages also have potential 
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weaknesses. First, they do not support a seamless working environment between SDA and 

GIS. Analysts may need to move back and forth between an SDA tool and GIS software, for 

example, to create a high quality final map with an SDA result. This undesirable feature can 

be a hurdle for GIS users who are not familiar with a particular SDA tool. Second, many of 

the packages either do not support, or are limited in their support of, a development 

environment for customization and/or extensibility. For example, spatial regression 

capabilities, such as those based upon the simultaneous autoregressive or conditional 

autoregressive model, are lacking in these packages. Although some packages support an 

open source environment, extensive programming is necessary to implement SDA functions. 

In contrast, one strength of R, an open source software environment for statistical computing 

and graphics, is its high extensibility and easy customization; that is, users freely can 

customize and extend its functions. However, R requires a very steep learning curve due to 

its command-line interface, and still is limited in its abilities and user-friendliness for 

visualizing and exploring spatial data.

This paper presents an SDA software package in a popular ArcGIS environment, called 

Spatial Analysis using ArcGIS Engine and R (SAAR). This application provides an 

environment integrating GIS and SDA using ArcGIS Engine and R. Specifically, using 

ArcGIS Engine components, SAAR can efficiently and effectively visualize and explore 

spatial data with a familiar and interactive graphical user interface (GUI) in a popular GIS 

environment, and also can support a lightweight and specialized stand-alone application 

environment rather than a complete and general purpose GIS application. SDA tools in 

SAAR are implemented programmatically with R functions based on an interoperability 

bridge program R.NET (R.NET 2015). This seamless interoperation between ArcGIS 

Engine and R is hidden from end-users, and does not require a user to open and install R and 

other additional components. In this development environment, SAAR furnishes various 

advanced SDA tools with relatively little development effort. In addition, it can provide an 

efficient development framework with high extensibility and easy customization because it 

involves an open-source environment.

This paper provides a detail introduction to SAAR. The following section describes the 

motivation for its development. The next section presents the main functionality of SAAR 

with its distinctive development configuration. Then detail capabilities of the functions are 

illustrated with median house values in Texas counties. Finally, this paper concludes with a 

discussion about future directions for the continued development of SAAR.

2. Motivation

SDA and GIS have been incorporated in two general approaches (Goodchild et al. 1992). 

One modifies or extends statistical software packages for spatial data handling (e.g., LeSage 

1999; Bivand 2000; Bivand and Gebhardt 2000). Although this approach provides an easy 

implementation of SDA techniques for GIS, it suffers from two major drawbacks. First, 

because of its aspatial statistical software environment, this approach has limited visualizing 

methods for spatial data. Hence, this incorporation is limited in exploratory SDA (ESDA) 

and model validation checking, which is inconsistent with the trend of modern software 

development (Goodchild et al. 1992). Second, general statistical software packages (e.g., R 
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and SAS) often require a steep learning curve (Delmelle et al. 2011), because of their 

command-line interfaces and programming skill requirements.

Another approach is integrating SDA tools into a GIS application. Broadly speaking, this 

approach can be further classified into either loose or tight coupling of an existing GIS 

application with a statistical application, or a stand-alone application (Goodchild et al. 

1992). In loose coupling, GIS and statistical applications operate independently and transfer 

input and output files through common data formats: e.g., CrimeStat (Levine 2010). A 

manual communication between input and output files in loose coupling causes 

inefficiencies in workflows. In contrast, tight coupling modifies a GIS application to operate 

statistical software packages within the GIS environment (e.g., Symanzik et al. 2000; Rura 

and Griffith 2010; Delmelle et al. 2011). Thus, tight coupling can allow communications 

between GIS and statistical applications through a GIS application interface, and hide a 

process for data exchange from end-users (Delmelle et al. 2011). Also, tight coupling 

generally supports an interactive exploration of spatial data through linked windows and 

brushing techniques in GIS applications (e.g., Unwin and Hofmann 1997; Brunsdon et al. 

1998; Dykes 1998; Haining et al. 1998). However, tight coupling potentially can suffer from 

application version upgrades because it primarily relies on main GIS software. That is, a 

tight coupling application requires installation of particular GIS software, and needs 

constant maintenance to match its version to that of the employed GIS software, specifically 

when new version releases of the main GIS software occur.

For integrating SDA with GIS, stand-alone software packages have been developed to 

provide a more efficient installation and a more stable maintenance environment than 

coupling implementations (e.g., Andrienko et al. 2002, 2003; Anselin et al. 2006; Rey and 

Janikas 2006; Anselin and McCann 2009; Yamada et al. 2009, Jacquez et al. 2014). 

However, these stand-alone software packages often require extensive efforts for 

development because SDA techniques may need to be developed from scratch. Furthermore, 

basic GIS functions are not readily available and need to be programmatically implemented 

(Vandergast et al. 2011). Even if extensive effort is expended to develop a stand-alone 

software package, an update of the software package (e.g., an implementation of new SDA 

techniques) still requires huge development efforts due to a limitation of the software 

package for customization and/or extensibility. For example, Open GeoDa (Anselin and 

McCann 2009) and spatial statistics tools in ArcGIS Desktop (ESRI 2016), which are 

popular SDA applications, still have limited spatial regression capabilities. In addition, 

although SpaceStat 4.0 (Jacquez et al. 2014) furnishes various aspatial regression procedures 

(e.g., Poisson and logistic models) and mixed model regression, it also contains only spatial 

lag and error models.

SAAR was developed to overcome these limitations by integrating ArcGIS Engine and R. 

Specifically, ArcGIS Engine, which supports building a customized stand-alone GIS 

application without requiring the complete ArcGIS Desktop environment, helps SAAR 

efficiently visualize and explore spatial data with familiar GUIs in a popular GIS 

environment. In addition, it provides stable maintenance in a stand-alone application 

environment, with a smaller amount of required disk space than that of a complete GIS 

application. SAAR implements powerful SDA functions relatively easily because it utilizes 
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various SDA functions in R, benefitting from R’s open source environment (Bivand and 

Gebhardt 2000; Bivand et al. 2013b). Furthermore, SAAR can achieve high extensibility and 

easy customization because of a relatively simple development process for integration 

between ArcGIS Engine and R.

This preceding integration is consistent with efforts to integrate R functionalities in popular 

GIS applications: R and ArcGIS. However, because the R processing configuration in QGIS 

still has a command-line based interface to execute R functions from a GIS environment 

(i.e., not a GUI), GIS end-users still find these modules difficult to use without acquiring R 

programming skills. The R-ArcGIS Bridge can implement R functions in a geoprocessing 

tool in an ArcGIS environment, and help to visualize geoprocessing results with a map. 

However, because the current R-ArcGIS Bridge supports limited output types in an ArcGIS 

dataset (e.g., a shapefile and geodatabase), it cannot produce various types of SDA results 

(e.g., graphs and summary tables).

3. The development architecture

SAAR is a stand-alone application including two main groups of functionalities: GIS and 

SDA (Figure 1). Each group consists of two components: a visualization, and an analytic 

engine. The visualization engines for both groups use .NET Framework for displaying 

general graphics windows and controls. ArcGIS Engine1 is used for map display and 

navigation for GIS functionality. Note that a valid ESRI license (i.e., an ArcGIS Engine 

Runtime or an ArcGIS Desktop license) is required to run SAAR. Meanwhile, SAAR has 

separate analytic engines for GIS and SDA functionalities. Specifically, the GIS analytic 

engine utilizes ArcObjects to manipulate and retrieve spatial data, and the analytic engine 

for SDA techniques utilizes R functions.

The distinctive feature in the development environment of SAAR is the integration of these 

two different GIS and SDA analytic engines using an interoperability bridge program 

R.NET (R.NET 2015). Because the GIS functionality of SAAR is developed in .NET 

Framework, operating R functions within .NET Framework through R.NET is the first 

integration step. Specifically, R.NET enables R functions to operate in the native R shared 

libraries within .NET Framework. In SAAR, all necessary R libraries and developed internal 

SDA functions are included in the installation package of SAAR so that end-users do not 

need to install any additional programs or libraries.

The interoperation between .NET Framework and R is developed with a relatively simple 

process through R.NET (Figure 2). First, the instance of an R.NET object needs to be 

retrieved and initialized in order to use R in .NET Framework. An initialized R.NET object 

can create various types of bridge classes that can transfer input and output between R 

and .NET Framework. For example, a double array class in .NET is compatible with the 

bridge class of a numeric vector in R.NET, and the numeric vector in R.NET interacts as a 

real vector in R using the method SetSymbol of R.NET. After transferring an input 

from .NET Framework to R, an R function can be executed from .NET Framework using the 

1GIS software developed with ArcGIS Engine is allowed to be legally distributed.
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Evaluate method of R.NET. The outcome of the R function also can be retrieved through a 

bridge class, or directly with a .NET class (i.e., arrays). Following these relatively simple 

steps, this seamless interoperation between R and .NET Framework is achieved in SAAR, 

and SDA functions in R are fully integrated into a GIS environment without the need to 

develop programming code from scratch for functions. Furthermore, advanced users should 

be able to easily customize and extend SAAR by bringing more functionalities from R while 

having relatively little experience working with .NET programming.

4. Functions in SAAR

This section describes a list of the currently implemented functions in SAAR, and their 

detail specifications. Figure 3 presents functions available in SAAR, which are classified 

into the following three broad categories: basic GIS and geovisualization, ESDA, and 

confirmatory spatial data analysis (CSDA).

First, SAAR provides basic GIS and geovisualization functions. Because SAAR is 

specialized for advanced SDA techniques, it furnishes fundamental GIS functionalities for 

spatial data exploration and tabular manipulation. The fundamental functions for spatial data 

display and navigation primarily are accomplished using controls in ArcGIS Engine. For 

tabular data manipulation, SAAR offers functions for adding and deleting fields, as well as a 

field calculator. In addition, SAAR supports various geovisualization functions, ranging 

from general thematic mapping techniques to advanced bivariate mapping for uncertainty 

visualization. General thematic mapping techniques, which include choropleth and 

proportional symbols, are implemented mainly with ArcObjects. They support an interactive 

GUI to provide a flexible manipulation of maps for various color schemes and map 

classification methods. The available map classification methods include not only common 

map classification methods such as Jenks’s natural breaks (Jenks 1977), quantile, and equal 

interval method, but also recent map classification methods incorporating uncertainty 

information (Sun et al. 2014; Koo et al. 2017). In addition, SAAR furnishes uncertainty 

visualization tools as both static and dynamic methods. Static methods include bivariate 

mapping techniques for uncertainty visualization are implemented, which support a 

simultaneous display of attributes with their corresponding uncertainties (Koo et al. 2018). 

Dynamic methods include the form of animation, in which a longer duration represents a 

smaller uncertainty (e.g., Fisher 1993), and interactive control, which changes the 

appearance of a thematic map based on a level of uncertainty (e.g., Rheingans 1992).

Second, SARR furnishes both exploratory data analysis (EDA) and ESDA tools. A number 

of general statistical graphs (e.g., histogram and scatter plot) are supported, and dynamic 

linking and brushing, which are central techniques in EDA and ESDA (Cleveland and 

McGill 1988, Symanzik et al. 2000), are implemented. The usefulness of dynamic linking 

and brushing in ESDA has been demonstrated within various ESDA applications (e.g., 

Brunsdon et al. 1998; Dykes 1998; Haining et al. 1998). SARR also supports advanced 

dynamic linking and brushing to explore associations for spatial neighbors in various 

contexts, such as one point in a data space corresponding to pairwise locations (e.g., a 

variogram-cloud), one location with its neighbors on a map (e.g., spatial correlogram), and a 

general one-to-one matching between a location in a data space and a map. Technically, in 
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SARR, dynamic linking and brushing are achieved with the unique identification numbers of 

both an input and outputs. Thus, one graphics window or a single layer in map view serves 

as an input to define a subset of values or locations among observations, but the number of 

linked maps and graphs (i.e., outputs) is unlimited. Also, different color symbols are used 

for an input (in cyan) and target sources (in red) so that users can distinguish them easily 

from each other (see Figure 5).

Third, various CSDA tools are implemented in SAAR. Specifically, SAAR mainly uses 

functions in the spdep package (Bivand 2002) to construct a spatial weights matrix, test for 

spatial autocorrelation, and estimate spatial regression model parameters. SAAR supports 

construction of a spatial weights matrix based on polygon contiguities (i.e., rook and queen 

definitions), point pattern by distance (i.e., a fixed distance and k-nearest neighbors), and 

Delaunay triangulations. In addition, SAAR furnishes graphical tools to examine the spatial 

configuration affiliated with a spatial weights matrix, including a connectivity histogram and 

a map with dynamic linking and brushing. SAAR contains functions to measure spatial 

autocorrelation for both global contexts—Moran Coefficient (MC) and Geary Ratio (GR)—

and local contexts—local MC and Gi* (Getis and Ord 1992). The significance tests for these 

measures can be conducted under normality and/or randomization assumptions, with a 

multiple-testing adjustment option also being available. Furthermore, bivariate spatial 

autocorrelation measures for both global and local tests are implemented, which 

simultaneously consider the correlation between two variables as well as the spatial 

autocorrelation of these variables (Lee 2001, 2004, 2009). SAAR supports various types of 

spatial regression models, including the simultaneous autoregressive (SAR) (i.e., spatial 

error and spatial lag), conditional autoregressive (CAR), spatial moving average (SMA), and 

spatial Durbin specifications (Anselin 1988). In addition, the various Jacobian computation 

methods in the spdep package [e.g., Cholesky, Chebyshev, and Monte Carlo approximate 

log-determinant methods as well as the exact eigenvalue approach (Bivand et al. 2013a)] are 

available for different types of spatial weights matrices (i.e., sparse and dense), which makes 

the estimation of a spatial regression model possible for large size datasets. Furthermore, 

SAAR furnishes Moran eigenvector spatial filtering (MESF, Griffith 2003) tool for both 

linear and generalized linear models (GLM) (e.g., Poisson and binomial). Briefly, MESF 

extracts eigenvectors from a spatial weights matrix, and uses them as independent variables 

in a stepwise regression specification (Griffith 2003); more computationally efficient 

calculations for this technique are available (e.g., Chun et al. 2016), and also are 

implemented in SAAR.

5. An application

This section demonstrates the functionalities of SAAR using an empirical dataset. It follows 

a general SDA process, ranging from simple mapping, ESDA, and CSDA, to an uncertainty 

exploration in the analyses and data. The empirical data are obtained from the 2010–2014 

five-year American Community Survey (ACS) data for Texas counties. Specifically, this 

section mainly presents a SDA using the estimates of median house value (hvalue) for the 

254 counties in Texas. Two additional variables, the unemployment rate (unemploy) and 

median year in which a structure was built (year), are used as covariates in the context of 

regression. ACS reports margins of error (MOEs) with estimates. The MOEs are used for 
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uncertainty visualization and classification as a form of the coefficient of variation (CV) 

and/or standard error. Table 1 summarizes descriptive statistics for these variables.

5.1 A simple mapping and geovisualization

Figure 4 presents the simple choropleth map of hvalue in the main GUI of SAAR. The GUIs 

of SAAR are user-friendly and compatible with ones in the contemporary computing 

environment (Figure 4a). Basically, all functions are arranged as menu items and toolbar 

buttons in the GUIs, and corresponding context menus are structured based upon user 

interaction. In Figure 4, the choropleth maps are prepared with different map classification 

methods and color schemes. Specifically, the choropleth maps of hvalue and unemploy are 

constructed based on a quantile method to properly reflect the correlation between two 

variables (Slocum et al. 2009), and the map of year is drawn with an equal interval method. 

With the three choropleth maps, positive correlation is visually observed between hvalue and 

year, and negative correlation is observed between hvalue and unemploy, especially in the 

three major Metropolitan Statistical Areas (MSA): the Dallas-Fort Worth-Arlington, the 

Houston-The Woodlands-Sugar Land, and the San Antonio-New Braunfels MSAs. 

Furthermore, SAAR furnishes tools to construct a page layout for map printing, where map 

elements (e.g., legend, north arrow, and scale bar) can be arranged. The map layout 

including map elements (i.e., Figure 4b and 4c) also can be printed or exported as an image 

file employing several image file formats, including JPEG, Tagged Image File Format 

(TIFF), and bitmap image (BMP).

5.2 Exploratory data analysis

SAAR contains EDA tools with the support of dynamic linking and brushing techniques 

among statistical graphs and a layer map in a map view. EDA tools support not only generic 

graphics such as histogram, boxplot, and scatter plot, but also violin (Hintze and Nelson 

1998) and quantile-comparison plots. Figure 5 demonstrates these EDA functions in SAAR, 

with the distribution of hvalue, and a relationship between hvalue and the selected 

covariates; unemploy and year. The histogram in Figure 5c shows the numerical distribution 

of hvalue, with some extremely high values highlighted. It indicates that the distribution of 

hvalue is positively skewed. This skewed distribution implies the need for an appropriate 

data transformation to make the variable comply with the normality assumption of many 

statistical techniques (e.g., linear regression). As observed by visual inspection of the 

choropleth maps in the previous section, the scatter plot in Figure 5a depicts a positive 

relationship between hvalue and year, whereas the scatter plot in Figure 5b portrays a 

negative relationship between hvalue and unemploy.

The relationship among the three variables can be explored further with dynamic linking and 

brushing. In Figure 5a, the observations with 1995 or later for year are selected and brushed 

as an input, and are highlighted in cyan. Dynamic linking and brushing highlight the same 

counties in the histogram with the cross-hatched red symbol (Figure 5c), in the scatter plot 

in red (Figure 5b), and in the map in cyan (Figure 5d). Specifically, the histogram in Figure 

5c shows that the selected counties with 1995 or later for year comprise a large proportion of 

counties with high median house values. In addition, the highlighted observations in the 

scatter plot (Figure 5b) roughly show there is no significant correlation between year and 
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unemploy, which presumes that inclusion of both variables as covariates in a regression 

model may not create a multicollinearity problem. Finally, the map shows that the newly 

built houses are mainly located in suburban areas of the three major MSAs in Texas.

5.3 Exploratory spatial data analysis and spatial autocorrelation

SAAR provides a set of global and local spatial autocorrelation measures. Figure 6 

illustrates the test results for both global and local spatial autocorrelation for hvalue. Figure 

6a shows the global MC result, which indicates significantly strong and positive spatial 

autocorrelation (MC = 0.502 and p-value < 0.001 under a normality assumption). Figure 6c 

portrays a local MC map that exhibits the counties with significant local MC values (p-value 

< 0.05). These counties are differentially symbolized based on the different types of local 

spatial associations (i.e., high-high, high-low, low-high, and low-low). In the local MC map, 

the significant high-high clusters, which mean a high value is surrounded by neighboring 

high values, are founded in the four major MSAs in Texas, whereas the significant low-low 

clusters are displayed in north-central Texas. In addition, Kenedy County in southern Texas 

is the significant high-low spatial outlier, which means a high value is surrounded by low 

neighboring values. This outlier might occur due to relatively higher median house values in 

Padre Island compared with its surrounding regions.

SAAR also supports ESDA tools, including Conditioned Choropleth maps (Car et al. 2000), 

and a connectivity histogram and map (Anselin et al. 2006) for exploring spatial weights. In 

addition, a Moran scatter plot is implemented as a visual tool to explore the global MC 

(Anselin 1996) (Figure 6b), where the slope of a regression line represents a global MC 

value when using standardized variables (here, the slope = 0.502, and MC = 0.502 for 

hvalue). Also, SAAR furnishes a spatial correlogram tool to explore spatial autocorrelation 

at a particular spatial lag and its trend across spatial lags (Bailey and Gatrell 1995). Figure 

7a shows a spatial correlogram based on MC for hvalue, where blue dots display local MC 

values at corresponding spatial lags. Bold lines at the center of box plots represent the 

averages of local MC values at each spatial lag, which corresponds to the global MC values 

(Anselin 1995), and a red horizontal dotted line shows the expected value of MC at 

corresponding spatial lags. In Figure 7a, the spatial correlogram illustrates positive spatial 

autocorrelation at the first order spatial lag, with spatial autocorrelation decreasing as the 

order of spatial lags increases.

SARR provides advanced dynamic linking and brushing, and a Moran scatter plot and a 

spatial correlogram can be used to illustrate this technique. That is, one point in both graphs 

is brushed on a map with not only a corresponding location, but also its neighbors. The 

advanced dynamic linking and brushing help to explore a spatial configuration especially at 

higher order spatial lags and for distance-based spatial weights (e.g., k-nearest neighbors and 

Delaunay triangulations). For example, Figures 6c and 7b clearly show the selected counties 

and their first order and fourth order queen’s case neighbors, respectively. Furthermore, in a 

spatial correlogram (e.g., Figure 7a), the selected observations at a particular spatial lag also 

are connected through lines to the same observations at other spatial lags, visually 

highlighting spatial autocorrelation trends for the observations.
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5.4 Data transformations and regression analysis

SAAR supports various regression analysis tools, including simple linear regression, GLM, 

various spatial regressions, and MESF for linear and GLM specifications. In addition, SAAR 

supports a Box-Cox transformation tool to convert an input variable to one that better 

mimics a normal distribution (i.e., bell-shaped curve). Figure 8 demonstrates the Box-Cox 

transformation tool and its result for hvalue. The maximum likelihood estimate of the 

exponent parameter for this Box-Cox transformation is –0.24. The transformed variable 

conforms reasonably well to a normal distribution based on the normal quantile-quantile 

(QQ) plot, histogram, and Shapiro-Wilk test (0.992) compared to the positively skewed 

distribution of the variable before its being subjected to this transformation (see Figure 5c).

Figure 9a reports the result of linear regression with the Box-Cox transformed hvalue as the 

dependent variable, and year and unemploy as independent variables. Results of the linear 

regression analysis reveal a positive relationship between hvalue and year, and a negative 

relationships between hvalue and unemploy. That is, the coefficient estimates of year and 

unemploy are 0.002 and –0.003, respectively. Also, these two covariates explain a sizeable 

proportion of the variance in the dependent variable, with an adjusted-R2 of 0.576. However, 

the linear regression residuals have significant positive spatial autocorrelation (MC = 0.261 

and p-value < 0.001) (Figure 9a), which indicates that the linear regression specification 

should be replaced with a spatial regression specification. The map of the linear regression 

residuals (Figure 9b) also clearly displays spatial structure in the regression residuals. This 

result implies that a spatial regression model is necessary to properly account for 

unexplained spatial autocorrelation in the residuals of the linear regression.

Figure 10 illustrates spatial regression results for a SAR model (i.e., spatial error model), 

with the same variables. The linear and SAR specifications yield similar estimated 

coefficient magnitudes with the same signs. However, the SAR (Figure 10a) clearly shows 

an improvement compared to the linear regression (Figure 9a). The estimated spatial 

autocorrelation parameter of the SAR specification is significant (λ = 0.471 and p-value < 

0.001), which coincides with the positive spatial autocorrelation in the linear regression 

residuals. The SAR specification properly accounts for spatial autocorrelation, and spatial 

structure is not observed in the SAR residual map (Figure 10b).

SAAR also furnishes an MESF tool for linear and GLM models. Figure 11 presents the 

results of MESF for linear regression with the same variables. In Figure 11a, the MESF 

selects 27 of 59 candidate eigenvectors2, and, with the selected eigenvectors, shows a 

considerable improvement compared to the conventional linear regression results (see Figure 

9a). Specifically, spatial autocorrelation in the linear regression residuals is successfully 

accounted for by the MESF model (MC = −0.133 and p-value = 0.892), which also is 

suggested by no prominent spatial structure in the residuals map from the MESF analysis 

(Figure 11b). In addition, the MESF model has a better fit than the linear regression model; 

the MESF model has a much higher adjusted-R2 value (0.762 > 0.579).

2The candidate eigenvector set in this application was determined by the equation proposed in Chun et al. (2016).
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5.5 Geovisualization and map classification incorporating uncertainty information

SAAR provides toolsets to explore uncertainty in spatial data and SDA output in two 

different contexts: geovisualization, and map classification. Extending bivariate mapping 

techniques, geovisualization tools in SAAR are implemented in three different ways: the 

coloring properties to proportional symbols (CPPS), overlaid symbols on a choropleth map 

(OSCM), and composite symbol (CS) methods (Koo et al. 2018). Figures 12a and 12b 

visualize the estimates of hvalue and their corresponding uncertainty levels (i.e., CV) using 

OSCM and CPPS, respectively. In Figure 12a, a choropleth map represents the estimates in 

color, and the overlaying textures portray their uncertainty levels: a smaller spacing (more 

dense symbols) denotes a higher level of uncertainty. In Figure 12b, the symbol sizes of the 

circles represent the estimates, and lightness denotes their uncertainties: a lighter color 

represents a higher uncertainty.

Although uncertainty visualization methods offer map users reliability information about 

estimates and its spatial pattern in a choropleth map (see Figures 12a and 12b), this spatial 

pattern still might be unreliable because the map classification is constructed in the presence 

of sampling error (Sun et al. 2017). Hence, SAAR furnishes map classification methods 

incorporating uncertainty information based on the separability criterion devised by Sun et 

al. (2014), and also on optimal classification methods (Koo et al. 2017). Figure 13 exhibits 

results of the two map classification methods for the estimates of hvalue with their 

uncertainty information. Figure 13a shows the result of the separability method. This map 

classification method is useful for highlighting statistical outliers incorporating uncertainty 

information because it heuristically maximizes the statistical difference between classes 

(Sun et al. 2014). Meanwhile, Figure 13b, the outcome of an optimal classification method, 

is based upon minimizing a total sum of pairwise Bhattacharyya distance in a class, and 

hence achieves a homogeneity among the classes, simultaneously accounting for estimates 

and uncertainty information. It also has a more balanced number of observations (i.e., 

counties) for each class compared with its separability based counterpart. Detailed 

discussions of these methods can be found in Sun et al. (2014), and Koo et al. (2017).

6. Software evaluation

A focus group was convened to evaluate the usefulness and requirements of SAAR. The 

group consisted of thirteen graduate students, enrolled in both master’s and Ph.D. programs 

of study, with different backgrounds and experiences working with spatial data. Prior to the 

survey, the functionalities of SAAR were introduced, and the participants replicated the SDA 

described in the previous application section with the same empirical dataset: the three 

variables of hvalue, unemploy, and year for the 254 counties in Texas. The participants 

explored SAAR further, conducting a SDA with their own datasets, and then they each 

completed an evaluation questionnaire. Specifically, this questionnaire consists of six open 

questions. The first three questions ask for background information about the participants: 

their majors, educational backgrounds, and SDA and GIS usage experiences. The fourth 

question asks about the usefulness of SAAR for their research. And, the fifth and sixth 

questions seek user input pertaining to additional functionality and the fulfillment of design 

goals, respectively.
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The participants have various disciplinary backgrounds: economics, public policy, statistics, 

and marketing, as well as GIS. Nine participants were Ph.D. students, and the remaining 

four were master’s students. Six participants, the non-GIS students, had less than one year of 

working experiences with spatial data. With regard to the usefulness of SAAR in their fields 

of study, overall the participants indicate that they found SAAR to be useful and easy-to-use 

for SDA. Specifically, the practical usefulness generally was discussed in terms of two 

aspects. First, the participants from economics and statistics pointed out the usefulness of 

SAAR because of its easier-to-use toolset for spatial statistical analyses, especially spatial 

regression models and MESF, vis-à-vis R. Second, the GIS participants placed more 

emphasis on the effective data visualization tools in SAAR (e.g., dynamic linking and 

brushing) supporting examinations of spatial relationships in data. Also, they mentioned that 

R and other statistics software require considerable effort to investigate such relationship.

The participants’ responses for additional desirable functionality in SAAR suggest three 

broad themes: an extension of existing functions, inclusion of additional functions, and the 

supporting of various data types. First, the participants suggest extending the functionalities 

of existing tools. For example, they stressed that distance-based spatial weights (e.g., 

Euclidean, inverse, and great circle distances) can be useful to explore spatial associations at 

a given spatial scale. In addition, they recommended an easy user interface to generate an 

eigenvector map, which can be a useful tool for MESF, because it can represent a wide 

spectrum of spatial autocorrelation scenarios (e.g., Griffith 2003). Also, the limited mapping 

functions, which support a fixed style of each map component (e.g., scale bar, north arrow, 

and legend), was singled out for improvement so that users can prepare a high quality map 

with more styles and options. Second, additional functions for SAAR that are particularly 

relevant to the participants’ disciplines were suggested. Specifically, the GIS participants 

suggested supporting interpolation methods (e.g., kriging) and a semi-variogram to furtherly 

explore the degree of spatial autocorrelation along with distances between spatial units. The 

participants from marketing recommended inclusion of spatial analysis tools for point data, 

with specific mention of cluster detection methods. The participants from statistics 

underlined the importance of spatial panel analysis tools (e.g., Elhorst 2010). Finally, SAAR 

currently supports the shapefile format for SDA input, which should be augmented by 

support for more GIS data formats. With regard to the question about the fulfillment of GUI 

design goals, there is a clear consensus among the participants that the simplicity of SAAR’s 

GUI helped them to find appropriate tools easily, and, furthermore, they suggested 

preserving this GUI simplicity as much as possible in future extensions of SAAR.

7. Concluding remarks

This paper presents SAAR, which provides an integrated environment for GIS and SDA. 

SAAR can benefit both general and advanced GIS users. For the former, SAAR provides 

powerful ESDA and CSDA techniques as well as fundamental GIS functions and 

geovisualization methods in a popular GIS environment with a user-friendly GUI. For the 

latter, SAAR can provide a flexible framework to help users customize and extend SDA 

functions in a popular GIS environment with relatively little development effort. This 

possibility fundamentally is enabled with the framework of SAAR, the integration of the 

high extensibility of R (Bivand et al. 2013b), and a simple integration process between R 
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and .NET. Furthermore, because of its open source environment, SAAR can function as a 

platform with which an advanced GIS user easily can add more SDA tools on his/her own 

choosing.3

SAAR still is under active development and will be further extended in the future. First, 

making the source code of SAAR available as cross-platform software will be a definite way 

to increase accessibility to this application for end-users. Currently, the visualization and the 

analytic engines for GIS functionalities in SAAR are developed using proprietary libraries in 

ESRI’s ArcGIS Engine, which is available only on the MS Windows platform. This change 

to a cross-platform format requires considerable effort to modify the GUIs and internal 

functions for visualization and GIS functions. Second, like ArcGIS for Desktop, ArcGIS 

Engine is a native 32-bit application, which makes SAAR run as a 32-bit application even on 

64-bit MS Windows. Thus, SAAR is limited in handling large datasets because of the 

accompanying computer memory size limitation of the 32-bit Windows systems. Third, the 

SDA functionalities need to be further extended. Specifically, implementing nonlinear 

regression (e.g., negative binomial) together with its MESF specification would allow the 

modelling of various types of variables. In addition, an extension of the Jacobian 

approximation methods (e.g., Griffith and Sone 1995) would bolster the spatial regression 

tool’s capabilities with large datasets. Fourth, more SDA functionalities for spatio-temporal 

data analysis are desirable, ones similar to STARS (Rey and Janikas 2006) and SpaceStat 

(Jacquez et al. 2014). Because of the high extensibility of the analytic engine in SAAR, 

implementation of spatio-temporal analysis functions can be achieved relative easily. 

However, due to a limited capability to handle temporal data in a GIS, an additional 

visualization engine is necessary to efficiently display spatial-temporal data (e.g., a 3-

dimensional display), although SAAR already supports interactivity of the various charts 

and a map view to examine data across various dimensions. Finally, the integration based on 

R.NET may have a potential issue arising from the support of R.NET in the future. However, 

the R.NET source code is available, which allows researchers to address potential issues 

such as supporting a newer version of software. Furthermore, this limitation merits further 

future investigation with regard to other interoperability bridge programs (e.g., 

statconn.NET4).
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Figure 1. 
The basic architecture of SAAR
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Figure 2. 
The integration process between R and .NET Framework using R.NET
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Figure 3. 
An overview of the existing SAAR functions

Koo et al. Page 17

Trans GIS. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
The graphic user interface of SAAR, and choropleth maps of selected variables: a) median 

house values, b) unemployment rates, and c) median years in which a structure was built
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Figure 5. 
Exploratory data tools with dynamic brushing and linking: a) the scatter plot for median 

house value and median year in which a structure was built, b) the scatter plot for median 

house value and unemployment rate, c) the histogram of median house value, d) the 

choropleth map of median house value
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Figure 6. 
Spatial autocorrelation in median house values: a) global Moran Coefficient, b) Moran 

scatter plot, c) the cluster map of local Moran Coefficients (p-value < 0.05)
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Figure 7. 
A spatial correlogram with advanced dynamic linking and brushing for median house value: 

a) spatial correlogram, b) brushing on the linked map
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Figure 8. 
Box-Cox transformed median house values
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Figure 9. 
A linear regression analysis result: a) a summary of the linear regression results, b) a map of 

the linear regression residuals
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Figure 10. 
A SAR analysis result: a) a summary of the SAR results, b) a map of the SAR residuals
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Figure 11. 
A MESF analysis result: a) a summary of the MESF results, d) a map of the MESF residuals
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Figure 12. 
Geovisualization methods for uncertainty exploration: a) overlaid symbols on a choropleth 

map, b) coloring properties combined with proportional symbols
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Figure 13. 
Map classification methods incorporating uncertainty information: a) the separability 

method (Sun et al. 2014), b) the optimal classification method with Bhattacharyya distance 

(Koo et al. 2017)
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Table 1.

Descriptive statistics of the selected variables for the 254 counties in Texas

Variables Min Max Mean STD Median IQR

Median house value 31,500 286,400 94,342 37,872 85,200 40,300

Median year in which a structure was built 1948 2000 1976 10.1 1976 14

Unemployment rate 0 17.6 7.1 2.9 6.9 3.3
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