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Abstract 

The problem of finding the K shortest paths (KSP) between a pair of nodes in a road network is an 
important network optimization problem with broad applications. Yen’s algorithm (Yen, 1971) is a 
classical algorithm for exactly solving the KSP problem. However, it requires numerous shortest 
path searches, which can be computationally intensive for real large networks. This study proposes 
a fast algorithm by introducing a generalized spur path reuse technique. Using this technique, 
shortest paths calculated during the KSP finding process are stored. Accordingly, many shortest path 
searches can be avoided by reusing these stored paths. The results of computational experiments on 
several large-scale road networks show that the introduced generalized spur path reuse technique 
can avoid more than 98% of shortest path searches in the KSP finding process. The proposed 
algorithm speeds up Yen’s algorithm by up to 98.7 times in experimental networks. 

Keywords: K shortest path problem; generalized spur reuse technique; network; optimization. 

1. Introduction

The problem of finding the K shortest paths (KSP) (i.e., the shortest path, the second shortest path 
and so on until the 𝑘௧௛ shortest path) between a pair of nodes in a road network is an important 
network optimization problem with broad applications in various fields (Chen et al., 2020; Liu et al., 
2020; Sester, 2020). For example, KSPs are often found to solve complex network optimization 
problems with multiple constraints and/or objectives. A summary of KSP applications can be found 
in Eppstein (1998). 

The KSP problem can be further classified into two variants. The first variant is to find the K 
shortest simple paths, in which repeated nodes are not allowed (Yen, 1971; Martins and Pascoal, 
2003; Vanhove and Fack, 2012; Chen et al., 2020). The second variant is to find the K shortest 
non-simple paths, in which repeated nodes may exist (Eppstein, 1998; Martins et al., 1984; Minieka, 
1974). Because simple paths are more complicated with an additional loopless constraint and are 
more applicable in real applications, this study focuses exclusively on the first variant. For 
convenience, KSPs are hereafter referred to as the K shortest simple paths. 

In the literature, considerable effort has been devoted to developing effective algorithms for exactly 
finding KSPs. Among early KSP algorithms (Hoffman and Pavley, 1959; Clarke, 1963; Yen, 1971; 
Lawler, 1972), Yen’s algorithm (1971) was recognized as having the best worst-case complexity 
(Vanhove and Fack, 2012; Chen et al., 2020). This algorithm builds on the deviation path concept, 
i.e., the 𝑗௧௛ shortest path deviates at a certain node (called the deviation node) from a previously 
determined 𝑖௧௛  (𝑖 < 𝑗) shortest path. The link emanating from the deviation node on the 𝑖௧௛
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shortest path is called the deviation link. Based on the deviation node, the 𝑗௧௛ shortest path can be 
divided into two sub-paths. The first sub-path before the deviation node, called the root path, can be 
determined easily because it is identical to the corresponding sub-path of the 𝑖௧௛ shortest path. The 
second sub-path after the deviation node, called the spur path, requires a further shortest path search 
in a modified network where all nodes before the deviation node along the root path and the 
deviation link(s) have been removed from the original network. Using these deviation path concepts, 
Yen’s algorithm essentially performs a series of shortest path searches in modified networks to 
calculate spur paths. Therefore, spur path calculation performance dominates the computational 
efficiency of Yen’s algorithm. 

The worst-case complexity of Yen’s algorithm has been unrivalled for the past four decades. Rather 
than improving the algorithm’s worst-case complexity, much research has been carried out to 
enhance its practical implementations, particularly to improve its spur path calculation performance. 
In the original implementation of Yen’s algorithm (Yen, 1971), the one-to-all Dijkstra’s algorithm 
(Dijkstra, 1959) was used to compute every spur path by constructing the entire one-to-all shortest 
path tree. However, this one-to-all shortest path tree construction is computationally intensive in 
large networks. To address this issue, an improved Yen’s algorithm was suggested by researcher by 
using a one-to-one Dijkstra’s algorithm (Hershberger et al., 2007). Martins and Pascoal (2003) 
proposed a path re-optimization technique. This technique speeds up spur path calculations by 
reusing the results of the one-to-all shortest path tree generated at the previous iteration. However, it 
is still necessary to update the entire one-to-all shortest path tree, leading to high computational 
overhead in large networks. It was reported that such algorithm (Martins and Pascoal, 2003) ran 
even slower than the improved Yen’s algorithm in most cases (Vanhove and Fack, 2012). Along the 
line of re-optimization techniques, Chen et al. (2020) further proposed an efficient KSP algorithm, 
called KSP-LPA*, by explicitly formulating the spur path calculation process as subsequent 
iterations of one-to-one shortest path searches. They incorporated the lifelong planning A* 
technique to improve spur path calculation performance by reusing the results of one-to-one 
shortest path searches in the previous iteration. The proposed KSP-LPA* algorithm can speed up 
the improved Yen’s algorithm by up to 2.5 times in test networks. 

Unlike the above approaches based on improving spur path calculation performance, Vanhove and 
Fack (2012) introduced a new spur path reuse technique to reduce the number of spur path 
calculations involved in Yen’s algorithm. For convenience, their proposed algorithm is hereafter 
called the V–F algorithm. The V–F algorithm first executed a backward one-to-all Dijkstra’s 
algorithm to pre-calculate the shortest paths from all nodes to the destination. During the KSP 
finding process, the V–F algorithm tried to determine the spur path by reusing the pre-calculated 
shortest path from the deviation node to the destination if the pre-calculated path concatenated with 
the root path did not form a cycle. When the reuse failed (i.e., forming cycles), the V–F algorithm 
simply used the one-to-one Dijkstra’s algorithm to calculate the spur path. Empirical studies have 
shown that the V–F algorithm can reuse 10–50% of spur paths and speed up the improved Yen’s 
algorithm by about 10%–50% (Vanhove and Fack, 2012; Chen et al., 2020). 

Along the line of previous work (Yen, 1971, Vanhove and Fack, 2012), this study proposes an 
efficient solution algorithm, called KSP-SPR, for exactly solving the KSP problem in road networks. 
This study contributes to the previous literature in the following aspects: 
(1) A generalized spur path reuse technique is introduced to address the reuse failure issue in the

V–F algorithm. The introduced technique calculates a set of candidate paths by incrementally
removing nodes forming cycles. These calculated candidate paths are stored in a tree structure
and efficiently retrieved for reuse in later iterations. Therefore, using this introduced technique
can significantly enhance the percentage of reused spur paths and reduce computational time
for spur path calculations.
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(2) The A* technique (Fu et al., 2006) is incorporated into the candidate path calculations by using 
the results of pre-calculated shortest paths in the V–F algorithm as an effective heuristic 
function. Accordingly, candidate path calculations can be improved by giving higher priorities 
to nodes closer to the destination. A technique for avoiding label initialization (Chen et al., 
2014) is also used to improve candidate path calculation performance. 

(3) A comprehensive case study is carried out using five real road networks. For comparison, three 
state-of-the-art KSP algorithms are also implememented, including the improved Yen’s 
algorithm (Yen, 1971; Hershberger et al., 2007), the V–F algorithm (Vanhove and Fack, 2012), 
and the KSP-LPA* algorithm (Chen et al., 2020). The results of the case study show that the 
proposed algorithm performs consistently faster than all existing algorithms, e.g., it can speed 
up the improved Yen’s algorithm by up to 98.7 times in test networks. 

 
The remainder of this paper is organized as follows. Section 2 briefly describes the improved Yen’s 
algorithm (Yen, 1971; Hershberger et al., 2007) and the V–F algorithm (Vanhove and Fack, 2012) 
to provide necessary background. Section 3 introduces the proposed KSP-SPR algorithm. Section 4 
reports computational experiments using several real road networks. Finally, Section 5 presents 
conclusions together with future research recommendations. 
 
2. Traditional K shortest simple path algorithms 
 
2.1. Problem definition 
 
Let G(N, A) be a directed graph with |𝑁| nodes and |𝐴| links. Each link 𝑎(𝑛௜ , 𝑛௝) ∈ A, from the 
tail node 𝑛௜ to the head node 𝑛௝ , has a nonnegative link cost, 𝑡(𝑛௜ , 𝑛௝), typically representing link 
travel time or link length. 
 
A simple path 𝑝௨  from the origin node 𝑜 ∈ 𝑁  to the destination node 𝑑 ∈ 𝑁  consists of 𝑙 
subsequent nodes,  𝑜 = 𝑛ଵ

௨, … , 𝑛௟
௨ = 𝑑 , where 𝑎(𝑛௜

௨, 𝑛௜ାଵ
௨ )  ∈ A, 𝑛௜

௨ ≠ 𝑛௜ାଵ
௨ , 𝑖 = 1, … , 𝑙 − 1 . The 

path cost, denoted by 𝑡(𝑝௨), can be calculated as the summation of corresponding link costs along 
the path: 

𝑡(𝑝௨) = ෍ 𝑡(𝑛௜
௨, 𝑛௜ାଵ

௨ )

௟ିଵ

௜ୀଵ

 (1) 

Let P be the set of all simple paths between the same origin and destination (O-D) pair. The KSP 
problem can be defined as below. 
 
Definition 1: (K shortest simple path problem) Given an integer 𝑘 ≥ 1, the KSP problem is to find 
the set of K shortest simple paths, denoted as P௞ = ൛𝑝ଵ, … , 𝑝௜, … , 𝑝௞ൟ, satisfying: 

(1) 𝑡(𝑝௜) ≤ 𝑡(𝑝௜ାଵ) for ∀𝑝௜ ∈ P୩; 
(2) 𝑡(𝑝௞) ≤ 𝑡(𝑝௨), ∀𝑝௨ ∈ P − P୩. 

 
2.2. Improved Yen’s algorithm 
 
Yen’s algorithm (1971) is one of the best-known algorithms for solving the KSP problem. It builds 
on the deviation path concept. Fig. 1 illustrates this concept using a simple example. Given the first 
shortest path 𝑝ଵ = {𝑛ଵ

ଵ, … , 𝑛௟
ଵ}  consisting of 𝑙 − 1  links, there are 𝑙 − 1  deviation paths, 

{𝑝̅ଵ
ଵ, … , 𝑝̅௜

ଵ, … , 𝑝̅௟ିଵ
ଵ }, forming the deviation path set, denoted by 𝐷ଵ. The 𝑖௧௛ deviation path, 𝑝̅௜

ଵ ∈
𝐷ଵ (e.g., 𝑝̅ଶ

ଵ in Fig. 1) is defined as the shortest path between the O-D pair in the road network by 
excluding the 𝑖௧௛ link, 𝑎(𝑛௜

ଵ, 𝑛௜ାଵ
ଵ ), and is called the deviation link (e.g., 𝑎(2,3)). The tail node 𝑛௜

ଵ 
of the deviation link is called the deviation node (e.g. Node 2), where 𝑝̅௜

ଵ deviates from 𝑝ଵ. Based 
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on the deviation node, the deviation path can be divided into two sub-paths: the root path 𝑟̅௜
ଵ and 

the spur path 𝑠௜̅
ଵ. The root path is the sub-path from the origin to the deviation node (e.g., 𝑟̅ଶ

ଵ =
{1,2}}, and the spur path extends from the deviation node to the destination (e.g., 𝑠ଶ̅

ଵ = {2,5,3}). 
The root path can be easily identified as the corresponding sub-path of 𝑝ଵ according to the 
Bellman principle of optimization (Bellman, 1958), which states that a sub-path between any pair of 
nodes on the shortest path is the shortest path itself. The spur path, 𝑠௜̅

ଵ, however, should be further 
calculated due to the introduction of two types of constraints: 

(1) 𝑠௜̅
ଵ should not pass through the deviation link to guarantee that 𝑝̅௜

ଵ is not identical to 𝑝ଵ; 

(2) 𝑠௜̅
ଵ should not pass through any node in 𝑟̅௜

௝
− {𝑛௜

௝
} to ensure that 𝑝̅௜

ଵ has no cycles. 
The deviation path, 𝑝̅௜

ଵ , can be determined as 𝑟̅௜
ଵ ⊕ 𝑠௜̅

ଵ , where ⊕ is the path concatenation 
operator. After all deviation paths in 𝐷ଵ have been calculated (e.g., 𝐷ଵ = {𝑝̅ଵ

ଵ, 𝑝̅ଶ
ଵ}), the second 

shortest path, 𝑝ଶ, is the deviation path with the minimum cost in 𝐷ଵ (e.g., 𝑝̅ଵ
ଵ). 

 
Analogously, the (𝑗 + 1)௧௛ (1 < 𝑗 < 𝐾) shortest path, 𝑝௝ାଵ, can be determined as a path among 
all deviation paths of the previously determined 𝑗 shortest paths, denoted by {𝐷ଵ ∪ … ∪ 𝐷௝} −
{𝑝ଶ, … , 𝑝௝}, where 𝐷௝ is the set of deviation paths of the 𝑗௧௛ shortest path. Unlike the scenario of 
𝑝ଵ, given 𝑝௝ consisting of 𝑙 − 1 links, it is not necessary to calculate 𝑙 − 1 deviation paths. If 
𝑝௝  coincides with a previous determined path 𝑝௨  (𝑢 < 𝑗) at its first 𝑚 − 1 links, then the 
calculation of the first 𝑚 − 1 deviation paths, i.e., {𝑝̅ଵ

௝
, … , 𝑝̅௠ିଵ

௝
}, can be omitted because they 

have been calculated and stored in 𝐷௨. Accordingly, the first deviation node of 𝑝௝ is the last node 
𝑛௠

௝  of the longest sub-path that completely coincides with a previously determined shortest path, 

and only 𝑙 − 𝑚 deviation paths, {𝑝̅௠
௝

, … , 𝑝̅௟ିଵ
௝

}, require further calculations. When calculating 𝑝̅௠
௝ , 

the 𝑚௧௛ link of 𝑝௨ is also excluded as an additional deviation link to ensure that 𝑝̅௠
௝  is different 

from the previously determined deviation path, 𝑝̅௠
௨ ∈ 𝐷௨. Note that multiple deviation links can be 

identified if the longest sub-path coincides with more than one previously determined shortest path. 
For example, 𝑝ଷ in Fig. 1 coincides with 𝑝ଵ at the longest sub-path, {2, 3}, and then the first 
deviation node is 2, and only two deviation paths {𝑝̅ଶ

ଷ, … , 𝑝̅ଷ
ଷ}  should be calculated. When 

calculating 𝑝̅ଶ
ଷ, both link 𝑎(2,5) from 𝑝ଷ and link 𝑎(2,3) from 𝑝ଵ are excluded as deviation 

links. 
 

 
Fig. 1. Illustrative example of deviation path concept. 
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Using the above deviation path concepts, the steps of Yen’s algorithm can be described as below. As 
shown in Table 1, Yen’s algorithm maintains two sorted lists: the determined shortest path list, L, 
and the deviation path list, C. Initially, the first shortest path 𝑝ଵ is calculated using the classical 
forward one-to-one Dijkstra’s algorithm and added to L. In each iteration, the deviation path set, 
𝐷௝, is calculated to determine the (𝑗 + 1)௧௛ shortest path, 𝑝௝ାଵ. First, the first deviation node 𝑛௠

௝  

and the deviation link set 𝐴ሚ௠
௝  at 𝑛௠

௝  are determined using the FindFirstDevNode procedure, 
which can be efficiently implemented by representing L as a deviation tree structure (Roddity and 
Zwick, 2005; Vanhove and Fack, 2012). Then all deviation paths {𝑝̅௠

௝
, … , 𝑝̅௟ିଵ

௝
}  in 𝐷௝  are 

calculated using the CalculateDeviationPaths procedure. To determine every deviation path 𝑝̅௩
௝, the 

spur path 𝑠̅௩
௝  is calculated using the FindSpurPath-Yen procedure. As shown in Table 2, the 

procedure simply uses the classical forward one-to-one Dijkstra’s algorithm in a modified road 
network, in which all deviation links (denoted by 𝐴ሚ௠

௝ ) and all nodes in 𝑟̅௜
௝

− {𝑛௜
௝
} (denoted by 𝑁෩௜

௝) 
are removed. Finally, all calculated deviation paths are added to C, and the (𝑗 + 1)௧௛ shortest path, 
𝑝௝ାଵ, is determined as the path with the minimum path cost at the top of C. This step can be 
efficiently implemented using a priority queue structure such as a Fibonacci heap (Fredman and 
Tarjan, 1987). The algorithm terminates when all KSPs have been found or C is empty. 
 

Table 1. Generic procedure of the Yen’s algorithm 
 
Input: O-D pair, K 
Return: Determined path collection L 
01: Call forward one-to-one Dijkstra’s algorithm to calculate 𝑝ଵ. (Algorithms different here) 
02: If 𝑝ଵ = ∅, Then stop and return ∅. 
03: Set determined path collection L ≔ {𝑝ଵ}, and set candidate deviation path collection C ≔ ∅. 
04: For j :=1 to K-1 
05:   Call FindFristDevNode(𝑝௝ , L) to determine the first deviation node 𝑛௠

௝  and the deviation 

link set 𝐴ሚ௠
௝  at 𝑛௠

௝ . 

06:   Call CalculateDeviationPaths(𝑝௝, 𝑛௠
௝ , 𝐴ሚ௠

௝ ) to calculate deviation path set 𝐷௝. 
07:   Set C ≔ C ∪ D௝. 
08:   If C = ∅, Then stop and return L. 
09:   Set 𝑝௝ାଵ as the path with minimum path cost at the top of C; and remove 𝑝௝ାଵ from C. 
10:   Add 𝑝௝ାଵ into L. 
11: End for 
12: Return L. 
 
Procedure: CalculateDeviationPaths 
Input: The 𝑗௧௛ shortest simple path 𝑝௝, the first deviation node 𝑛௠

௝ , the deviation links set 𝐴ሚ௠
௝ . 

Return: Deviation path set 𝐷௝. 
01: Set 𝐴ሚ௜

௝
≔ 𝐴ሚ௠

௝ . 
02: For  𝑖 = 𝑚 to 𝑙 −1 (𝑙 is the number of links of 𝑝௝) 
03:   if 𝑖 ≠ 𝑚, then Set 𝐴ሚ௜

௝
: = {𝑎(𝑛௜

௝
, 𝑛௜ାଵ

௝
)}. 

04:   Set root path 𝑟̅௜
௝
: = (𝑛ଵ

௝
, … , 𝑛௜

௝
), and Set removed node set 𝑁෩௜

௝
≔ 𝑟̅௜

௝
− {𝑛௜

௝
}. 

05:   Call FindSpurPath-Yen(𝐴ሚ௜
௝, 𝑁෩௜

௝) to calculate spur path 𝑠̅௜
௝. (Algorithms different here) 

06:   Determine deviation path 𝑝̅௜
௝

≔ 𝑟̅௜
௝

⊕ 𝑠̅௜
௝. 

07:   Add 𝑝̅௜
௝ into 𝐷௝. 

08: End for 
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09: Return 𝐷௝. 
 
 
Table 2. The procedure for calculating spur paths in the Yen’s algorithm 
 
Procedure: FindSpurPath-Yen 
Input: Deviation links set 𝐴ሚ௜

௝, and removed node set 𝑁෩௜
௝. 

Return: spur path 𝑠̅௜
௝ 

01: Remove 𝐴ሚ௜
௝ and 𝑁෩௜

௝ from G. 

02: Call forward one-to-one Dijkstra’s algorithm to calculate spur path 𝑠̅௜
௝. 

03: Restore 𝐴ሚ௜
௝ and 𝑁෩௜

௝ to G. 

04: Return 𝑠̅௜
௝. 

 
 
Yen’s algorithm can achieve a worst-case complexity of O{K|𝑁|(|𝐴| + |𝑁|Log|𝑁|)}  when 
Fibonacci heaps (Fredman and Tarjan 1987) are used in Dijkstra’s algorithm. This complexity is 
well known as the best worst-case complexity for solving the KSP problem in the literature. 
However, this algorithm in practice could be computationally intensive in large networks when K is 
relatively large (e.g., K>100) due to the huge number of spur path calculations using the forward 
one-to-one Dijkstra’s algorithm in the FindSpurPath-Yen procedure. 
 
2.3. V–F algorithm 
 
As an improvement, Vanhove and Fack (2012) developed an exact KSP algorithm, called the V–F 
algorithm, by introducing a spur path reuse technique. The V–F algorithm follows the same generic 
procedure of Yen’s algorithm, but with two modifications. The first modification is on Line 01 of 
Table 1, by using the backward one-to-all Dijkstra’s algorithm to calculate the first shortest path 𝑝ଵ. 
This step generates a complete shortest path tree, including not only 𝑝ଵ from the origin, but also 
shortest paths from all other nodes to the destination 𝑑. 
 
The second modification is to use the FindSpurPath-V&F procedure (see Table 3) instead of the 
FindSpurPath-Yen procedure. This modified procedure tries to reuse the results of 𝑝ଵ search to 
determine spur path 𝑠̅௜

௝. Fig. 2 illustrates such a procedure using a simple example. Let SUCC(𝑛௜
௝
) 

be the set of successor links emanating from deviation node 𝑛௜
௝ (e.g., Node 4). Any successor link, 

∀𝑎(𝑛௜
௝
, 𝑛௩) ∈ ൛SUCC൫𝑛௜

௝
൯ − 𝐴ሚ௜

௝
ൟ, can lead to a suitable detour 𝑎(𝑛௜

௝
, 𝑛௩) ⊕ 𝑞௩

଴ by concatenating 

link 𝑎(𝑛௜
௝
, 𝑛௩) and the shortest path 𝑞௩

଴ from successor node 𝑛௩ to the destination 𝑑. Note that 
𝑞௩

଴ has been calculated in the 𝑝ଵ search. Therefore, all concatenated detour paths can be easily 
determined. Among them, the path with the minimum cost can be identified as a candidate path, 𝑞௜௩

଴ . 

If the candidate path 𝑞௜௩
଴  does not contain any node in 𝑁෩௜

௝  (i.e., 𝑞௜௩
଴ ∩ 𝑁෩௜

௝
= ∅), then 𝑞௜௩

଴  can be 

reused successfully, i.e., 𝑠̅௜
௝

= 𝑞௜௩
଴ . Otherwise, 𝑞௜௩

଴ ⊕ 𝑟̅௜
௝ has cycle(s), and the FindSpurPath-Yen 

procedure is simply used to calculate spur path 𝑠̅௜
௝. 
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Fig. 2. Illustrative example of spur path reuse technique in the V-F algorithm. 

 
Table 3. Spur path calculation procedure in the V-F algorithm 
 
Procedure: FindSpurPath-V&F 
Input: Deviation links set 𝐴ሚ௜

௝, and removed node set 𝑁෩௜
௝. 

Return: spur path 𝑠௜̅
௝ 

Step 1. Reuse of results in the generated shortest path tree: 
01: Call GetCandidatePath-V&F(𝐴ሚ௜

௝, 𝑁෩௜
௝) to determine candidate path 𝑞௜௩

଴ . 

02: If 𝑞௜௩
଴ ≠ ∅ and 𝑞௜௩

଴ ∩ 𝑁෩௜
௝

= ∅, then Set 𝑠௜̅
௝

≔ 𝑞௜௩
଴  and Return 𝑠௜̅

௝. 
Step 2. Spur path calculation for both single and multiple deviation link scenarios: 
03: Call FindSpurPath-Yen(𝐴ሚ௜

௝, 𝑁෩௜
௝) to calculate spur path 𝑠௜̅

௝, and Return 𝑠௜̅
௝. 

 
Sub-Procedure: GetCandidatePath-V&F 
Input: Deviation links set 𝐴ሚ௜

௝, and removed node set 𝑁෩௜
௝. 

Return: Candidate path 𝑞௜௩
଴  

01: Set candidate path 𝑞௜௩
଴ ≔ ∅ and its cost 𝑡(𝑞௜௩

଴ ): = ∞. 

02: For each successor link 𝑎(𝑛௜
௝
, 𝑛௩) ∈ ൛SUCC൫𝑛௜

௝
൯ − 𝐴ሚ௜

௝
ൟ 

03:   If 𝑡൫𝑛௜
௝
, 𝑛௩൯ + 𝑡(𝑞௩

଴) < 𝑡(𝑞௜௩
଴ ), then 

Set 𝑞௜௩
଴ ≔ 𝑎൫𝑛௜

௝
, 𝑛௩൯ ⊕ 𝑞௩

଴ and 𝑡(𝑞௜௩
଴ ) ≔ 𝑡൫𝑛௜

௝
, 𝑛௩൯ + 𝑡(𝑞௩

଴). 
04: End for 
05: Return 𝑞௜௩

଴  
 
 
Clearly, the V–F algorithm can obtain the optimal solution of the KSP problem. Its computational 
performance depends on the spur path reuse rate, which is the percentage of spur paths that can be 
successfully identified. As the spur path reuse rate approaches zero, the V–F algorithm degrades to 
Yen’s algorithm. Previous studies have found that a spur path reuse rate of about 10–50% can be 
achieved in practice (Vanhove and Fack, 2012; Chen et al., 2020). To further improve the reuse rate, 
a generalized spur path reuse technique is proposed and described in the next section. 
 
3. Proposed KSP-SPR algorithm 
 
This section presents the proposed KSP-SPR algorithm using a generalized spur path reuse 
technique. According to the above definition, a spur path, 𝑠௜̅

௝, is the shortest path from deviation 

node 𝑛௜
௝ to destination 𝑑 in the modified network G௜

௝ , where all links in 𝐴ሚ௜
௝ and all nodes in 𝑁෩௜

௝ 
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were removed from the network G. Let G෩௜
௝

= {𝐴ሚ௜
௝
, 𝑁෩௜

௝
} be the set of removed links and nodes, i.e., 

G௜
௝

= G − G෩௜
௝ . Let 𝑄௜

௝ be the solution space consisting of all paths from deviation node 𝑛௜
௝ to 

destination 𝑑 in the modified network G௜
௝ . Obviously, spur path 𝑠̅௜

௝ is the path with minimum cost 

among all paths in 𝑄௜
௝. Given another solution space 𝑄௜௩

௨  consisting of all paths from the same 
node to destination 𝑑 in the modified network G௜௩

௨ , the following proposition can be made. 
 
Proposition 1. Given two solution spaces, 𝑄௜

௝ and 𝑄௜௩
௨ , then 𝑄௜

௝
⊂ 𝑄௜௩

௨  if G෩௜
௝

⊃ G෩௜௩
௨  holds. 

Proof. This follows from the definition of a solution space. Because G෩௜
௝

⊃ G෩௜௩
௨ , the solution space 

𝑄௜௩
௨  relaxes the constraints on not passing certain nodes and links used in 𝑄௜

௝. Therefore, 𝑄௜
௝

⊂ 𝑄௜௩
௨  

holds. □ 
 
Let 𝑞௜௩

௨  be the path with minimum cost among all paths in 𝑄௜௩
௨ . According to Proposition 1, the 

calculated path, 𝑞௜௩
௨ , can be a candidate path for spur path 𝑠̅௜

௝ if G෩௜
௝

⊃ G෩௜௩
௨  holds. This candidate 

path can be reused successfully if 𝑞௜௩
௨ ∩ G෩௜

௝
= ∅ also holds, according to the following proposition. 

 
Proposition 2. Given 𝑞௜௩

௨ , then 𝑠̅௜
௝

= 𝑞௜௩
௨ , if G෩௜

௝
⊃ G෩௜௩

௨  and 𝑞௜௩
௨ ∩ G෩௜

௝
= ∅ hold. 

Proof. If G෩௜
௝

⊃ G෩௜௩
௨  holds, then 𝑄௜

௝
⊂ 𝑄௜௩

௨  according to Proposition 1. Then 𝑠̅௜
௝

∈ 𝑄௜௩
௨ . According to 

the definition, 𝑡(𝑞௜௩
௨ ) ≤ 𝑡(𝑞௜௩,௪

௨ ) for any path ∀𝑞௜௩,௪
௨ ∈ 𝑄௜௩

௨ . Hence, 𝑡(𝑞௜௩
௨ ) ≤ 𝑡(𝑠̅௜

௝
). If 𝑞௜௩

௨ ∩ G෩௜
௝

=

∅ holds, then 𝑞௜௩
௨  is a feasible solution in 𝑄௜

௝. According to the definition of 𝑠̅௜
௝, 𝑡(𝑠̅௜

௝
) ≤ 𝑡(𝑞௜,௪

௝
) 

holds for any path ∀𝑞௜,௪
௝

∈ 𝑄௜
௝. Hence, 𝑡(𝑞௜௩

௨ ) ≥ 𝑡(𝑠̅௜
௝
). Therefore, 𝑡(𝑞௜௩

௨ ) = 𝑡(𝑠̅௜
௝
) holds. □ 

 
The V–F algorithm reuses the results maintained in the generated shortest path tree, i.e., 𝑞௜௩

଴  

calculated when only deviation links were removed from G. However, 𝑞௜௩
଴ ∩ G෩௜

௝
≠ ∅ can often 

happen, leading to reuse failure. According to Propositions 1 and 2, the spur path reuse technique 
can be generalized to reuse paths calculated when a certain number of nodes were also removed 
from G. Fig. 3(a) illustrates this idea using a simple example. The spur path 𝑠̅ସ

ଷ = {3, 7, 4} was 
calculated when deviation link 𝑎(3, 4)  and 𝑁෩ସ

ଷ = {1,2,5}  were included in G෩ସ
ଷ . In the later 

iteration, it is necessary to determine spur path 𝑠̅ହ
଻  when deviation link 𝑎(3, 4)  and 𝑁෩ହ

଻ =

{1,2,6,5} are included in G෩ହ
଻. In this case, the calculated 𝑠̅ସ

ଷ can be reused successfully, i.e., 𝑠̅ହ
଻ =

𝑠̅ସ
ଷ, because both G෩ହ

଻ ⊃ G෩ସ
ଷ and 𝑠̅ସ

ଷ ∩ G෩ହ
଻ = ∅ hold. However, 𝑠̅ସ

ଷ cannot be a candidate path for 
determining spur path 𝑠̅ସ

ହ because G෩ସ
ହ ⊃ G෩ସ

ଷ does not hold. Fig. 3(b) shows the same example 
using a solution space perspective. Clearly, a path can be reused only in those cases whose solution 
spaces are contained by the path’s solution space. 
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Fig. 3. Illustrative example of the generalized spur path reuse concept: (a) Spur paths; (b) Solution 

spaces. 
 
Built on the idea described above, a generalized spur path reuse technique is proposed to reuse all 
possible candidate paths during the KSP finding process. The proposed technique consists of two 
procedures: candidate path calculation, and candidate path retrieval. To determine a spur path 𝑠௜̅

௝, 
the candidate path calculation procedure first tries to reuse the results maintained in the generated 
shortest path tree, i.e., 𝑞௜௩

଴  as the V–F algorithm. If the reuse of 𝑞௜௩
଴  fails, the procedure calculates 

a set of candidate paths, 𝑞௜௩
௨ , by incrementally removing a few of the nodes that form cycles in 

𝑞௜௩
௨ ⊕ 𝑟̅௜

௝ (i.e., 𝑞௜௩
௨ ∩ 𝑁෩௜

௝). The spur path, 𝑠௜̅
௝, can be determined when the calculated candidate path 

𝑞௜௩
௨  has no cycle in 𝑞௜௩

௨ ⊕ 𝑟̅௜
௝ (i.e., 𝑞௜௩

௨ ∩ 𝑁෩௜
௝

= ∅). In the worst case, all nodes along the root path 
are removed, and the procedure can guarantee to determine the optimal spur path. This candidate 
path calculation strategy follows the idea that the fewer the nodes removed, the larger is the solution 
space formed, and the higher is the possibility of candidate path reuse in later iterations. 
 
Fig. 4 illustrates the candidate path calculation procedure using the same example as in Fig. 3. To 
determine spur path 𝑠ସ̅

ଷ , the deviation link 𝑎(3, 4)  is first removed from the network, and 
candidate path 𝑞ଷସ

଴ = {3,7,2,4} is retrieved from the generated shortest path tree. Because 𝑁෩ସ
ଷ =

{1,2,5} and 𝑞ଷସ
଴ ∩ 𝑁෩ସ

ଷ = {2}, reuse of 𝑞ଷସ
଴  fails. Then Node 2, which forms a cycle, is removed 

from the network, and a candidate path 𝑞ଷସ
ଵ = {3,6,5,4} is calculated. Because 𝑞ଷସ

ଵ ∩ 𝑁෩ସ
ଷ = {5} 

holds, the procedure continues. Node 5, which forms a cycle, is further removed, and 𝑞ଷସ
ଶ = {3,7,4} 

is calculated. Because 𝑞ଷସ
ଶ ∩ 𝑁෩ସ

ଷ = ∅ holds, the spur path 𝑠ସ̅
ଷ = 𝑞ଷସ

ଶ  is determined. 
 

 
Fig. 4. Illustrative example of candidate path calculation procedure. 

 
In the proposed technique, all calculated candidate paths are stored in every iteration and retrieved 
for potential reuse in later iterations. A tree structure, denoted by 𝑇௜௩, is constructed to store all 
candidate paths, from the same deviation node 𝑛௜ to the destination 𝑑, calculated when the same 
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deviation link 𝑎(𝑛௜, 𝑛௩) is removed from G. Fig. 5 illustrates the structure of the candidate path 
tree using the sample example of Figs. 3 and 4. The tree has a single root node, 𝑛௜௩

଴ , storing the 
candidate path (e.g., 𝑞ଷସ

଴ ) calculated when no node, but only the deviation link (e.g., 𝑎(3,4)) is 
removed. A direct child node (e.g., Node 2) of the root node stores the candidate path (e.g., 𝑞ଷସ

ଵ ) 
calculated when the node (i.e., Node 2) is removed. Without loss of generality, a child node 𝑛௜௩

௪  
(e.g., Node 5) stores the candidate path (e.g., 𝑞ଷସ

ଶ ) calculated when the node (i.e., Node 5) and all 
its parent nodes (i.e., Node 2) along the path from the root node are removed. Therefore, using this 
tree structure, candidate paths can be stored and maintained at the deviation link. Note that the 
proposed technique is not applicable to the scenario with multiple deviation links removed. This is 
due to its difficulties in storing candidate paths and its small number of cases compared to the single 
deviation link scenario. 
 

 
Fig. 5. Illustrative example of the candidate path tree structure. 

 
In the proposed technique, the candidate path retrieval procedure tries to reuse candidate paths 
stored in the tree, 𝑇௜௩, using a breadth-first-search strategy. The procedure first searches the root 
node 𝑛௜௩

଴  by adding it to a list structure using the first-in-first-out principle. In each iteration, the 
first node 𝑛௜௩

௪  of the list is selected and removed. If candidate path 𝑞௜௩
௪  stored at the selected node 

satisfies 𝑞௜௩
௪ ∩ 𝑁෩௜

௝
= ∅, then the optimal spur path 𝑠௜̅

௝ is determined as 𝑞௜௩
௪ , and the procedure 

terminates. Otherwise, all child nodes of selected node 𝑛௜௩
௪  belonging to 𝑁෩௜

௝ are identified as 
candidate nodes and added to the list for further search. The procedure continues the search until 
either spur path 𝑠௜̅

௝ is determined or the list is empty (i.e., reuse failure). When reuse fails, the 
procedure retrieves the last node 𝑞௜௩

௨  in the list with the maximum depth among all candidate nodes 
in 𝑇௜௩. The retrieved 𝑞௜௩

௨  is used as an initial candidate path to speed up the candidate path 
calculation procedure because computational efforts for calculating 𝑞௜௩

௨  and all paths stored at its 
parent nodes in 𝑇௜௩ are saved. 
 
Fig. 5 illustrates an example of reusing candidate paths calculated in Fig. 4 to determine 𝑠ସ̅

ହ with 
𝑁෩ସ

ହ = {1,2,6}, as shown in Fig. 3. Initially, three calculated candidate paths (i.e., 𝑞ଷସ
଴ , 𝑞ଷସ

ଵ , 𝑞ଷସ
ଶ ) are 

stored in the tree, 𝑇ଷସ. The candidate path retrieval procedure first searches the root node 𝑛ଷସ
଴  

storing 𝑞ଷସ
଴ . Because 𝑞ଷସ

଴ ∩ 𝑁෩ସ
ହ = {2} holds, 𝑞ଷସ

଴ ≠ 𝑠ସ̅
ହ. Then the procedure continues to search its 

child node 𝑛ଷସ
ଵ  (i.e., Node 2) satisfying 𝑛ଷସ

ଵ ∈ 𝑁෩ସ
ହ. Here, 𝑞ଷସ

ଵ ≠ 𝑠ସ̅
ହ holds because 𝑞ଷସ

ଵ ∩ 𝑁෩ସ
ହ =

{6}. The child node of 𝑛ଷସ
ଵ , 𝑛ଷସ

ଶ = {5}, does not belong to 𝑁෩ସ
ହ, and therefore it is not added to the 

list for further search. Consequently, the list is empty, and the procedure terminates. The last node in 
the list is 𝑛ଷସ

ଵ , and hence candidate path 𝑞ଷସ
ଵ  is retrieved as the initial candidate path. Subsequently, 

the candidate path calculation procedure can use 𝑞ଷସ
ଵ  without having to calculate it, as well as 𝑞ଷସ

଴  
stored at its parent node in the tree. The procedure calculates a new candidate path 𝑞ଷସ

ଷ , which is 
added to tree 𝑇ଷସ and stored at node 𝑛ଷସ

ଷ ={6} as the child node of 𝑛ଷସ
ଵ . 
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Using this generalized spur path reuse technique, an efficient KSP algorithm, called KSP-SPR, is 
proposed in this paper for exactly solving the KSP problem. In a similar manner to the V–F 
algorithm, the proposed KSP-SPR algorithm follows the same generic procedure as Yen’s algorithm, 
but with two modifications. The first modification is on Line 01 of Table 1, by using the backward 
one-to-all Dijkstra’s algorithm to generate the first shortest path 𝑝ଵ. The second modification is to 
use the FindSpurPath-SPR procedure instead of the FindSpurPath-Yen procedure to determine spur 
path 𝑠̅௜

௝. 
 
Table 4 gives the detailed steps of the FindSpurPath-SPR procedure. It classifies the spur path 
calculation problem into single and multiple deviation link scenarios. For the first scenario (i.e., 
ห𝐴ሚ௜

௝
ห = 1), the procedure first retrieves the candidate path tree, 𝑇௜௩ , stored at deviation link 

𝑎(𝑛௜
௝
, 𝑛௜ାଵ

௝
). If 𝑇௜௩ is empty, the procedure calls the GetCandidatePath-V&F sub-procedure (see 

Table 3) to determine 𝑞௜௩
଴  and add it to 𝑇௜௩ as the root node. Subsequently, the procedure calls the 

RetrieveCandidatePath sub-procedure, of which the detailed steps are shown in Table 4 and 
described in the introduction to candidate path retrieval. If the sub-procedure determines spur path 
𝑠̅௜

௝
≠ ∅, the procedure terminates. Otherwise, the sub-procedure returns an initial candidate path 

𝑞௜௩
௨ ≠ ∅ . Using 𝑞௜௩

௨  as an input, the procedure finally calls the CalculateCandidatePaths 

sub-procedure to calculate spur path 𝑠̅௜
௝. 

 
In the second scenario (i.e., ห𝐴ሚ௜

௝
ห > 1), the procedure simply applies a procedure similar to the V–F 

algorithm to calculate spur path 𝑠̅௜
௝. The only difference is the use of the A* algorithm instead of the 

forward one-to-one Dijkstra’s algorithm to speed up the spur path 𝑠̅௜
௝  calculation. This A* 

algorithm uses a heuristic function to assign higher priorities to nodes closer to the destination 
(Zeng and Church, 2009). Let ℎ(𝑛௨) be the heuristic function of node 𝑛௨  representing the 
estimated lower bound for the shortest path cost from node, 𝑛௨, to the destination. Such an A* 
algorithm can determine the optimal shortest path if ℎ(𝑛௨) is admissible and satisfies the triangle 
inequality property, i.e., ℎ(𝑛௨) ≤ ℎ(𝑛௩) + 𝑎(𝑛௨, 𝑛௩). Because shortest paths from all nodes to the 
destination were calculated during the 𝑝ଵ  search, they are used as admissible ℎ(𝑛௨) . The 
technique of avoiding label initialization proposed by Chen et al. (2014) is also incorporated into 
the A* algorithm to further improve spur path calculation performance. In the conventional A* 
algorithm, the initialization step is required to set the null labels of all nodes before carrying out the 
shortest path search. However, this label initialization step can lead to a heavy computational 
burden on the KSP finding process, with very many shortest path searches in large networks. This 
label initialization step can be avoided by assigning a unique ID to each shortest path search (Chen 
et al., 2014). 
 
Table 4. Detailed steps of the FindSpurPathSPR procedure 
 
Procedure: FindSpurPath-SPR 
Input: Deviation links set 𝐴ሚ௜

௝, and removed node set 𝑁෩௜
௝. 

Return: Spur path 𝑠̅௜
௝. 

Step 1. Spur path determination for the single deviation link scenario: 
01: If ห𝐴ሚ௜

௝
ห = 1, Then 

02:   Get candidate path tree 𝑇௜௩ stored at deviation link 𝑎(𝑛௜
௝
, 𝑛௜ାଵ

௝
). 

03:   If 𝑇௜௩ = {∅}, Then Call GetCandidatePath-V&F(𝐴ሚ௜
௝, 𝑁෩௜

௝) to determine candidate path 𝑞௜௩
଴ , 

and Set 𝑇௜௩ ≔ {𝑞௜௩
଴ }. 



12 

 

04:   Call RetrieveCandidatePath(𝑇௜௩, 𝑁෩௜
௝) to determine 𝑠̅௜

௝ and initial candidate path 𝑞௜௩
௨ . 

05:   If 𝑠̅௜
௝

≠ ∅, Then Return 𝑠̅௜
௝. 

06:   Call CalculateCandidatePaths(𝑇௜௩, 𝑁෩௜
௝ , 𝑞௜௩

௨ ) to calculate 𝑠̅௜
௝, and Return 𝑠̅௜

௝. 
07: End If 
Step 2. Spur path calculation for the multiple deviation link scenario: 
08: Call GetCandidatePath-V&F(𝐴ሚ௜

௝, 𝑁෩௜
௝) to determine candidate path 𝑞௜௩

଴ . 

09: If 𝑞௜௩
଴ ≠ ∅ and 𝑞௜௩

଴ ∩ 𝑁෩௜
௝

= ∅, then Set 𝑠̅௜
௝

≔ 𝑞௜௩
଴  and Return 𝑠̅௜

௝. 

10: Remove 𝐴ሚ௜
௝ and 𝑁෩௜

௝ from G. 

11: Call the A* algorithm to calculate spur path 𝑠̅௜
௝. 

12: Restore 𝐴ሚ௜
௝ and 𝑁෩௜

௝ to G. 

13: Return 𝑠̅௜
௝. 

 
Sub-Procedure: RetrieveCandidatePath 
Input: Candidate path tree 𝑇௜௩, and Removed node set 𝑁෩௜

௝ . 

Return: Spur path 𝑠̅௜
௝, and Initial candidate path 𝑞௜௩

௨  

01: Set 𝑠̅௜
௝
: = ∅, and 𝑞௜௩

௨ : = ∅. 
02: Add root node 𝑛௜௩

଴  of 𝑇௜௩ into 𝑙𝑖𝑠𝑡 ≔ {𝑛௜௩
଴ }. 

03: While 𝑙𝑖𝑠𝑡 ≠ ∅ 
04:  Select the first node 𝑛௜௩

௪  from 𝑙𝑖𝑠𝑡, and Set 𝑙𝑖𝑠𝑡 ∶= 𝑙𝑖𝑠𝑡 − {𝑛௜௩
௪ }. 

05:  Retrieve the candidate path 𝑞௜௩
௪  stored at 𝑛௜௩

௪ . 

06:  If 𝑞௜௩
௪ ∩ 𝑁෩௜

௝
= ∅, Then Set 𝑠̅௜

௝
: = 𝑞௜௩

௪  and Return. 
07:  For each child node 𝑛௜௩

ఏ  of 𝑛௜௩
௪  

08:    If 𝑛௜௩
ఏ ∈ 𝑁෩௜

௝, Then Set 𝑙𝑖𝑠𝑡 ∶= 𝑙𝑖𝑠𝑡 ∪ {𝑛௜௩
ఏ }. 

09:  End for 
10: End while 
11: Set 𝑞௜௩

௨ ≔ 𝑞௜௩
௪ , and Return. 

 
Sub-Procedure: CalculateCandidatePaths 
Input: Candidate path tree 𝑇௜௩, Removed node set 𝑁෩௜

௝, Initial candidate path 𝑞௜௩
௨ . 

Return: Spur path 𝑠̅௜
௝. 

Step 1. Initialization: 
01: Set parent node 𝑛௜௩

௨  as the node storing 𝑞௜௩
௨ . 

02: Set current node 𝑛௜௩
௪ ≔ 𝑛௜௩

௨ , and Set removed node set N௜௩
௨ : = {∅}. 

03: While 𝑛௜௩
௪ ≠ ∅ 

04:  Set N௜௩
௨ ≔ N௜௩

௨ ∪ {𝑛௜௩
௪ }, and Remove 𝑛௜௩

௪  from G. 
05:  Set 𝑛௜௩

௪  as its direct parent node. 
06: End while 
07: Remove deviation link 𝑎(𝑛௜

௝
, 𝑛௜ାଵ

௝
) from G. 

Step 2. Candidate path calculation: 
08: Set isFirstSearch := True. 
09: While 𝑞௜௩

௨ ∩ 𝑁෩௜
௝

≠ ∅ 

10:  Select node 𝑛௜௩
௪  nearest to deviation node 𝑛௜

௝ in 𝑞௜௩
௨ ∩ 𝑁෩௜

௝. 
11:  Set N௜௩

௨ ≔ N௜௩
௨ ∪ {𝑛௜௩

௪ }, and Remove 𝑛௜௩
௪  from G. 

12:  Call the A* algorithm to calculate candidate path 𝑞௜௩
௪ . 

13:  Store 𝑞௜௩
௪  at 𝑛௜௩

௪ , and Add 𝑛௜௩
௪  into 𝑇௜௩ as direct child node of 𝑛௜௩

௨ . 
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14:  Set 𝑛௜௩
௨ ≔ 𝑛௜௩

௪ . 
15: End While 
Step 3. Network restoration: 
16: Restore deviation link 𝑎(𝑛௜

௝
, 𝑛௜ାଵ

௝
) and all nodes in N௜௩

௨  to G. 

17: Set 𝑠̅௜
௝

≔ 𝑞௜௩
௨ , and Return 𝑠̅௜

௝. 
 
 
The detailed steps of the CalculateCandidatePaths sub-procedure are shown in Table 4 and 
described below. The sub-procedure consists of three steps. In the first step, node 𝑛௜௩

௨ ∈ 𝑇௜௩ 
(storing initial candidate path 𝑞௜௩

௨ ) and all its parent nodes in 𝑇௜௩ as well as the deviation link 

𝑎(𝑛௜
௝
, 𝑛௜ାଵ

௝
) are removed from the network G. In the second step, a set of nodes forming cycles are 

identified as 𝑞௜௩
௨ ∩ 𝑁෩௜

௝ , where 𝑁෩௜
௝

= 𝑟̅௜
௝

− {𝑛௜
௝
} consists of all nodes along the root path excluding 

the deviation node 𝑛௜
௝. Among all nodes in 𝑞௜௩

௨ ∩ 𝑁෩௜
௝, only one node 𝑛௜௩

௪  nearest to the deviation 

node 𝑛௜
௝ is selected and removed from G. Then candidate path 𝑞௜௩

௪  is calculated as the shortest 

path in G from deviation node 𝑛௜
௝ to the destination 𝑑 using the A* algorithm, which also uses 

the 𝑝ଵ search results as ℎ(𝑛௨) and the technique of avoiding label initialization. The calculated 
𝑞௜௩

௪  is stored at node 𝑛௜௩
௪ , which is further added to candidate path tree 𝑇௜௩ as a direct child node of 

𝑛௜௩
௨  storing 𝑞௜௩

௨ . The candidate path calculations iterate until the calculated candidate path does not 

contain any node in 𝑁෩௜
௝, i.e., the spur path 𝑠̅௜

௝ is determined. In the last step of the sub-procedure, 

all removed nodes and links are restored to G, and the determined spur path 𝑠̅௜
௝ is returned. 

 
The optimality of the proposed KSP-SPR algorithm can be proved as follows. 
 
Proposition 3. The proposed KSP-SPR algorithm can exactly solve the problem of finding k 
shortest simple paths. 
Proof. See Proposition A1 in the Appendix. □ 
 
The worst-case complexity of the proposed KSP-SPR algorithm is analyzed. The 
FindShortestPath-LPA* sub-procedure requires O{|𝐴| + |𝑁|Log|𝑁|} with implementation of the 
F-heap data structure (Fredman and Tarjan 1987) as the priority queue. Accordingly, the 
CalculateCandidatePaths sub-procedure runs O{|𝑁|(|𝐴| + |𝑁|Log|𝑁|)} . Because the 
RetrieveCandidatePath sub-procedure requires O{|𝑁|} and the A* algorithm procedure requires 
O{(|𝐴| + |𝑁|Log|𝑁|)} , the proposed KSP-SPR algorithm has worst-case complexity 
O{K|𝑁|ଶ(|𝐴| + |𝑁|Log|𝑁|)}. Although this complexity is not as good as Yen’s algorithm in the 
theoretical worst case, it is shown in the following section that the proposed KSP-SPR algorithm in 
practice runs much faster than Yen’s algorithm. 
 
4. Computational Experiments 
 
This section reports the computational performance of the proposed KSP-SPR algorithm. Three 
state-of-the-art KSP algorithms were also implemented for comparison, including the improved 
Yen’s algorithm (Yen, 1971; Hershberger et al., 2007), the V–F algorithm (Vanhove and Fack, 
2012), and the KSP-LPA* algorithm (Chen et al., 2020). All four algorithms were coded in the same 
C# programming language and used the same F-heap data structure (Fredman and Tarjan 1987) as 
the priority queue in all shortest path calculation procedures. All computational experiments ran on 
a desktop equipped with an Intel quad-core CPU at 2.6 GHz and 8 GB of memory, and only a single 
processor was used. 
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Five real road networks with different sizes were collected and tested. Among them, three networks, 
Winnipeg, Austin, and Chicago, were downloaded from a well-known network repository for 
transportation research (https://github.com/bstabler/TransportationNetworks). Link travel times 
were provided in these three networks and utilized for computational experiments. Two larger road 
networks, Wuhan and Shenzhen, were downloaded from OpenStreetMap Data Extracts 
(http://download.geofabrik.de/index.html). Link lengths were used in these two networks for 
computational experiments. Table 5 summarizes the characteristics of all five test networks. For 
each road network, 100 O-D pairs were randomly generated and tested for all four algorithms using 
different K values, i.e., 10, 50, 100, 500, and 1000. 
 
Table 5. Basic characteristics of testing road networks 

Network Winnipeg Austin Chicago Wuhan Shenzhen 
Number of nodes 1,052 7,388 12,982 40,347 57,229 
Number of links 2,836 18,961 39,018 156,142 162,756 

 
Table 6 reports the computational performance of the proposed KSP-SPR algorithm in all five test 
networks when K = 1000. The computational time consumed by the proposed KSP-SPR algorithm 
can be divided into three parts, including the first shortest path (𝑝ଵ) search and the spur path 
calculations for the single (ห𝐴ሚ௜

௝
ห = 1) and multiple (ห𝐴ሚ௜

௝
ห > 1) deviation link scenarios. The 𝑝ଵ 

search was performed only once, although it was relatively computationally intensive in large road 
networks. The single deviation link scenario dominated the spur path calculation process for all test 
networks. For example, the single deviation link scenario accounted for 97.6% of total spur path 
calculations and consumed 92.7% of total computation time for the Wuhan network. Note that 99.5% 
of spur paths under the single deviation link scenario can be directly determined by reusing stored 
candidate paths and that only 0.5% of spur paths were determined by shortest path searches to 
calculate candidate paths. This promising reuse rate (𝑟̃) was achieved because of the introduced 
generalized spur path reuse technique. It also justified the focus of this introduced technique on the 
single deviation link scenario because the multiple deviation link scenario was minor for all test 
networks. Without such a technique, low reuse rates were achieved for the multiple deviation link 
scenario by only reusing the 𝑝ଵ search results, such as 𝑟̃=24.1% on the Wuhan network. 
 
Table 6. Computational performance of the KSP-SPR algorithm when K = 1000 

Network 
𝑝ଵ search  ห𝐴ሚ௜

௝
ห = 1 scenarios  ห𝐴ሚ௜

௝
ห > 1 scenarios  Total 

𝑡̃  𝑚෥  𝑟̃ 𝑡̃  𝑚෥  𝑟̃ 𝑡̃  𝑡̃ 
Winnipeg 0.004  6,028 98.3% 0.22  439 26.8% 0.02  0.24 

Austin 0.10  17,077 98.9% 2.15  328 18.0% 0.09  2.34 
Chicago 0.23  20,270 99.1% 2.16  696 20.6% 0.13  2.52 
Wuhan 0.90  28,345 99.5% 15.4  709 24.1% 1.10  17.4 

Shenzhen 1.40  36,222 99.4% 108.6  614 18.2% 0.30  110.3 
𝑚෥ : Average number of spur path calculations (100 runs); 
𝑟̃: Average percentage of spur paths reused from stored candidate paths (100 runs); 
𝑡̃: Average computational times in seconds (100 runs). 
 
Table 7 summarizes the candidate path calculations and storage for the single deviation link 
scenario for all test networks. As shown, few candidate paths were calculated and stored for all test 
networks. For example, in the Wuhan network, only 160 links were maintained in a candidate path 
tree. The average number of nodes in the candidate path tree was 2.15, indicating that on average 
only 2–3 candidate paths were sufficient to represent spur paths under various root paths. The 
computer memory for storing candidate paths was approximately 154.3 KB. Compared to the 
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Wuhan network, more candidate paths were calculated and stored on the Shenzhen network. There 
were 202 links with candidate path trees, and the average number of nodes was 4.24. Nevertheless, 
the computer memory for storing these candidate paths was satisfactory, at 746.4 KB. This result 
confirmed the storage feasibility of using the generalized spur path reuse technique in large 
networks. 
 
Table 7. Spur path calculations and reuses in the KSP-SPR algorithm for ห𝐴ሚ௜

௝
ห = 1 scenarios 

Network 
Stored candidate paths  Computational times in seconds 

No. of links 
stored trees 

Average 
tree size 

Memory 
requirement 

 
This study A* Dijkstra 

Winnipeg 77 2.03 17.5 KB  0.22 0.23 0.48 
Austin 124 1.69 39.6 KB  2.15 2.43 5.38 

Chicago 189 1.52 53.0 KB  2.16 2.59 9.14 
Wuhan 160 2.15 154.3 KB  15.4 16.9 83.95 

Shenzhen 212 4.24 746.4 KB  108.6 115.5 631.4 
No. of links stored trees: Number of links stored candidate path trees (100 runs); 
Average tree size: Average number of nodes in stored candidate path trees (100 runs). 
 
Table 7 also summarizes the computation times required for candidate path calculations for the 
single deviation link scenario. To speed up the candidate path calculations, the proposed KSP-SPR 
algorithm used both the A* algorithm and the technique for avoiding label initialization. To 
distinguish their effectiveness, the A* algorithm and the forward one-to-to Dijkstra’s algorithm 
were also used to calculate the same set of candidate paths for comparison. The A* algorithm used 
the 𝑝ଵ search results as ℎ(𝑛௨), whereas Dijkstra’s algorithm set ℎ(𝑛௨) = 0. Comparing their 
results, it is clear that use of the 𝑝ଵ search results as ℎ(𝑛௨) significantly enhanced candidate path 
calculation performance for all test networks by as much as 4.0 times (i.e., 83.95/16.9 –1) on the 
Wuhan network. This was the case because using such a heuristic function can speed up shortest 
path search by assigning higher priorities to nodes closer to the destination. Comparing the results 
of “A*” and “this study” in Table 7 shows the effectiveness of the technique to avoid label 
initialization. Using this technique further improved candidate path calculation performance for all 
test networks, e.g., by 9.7% for the Wuhan network. 
 
Fig. 6 reports the computational performance of four algorithms on the Wuhan network using the 
same set of 100 OD pairs and setting K = 1000. The horizontal axis represents the 100 random 
queries, and the vertical axis represents the computational times on a logarithmic scale. The 
computational performance of all four algorithms was compared to that of the improved Yen’s 
algorithm. The improved Yen’s algorithm delivered the worst performance among the four 
algorithms tested because it repeatedly performed a forward one-to-one shortest path search to 
calculate every spur path, leading to considerable computational overhead. The V–F algorithm ran 
about 64.4% (i.e., 1734.3/1055.0 – 1) (see Table 8) faster than the improved Yen’s algorithm 
because the V–F algorithm saved 51% of spur path calculations by reusing the 𝑝ଵ search results. 
As shown in Fig. 6, the proposed KSP-SPR algorithm further sped up the V–F algorithm by 60.6 
times (i.e., 1055.0 / 17.4 – 1) on the Wuhan network, as expected. The proposed KSP-SPR 
algorithm using the generalized spur path reuse technique reused not only the 𝑝ଵ search results, 
but also the stored candidate paths, and thereby achieved a much higher reuse rate (99.5%). In 
addition, both the A* algorithm and the technique to avoid label initialization were used to improve 
the candidate path calculations (see Table 7). 
 
Fig. 6 also presents the computational performance of the KSP-LPA* algorithm on the Wuhan 
network. As shown, the KSP-LPA* algorithm sped up the improved Yen’s algorithm by 1.2 times 
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(i.e. 1734.3 / 794.7 – 1). However, the proposed KSP-SPR algorithm was still the best algorithm, 
with its computation time being 44.6 times (i.e. 794.7 / 17.4 – 1) shorter than that of the KSP-LPA* 
algorithm. 
 

 

Fig. 6. Computational times(seconds) of all four algorithms on the Wuhan network. 
 

Table 8 shows the computational performance of the four KSP algorithms on five test networks of 
different sizes when K = 1000. As expected, the computational performance of all algorithms 
degraded with increasing network size. For instance, the improved Yen’s algorithm consumed 4.4 s 
to calculate K shortest paths on the Winnipeg network with 1052 nodes. When the Shenzhen 
network was used, the number of nodes was increased by 53.4 times, but the computation times of 
the improved Yen’s algorithm increased by 927.2 times. The proposed KSP-SPR algorithm had a 
moderate degradation rate. For example, when the Shenzhen network was used, the computation 
times of the proposed KSP-SPR algorithm increased by only 458.6 times. 
 
Table 8. The experiment results of KSP algorithms on the five testing road networks (K=1000). 

Network 
Improved Yen’s  KSP-LPA*  V-F  KSP-SPR 

𝑡̃  𝑡̃  𝑡̃ 𝑟̃  𝑡̃ 𝑟̃ 
Winnipeg 4.4  3.7  3.0 40.6%  0.24 98.3% 

Austin 143.3  39.8  95.7 45.8%  2.34 98.9% 
Chicago 188.1  64.2  119.9 51.6%  2.52 99.1% 
Wuhan 1734.3  794.7  1055.0 60.1%  17.4 99.5% 

Shenzhen 4084.2  1404.8  2404.8 59.4%  110.3 99.4% 
𝑡̃: Average computational times in seconds (100 runs) 
𝑟̃: Average spur path reuse rates on ห𝐴ሚ௜

௝
ห = 1 scenarios (100 runs) 

 
Fig. 7 shows the computational performance of the four algorithms under different K values on the 
Wuhan network. As expected, the computational performance of all four algorithms degraded with 
increasing K because more shortest paths were calculated. The proposed KSP-SPR algorithm ran 
consistently fastest among all algorithms under various K values, and its computational advantage 
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became more obvious with larger K. For example, on the Wuhan network, the proposed KSP-SPR 
algorithm ran 34.1 times (i.e., 56.9 / 1.62 – 1) faster than the improved Yen’s algorithm when K = 
10 was used. This improvement ratio increased to 98.7 times when K = 1000. 
 

 
Fig. 7. The computational times of four testing algorithms under different K values on Wuhan 

network. 
 
5. Conclusions 
 
This study has proposed an efficient solution algorithm, called KSP-SPR, for exactly solving the K 
shortest simple paths (KSP) problem in large-scale road networks. The proposed KSP-SPR 
algorithm followed the generic procedure of Yen’s algorithm (1971), but introduced a generalized 
spur path reuse technique that was proved in Propositions 1 and 2. Using this technique, the 
proposed KSP-SPR algorithm not only reused the 𝑝ଵ  search results like the V–F algorithm  
(Vanhove and Fack, 2012), but also reused candidate paths calculated during the KSP finding 
process. A tree structure was designed to store the candidate paths, and a breadth-first-search 
strategy was used to retrieve stored candidate paths. To improve candidate path calculation 
performance, the 𝑝ଵ search results were used as the heuristic function of the A* algorithm, and a 
technique to avoid label initialization was also used. To demonstrate the efficiency of the proposed 
KSP-SPR algorithm, a case study was carried out. The case study results showed that the introduced 
generalized spur path reuse technique saved more than 98% of spur path calculations for all test 
networks. The A* algorithm and the label initialization avoidance technique significantly sped up 
candidate path calculations (by 3.2 times and 9.7%, respectively) on the Wuhan network. The 
proposed KSP-SPR algorithm ran consistently faster than the improved Yen’s algorithm (Yen, 1971; 
Hershberger et al., 2007) under various K values for all test networks, e.g., approximately 98.7 
times on the Wuhan network. 
 
Several further studies are worth noting. First, link costs in this study were assumed to be 
time-invariant and deterministic. Link travel times in real road networks, however, are 
time-dependent and uncertain. Further investigation into extending the proposed algorithm to 
dynamic stochastic networks is thus warranted (Chen et al., 2016; Chen et al., 2013; Yang and Zhou, 
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2017; Androutsopoulos et al., 2008). Second, the proposed algorithm only considers KSP findings 
in road networks. How to extend KSPs to public transport networks is a topic for further study 
(Khani et al., 2015; Huang, 2007). Finally, KSP algorithms are commonly used to solve complex 
network optimization problems with multiple objectives and/or constraints. Further studies are 
therefore required to apply the proposed algorithm to solve such optimization problems in large 
road networks (Reinhardt and Pisinger, 2011; Raith and Ehrgott, 2009). 
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Appendix 
 
Proposition A1. The proposed KSP-SPR algorithm can exactly solve the problem of finding k 
shortest simple paths. 
Proof. The proposed KSP-SPR algorithm follows the generic procedure of Yen’s algorithm, which 
has been proved to determine the optimal solution (Yen, 1971). The KSP-SPR algorithm makes two 
modifications to Yen’s algorithm. Firstly, the KSP-SPR algorithm employs the backward one-to-all 
algorithm instead of the forward one-to-one algorithm on Line 01 of Table 1. Clearly, both 
algorithms can determine the optimal first shortest path. Secondly, the KSP-SPR algorithm employs 
FindSpurPath-SPR procedure instead of FindSpurPath-Yen procedure on Line 05 of Table 1. 
Therefore, the proof of the optimality of the KSP-SPR algorithm is equivalent to prove that the 
FindSpurPath-SPR procedure can determine the optimal spur path 𝑠̅௜

௝ as below. 

The FindSpurPath-SPR procedure classifies the 𝑠̅௜
௝  determination into ห𝐴ሚ௜

௝
ห = 1 and ห𝐴ሚ௜

௝
ห > 1 

scenarios. For ห𝐴ሚ௜
௝
ห = 1 scenario, the procedure firstly call RetrieveCandidatePath sub-procedure 

to retrieve candidate path 𝑞௜௩
௪ . Let N௜௩

௪  be a node set containing the node 𝑛௜௩
௪ ∈ 𝑇௜௩ storing 𝑞௜௩

௪  
and all its parent nodes in 𝑇௜௩. According to sub-procedure, the retrieved 𝑞௜௩

௪  can satisfy either 

𝑞௜௩
௪ ∩ 𝑁෩௜

௝
= ∅ and 𝑁෩௜

௝
⊃ N௜௩

௪  or 𝑁෩௜
௝

≠ ∅ and 𝑁෩௜
௝

⊃ N௜௩
௪ . If 𝑞௜௩

௪ ∩ 𝑁෩௜
௝

= ∅ and 𝑁෩௜
௝

⊃ N௜௩
௪  hold, 

the retrieved 𝑞௜௩
௪  can be identified as the spur path 𝑠̅௜

௝ according to Proposition 2. Otherwise, the 
retrieved 𝑞௜௩

௪  is used as the input of initial candidate path 𝑞௜௩
௨  to call CalculateCandidatePaths 

sub-procedure. This sub-procedure incrementally removes nodes from 𝑁෩௜
௝ to calculate candidate 

path 𝑞௜௩
௪  until 𝑞௜௩

௪ ∩ 𝑁෩௜
௝

= ∅ holds. According to the Proposition 2, the calculated 𝑞௜௩
௪  can be 

identified as the spur path 𝑠̅௜
௝. Therefore, the FindSpurPath-SPR procedure can determine the 

optimal spur path 𝑠̅௜
௝ for ห𝐴ሚ௜

௝
ห = 1 scenario. For ห𝐴ሚ௜

௝
ห > 1 scenario, the procedure firstly retrieve 

𝑞௜௩
଴  using the GetCandidatePath-V&F procedure. If 𝑞௜௩

଴ ∩ 𝑁෩௜
௝

= ∅ hold, 𝑞௜௩
଴  can the optimal 𝑠̅௜

௝. 

Otherwise, the A* algorithm is used to determine optimal 𝑠̅௜
௝. Therefore, The FindSpurPath-SPR 

procedure can determine the optimal spur path 𝑠̅௜
௝ for both ห𝐴ሚ௜

௝
ห = 1 and ห𝐴ሚ௜

௝
ห > 1 scenarios. □ 
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