
Visualizing spatiotemporal patterns of city service demand 

through a space-time exploratory approach 

Abstract 

City service demand fluctuates across space and time. Although various data, such as 311 hotline 

data and social media data, have been used to explore the spatiotemporal patterns of city services, 

data uncertainty and the uneven distribution of service demand are oversimplified to some extent 

and thus could result in bias. To overcome these shortcomings, top-down collected city service 

data that fully cover urban areas are used as an emerging data source in this paper. A visual 

analytical approach that employs a 3D model based on a space-time cube combined with the Mann-

Kendall algorithm is developed and applied in Xicheng District, Beijing, China. The results show 

that in comparison to other methods, the emerging data and visualization method have more power 

to explain city services in terms of overall trends and micro-scale details. For instance, city service 

cases demonstrate a significant downward trend. Meanwhile, the distribution of hot/cold spots is 

found to be related to the built environment and population density. For example, high-incidence 

cases are located in some communities that are the key governance areas, indicating a demand to 

increase the staffing of grid administrators. The findings of this work can potentially benefit other 

cities in China and worldwide. 
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1. Introduction

According to the 2018 Revision of World Urbanization Prospects, almost 55% of the world’s

population lives in cities, and this proportion is expected to reach 68% by 2050 (United Nations,

2018). However, this will inevitably result in negative impacts, such as environmental pollution,

traffic congestion and issues for public health and safety, that will affect limited city resources in

urban areas. With the wide adoption of information communication technology (ICT), smart city

strategies are expected to collect citizen feedbacks and complaints, monitor urban infrastructure

states, and provide knowledge for improving the quality of urban life (Chong et al., 2018). In

particular, geospatial big data related to city management have attracted attention from the

academic and industrial sectors (Yang et al., 2020).

The process of determining the spatiotemporal pattern behind geospatial big data to improve 

city services has been a popular research area. For city service data sources, hotlines, such as 311 

in many American cities  (Ghodousi et al., 2019; Xu et al., 2017), and social media data (Chae et 

al., 2012) are widely used. The 311 hotline data contain citizen complaints with semantic 

descriptions for place and detailed information, which provides the chance to explore estimation 

methods and predictive models of neighborhoods, ethnic issues, and governmental policy making 

(C. Kontokosta et al., 2017; Minkoff, 2016; O’Brien, 2016; Xu et al., 2017). Social media data, 

such as Twitter, Facebook, and Flickr, have been widely used to study urban natural disasters, such 

as earthquakes, tsunamis, and floods (Han & Wang, 2019; Theja Bhavaraju et al., 2019), social 

activities, and public perception (Hu et al., 2020). 

Many studies have been conducted to identify patterns, explore factors and predict citizen 

demands and human mobility. Traditional spatial methods, such as heat map, clusters and statistics, 
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have been used to visualize citizen requests and complaints (Hubert et al., 2017). Four machine 

learning models, i.e., Naive Bayes, K-Nearest Neighbor, Random Forest and AdaBoost models, 

have been engaged to evaluate and predict the citizen engagement pattern via tweet data (Siyam 

et al., 2020). Moreover, a response predicting model has been applied to New York City 311 

service requests with a sparse Gaussian conditional random field model (DeFazio et al., 2018). 

The gradient boosting regression and random forest models have been used to profile and predict 

the 311 service data (Zha & Veloso, 2014).  

Although many studies have been conducted on the analysis of city service demand, there are 

some drawbacks. First, new emerging data sources should be utilized to discover more insightful 

patterns. In existing works, the most widely used data sources have been 311 service-request data 

(Hagen et al., 2019) and social media data (Ghodousi et al., 2019; Wang et al., 2017), which are 

almost subjectively reported by users and belong to voluntary geographic information (VGI) data 

(Elwood et al., 2012). These datasets may be sparse and missing spatial and temporal information. 

Quality and accuracy are other issues arising from unprofessional data collection (Granell & 

Ostermann, 2016). Second, the existing literature has explored statistical and machine learning 

methods to profile and predict the city service event, although the spatiotemporal visualization 

approach has rarely been used for city service demand. Owing to the complex scientific feature of 

cities, mathematical methods, such as statistical methods, might be weaker than interactive 

visualization methods in discovering deep insight in city services. Spatiotemporal visualization 

technology is an efficient and lightweight method that has been widely used in many research 

fields, such as criminology (Nakaya & Yano, 2010) and urban transport (Kang et al., 2018). This 

technology can provide comprehensive and valuable information from data sources and predict 

patterns in citizen requirements and mobility, which will help the government understand urban 

issues and allocate resources efficiently (Hagen et al., 2019). Although many analysis methods, 

e.g., kernel density (Ye et al., 2015) and k-means clustering (Hagen et al., 2019), have been widely 

used to study urban issues, they often focus on two-dimensional visualization instead of three-

dimensional techniques. To explore time variations, three-dimensional methods, such as space-

time cubes, provide an opportunity to address this shortcoming (Andrienko et al., 2010).  

To address the abovementioned gaps in data sources and holistic spatiotemporal visualization 

methods, we used a new city service data source to study city service demand in Beijing, China. 

The contributions of this paper can be summarized as follows: 

(1) The new city service data are introduced and validated to study city service demand. The 

data are mainly obtained through the daily work of the “city grid inspector” in the grid-based 

inspection and management mechanism, which has high accuracy and even distribution for city 

service demand research. Details about the data are introduced in Section 3.  

(2) The second contribution of our work is that a spatiotemporal visualization approach based 

on the space-time cube model was proposed to identify and analyze the city service demand pattern. 

A case study in Beijing was carried out that demonstrated the usability of the new data source and 

the ability to support decision-making for urban management. 

The remainder of this article is organized as follows: Section 2 introduces related literature 

on city service issues and visual analysis methods. In Section 3, we introduce the data and methods 

used in this article. The experimental results of this paper are described in detail in Section 4 and 

analyzed based on the feasibility and mining results. Section 5 discusses the results. Section 6 

summarizes our work. 

 



2. Related work 

This work focuses on newly emerging citizen service data and spatiotemporal pattern analysis 

methods. A thorough investigation of existing data and methods will be important to this work. 

Therefore, this section reviews the research data and spatiotemporal visualization analysis method 

to provide background information. 

 

2.1. Related work on city service demand 

City service demand data are defined as the interactive information between citizens and the 

government. The government provides infrastructure and services for people and inspects their 

usability and operation. Otherwise, when citizens have demands or complaints, they can express 

their concerns and demands that can be discovered by analyzing the city service data. The wide 

use of ICT technologies has led to the exponential growth of city service data and information in 

smart cities (Chatfield & Reddick, 2018). Cities such as New York, Singapore, and Chicago have 

employed city service data to innovate urban governance and intelligence by reducing governance 

costs and improving governance efficiency. The 311 and similar hotline data are the main format 

of city service data. 

City service data are sparse, heterogeneous spatiotemporal data. The content of city service 

data includes spatial and temporal information, which is helpful for improving urban management. 

Detailed information, including geographic location, time, and problem descriptions and self-

experiences, is recorded. The 311 dataset for Chicago contains 12 report categories, including 

abandoned vehicles, graffiti removal, alley lights out, and garbage carts (Xu et al., 2017). Citizens 

can actively express their concerns and complaints about streets, infrastructure and others by a 

variety of channels, including text messages, web pages, and mobile apps. However, owing to 

active and volunteer reports by citizens, the data exist in only certain places, which leads to sparse 

and heterogeneous data distributions. 

Data quality and data application analysis are two popular research issues. To understand the 

city service data categories and distribution, the citizen participant degree has been investigated to 

help refine policies to encourage citizen participation in e-government (X. Gao, 2018). To detect 

the relationship between the quality of life of citizens and social-economic and demographic 

factors, the distribution of 311 data points in Miami has been validated (Hagen et al., 2019). 

Optimized resource allocation and social-economic competition have been examined to improve 

the quality of life (Wang et al., 2017; Xu et al., 2017). Although many studies have been performed, 

these analyses and prediction models may be limited by data quality, i.e., lack of data or uneven 

data distribution. A previous study compared 311 data and social media data (Twitter) in five cities 

(Chicago, New York, Philadelphia, San Francisco, and Kansas City, Missouri) (X. Gao, 2018) and 

demonstrated that the amount of city service data does not reflect the severity of the complaints 

owing to the uneven distribution (Xu et al., 2017). As noted in other VGI data, data quality and 

distribution are more sensitive to socio-economic factors, such as education level, ethnic 

differences, and religion (Kitchin, 2014; Lu & Johnson, 2016). 

In summary, there are problems with data sources. The existing data are often collected in a 

bottom-up manner. Due to the influence of citizens’ experience, culture, emotions, etc., data 

uncertainty and deviations exist. As a result, citizen complaints may be ignored or be difficult to 

mine. Therefore, to avoid data shortcomings, this article focuses on the actively top-down collected 

data in urban management. City service data represent the occurrence of city management events, 

which are collected by professional inspectors within a spatial grid of approximately 100 square 

meters. The data record contains location and time information for each case. Given the changes 



in space and time within the data, the spatiotemporal patterns of urban management and city 

service demand are well understood. Therefore, this paper uses the space-time visualization 

method to discover the spatiotemporal patterns and uses the spatiotemporal statistical analysis 

method to explore the spatial-temporal hot spot distribution of city service demand. 

 

2.2. Spatiotemporal visualization analysis methods 

Visualization, statistics and prediction models are widely used analysis methods for spatiotemporal 

data (Offenhuber, 2015; Rimaityte et al., 2012; Xu et al., 2017). However, few studies have 

explored spatial patterns and time trends as a holistic approach. In particular, the multiple 

dimensions and heterogeneity of city data increase the difficulty of developing a new visualization 

approach. 

Mapping and spatiotemporal analysis are the most widely used spatiotemporal visualizing 

methods. They are widely used in the fields of ecology (Krishnan et al., 2019), environmental 

health (Fan et al., 2020) and emergency management (C. E. Kontokosta & Malik, 2018). For the 

urban management domain, distribution patterns and hot spots are both common applications in 

criminal patterns (Ajayakumar & Shook, 2020), public facilities (Shi et al., 2020), and rainfall 

monitoring (Jing et al., 2016). In terms of the mapping method, flow maps are commonly used to 

visualize trajectory data and user contact data (Ni et al., 2017). For the spatial analysis method, 

density-based and spatial cluster methods have been examined. The kernel density is commonly 

used to estimate smoothed social media intensity surfaces for mapping spatiotemporal patterns of 

social media events (Y. Gao et al., 2018). The seasonality of tourism has been determined using 

the kernel density estimation (KDE) method (Jing et al., 2020). The spatiotemporal clustering 

method can be used to identify dynamic trends and space-time patterns. These methods are 

powerful in describing two-dimensional data (i.e., x-y coordinates). However, these methods are 

weak in terms of holistically visualizing space-time data with multiple dimensions.  

A space-time cube model can provide cubic visualizations of spatiotemporal data. The space-

time cube can not only visualize the spatiotemporal clustering pattern but also display the statistical 

results in three dimensions and analyze the statistical significance of these hot spots. The dynamic 

phenomena can be aggregated by estimating the space-time density as a volume in the three-

dimensional space-time model (Andrienko et al., 2010). This model was first proposed by 

Hägerstrand (1989) and has been widely used in many fields, such as epidemiology (Zhao et al., 

2019) and urban transportation (Kang et al., 2018). Kang et al. constructed a traffic accident 

spatiotemporal cube model with Seoul traffic accident data, integrating emerging hot spot analysis 

and spatiotemporal KDE analysis to visualize the spatiotemporal characteristics of traffic accidents 

involving the elderly (Kang et al., 2018). This model can help develop preventive measures to 

reduce such traffic accidents. Krishnan et al. used the space-time cube method to analyze the 

overall change trend in wheat crop cultivation data over time and used a spatiotemporal statistical 

model to evaluate the relationship (Krishnan et al., 2019). In the context of tourism management, 

Jing et al. used the spatiotemporal cube model to develop a spatiotemporal dynamic model of 

Beijing inbound tourists under fine-grained conditions with Flickr, thus providing a scientific basis 

for relevant departments to formulate inbound tourism policies (Jing et al., 2020). In the public 

health field, Huang et al. used a combination of a space-time cube and space-time scan statistics 

to analyze the pathogenesis of hand-foot-mouth disease in Guangdong Province (Huang et al., 

2015). 

Although many visualization and space-time cube models have been widely used, an 

integrated visualization approach for the new city service demand data to identify and visualize 



spatiotemporal patterns should be designed and developed. In our work, we proposed a holistic 

visualization approach based on the space-time cube model to unfold city service demand patterns 

and temporal trends. The space-time cube model was used to organize the visualization data and 

methods for multidimensional data. Trend analysis methods were employed to detect spatial and 

temporal patterns in city service data. Finally, the theoretical results and a case study analysis were 

conducted to identify the spatiotemporal pattern. 

 

3. Data and methodology 

3.1. Study area and data preprocessing 

1) Study area 

The study area is Xicheng District of Beijing, China. There are seven communities in Xicheng 

District, including Changanjie, Yuetan, Shichahai, Zhanlanli, Xinjiekou, Jinrongjie and Desheng. 

Xicheng District is not only the core functional area of the capital but also the political and cultural 

center. It is also an important area that reflects the national image and international communication. 

Its core geographical location and political role necessitate that it have higher requirements and 

criteria in terms of urban planning and management. Furthermore, it is necessary to study the 

spatiotemporal pattern in urban infrastructure operation status, i.e., city services. 

 

2) Data sources and preprocessing 

The data sources used in this paper were collected by government “grid inspectors” who have been 

professionally trained. The study area was divided into spatial units (grids) of approximately 100 

square meters, and each inspector was assigned several grids to perform regular patrol. The data 

collection flow included inspection, problem determination, information collection and uploading. 

These data were obtained through the daily work of city grid inspectors. During inspection patrols, 

once a city service event was found, the inspector determined whether it was a city service event 

according to technological specification issued by the government and their experience. Then, the 

grid inspector collected information by taking spot pictures through mobile devices, completing 

an information form, and uploading it to the city management service database by specified 

software or mobile APP. Thus, a record in a database was generated as city service data. The city 

service data include public infrastructure and citizen complaints, such as the loss of urban public 

facilities, garbage clustering, and illegal buildings. The new data collection is a top-down approach 

that involves the use of government-assigned inspectors to actively discover city service events 

instead of passive notifications from citizen hotlines. Therefore, this collection mechanism not 

only collects city service data in a timely and seamless manner but also changes the data collection 

method from passive to active. 

The city service data types can be divided into two categories: component case and event case. 

The former involves infrastructure with fixed positions, such as municipal administration, 

transportation and gardens. The latter refers to the events or phenomena that cause the destruction 

of urban facilities or the environment due to human factors or natural disasters, thus requiring 

maintenance by the urban management department. The case type is subdivided into Level-1 class 

and Level-2 class (Table 1). The master-slave relationship is existed between two classes. The 

specific classification criteria are shown in Table 1. 

 

Table 1. Three-level classification of case types 

Case type Level-1 class Level-2 class 

Parts public utilities street lights, manhole cover 



the traffic parking lots, traffic lights, 

cityscape environment public toilets, advertising plaques 

landscaping green space, sculpture 

housing land bulletin board 

other facilities water ancillary facilities 

expansion parts wall billboards, construction guardrails 

Events 

cityscape environment exposure to garbage, dirty roads 

advertisement illegal advertising, damaged advertising 

signs 

construction management construction occupation, dust on 

construction site 

emergencies road surface collapse, road water 

accumulation, etc. 

street order illegal parking 

extended event illegal taxi operation 

 

For the city service data, each record was used to provide basic information about the 

requested case, such as the case number, case type, case location, geographical coordinates of the 

case, the community where the case occurred, and the time when the case was reported. The 

specific field types are shown in Table 2. 

 

Table 2. Data attributes and types 

Name Type Description 

InstanceID Int Unique ID for city service data 

CaseType Int Case contains two major types of events and parts 

Level-1 Int Each type contains multiple categories 

Level-2 Int Each category contains multiple subcategories 

STName Text Street where the case occurred 

CommName Text Community where the case occurred 

CaseAddress Text Location of the case 

CoordX Float X coordinate of the location where the case occurred 

CoordY Float Y coordinate of the location where the case occurred 

RegisterTime Date Time when the inspector reported the case 

 

In the process of data collection, various problems will inevitably exist, such as duplicate 

cases, errors, and missing attribute values. To ensure the accuracy and validity of the spatial data, 

some data preprocessing work was performed. The work involved primarily reviewing repeated 

values, error values and outlier data to fill in missing data. This study selected all case type data 

from January 2008 to March 2009 as the data source. After preprocessing, 219,644 records were 

selected. Kernel density analysis of the cases was performed to determine the spatial distribution 

of events. The result is shown in Fig. 1(a). The monthly time variation in the number of city service 

events is shown in Fig. 1(b). 
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Figure 1. Spatial and statistical distribution of cases: (a) kernel density analysis of seven 

communities and (b) temporal variation on a monthly basis 

 

3.2. Methodology 

This section mainly introduces the methods used in this article. There were three steps involved. 

First, the space-time cube of the city service data was created, and the case locations in the two-

dimensional plane were mapped into the cube to show the distribution in space and time. Second, 



the Mann-Kendall trend test method was employed to analyze the changing trend in the time series. 

Finally, emerging hot spot analysis with the Getis-Ord Gi* hotspot statistical method was used to 

explore the classification of the hot spots from the city service data and assess the temporal and 

spatial evolution of these hot spots. 

 

1) Space-time cube model for multiple dimensional visualization 

The space-time cube is used to create a cube containing spatial and temporal data for a specified 

data set requiring further space-time pattern mining (Langran, 1989). A spatiotemporal cube tool 

was created to obtain the time-stamped point characteristics of case data; then, these points were 

aggregated into a spatiotemporal bin in Network Common Data Form (NetCDF) format to store 

space-time cubes for city service data. Based on the newly created space-time cube, time-series 

analysis and spatiotemporal hot spot analysis were performed. Then, visualization was achieved 

with two-dimensional maps or three-dimensional scenes. The created data structure can be thought 

of as a cube composed of space-time bins. In this case, a two-dimensional axis is used to represent 

the real-world space of plane positions, and a one-dimensional time axis is used to represent the 

change in plane positions over time. The space-time cube model uses the geometric features of the 

temporal dimension to vividly represent the processes of city services over time. 

Bins in the same spatial location share the same ID, which denotes a time series. Bins with 

the same time step interval have the same time ID, which is composed of a time slice. The count 

value in each bin represents the number of city service data that fall into a certain location and 

time range. In the three-dimensional scene, the rows represent the number of cases at different 

locations within a specified time, and the columns represent the time series of a particular spatial 

location. 

In our research, the STC model was used to aggregate city service data into spatiotemporal 

bins with time series, which denote the spatiotemporal trends. The time interval and spatial interval 

parameters are the key to evaluating the trend. Studies have shown that aggregating data points 

with smaller time steps and spatial distances can detect cold spots and hot spots in more detail 

(Kang et al., 2018). In our work, several parameter experiments with different distance intervals 

(100 m, 160 m and 250 m) and time intervals (1 week, 2 weeks, 3 weeks and 1 month) were tested. 

The parameters of 160 m and 1 month had better results. 

 

2) Mann-Kendall trend analysis for time variations 

In our work, the Mann-Kendall trend test, which has been widely used in the analysis of 

temperature data, climate data, and river discharge data, was conducted to detect time variations 

in the temporal data. The Mann-Kendall trend test is a nonparametric test that is suitable for all 

distributions and insensitive to sample distributions. The null hypothesis is that data set samples 

are independent and consistent in distribution; that is, the data have a tendency to increase or 

decrease monotonically. The following formulas come from an existing study (Hamed, 2009). The 

Mann-Kendall test statistic was calculated according to the following formula: 

 

𝑆 = ∑ ∑ 𝑎𝑖𝑗
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                    (1) 

𝑎𝑖𝑗 =  𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)  = 𝑠𝑔𝑛(𝑥)  = {
 1,   𝑥 > 0 
0,   𝑥 = 0
−1, 𝑥 < 0

        (2) 

 



The statistic S follows a normal distribution, where mean value of S is E(S) = 0, and the 

variance is 

Var(𝑆)  =
𝑛(𝑛−1)(2𝑛+5)−∑ (𝑡𝑗−1)(2𝑡𝑗+5)

𝑚
𝑗=1

18
        (3) 

 

where m is the number of groups with the same observation value, 𝑡𝑗  is the observation value of 

each group, and the standardized test statistic is as follows: 

𝑍 = 

{
 
 

 
 

𝑆−1

√𝑉𝑎𝑟(𝑆)
,          𝑆 > 0

  0,                 𝑆 = 0
𝑆+1

√𝑉𝑎𝑟(𝑆)
,          𝑆 < 0

           (4) 

The normalized z result is the z-score, which is calculated by formula 4. When z is greater 

than 0, the time series of the case shows an upward trend, and the larger the value is, the more 

obvious the upward trend is. In contrast, when z is less than 0, the time series of the case shows a 

downward trend. The smaller the value is, the more obvious the downward trend is. When the 

value of z is close to 0, the time series of the case does not have any trend characteristics. 

 

3) Emerging hot spot analysis for spatiotemporal patterns 

In our work, emerging hot spot analysis was used to detect the spatiotemporal pattern in city 

service data. First, the Getis-Ord Gi* hotspot statistical method was used to estimate spatial 

statistics by setting neighborhood distance and time step parameters. Then, the Mann-Kendall 

trend test was used to perform a spatiotemporal hot spot analysis of the city service data. The result 

is hot and/or cold patterns that are classified by the z-scores and p-values generated for each 

location containing data (Hamed, 2009). The total patterns included 17 classes: 8 hot spot patterns, 

8 cold spot patterns, and no significant spatiotemporal patterns. The classification and definitions 

of the patterns are shown in Table 3. Owing to the similarity and correspondence between hot spots 

and cold spots, their definitions are summarized in Table 3 (Cheng et al., 2018). 

 

Table 3. Classification of hot and cold spot trends 

Trend category Definition 

Consecutive hot spots (or cold spots) 
Current hot spots (or cold spots) that were previously and 

continuously statistically significant. 

Diminishing hot spots (or cold spots) 

90% of this location is a statistically significant hot spot (or 

cold spot). In addition, the intensity of the larger number 

of clusters in each month increased overall, and the 

increase was statistically significant. 

Persistent hot spots (or cold spots) 

This location already contains 90% of statistically significant 

hot spots (or cold spots), and there is no clear trend 

indicating that the clustering strength has changed over 

time. 

Diminishing hot spots (or cold spots) 

This location already has a statistically significant hot spot (or 

cold spot) at 90% of the time intervals. In addition, the 

intensity of clustering in each time step decreased. 

Sporadic hot spots (or cold spots) This location exhibited intermittent hot spots (or cold spots). 



At most, 90% of the time interval was already a statistically 

significant hot spot (or cold spot), and each month was not 

a statistically significant cold spot (or hot spot). 

 

The Getis-Ord Gi* statistical information uses the concept of space-time proximity; the 

formulas are shown as follows (Songchitruksa & Zeng, 2010). 

 

Based on the hot spot analysis, the Mann-Kendall trend test was used to evaluate the hot spot 

and cold spot trends. According to the trend z-score and p-value generated for each location 

containing data and the hotspot z-score and p-value of each bin, the emerging hot spot analysis 

tool classified the location of each research area. This method has two kinds of results, both of 

which can reflect the spatiotemporal trend over the whole spatiotemporal range. One result is a 

two-dimensional space for display, and the other is a three-dimensional visualization with a space-

time cube. The above 17 different trend classifications were displayed in the form of a two-

dimensional map; then, the visualization results of the above two-dimensional hot spot were 

displayed in a three-dimensional space through the space-time cube. 

 

4. Results 

4.1. Space-time cube visualization 

This work was done in ArcGIS Pro 2.1 software. The space-time cubes were created by setting 1 

month as the time interval and 160 m as the spatial interval. In total, there were 219,647 points 

aggregated into 1,908 grids over 15 time step intervals (Fig. 2). Among the 1,908 grids, 1,187 of 

them (62.2%) contained at least one city service data point for at least one month. Combined with 

the 15 monthly intervals, 17,805 space-time bins were generated, and 14,839 of them (83.3%) had 

at least one city service data point. Fig. 2 shows the spatiotemporal pattern and trend in city service 

data. The different colors denote the level of points falling into a bin. The darker a bin is, the more 

cases the month has. In addition, this visualization is interactive for users; that is, users can zoom 

in/out and rotate in 3D. When a user moves the mouse over a grid at a time interval position (from 

1 to 15), the property information of the cases will be shown. 

The visualization shows the cube data and visually represents trends in space and time. The 

spatiotemporal distribution of city services is shown in Fig. 2. The z-score calculated according to 

formula (4) is -2.28, corresponding to a p-value of 0.02 and indicating a statistically significant 

downward trend (95% confidence) in the amount of city service data over time. 

 



   
 

Figure 2. Space-time cube visualization 

 

4.2. Spatiotemporal pattern in city service data 

The emerging hot spot method and Mann-Kendall algorithm were integrated to identify and 

visualize the spatiotemporal patterns. Getis-Ord Gi* hotspot statistical analysis was performed on 

the city service data. The corresponding z-score and p-value were determined for each bin. Then, 

the Mann-Kendall trend test method was used to statistically analyze the random scores for each 

grid. The trends and their z-scores, p-values, and confidence levels are shown in Table 4. 

  

Table 4. Classification of Mann-Kendall trend analysis results 

z-score p-value Confidence Trend 

< -2.58 < 0.01 99% Down 

-2.58 ~- 1.96 0.01 ~ 0.05 95% Down 

-1.96 ~- 1.65 0.05 ~ 0.1 90% Down 

-1.65 ~ 1.65 > 0.1 - No trend 

1.65 ~ 1.96 0.05 ~ 0.1 90% Up 

1.96 ~ 2.58 0.01 ~ 0.05 95% Up 

> 2.58 < 0.01 99% Up 

 

 

For the overall trend validation, the z-score was -2.28, and the corresponding p-value was 

0.02. This result shows that the city service data for the entire study area had a statistically 

significant decreasing trend (95% confidence) over time. Using fine-granularity analysis, the hot 



spots and cold spots were analyzed. The result shows that the total number of hot and cold spots 

was 549 of 1,187, including 210 hot spots and 339 cold spots. Table 5 shows the hot and cold spot 

results. 

 

Table 5. Space-time cube hot and cold spot detection results 

Category Hot Spot Cold Spot 

New 0 1 

Consecutive 11 197 

Intensifying  0 78 

Persistent 43 29 

Diminishing 58 0 

Sporadic 98 32 

Oscillating 0 1 

History 0 1 

No pattern 0 0 

 

The results show that there were different types of statistically significant cold spots and hot 

spots. The distribution and statistical results of the emerging hot spots are shown in Fig. 3. The 

grids in the warm orange colors denote the spatiotemporal hot spots, and those in the cold blue 

colors represent the spatiotemporal cold spots. 

 

 
Figure 3. Emerging hot and cold spot analysis 

For the time variation of patterns, a comparative figure (Figure 4) and two difference maps 

were created. Three key time periods (Jan. 2008, Jul. 2008 and Jan. 2009) were selected for 

comparison by the city service number. The difference map derived from the difference of city 

demand number of two time periods. All the bins in three time periods were categorized into ten 



levels from 1 to 9 according to the city services event number. One difference map (Fig. 5a) 

denotes the minus operation between Jan. 2008 and Jul. 2008. The another one (Fig. 5b) represents 

the difference from Jul. 2008 to Jan. 2009. 

 
Figure 4. Time variation of space-time bins 

 



Figure 5. The difference map between key time periods. (a) from Jan. 2008 to Jul. 2008, (b) from 

Jul. 2008 to Jan. 2009 

5. Discussion 

5.1. Spatiotemporal pattern of hot/cold spots 

The hot spot types shown in Fig. 3 consist primarily of diminishing, persistent, and sporadic hot 

spots. There were approximately 43 diminishing hot spots in the Yuetan community (Fig. 3). This 

means that at least 90% of the time intervals (13 months) were statistically significant and changed 

significantly over time. According to the field investigation, this was an old community with many 

old buildings and government departments. The persistent hot spots were mainly concentrated in 

the West Changanjie community area. This category includes statistically significant hot spots at 

least 90% of the time but no significant change over time. For this region, the amount of city 

service data remained at a high level, and there was no decreasing tendency. There were 98 

sporadic hot spots in the central Desheng community and northeastern Yuetan and West 

Changanjie communities. These areas were characterized by hot spots fluctuating over time. 

Locations with sporadic hot spots occurred in less than 90% of the time intervals containing hot 

spots, and none of the time intervals included statistically significant hot spots. For both areas, the 

potential for a case increase still exists. For those persistent and sporadic hot spots areas, they 

denote the urge city services demand that means the more policies should be enhanced. For the 

central Desheng community and northeastern Yuetan and West Changanjie communities, there are 

many famous tourism attractions in these areas, which represents more populations and stores. 

Therefore, the measurement for tourism management and urban management should be considered 

to lower the rate of citizen complaints. 

Table 5 shows that four types of cold spots, consecutive, intensifying, persistent and sporadic, 

make up a majority of the cold spots. The spatial distribution indicated that these cold spots 

occurred mainly in the southern part of the study area. The persistent and sporadic cold spots had 

discrete geographical distributions. Parts of the Shichahai community were classified as sporadic 

cold spots (Fig. 3). Compared with other communities, in this community, there is a large area lake 

with sparse population and minimal traffic, meanwhile, there isn’t comprehensive shopping malls. 

Therefore, the lower citizen complaints and sporadic cold spots are the correspond result. Most of 

the consecutively occurring cold spots were located south of the Zhanlanlu community and on the 

edge of the center of the Jinrongjie community. This result means that in the last month (March 

2019), approximately 90% of the time intervals for these locations had statistically significant cold 

spots. In contrast, the intensifying cold spots occurred primarily within the Jinrongjie community. 

The number of points in each bin increased over time in those areas, and statistically significant 

cold spots accounted for at least 90% of the time intervals. 

The spatiotemporal pattern of hot/cold spots can be demonstrated using time variations. There key 

time periods as milestone were selected to show the time variations. The comparison in the number 

of city service events was shown in Fig. 4.  The colors denote different numbers of city service 

events. For example, tt can be seen that the red bins decreased in the Yuetan community, which 

means the same spatiotemporal pattern in Fig. 3, 43 diminishing hot spots existed. The pattern said 

the city demands in this area have been decreasing. According to the government policy reports, 

during the 2008, many measurements were carried out to improve urban built environment, which 

is helpful to reduce the city service events. In order to clarify the time variation, two difference 

map were generated by the three key time periods as shown in Fig.5. These figures were derived 

from pixel minus operation of corresponding pixels in two time periods. For an instance, in Yuetan 

community, the decrease tendency (in green pixel) is shown from the Jan. 2008 to Jul. 2008 in Fig. 



5(a). Meanwhile, the change is more clear during Jul. 2008 to Jan. 2009 in Fig. 5(b). There are 

also significant changes in other communities like Xinjiekou, Shichahai and West Changanjie 

communities. 

5.2. Data usability of city service data for spatiotemporal patterns 

Social media, 311 hotline data and other VGI data are used to collect city data or citizen data for 

urban management. However, they are collected through bottom-up collection methods, likely 

resulting in low accuracy and uneven spatial and temporal distribution bias. These bias may owing 

to the economic income, internet use, social class and ethnic relations(Cavallo et al., 2014; Lu & 

Johnson, 2016). In contrast, a top-down city service data collection method was introduced and 

carried out by professional city inspectors in this study. This method assigns one professional 

inspector for each 10,000 square meters area to patrol and collect city service event information 

(Chen, 2006). These data included detailed spatial and temporal properties about city service 

events. Therefore, the city service data in our study have a wide range of data coverage, high 

accuracy and even distribution, which can avoid data uncertainties and uneven spatiotemporal 

distributions from social media and 311 hotline data. Inspiring from literature (Xu et al., 2017), a 

quantitative experiment was conducted between 311 Sanitation complaints data of Chicago city 

and our city services data. We downloaded the data from the Chicago official website 

(https://www.chicago.gov/city/en/dataset/sanitation_code_violations.html) covering date from 

Jan. 2011 to Dec. 2018. For the Chicago 660.1 square kilometers, the maximum monthly event is 

2718, and the average number is 1588. For the data intensity, our study area covering 31.66 square 

kilometers, the average monthly number of city service events is about 15,000. Therefore, the data 

intensity ensures powerful and usability of the new data source for identifying patterns. 

The results showed that the new emerging city service data had higher explanatory power and 

finer granularity than those of other data. By presetting time and spatial intervals, multiscale 

spatiotemporal patterns can be generated. In our study, hot spots were mostly distributed in the 

western Changanjie community, Yuetan community, and western area of Shichahai. Cold spots 

were focused in the Zhanlanli community, Xinjiekou community and Jinrongjie community. Based 

on validation through a field investigation and experience, the Yuetan community had many 

administrative divisions and a large population compared with those in other communities, which 

resulted in more issues with vehicle parking and piled garbage on the roadside. Owing to the well-

known business land use type east of the western Changanjie community, including Xidan 

Commercial Street, the National Theater, etc., a higher population may result in more city service 

data, such as piled garbage, graffiti, and illegal advertising, which can affect the landscape of the 

city. The results were consistent with the existing experiential conditions in the study area. 

Therefore, in comparison with other data, city service data have more potential to explain urban 

management events.  

The new emerging city service data also suffered some limitations. Although we employed 

high-density patrols of city inspectors, city service data are always aligned with the road network 

and are constrained by the inspector’s patrol path. Thus, these data lack information regarding city 

service events inside a community. Moreover, the data cover the working time of inspectors 

instead of the full time of day. Therefore, in our future work, we plan to incorporate hotline data 

and social media data to enrich the city service data to further improve its performance.  

 

5.3. Multidimensional spatiotemporal visualization method 

The map-based two-dimensional visualization method is widely used. However, it is weak in terms 

of using space-time coupled analysis to determine spatiotemporal patterns, particularly for 

https://www.chicago.gov/city/en/dataset/sanitation_code_violations.html


multidimensional data. Although big data analysis and data-mining methods have been widely 

used in cities (Li et al., 2016), many of these studies have employed loosely integrated models. 

The space-time cube model supports visualizing spatiotemporal patterns in a three-

dimensional space with multidimensional data and powerful visual perception. It supports high 

customization by setting time and spatial interval parameters. The cubic scene visualization 

increases the multidimensional information for city service demand. Therefore, it can determine 

the monthly spatiotemporal pattern of city service data with fine granularity in arbitrary locations 

by mapping (as shown in Fig. 2). Compared with other visual analysis methods, the space-time 

cube method can reflect more detailed information and the spatiotemporal development and 

change pattern of events. Two visualization methods, mapping (Fig. 3) and cubic scenes (Fig. 2), 

were proposed in this study to visualize the spatiotemporal pattern at an overview level and in 

more detail. Two-dimensional maps can show the overall change trends over an entire research 

time range. The space-time cube supports the flexible customization by presetting parameters, i.e., 

the time step and spatial distance interval. It is helpful to achieve fine-grained visualizations and 

observe the refined space-time distribution patterns of hot spots and cold spots. 

 

6. Conclusion 

A comprehensive and thorough understanding of spatiotemporal patterns and dynamics of city 

service demand is essential for urban planning, management, and decision-making. Although there 

are many existing studies aimed at exploring the spatiotemporal patterns of city services, due to 

the lack of accurate data sources and emerging methods, the exploration and analysis of 

spatiotemporal models still face challenges. To address these challenges, we adopted a method 

that uses top-down city service data instead of bottom-up report data and novel spatiotemporal 

analysis methods to obtain holistic and fine-grained insights into the spatiotemporal pattern of city 

services. This article utilized the space-time cube model to store spatiotemporal data and identify 

and visualize spatiotemporal patterns. Finally, combined with the spatiotemporal statistical 

analysis method, the distribution of hot spots was verified, and the high-incidence areas and time 

periods of hot spots were explored. From our case study, two conclusions are drawn: (1) the 

parameters of the space-time cube can provide significant spatiotemporal pattern changes and (2) 

the hot spots are mostly distributed in the western Changanjie community, Yuetan community, 

and western area of Shichahai. The cold spots were focused in the Zhanlanli community, Xinjiekou 

community and Jinrongjie.  

However, our method still has room for improvement in future research, such as by (1) 

classifying cases and exploring the spatial and temporal distribution characteristics of various case 

types and (2) verifying the correlation among city service data and the social geography 

environment and built environment. Future work may reveal deeper insights into the pattern of the 

spatiotemporal distributions of city service demand data. 
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