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LIFTS OF PROJECTIVE CONGRUENCE GROUPS

IAN KIMING, MATTHIAS SCHÜTT, HELENA A. VERRILL

Abstract. We show that noncongruence subgroups of SL2(Z) projectively
equivalent to congruence subgroups are ubiquitous. More precisely, they al-
ways exist if the congruence subgroup in question is a principal congruence
subgroup Γ(N) of level N > 2, and they exist in many cases also for Γ0(N).

The motivation for asking this question is related to modular forms: pro-
jectively equivalent groups have the same spaces of cusp forms for all even
weights whereas the spaces of cusp forms of odd weights are distinct in gen-
eral. We make some initial observations on this phenomenon for weight 3 via
geometric considerations of the attached elliptic modular surfaces.

We also develop algorithms that construct all subgroups projectively equiv-
alent to a given congruence subgroup and decide which of them are congruence.
A crucial tool in this is the generalized level concept of Wohlfahrt.

1. Introduction

Suppose that Γ1 and Γ2 are subgroups of finite index of SL2(Z) that are projec-
tively equivalent, i.e., have the same image in PSL2(Z). Thus 〈Γ1,−1〉 = 〈Γ2,−1〉,
and so the space of modular forms of given even weight is the same for the two
groups Γi. But the spaces of forms of odd weights will in general be different for
the two groups (see Section 5 and 8 for concrete examples and results).

The motivations behind the present paper are twofold: first the question whether
such a situation can occur with Γ1 a congruence subgroup but Γ2 a noncongruence
subgroup; and secondly, in such cases to study the attached spaces of cusp forms
of odd weights further.

In the present paper we focus primarily on the first question and find that the
answer is a resounding ‘yes’. More precisely, we give a complete answer to the
question in case one of the groups is a principal congruence subgroup Γ(N), as well
as a partial answer for Γ0(N).

We employ the following terminology: For a subgroup Γ of SL2(Z) denote by
Γ the image of Γ in PSL2(Z). By a lift of Γ we mean a subgroup of SL2(Z) that
projects to Γ in PSL2(Z). A lift is called a congruence lift if it is a congruence
subgroup.

As usual, if Γ is a congruence subgroup then by the level of Γ we understand the
least M such that Γ(M) ⊂ Γ.

Our main results are as follows.

Theorem 1. Let N ∈ N and Γ(N) the principal congruence subgroup of SL2(Z)

with projective image Γ(N) ≤ PSL2(Z).
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(1) The number n(N) of congruence lifts of Γ(N) is exactly

n(N) =







1 if N = 1,

3 if N > 1 is odd,

5 if N = 2,

9 if N > 2 is even.

(2) If N > 2, then Γ(N) has noncongruence lifts.

Theorem 2. Let p be a prime number and let N ∈ N.

(i) If 4 ∤ N and all odd prime divisors of N are congruent to 1 modulo 4, then all

lifts of Γ0(N) are congruence.

(ii) If p ≡ 3 (4) and N = pr for r ∈ N, then there are precisely 3 congruence lifts of

Γ0(N), namely Γ0(N), the subgroup of Γ0(N) consisting of those elements whose
diagonal entries are squares modulo p and one further subgroup (see Section 7).
(iii) If N is divisible by 6, 9, 16, 20 or by a prime p > 3 congruent to 3 modulo 4,

then the groups Γ0(N) and Γ1(N) have noncongruence lifts.

We will give a detailed discussion of the group Γ0(N) for N = 4, 6, 8, 16, 20 in

section 5. It is shown that all lifts of Γ0(N) are congruence if N = 4, 8, but that
there are noncongruence lifts when N = 6, 16, 20.

Thus, as far as the question of existence of noncongruence lifts of the group
Γ0(N) is concerned, Theorem 2 leaves undecided only the cases where N is 3, 4 or
8 times an odd number whose prime divisors are all ≡ 1 (4).

A crucial tool is a variant of a result of Wohlfahrt [25]. The difference between
[25, Theorem 2] and the following proposition is that Wohlfahrt deals with sub-
groups of PSL2(Z) rather than SL2(Z). It was a minor surprise to us that his result
did not just carry over literally, but that the level N in the conclusion had to be
replaced by 2N . The notion of ‘general level’ of a subgroup of finite index in SL2(Z)
(or PSL2(Z)) will be recalled in section 3.

Proposition 3. Let Γ be a subgroup of finite index in SL2(Z) of general level N .

If Γ is congruence, then Γ(2N) ≤ Γ, and so Γ has level N or 2N .

The paper is organized as follows: in the first four sections, we establish the
techniques that we will use to prove our main results. First we elaborate in gen-
erality on lifts of subgroups from PSL2(Z) to SL2(Z). Then we recall Wohlfahrt’s
generalized level concept and adjust it to our situation (Proposition 6). In section 4,
we derive an algorithm that determines all lifts of a given subgroup of PSL2(Z) and
decides which of the lifts are congruence (Proposition 10). This algorithm enables
us to investigate some examples in detail in section 5.

Sections 6 and 7 continue to give the proofs of Theorems 1 and 2. Next to the
level concept and the examples, there is a crucial contribution by information on

possible representations of the groups Γ(N) and Γ0(p) (p prime), due to Frasch [6]
and Rademacher [19].

The paper concludes with additional observations: first, in section 8, we notice
that projective equivalence of subgroups of finite index in SL2(Z) not containing
−1 is in fact equivalent to the condition that for infinitely many k the groups have
the same modular forms of weight k.



LIFTS OF PROJECTIVE CONGRUENCE GROUPS 3

Secondly, in section 9 we draw some consequences of our main results for the
groups generated by squares of elements in congruence subgroups. We establish
results when these groups are again congruence subgroups.

Finally, in section 10 we note some observations on spaces of cusp forms of weight
3 for different lifts. Our arguments are geometric in nature, based on the elliptic
modular surfaces attached to the lifts.

2. Preliminaries on lifts

We shall first prove a simple but basic lifting lemma.

Lemma 4. Consider a subgroup Γ of PSL2(Z) of finite index. Suppose that we
are given a presentation of Γ in terms of generators ḡ1, . . . ḡs and relations R̄1 =
1, . . . , R̄t = 1. The relations R̄j have form:

R̄j =

mj∏

k=1

h̄j,k

with each h̄j,k ∈ {ḡ1, . . . ḡs}.
For i = 1, . . . , s and j = 1, . . . , t define the non-negative integer σi,j to be the

number of occurrences of ḡi in the relation R̄j, i.e., the number of k ∈ {1, . . . ,mj}
such that h̄j,k = ḡi.

(i). The group Γ has a lift Γ in SL2(Z) such that −1 6∈ Γ if and only if the ḡi have
lifts gi ∈ SL2(Z) such that:

Rj = 1

where for each j = 1, . . . , t the element Rj is defined as the product
∏mj

k=1 hj,k where
hj,k := gi if h̄j,k = ḡi.

(ii). Suppose that Γ has a lift Γ in SL2(Z) such that −1 6∈ Γ, given by generators
g1, . . . gs as in (i).

Then the lifts of Γ not containing −1 are parametrized by solutions

(x1, . . . , xs) ∈ Fs
2

to the linear system of equations

(x1, . . . , xs)((σi,j mod 2))i,j = (0, . . . , 0)

over F2. Here, a given solution X = (x1, . . . , xs) corresponds to the subgroup ΓX

of SL2(Z) generated by:

{gi | xi = 0} ∪ {−gi | xi = 1} .

Proof. Let α be the canonical homomorphism from SL2(Z) onto PSL2(Z).

We start by proving (i). The necessity of the condition is clear: Suppose that
Γ has a lift Γ not containing −1. Let gi ∈ Γ be lifts of the ḡi. The products Rj

defined in the proposition then all map to 1 in Γ under α, and hence Rj = ±1 for
all j. However, the Rj are also elements of Γ, so we must have Rj = 1 for all j.

Conversely, suppose that there are lifts gi such that Rj = 1 for j = 1, . . . , t.
Then let Γ be the subgroup of SL2(Z) generated by the gi.

Since we have the relations Rj = 1 among these generators, Γ must be – as an

abstract group – a quotient of Γ. Let β : Γ → Γ be the corresponding homomor-
phism. It is given by β(ḡi) = gi.
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On the other hand, Γ also surjects to Γ via α. We have α(gi) = ḡi.
Now, (α ◦ β)(ḡi) = ḡi for each i and this shows that α ◦ β = id. Since β is a

surjection onto Γ, we conclude that α is injective on Γ. Thus, −1 6∈ Γ.

For the proof of part (ii) we first note that it is clear from the above that any
lift of Γ has shape ΓX for some solution X to the stated system of equations over
F2, and that the group ΓX is in fact a lift of Γ for any such solution X . To finish
the proof, note that any such ΓX does not contain −1; this follows because −1 6∈ Γ.
For the same reason, we also see that the subgroups corresponding to two distinct
solutions X are in fact distinct subgroups. �

We will also need the following observation concerning subgroups of projective
groups with noncongruence lifts.

Lemma 5. Let Γ be a subgroup of PSL2(Z) with a noncongruence lift to SL2(Z).
Then any subgroup G ≤ Γ has a noncongruence lift.

Proof. Let Γ denote a noncongruence lift of Γ. Define G as the pre-image of G
under the projection Γ → Γ. By construction, G is a lift of G to SL2(Z). As a
subgroup of the noncongruence subgroup Γ, G cannot be congruence. �

3. Level concept

In this section, we will derive the following restrictions on the level of congruence
lifts:

Proposition 6. Let N ∈ N and let Γ be a subgroup of PSL2(Z) with

Γ(N) ≤ Γ ≤ Γ0(N) .

Then any congruence lift of Γ has level N or 2N .

In section 5, we will show by means of an example that the proposition cannot
be improved: both possibilities N and 2N for the level do in fact occur.

To prepare the proof of Proposition 6 we will first recall the generalized notion of
level for arbitrary subgroups of finite index in SL2(Z), as introduced by Wohlfahrt,
cf. [25].

Let Γ be a subgroup of finite index in SL2(Z). The general level N of Γ is defined
as the least common multiple of the cusp widths. Recall the width of a cusp c of
Γ is the least possible n ∈ N such that ±gT ng−1 ∈ Γ where g ∈ SL2(Z) is such
that g∞ = c, and where T here as well as throughout the paper denotes the usual
translation matrix

T :=

(
1 1
0 1

)

.

Notice that the general level of Γ only depends on Γ. Thus, the general level
of any lift of Γ(N) is N . It is easy to see that if Γ1 and Γ2 are two subgroups of
finite index in SL2(Z), and if Γ2 ≤ Γ1, then the general level of Γ1 is a divisor of
the general level of Γ2.

Lemma 7. Let Γ be a subgroup of finite index in SL2(Z). Let N denote the general
level of Γ.

(a). If ν ∈ N is such that Γ(ν) ≤ Γ, then N | ν.
(b). Let N | ν. Then for any g ∈ SL2(Z), we have gT 2νg−1 ∈ Γ.
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Proof. (a) By the inclusion Γ(ν) ≤ Γ, the width with respect to Γ of any cusp
divides the width with respect to Γ(ν) – which is ν. The claim follows.

(b) Suppose that N | ν and consider any g ∈ SL2(Z). The stabilizer in Γ of the
cusp g−1∞ is {Ām | m ∈ Z} for a certain matrix A ∈ Γ.

Then g−1Ag stabilizes ∞, and by definition of the width b of the cusp g−1∞,
we have g−1Ag = ±T b. By definition of the general level N we have b | N , hence
b | ν, and so ±gT νg−1 = Aν/b ∈ Γ. Thus gT 2νg−1 ∈ Γ as desired. �

Let us recall the statement of Proposition 3. The proposition is a slight variant
of a result of Wohlfahrt, cf. Theorem 2 of [25] and the succeeding remark.

Proposition. Let Γ be a subgroup of finite index in SL2(Z) of general level N .

If Γ is congruence, then Γ(2N) ≤ Γ, and so Γ has level N or 2N .

Proof. Suppose that ν ∈ N is such that Γ(ν) ≤ Γ and let A =

(
a b
c d

)

∈ Γ(2N)

be arbitrary. We must show that A ∈ Γ. Note that it will be enough to show
BAC ∈ Γ with matrices B,C ∈ Γ ∩ Γ(2N), so we can modify A in this way
whenever convenient.

We now mimic some computations by Wohlfahrt, cf. [25], proof of Theorem 2
(and in the process also correct a small typo in his argument).

First we claim that we can modify A in the above manner so as to obtain (d, ν) =
1. If d = ±1 this is already the case, so assume d 6= ±1. Then c 6= 0, but (c, d) = 1.
Since A ∈ Γ(2N) we have (d, 2N) = 1 so that (d, 2Nc) = 1. As now 2Nc 6= 0,
we deduce by Dirichlet’s theorem on primes in arithmetic progressions that there
is m ∈ N such that d+m · 2Nc is a prime larger than ν. In particular, this implies
(d + 2Nmc, ν) = 1. By Lemma 7 (b) we have T 2N ∈ Γ ∩ Γ(2N), and so we may
replace A by AT 2Nm and thus assume that (d, ν) = 1 (and still A ∈ Γ(2N)).

Since now (d, ν) = 1 and N | ν by Lemma 7 (a), we have (Nd, ν) = N . Conse-
quently, (2Nd, ν) is a divisor of 2N which in turn divides b as A ∈ Γ(2N). Hence
the congruence b + n · 2Nd ≡ 0 (ν) is solvable for n. Replacing A by T 2NnA does
not change d, but changes b to b + 2Nnd. So we may additionally assume b ≡ 0
(ν).

Now, again by Lemma 7 (b) the matrix
(

1 0
2Nm 1

)

=

(
0 −1
1 0

)

T−2Nm

(
0 1
−1 0

)

is in Γ ∩ Γ(2N) for any m ∈ Z. With an argument similar to the above we see
that if we multiply A on the left by this matrix for a suitable m, we may assume
c ≡ 0 (ν). This multiplication leaves b unchanged, and the condition (d, ν) = 1 is
preserved since b ≡ 0 (ν).

We now have b ≡ c ≡ 0 (ν) and (d, ν) = 1. Then necessarily ad ≡ 1 (ν).

Now consider the matrix:

M = (T 1−d)′
(

a a− 1
1− a 2− a

)

︸ ︷︷ ︸

L

T d−1 =

(
a ad− 1

1− ad d(2 − ad)

)

(1)

where we have denoted by D′ the transpose of D for any matrix D.
We find A ≡ M mod ν, so that M−1A ∈ Γ(ν) ≤ Γ. To deduce the claim A ∈ Γ,

it thus suffices to show that M ∈ Γ. By Lemma 7 (b), (T 1−d)′ and T d−1 are both
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in Γ, since d ≡ 1 mod 2N and (T 1−d)′ is a conjugate of T d−1. Thus it suffices to
verify that L ∈ Γ. Here we factor

L = T ′T a−1T ′−1 .

Since a ≡ 1 (2N), Lemma 7 (b) shows that L ∈ Γ. Hence we deduce that M ∈ Γ
and therefore A ∈ Γ as claimed.

Finally note that the level of Γ is now seen to be N or 2N by Lemma 7 (a). �

Remark 8. In [25] Wohlfahrt defines a congruence subgroup of SL2(Z) as a sub-
group containing 〈±1,Γ(m)〉 for some m ∈ N. His Theorem 2 states that if Γ
is a congruence subgroup, then Γ ≥ 〈±1,Γ(N)〉 with N the general level of Γ.
Wohlfahrt’s proof essentially coincides with the above proof of Proposition 3 with
‘2N replaced by N ’. The difference between these cases lies in the fact that if
−1 ∈ Γ, then the conclusion of part (b) of Lemma 7 can be improved to gT νg−1 ∈ Γ
as an inspection of the proof immediately reveals. There was a typo in Wohlfahrt’s

proof that we alluded to above: the matrix
(

a ad−1
1−ad d(2−ad)

)

does not equal

(T d−1)′
(

a a− 1
1− a 2− a

)

T d−1,

but factors correctly as in (1).

Remark 9. The results in this section are also related to results of Larcher, cf.
[10]. However, he works with a different notion of ‘congruence subgroup’, namely
−1 is always assumed to be in the group in contrast to our situation.

Proof of Proposition 6. Since all lifts of Γ have the same general level it will suffice
by Proposition 3 to display a lift of general level N .

But Γ has a lift Γ that sits between Γ(N) and Γ0(N). Thus the general level of
Γ is a divisor of the general level of Γ(N) and is a multiple of the general level of
Γ0(N). The claim now follows since Γ(N) and Γ0(N) both have general level N :
all cusps of Γ(N) have width N , and the cusp widths of Γ0(N) are all divisors of
N , but the cusp 0 has in fact width N . �

4. Algorithm

In the next section, we will investigate two examples that will be used in the
proof of Theorem 2. The basis for those examples are the following proposition and
its corollary which we believe to be of independent interest.

Proposition 10. Suppose that a subgroup Γ ≤ PSL2(Z) of finite index is given
by a Farey symbol, or that there is a method of determining whether an element of
PSL2(Z) is in Γ.

Then there is an algorithm that determines all lifts of Γ to SL2(Z) and decides
which of the lifts are congruence.

Corollary 11. There is an algorithm that determines all congruence and noncon-
gruence subgroups of SL2(Z) that are projectively equivalent to a given congruence
subgroup.
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4.1. Farey symbols. Our algorithm is based on the use of Farey symbols, de-
scribed in [8]. We recall the definition, with a slight modification, which is neces-
sary because we work with subgroups of SL2(Z), whereas Farey symbols as defined
in [8] are associated with subgroups of PSL2(Z).

Recall Kulkarni’s definition [8] of a Farey symbol:

Definition 12. A Farey symbol consists of a sequence of cusps (elements of Q ∪
{∞}), of length n + 1 for some positive integer n ≥ 1, starting and ending with
infinity, (the starting term can be considered as −∞ = −1

0 and the last term as

+∞ = 1
0) together with a sequence of labels l1, l2, . . . , ln of length n. The sequence

of cusps, {−∞, a2

b2
, a3

b3
, · · · , an−1

bn−1

,∞} satisfies ai+1bi−aibi+1 = 1 for i = 1, . . . , n−2,

and b1 = bn−1 = 1. Note that we take a1 = −1, b1 = 0 and an+1 = 1, bn+1 = 0. A
label is either a positive integer, or a symbol ◦ or •. For any integer occurring as a
label, there are exactly two labels having this value. Such a symbol is written thus:

{ −∞
l1

a2

b2

l2

a3

b3

l3

· · ·
ln−2

an−1

bn−1

ln−1

an

bn

ln

∞ }

4.2. Signed Farey symbols. Farey symbols correspond to subgroups of PSL2(Z).
Since we are working with subgroups of SL2(Z) not containing −1, we need a minor
modification to Farey symbols.

Definition 13. A signed Farey symbol is defined exactly as a Farey symbol in
Definition 12 above, except that the labels can be any nonzero integers, in pairs, or
the symbol •. The symbol ◦ is not used.

Following Kulkarni, with a minor modification, the subgroup of SL2(Z) corre-
sponding to a signed Farey symbol has generators described as follows:

• For any integer pair of integer labels li = lj , with i < j, we have a generator

(2) gij = sign(li)

(
ajbi + aj+1bi+1 −(ai+1aj+1 + aiaj)
bibj + bi+1bj+1 −(aibj + ai+1bj+1)

)

.

Note that it is important to fix the order i < j, since changing the order
changes the result from a matrix m to −m−1.

• For any label lj = • we have an order 3 generator

(3) gj = ǫj

(
ajbj + ajbj+1 + aj+1bj+1 −(a2j+1 + ajaj+1 + a2j)

b2j + bjbj+1 + b2j+1 −(ajbj + aj+1bj + aj+1bj+1)

)

where ǫj is chosen so that the matrix has order 3 in SL2(Z) (rather than
6). The only relations are those stating that generators corresponding to •
have order 3.

Note that for the original Farey symbols, there are additional generators corre-
sponding to labels li = ◦, namely

(4) gi =

(
aibi + ai+1bi+1 −(a2i + a2i+1)

b2i + b2i+1 −(aibi + ai+1bi+1)

)

.

and additional relations, saying that this generator has order 4. However, such
groups necessarily contain −1, and so there is no need to consider signs.

Proposition 14. Any subgroup of finite index in SL2(Z) not containing −1 can be
defined by a signed Farey symbol, i.e., can be generated by the matrices determined
by such a symbol.
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Proof. This follows immediately from [8, (5.4)], Lemma 4, and the fact that edges
of Farey symbols labeled ◦ correspond to matrices in SL2(Z) with square −1, and
so do not need to be included in this case. �

If a subgroup Γ of finite index in SL2(Z) is given by specifying some rule for
determining whether or not an element of SL2(Z) is in the group, then the Farey
Symbol for Γ is determind as described by [2], and then signs are determined by
checking whether or not each of the above matrices are in Γ. If for any i, j both gij
and −gij are in Γ, then also −1 is in Γ, and so we do not specify any signs for the
group. (Similarly for gi or gj .)

4.3. Proof of Proposition 10. Suppose Γ is a subgroup of finite index in PSL2(Z).
We want to determine all congruence lifts of Γ.

Lemma 4 gives an algorithm to determine all lifts of Γ.
Suppose Γ can be given by a Farey symbol, as described in the previous section,

using the method of Kulkarni [8]. For example, this holds true if we can determine
whether an element of PSL2(Z) is in Γ.

In [9], Lang, Lim and Tan give an algorithm for determining whether Γ is a
projective congruence subgroup. In the case that Γ is not a congruence subgroup,
then all lifts of Γ are also noncongruence, and no more remains to be done.

Suppose that Γ is determined to be a congruence subgroup of level N by the
algorithm in [9]. The algorithm uses a Farey symbol for Γ, and associated generators
g1, . . . , gs, and a set of generators h1, . . . , hk for Γ(M), where M is the general level
N of Γ, and if possible, determines a word for each hi in terms of the gj. The same
algorithm can also be used when M = 2N .

Note that generators and relations of any principal congruence subgroup Γ(M)
can be obtained algorithmically by using the method of either [3] or [2] applied to

the projective image Γ(M), followed by a simple check to determine sign choices of
lifts of generators, and application of Lemma 4 to determine relations.

Suppose that using this method, and once we have determined that h̄i =
∏

h̄i,j

for some h̄i,j ∈ {ḡ1, . . . , ḡs}, then by checking signs, we have

hi = (−1)ǫi
∏

hi,j ,

for i = 1, . . . , k for some ǫi ∈ {0, 1}, where each hi,j ∈ {g1, . . . , gs}. Let σi,j be the
number of times gi occurs in this product, modulo 2, i.e.,

(5) σi,j = #{i | hi,j = gj} mod 2.

Then a lift of Γ having generators (−1)δigi for i = 1, . . . s contains Γ(M) if and
only if the vector (δi) is a solution to the mod 2 linear system of equations

(6) (σi,j)(δ1, · · · , δs) = (ǫi).

By Proposition 6, we need to test whether this is the case for M = N and M = 2N .
If Γ(N) is contained in Γ, it is congruence of level N . If Γ(N) is not contained in
Γ, but Γ(2N) is, then Γ is congruence of level 2N . Otherwise Γ is not a congruence
subgroup. �

Remark 15. In practice, there will be many generators of Γ(M). Let VΓ,M be
the space corresponding to writing generators for Γ(M) as words in terms of the
generators for Γ. So VΓ,M is spanned by the vectors in Fs

2,

(7) vi = (σi,1, . . . , σi,s)
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for i = 1, . . . , k, where σi,j are as in (5). We only need take a set of vi spanning
this space in the system (6).

The signs simplify when we have a known congruence lift of level M not con-
taining −1, for example, if Γ is already such a group. Notably this happens for
Γ1(N), or if we are considering lifts of Γ = Γ0(p) for p prime, we can take the lift
Γ consisting of matrices in Γ0(p) with diagonal entries squares modulo p. In this
situation, we can take all ǫi = 0.

Remark 16. Suppose that Γ has index µ in PSL2(Z), has ν2 elliptic points of order
2, and has ν3 elliptic points of order 3.

By Euler’s formula applied to the tiling of the fundamental domain for Γ by
images of the fundamental domain for PSL2(Z) corresponding to a Farey symbol
for Γ, the minimal number of generators of Γ is

δ :=
µ

6
+ 1 +

ν2
2

+
ν3
3

.

It follows that if ν2 = 0 then there are 2δ−ν3 lifts of Γ not containing −1.

5. Examples

The examples in this section were computed using Pari [18], Magma [1] and GAP
[7]. The Magma program has built in functions for determining Farey symbols of
congruence subgroups, as described in [8]. A GAP package [5] was also used for
computing Farey symbols, and working with subgroups of PSL2(Z) given only by
their Farey symbol. The algorithm of [9] for determining whether some element of
PSL2(Z) is in some group given by a Farey symbol was also implemented in GAP.

In some of these examples, we also compute the dimensions of some spaces of
cusp forms. The dimensions follow from Shimura’s formula which we recall in
Section 8. They are given in terms of the number of regular and irregular cusps,
ν+
∞

and ν−
∞

since the subgroups in consideration have no torsion.

Example 17. Let Γ = Γ1(4). A signed Farey symbol with corresponding funda-
mental domain F and generators T,A is given in the following diagram:

❍❍❥

❍❍❥

0 1
2 1

T = ( 1 1
0 1 )

A =
(
−3 1
−4 1

)

F { −∞
+1

0
1

−2

1
2

−2

1
1

+1

∞ }

Groups with the same domain F
G0 = 〈T,A,−I〉 = Γ0(4)
G1 = 〈T,A〉 = Γ1(4)
G2 = 〈T,−A〉
G3 = 〈−T,A〉
G4 = 〈−T,−A〉
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We now apply the algorithm described in Proposition 10. The generators for
Γ(4) in terms of A and T are as follows:

(
1 4
0 1

)

= T 4

(
5 4
−4 −3

)

= T−2AT

(
1 0
4 1

)

= A−1T

(
5 −4
4 −3

)

= TA−1

(
−7 12
4 −7

)

= T−2A−1T−1

see the proof of Lemma 32 for more details on the generators of Γ(4).

By the algorithm of Proposition 10, we see that level 4 congruence lifts of Γ1(4)

correspond to solutions of
(
1 1

)
(
δ1
δ2

)

=
(
0 0

)
, so 〈T,A〉 and 〈−T,−A〉 are

congruence subgroups of level 4.
Using Magma [1] we compute that Γ(8) can be generated by 33 matrices. Writing

these in terms of A and T , we find that each generator is given as a product of an
even number of A’s and T ’s, i.e., the matrix in (6) is the zero matrix, and so the
remaining lifts 〈−T,A〉 and 〈T,−A〉 must be congruence subgroups of level 8.

Thus all four groups 〈±A,±T 〉 are congruence subgroups. Being congruence
subgroups, they can also be described by congruence conditions by considering the
quotients by Γ(4) or Γ(8).

The table below shows the regularity of the cusps of each lift of Γ0(4), which
allows us to compute the dimension of of S3(Γ) and S5(Γ) for each of these groups.
In this table S =

(
0 1
−1 0

)
and B = ( 1 0

2 1 ).

cusp stabilizer width regular in...?
G1 G2 G3 G4

∞ T 1 Y Y n n
0 A−1T = ST−4S−1 4 Y n n Y
1
2 A = −BT−1B−1 1 n Y n Y

dimS3(Γ) 0 0 1 0
dimS5(Γ) 1 1 2 1

level as congruence subgroup 4 8 8 4

Example 18. The group Γ1(6) has generators

T = ( 1 1
0 1 ) , A =

(
−5 1
−6 1

)
, B =

(
7 −3
12 −5

)
,

corresponding to a Farey symbol

{ −∞
+1

0
1

−2

1
3

+3

1
2

+3

2
3

−2

1
1

+1

∞ }

There are no relations between these matrices, so there are 8 possible subgroups
which are lifts of Γ1(6) not containing −I. By Proposition 6 if these are congruence,
they have level 6 or 12.

Using Magma [1], we find that Γ(6) can be generated by the following 13 matrices.
The algorithm of [9] expresses these generators in terms of g1 = A, g2 = B, g3 =
T . In the table we also write the corresponding vectors vi, as described in (7) of
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Proposition 10.

(
−11 6
−24 13

)
= B−2 (0, 0, 0)

(
−17 6
−54 19

)
= (A−1B)3 (1, 1, 0)

(
−29 18
−108 67

)
= A−1BAB−1 (0, 0, 0)

(
19 −12
84 −53

)
= (BA−1BA)−1 (0, 0, 0)

(
−17 12
−78 55

)
= A−2BA−1 (1, 0, 0)

(
−41 30
−108 79

)
= B−1ABA−1 (0, 0, 0)

(
−23 18
−78 61

)
= A−1BA−2 (1, 0, 0)

( 1 0
6 1 ) = A−1T (1, 0, 1)

(
31 −12
168 −65

)
= (ATA)−1B (0, 1, 1)

(
−29 12
−162 67

)
= A−1T−2B (1, 1, 0)

(
−71 30
−258 109

)
= A−1BTB (1, 0, 1)

(
37 −30
132 −107

)
= (ATB−1A)−1 (0, 1, 1)

(
7 −6
6 −5

)
= TA−1 (1, 0, 1)

To see if a lift Γ has level 6, we need to check whether all the above matrices are
in Γ. We use the algorithm described in Proposition 10. The space VΓ1(6),6 spanned
by the vi given in (7) is spanned by (1, 1, 0) and (1, 0, 1). The matrices A,B,C

generate Γ1(6) which is a lift of Γ1(6) not containing −1, so the ǫi in (6) are all 0

(as discussed in Remark 15). Thus level 6 congruence lifts of Γ0(6) not containing
−1 correspond to solutions of

(8)

(
1 1 0
1 0 1

)




δ1
δ2
δ3



 =
(
0 0 0

)
.

The only possible solutions in F3
2 are (0, 0, 0) and (1, 1, 1), and so we find that the

only possible congruence level 6 lifts of Γ1(6) not containing −1 are 〈A,B, T 〉 and
〈−A,−B,−T 〉.

Using Magma [1], we find that Γ(12) can be generated by 97 matrices. How-
ever, up to parity and rearranging of the letters A,B, T as above, we find that the
space VΓ1(6),12 spanned by the vi in (7) is one dimensional, spanned by (0, 1, 1),
corresponding for example to

TBA2 =
(
169 −36
108 −23

)
.

In consequence, the groups 〈A,B,C〉, 〈A,−B,C〉, 〈−A,B,−C〉, 〈−A,−B,−C〉, all
contain Γ(12). The remaining lifts are noncongruence subgroups.

The following table shows the data used to compute the dimension of the spaces
of weight 3 cusp forms. The last line displays whether the group is a congruence
subgroup or not, and if so, its level.

cusp stabilizer width regular in ...?
〈T,A,B〉 〈T,−A,B〉 〈−T,A,B〉 〈−T,−A,B〉

∞ T 1 Y Y n n
0 AT = (T−6)S 6 Y n n Y
1
2 B 3 Y Y Y Y
1
3 A−1B 2 Y n Y n

dimS3(Γ) 0 1 1 1
level if congruence 6 12 − −
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cusp regular in ...?
〈T,A,−B〉 〈T,−A,−B〉 〈−T,A,−B〉 〈−T,−A,−B〉

∞ Y Y n n
0 Y n n Y
1
2 n n n n
1
3 n Y n Y

dimS3(Γ) 1 1 2 1
level if congruence − − 12 6

Example 19. Γ0(8) can be generated by the following matrices:

g1 = ( 1 1
0 1 ) , g2 =

(
5 −1
16 −3

)
, g3 =

(
5 −2
8 −3

)
.

Let V8 = VΓ0(8),8 be the vector space spanned by the vi of (7), for Γ(8), and let
V16 = VΓ0(8),16 be the space spanned by the vi for Γ(16). Then V8 is spanned by
(1, 1, 1) and V16 = {0}. So 4 of the eight lifts not containing −1 are congruence
subgroups of level 8, and the rest are congruence subgroups of level 16.

Example 20. Γ0(16) is generated by the following matrices:

g1 = ( 1 1
0 1 ) , g2 =

(
5 −1
16 −3

)
, g3 =

(
25 −9
64 −23

)
, g4 =

(
9 −4
16 −7

)
, g5 =

(
13 −9
16 −11

)
.

Let V32 = VΓ0(16),32 be the vector space spanned by the vi of (7), for Γ(32), and let
V16 = VΓ0(16),16 be the space spanned by the vi for Γ(16). Then

V16 = 〈(0, 0, 0, 1, 0), (0, 1, 0, 0, 1), (1, 0, 1, 1, 0)〉
and

V32 = 〈(0, 1, 0, 0, 1), (1, 0, 1, 0, 0)〉
So 4 of the 32 lifts not containing −1 are congruence subgroups of level 16, and
4 are congruence subgroups of level 32. The remaining 24 lifts are noncongruence
subgroups.

Example 21. Γ0(20) can be generated by the following matrices:

g1 =

(
1 1
0 1

)

g5 =

(
31 −9
100 −29

)

g2 =

(
13 −2
20 −3

)

g6 =

(
17 −6
20 −7

)

g3 =

(
31 −7
40 −9

)

g7 =

(
11 −5
20 −9

)

g4 =

(
29 −8
40 −11

)

Let V40 = VΓ0(20),40 be the vector space spanned by the vi of (7), for Γ(40), and let
V20 = VΓ0(20),20 be the space spanned by the vi for Γ(20). Since V40 ⊂ V20, we can
define a space W20 with V20 = V40 ⊕W20. The following table displays some of the

data computed in order to determine the number of congruence lifts of Γ0(20).

basis of V40 basis of W20 basis of V ⊥
20 basis of V ⊥

40

(1, 0, 1, 0, 0, 0, 0)
(0, 1, 0, 0, 0, 1, 0)
(0, 0, 0, 1, 0, 0, 0)
(0, 0, 0, 0, 1, 0, 1)

(1, 1, 0, 1, 1, 1, 0)
(1, 0, 0, 0, 0, 0, 1)

(1, 0, 1, 0, 1, 0, 1)
(0, 1, 0, 0, 0, 1, 0)

(1, 0, 1, 0, 0, 0, 0)
(0, 0, 0, 0, 1, 0, 1)
(0, 1, 0, 0, 0, 1, 0)
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For example, the vector (0, 0, 0, 0, 1, 0, 1) in V40 corresponds to
(
−9679 2800
−280 81

)
= g341 g7g5.

From the above data, we see that there are 22 = 4 congruence lifts of level 20 not
containing −1, and a further 4 of level 40. The remaining 27 − 8 = 120 lifts not
containing −1 are noncongruence.

6. Proof of Theorem 1

In this section, we study the principal congruence groups Γ(N) in PSL2(Z) and
their lifts to SL2(Z). Note that for N = 1, i.e. PSL2(Z) there is only one lift, the

full group SL2(Z), since ±
(
0 −1
1 0

)

has square −1.

We refer to Γ(N) as the canonical lift. For an element Ā ∈ Γ(N) we have a
unique canonical lift A0 ∈ Γ(N) if N > 2. With respect to the canonical lift A0,
we define the sign σ(A) of any lift A of Ā as

σ(A) =

{

1, if A = A0,

−1, if A = −A0.

Let Γ denote any lift of Γ(N). If Γ is congruence, then Γ(2N) ⊂ Γ by Proposition

3. As a consequence, for all A ∈ Γ with Ā ∈ Γ(2N), we obtain σ(A) = 1, i.e. the
lift in Γ is fixed as A = A0. Equivalently, for A,B ∈ Γ

Ā ≡ B̄ mod 2N =⇒ σ(A) = σ(B).

(We employ the convention that Ā ≡ B̄ mod 2N if and only if ĀB̄−1 ∈ Γ(2N).)

We now specialize to the situation where N is odd. Hence for A,B ∈ Γ

Ā ≡ B̄ mod 2N ⇐⇒ A ≡ B mod 2.

Thus we consider the projection from Γ to SL2(F2) (which is a group homomorphism
factoring through the quotient Γ):

Γ → SL2(F2)

A 7→ Ã

The congruence property of Γ gives the implication

Ã = B̃ =⇒ σ(A) = σ(B).(9)

There is one prominent matrix in Γ: the lift of T̄N , which we shall denote by
TN . Apparently its sign can be chosen freely.

Lemma 22. Let N be odd. If Γ is congruence and −1 6∈ Γ, then the sign of TN

fixes the signs of all other elements by (9).

Proof. Let A ∈ Γ. We shall use the fact that SL2(F2) ∼= S3. If Ã has odd order,

then Ã3 = 1. Hence σ(A) = σ(A3) = 1. If Ã has order two, then either Ã = T̃N or

Ã T̃N has order three. In each case σ(A) = σ(TN ). �

Corollary 23. If N > 1 is odd, then Γ(N) has exactly three congruence lifts.

Namely the congruence lifts are Γ(N), {±1} · Γ(N) and the subgroup generated

by −TN and the appropriate lifts of the other generators of Γ(N) as determined
by Lemma 22. By construction, each of these lifts contains Γ(2N).
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Corollary 24. If N > 1 is odd, then Γ(N) has noncongruence lifts.

Since Γ(N) cannot be generated by a single element, the corollary follows readily.

For N = p, we obtain explicit numbers from Frasch’s work [6]: Γ(p) is freely
generated by r = 1+ p (p2 − 1)/12 elements, so we have three congruence lifts and
2r − 2 noncongruence lifts.

We now turn to even level N . Here Γ(N)/Γ(2N) ∼= (Z/2)3 by virtue of the
following construction: Let A ∈ Γ(N). Write A uniquely as

A = 1 +N ·B + 2N · C, B ∈ M2(F2), C ∈ M2(Z).

Here 1 = det(A) = 1+N tr(B) + 2N (. . .). In consequence, B has even trace. This
defines a group homomorphism

Γ(N) → M2(F2)

A 7→ Â = B

with kernel Γ(2N) and image the matrices in M2(F2) with zero trace. Hence it
identifies the quotient Γ(N)/Γ(2N) with the image, i.e. abstractly with (Z/2)3.

First we consider the case N > 2. Since −1 6∈ Γ(N), there are canonical lifts.

Hence for any lift Γ of Γ(N), we obtain a group homomorphism

Γ ∋ A 7→ Ā 7→ A0 7→ Â = Â0.

As before, if Γ is congruence, then it contains Γ(2N) by Proposition 3. Hence
we have

Â = B̂ ⇒ Ā ≡ B̄ mod 2N ⇒ σ(A) = σ(B).

It follows that the signs of three elements with independent image in M2(F2) deter-
mine the congruence lift Γ. Here two signs are given by the elements TN , T ′

N ∈ Γ.
The third sign is fixed by the lift of

(
1 +N −N
N 1−N

)

.

As in the case of odd N , the sign restrictions determine all congruence lifts of
Γ(N):

Lemma 25. Let N > 2 be even. Then Γ(N) has exactly 9 congruence lifts.

Corollary 26. If N > 2, then Γ(N) has noncongruence lifts.

Proof. For odd N > 1, this result is Corollary 24. For even N > 2, it will follow
from Lemma 5, once we verify the claim for N = 4. To this end, it suffices to check

that Γ(4) has at least four free generators. In fact, we have seen in Example 17

that Γ(4) has five free generators. �

To complete the proof of Theorem 1, we are concerned with the remaining case
N = 2. Here the situation differs since −1 ∈ Γ(2). Nonetheless we can define a
non-trivial canonical lift Γ0 ( Γ(2) by requiring

a ≡ d ≡ 1 mod 4

for the diagonal entries of any matrix in Γ0. Then we proceed as before with the
only difference that the image of Γ0 in M2(F2) consists of all matrices with zero
diagonal elements. Abstractly, the image is isomorphic to (Z/2Z)2. This agrees
with the generators of Γ(2) being −1, T 2, (T 2)′ by [6]. Hence any non-trivial lift
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Γ of Γ(2) is generated by the lifts T2, T
′
2. By the above consideration, for Γ to be

congruence we can choose the signs of both generators freely. Hence all five lifts
are congruence.

Alternatively, one could deduce this claim from the fact that Γ(2)2 = Γ(4) as we
will show in section 9.

7. Proof of Theorem 2

Let us first recall some well-known facts about elements of finite order of SL2(Z),
cf. [21], Propositions 1.12 and 1.18: an element

(
a b
c d

)
∈ SL2(Z) different from ±1

has finite order if and only if |a + d| < 2. An easy computation then shows that
−1 is the only element of order 2, whereas the elements of order 4 are precisely the
elements of form (

a b
c −a

)

where a, b, c ∈ Z with a2 + bc = −1.

Proof of (i). Write N = 2s · ps11 · · · pstt where s ≤ 1 and the pi are distinct primes
each congruent to 1 modulo 4.

Thus for each i, the number −1 is a square in Zpi
, i.e. the congruence x2 ≡ −1

(pri ) is solvable in Z for every r ∈ N. Since s ≤ 1 the same holds trivially true for
the congruence x2 ≡ −1 (2s). By the Chinese Remainder Theorem we conclude
that there is a ∈ Z such that a2 ≡ −1 (N).

Consequently there exists an element γ =
(

a b
N −a

)
of order 4 in Γ0(N). If now Γ

is a lift of Γ0(N) we must have γ ∈ Γ or −γ ∈ Γ. Since the square of both γ and
−γ is −1, we conclude that Γ contains −1 and hence equals Γ0(N). �

Proof of (ii). Let p be an odd prime, p ≡ 3 (4) and N = pr for some r ∈ N. Denote
by (·/p) the Legendre symbol modulo p. We define the sign homomorphism

σ : Γ0(N) → {±1}
(
a b
c d

)

7→
(
a

p

)

Then G1 = ker(σ) is a congruence subgroup of Γ0(N), since Γ1(N) ⊂ G1. The
subgroup G1 consists exactly of those matrices in Γ0(N) whose diagonal entries are
squares modulo p (or equivalently modulo N).

Let Γ be a congruence lift of Γ0(N). By Proposition 3 we have then Γ(2N) ≤ Γ.
Note that σ is trivial on Γ(2N). Hence σ factors through the quotient Γ/Γ(2N).

In order to study this quotient, consider the homomorphism

φ : SL2(Z)/Γ(2N) −→ SL2(Z/2)× SL2(Z/N)

given by A 7→ (A mod 2, A mod N); φ is an isomorphism: it is clearly injective, and
hence surjective by comparison of orders (cf. for instance [14], Theorem 4.2.5, for
formulas for indices of the various subgroups in SL2(Z)). Under this isomorphism,
Γ0(N) is mapped to

φ(Γ0(N)) =: G = SL2(Z/2)×H ≤ SL2(Z/2)× SL2(Z/p)

where H ∼= Γ0(N)/Γ(N): clearly the image is contained in SL2(Z/2)×H and hence
equals this group, again by order considerations:

[Γ0(N) : Γ(2N)] = 6p2r−1(p−1) = 6·[Γ0(N) : Γ(N)] = #(SL2(Z/2))·[Γ0(N) : Γ(N)].
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For A ∈ Γ0(N), σ(A) is determined by the image of A in H . Hence we shall study
the structure of H to some extent. In the present situation, H is not cyclic, but
close enough to it in the following sense:

Lemma 27. For any A ∈ H, we have Au = ±1 for u = p2r−1(p− 1)/2.

Proof. We will use the immediate fact for A ∈ Γ0(N) with diagonal entries a, d that
At has diagonal entries at, dt modulo N . Here N = pr so that (Z/NZ)∗ is cyclic of

order pr−1(p− 1). Thus for any A ∈ Γ0(N), Apr−1(p−1)/2 has diagonal entries ±1.
But then for any B ∈ Γ0(N) with diagonal entries ±1, we have Bpr

= ±1. �

Corollary 28. For any A ∈ Γ0(N), we have

σ(A) =

{

1 if A has odd order in H;

−1 if A has even order in H.

Proof. Since u = p2r−1(p− 1)/2 is odd, we have σ(A) = σ(Au) where Au = ±1 in
H depending on the parity of the order. The distinction of the two cases follows
directly. �

We return to the congruence lift Γ of Γ0(N). Suppose that −1 /∈ Γ. Then, since
−1 is not in the kernel of φ, we have that φ(Γ) is a subgroup of index 2 of G, and
G is generated by φ(G) and φ(−1). In particular φ(−1) = (1,−1) 6∈ φ(G).

Proposition 29. Let Γ 6= G1,Γ0(N) be a congruence lift. Then σ is determined
on Γ by the relation

σ(A) = −1 ⇐⇒ A has order two in SL2(Z/2).

Proof. Since Γ 6= G1, there is B ∈ Γ such that σ(B) = −1. Let C := Bu. Then
σ(C) = −1, so that C = −1 in H by Lemma 27 and Corollary 28. But then since
(1,−1) 6∈ φ(G), we deduce that C has order two in SL2(Z/2).

First we let A ∈ Γ have odd order in SL2(Z/2). Then φ(A3u) = (1, 1) since
A3u = ±1 in H , but (1,−1) 6∈ φ(Γ). Hence σ(A) = σ(A3u) = 1.

Now let A ∈ Γ have order two in SL2(Z/2). In consequence A ·C has odd order
in SL2(Z/2). By the first alternative, we obtain 1 = σ(A · C) = −σ(A). �

We are now ready to prove the second statement from Theorem 2. Namely the
order in SL2(Z/2) does not depend on the lift from PSL2(Z) to SL2(Z). Hence the
sign condition in Proposition 29 determines the lift Γ 6= G1,Γ0(N) uniquely. This
lift Γ is in fact congruence as it contains Γ(2N) by definition. �

Proof of (iii). We start by utilizing results of Rademacher to treat the prime case
N = p:

Lemma 30. If p ≡ 3 (4) with p > 3, then there are noncongruence lifts of Γ0(p).
More precisely, putting

s := 2
[ p

12

]

+ 3

the number of noncongruence lifts of Γ0(p) is:






0 if p = 3
2s−2 − 2 if p ≡ 7 (12)
2s − 2 if p ≡ 11 (12).
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Proof. By [19, pp. 146–147], we know that if p > 3 then the group Γ0(p) is generated
by

s := 2
[ p

12

]

+ 3

elements and relations as follows. If p ≡ 11 (12) there are no relations, whereas if
p ≡ 7 (12) there are 2 relations involving two of the generators, call them V1 and
V2, namely

V 3
1 = V 3

2 = 1 .

By Lemma 4 we can determine the number of lifts when p > 3: in the cases
p ≡ 11 (12) and p ≡ 7 (12), there are precisely 2s resp. 2s−2 lifts of Γ0(p) not
containing −1. By Theorem 2 (ii) there are precisely two congruence lifts not
containing −1. Thus the formulas for the number of noncongruence lifts follow
when p > 3. One checks immediately that this number is positive in all cases.

As for the group Γ0(3), by [19] it is generated by two elements S and V with
the single relation V 3 = 1. Hence Lemma 4 implies that the group admits precisely
two lifts not containing −1. Both lifts are congruence by Theorem 2 (ii). �

Let N be as in Theorem 2 (iii). We have seen in the section 5, that there are

noncongruence lifts of the groups Γ0(6),Γ0(16) and Γ0(16). Using Theorem 2 (ii)

one can prove the same for Γ0(9), since this group has more than one free generator.
Thus, by the hypothesis and by Lemma 30, there is a divisor M of N such that
Γ0(M) has a noncongruence lift. Let now G be any of the groups Γ0(N) and Γ1(N).

Then G ≤ Γ0(M), and the claim follows from Lemma 5. �

Theorem 2 leaves essentially three cases unanswered: 3, 4 or 8 times a product
of primes congruent to 1 modulo 4. An analysis of this case requires different
techniques that we hope to address elsewhere.

8. Subgroups with the same cusp forms

Suppose that Γ1 and Γ2 are subgroups of finite index in SL2(Z). Let Sk(Γi)
denote the space of cusp forms of weight k with respect to Γi. If the groups contain
−1, then Sk(Γ1) = 0 = Sk(Γ2) for all odd k. In particular this holds for infinitely
many k.

Now consider the case where the groups do not contain −1. We will show that
Sk(Γ1) = Sk(Γ2) holds for infinitely many k only if the groups are projectively
equivalent. More precisely:

Proposition 31. (i). Suppose that G and Γ are subgroups of SL2(Z) of finite index
and that Γ is a subgroup of G.

Suppose that we have dimSk(G) = dimSk(Γ) for infinitely many positive integers
k, and that either infinitely many of these k are even, or that −1 6∈ Γ.

Then G = Γ.

(ii). Let Γ1 and Γ2 be subgroups of SL2(Z) of finite indices and suppose that −1 is
not in Γ1 ∩ Γ2.

Then Sk(Γ1) = Sk(Γ2) for infinitely many k ∈ N if and only if Γ1 = Γ2.

Proof of (i). Let γ denote the genus of the modular curve Γ\H∗. Here as usual, H∗

denotes the upper halfplane with the cusps Q∪{∞} added. Let µ := [PSL2(Z) : Γ],
let ν2 and ν3 denote the number of inequivalent elliptic points of Γ of orders 2 and
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3, respectively, let ν∞ be the number of inequivalent cusps of Γ, and let ν+
∞

and ν−
∞

denote the number of inequivalent regular and irregular cusps of Γ, respectively.
Thus, ν∞ = ν+

∞
+ ν−

∞
.

If k is even and > 2 we have by the dimension formula, cf. [14], Theorem 2.5.2,
that

dimSk(Γ) = (k − 1)(γ − 1) +
k − 2

2
· ν∞ +

[
k

4

]

· ν2 +
[
k

3

]

· ν3

and also

γ = 1 +
µ

12
− ν2

4
− ν3

3
− ν∞

2

by the genus formula, cf. [21], Proposition 1.40. Thus,

dimSk(Γ) =
k − 1

12
· µ− ν∞

2
+

([
k

4

]

− k − 1

4

)

· ν2 +
([

k

3

]

− k − 1

3

)

· ν3

for k even and > 2.
Similarly, if −1 6∈ Γ and k ≥ 3 is odd we have the dimension formula [14],

Theorem 2.5.3:

dimSk(Γ) = (k − 1)(γ − 1) +
k − 2

2
· ν+∞ +

k − 1

2
· ν−∞ +

[
k

4

]

· ν2 +
[
k

3

]

· ν3

which combines with the genus formula to:

dimSk(Γ) =
k − 1

12
· µ− ν+

∞

2
+

([
k

4

]

− k − 1

4

)

· ν2 +
([

k

3

]

− k − 1

3

)

· ν3

where we used ν∞ = ν+
∞

+ ν−
∞
.

Now note that we have similar formulas for dimSk(G), that for any a ∈ N the
number

[
k
a

]
− k−1

a stays bounded for k → ∞, and that if we have −1 6∈ Γ and
dimSk(G) = dimSk(Γ) for infinitely many odd k, then necessarily Sk(G) 6= 0 for
some odd k and thus −1 6∈ G. Combining our hypothesis with an asymptotic
consideration then shows that we necessarily have

[PSL2(Z) : Γ] = µ = [PSL2(Z) : G]

and hence G = Γ since G ≤ Γ.

Proof of (ii). If Γ1 = Γ2, then Sk(Γ1) = Sk(Γ2) for all even k ∈ N.

Conversely, suppose that Sk(Γ1) = Sk(Γ2) for infinitely many k ∈ N. Consider
the group G generated by Γ1 and Γ2. If k is such that Sk(Γ1) = Sk(Γ2), then
Sk(G) = Sk(Γi) for i = 1, 2.

By hypothesis, −1 6∈ Γ1 or −1 6∈ Γ2, say −1 6∈ Γ1. Then we obtain Γ1 = G by
(i).

If −1 6∈ Γ2, then Γ2 = G by (i) as claimed. If −1 ∈ Γ2, then Sk(Γ2) = 0 for odd
k. On the other hand, as −1 6∈ Γ1 we have Sk(Γ1) 6= 0 for all sufficiently large odd
k. Thus, our hypothesis would imply Sk(G) = Sk(Γ1) = Sk(Γ2) for infinitely many
even k. Hence Γ2 = G by (i).

Thus, in any case, Γ1 = G = Γ2, as desired. �
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9. Squares of congruence subgroups

We note a consequence for the subgroup Γ2 generated by squares in a given
subgroup Γ. From Theorem 1, we can deduce immediately that Γ(N)2 is not con-
gruence when N > 2: this follows from Lemma 5 since any lift of Γ(N) necessarily
contains Γ(N)2 (if Γ is a lift and if g ∈ Γ(N) then Γ contains either g or −g, and
hence in any case g2). Thus, if Γ(N)2 is congruence, then all lifts of Γ(N) are
congruence.

On the other hand, it is known that Γ(1)2 is congruence: in fact, Γ(2) ⊂ Γ(1)2

by [15]. (The inclusion Γ(6) ⊂ Γ(1)2 was previously proven by J. R. Smith in his
1961 thesis at Michigan State, cf. [16].)

This leaves open the case of Γ(2)2 which we can solve with the techniques from
section 4.

Lemma 32. Γ(2)2 = Γ(4).

Proof. Consider the following Farey symbol for Γ(4).

{ −∞
+1

−2
1

−2

−3
2

+3

−1
1

+3

−1
2

+4

0
1

+4

1
2

+5

1
1

+5

3
2

−2

2
1

+1

∞ }

That this is a Farey symbol for Γ(4) follows from the fact that all the corresponding
generating matrices are in Γ(4), and this Farey symbol corresponds to a group with

index 24 in PSL2(Z), which is equal to [PSL2(Z) : Γ(4)] using the well known
formula.

We can write the generating matrices in terms of squares of elements of Γ(2)
thus:

( 1 4
0 1 ) = ( 1 2

0 1 )
2

(
−7 12
4 −7

)
= (( 1 2

0 1 )
2
)−1

(
5 −8
2 −3

)2

(
5 4
−4 −3

)
=

(
−3 −2
2 1

)2

( 1 0
4 1 ) = ( 1 0

2 1 )
2

(
5 −4
4 −3

)
=

(
−3 2
−2 1

)2

This demonstrates that Γ(4) ⊆ Γ(2)2. On the other hand, we can easily check that
the square of any element of Γ(2) must be in Γ(4) (since if A − I = 2B for some
matrices A,B with integer entries, then A2 − I = (2B + I)2 − I = 4B(B + I)), so
Γ(2)2 ⊆ Γ(4). Hence the two groups are equal. �

In consequence, we can identify the principal congruence subgroups whose squa-
res are congruence again:

Proposition 33. Γ(N)2 is congruence if and only if N ≤ 2.

Along the same lines, we obtain from Theorem 2 (iii) with Lemma 5:

Corollary 34. If N is divisible by 6, 9, 16, 20 or by a prime p > 3 congruent to 3
modulo 4, then Γ0(N)2 and Γ1(N)2 are not congruence.

For future use in the general case, we also note the following lemma which slightly
simplifies the congruence question for squares:

Lemma 35. If Γ has general level N and Γ2 is congruence, then Γ2 has level 2N .
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Proof. Arguing with the cusps as before, we see that Γ2 has general level 2N . Hence
if Γ2 is congruence, then the level divides 4N by Proposition 3.

Looking at the proof of Proposition 3, the main difference when working with
Γ2 is that T 2N ∈ Γ2 due to the assumption that Γ has general level N . Hence
Wohlfahrt’s original argument goes through without doubling the level twice, since
this was only necessary to ensure that T 2N is contained in the group. Thus Γ2, if
it is congruence, has level 2N . �

Remark 36. With the generators in the proof of Lemma 32, we can also give a
more precise description of the lifts of Γ(4): Any congruence lift of Γ(4) must have
level either 4 or 8 by Proposition 6. With V4 = VΓ(4),4 and V8 = VΓ(4),8, as described
in Remark 15, in terms of the above set of generators, we have

V ⊥

4 = 0, and V8 = 〈(0, 0, 1, 0, 1), (1, 1, 0, 1, 0)〉
So there is a unique level 4 congruence lift of Γ(4) not containing −1, namely Γ(4),
and a further 7 level 8 lifts, in accordance with Lemma 25; the remaining 24 lifts
are noncongruence.

10. Elliptic modular surfaces

We conclude this paper with some geometric considerations. Our motivation
stems from modular forms. We have seen in section 8 that lifts can only be dis-
tinguished on modular forms of odd weight. For weight 3, there is an instructive
relation to holomorphic 2-forms on certain complex algebraic surfaces that we shall
briefly recall.

Let Γ denote a finite index subgroup Γ of SL2(Z) not containing −1. A construc-
tion by Shioda associates Γ with an elliptic modular surface S(Γ) over the modular
curve X(Γ) (uniquely up to C-isomorphism) [22]. For congruence subgroups, this
construction simply exhibits the universal modular curve.

Throughout this paper, we have been considering different lifts. In particular,
the modular curve X(Γ) is the same for all lifts, as it only depends on the image Γ̄
of Γ in PSL2(Z). For shortness, we write X = X(Γ), S = S(Γ).

Of course, the j-map
j : X → P1

is also independent of the lift. On the other hand, S is determined by j only up
to quadratic twisting. This notion refers to non-isomorphic elliptic curves which
become isomorphic over a quadratic extension of the ground field. In terms of an
extended Weierstrass form

y2 = x3 +Ax2 +Bx+ C, A,B,C ∈ k,

quadratic twists are in correspondence with squarefree elements d ∈ k. The twist
by d is exhibited by the Weierstrass form

y2 = x3 + dA2x+ d2Bx+ d3C

or equivalently

dy2 = x3 +Ax2 +Bx+ C.(10)

The impact of a quadratic twist on the singular fibers is well understood thanks to
Tate’s algorithm [24]. The fiber type stays the same if d vanishes to even order at
the corresponding cusp on X . In case of odd vanishing order, the fiber types change
in a canonical way unless the characteristic is three and there is wild ramification
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(see e.g. [13]). For instance, fibers of type In are always interchanged with I∗n in
Kodaira’s notation.

In the case of elliptic modular surfaces, we can use some crucial extra informa-
tion. Namely, any (complex) elliptic modular surface is extremal: it has maximal
Picard number ρ(S) = h1,1(S), but finite group of sections. By a theorem of Nori
[17], these conditions (with j non-constant) imply the absence of singular fibers of
type II, III, IV, I∗0 .

In consequence, on elliptic modular surfaces of different lifts of Γ̄, the quadratic
twisting can only occur at two kinds of points on X(Γ):

• cusps underneath singular fibers of type In, I
∗
n(n > 0). Note that the local

monodromy at these fibers is

T n resp. − T n.

• points such that d vanishes to even order.

Conversely, any such twist is again modular by [17]. Since it has the same modular
curve X by construction, the projective images of the associated subgroups have to
coincide. Since at twisting points of the second kind the fiber type does not change,
the problem of detecting isomorphic elliptic surfaces is non-trivial; Stiller gave an
example of this phenomenon in [23] related to the commutator subgroup of SL2(Z).
There are no points of the second kind if the modular curve X(Γ) is rational. The
following two examples go back to section 5. Equations can be found in [13] for
instance, but the cusps are normalised in a different manner than in section 5.

10.1. Example: Γ1(4). The elliptic modular surface for Γ1(4) is rational over
Q with singular fibers of types I1, I4, I

∗
1 . Two of the twists are rational as well,

while the twist with three non-reduced fibers is K3. In terms of Example 17, this
modular surface corresponds to the congruence lift G3. Recall that S3(G3) has
dimension one. To find the normalised cusp form, we use that its square is in
S6(G3) = S6(Γ1(4)). The latter space is also one-dimensional and generated by
η(2τ)12. Hence S3(G3) is generated by η(2τ)6.

This K3 surface is also modular in another sense: its zeta function contains a
factor corresponding to (a twist of) η(4τ)6, the unique weight 3 newform of level 16.
We emphasise that the two cusp forms η(2τ)6 and η(4τ)6 have Fourier expansions
in terms of different uniformisers, but with the same Fourier coefficients.

The modularity of the zeta function follows from a more general result by Livné
[11]. In particular, this result applies to all singular K3 surfaces over Q, i.e. with
maximal Picard number ρ = 20. We will see more instances of this modularity in
the next example, but first we shall point out a general fact in this context.

The above arithmetic relations with modular forms should not be seen as a
surprise. In fact, Shioda showed in [22] that there is an analytic isomorphism

S3(Γ) ∼= H2,0(S(Γ))(11)

between cusp forms of weight 3 with respect to Γ and holomorphic 2-forms on
S(Γ). In the congruence case, this isomorphism admits an arithmetic interpretation.
Namely, S(Γ) has a model over Q. By Deligne [4], the Galois representation on
the cohomology of S(Γ) splits off two-dimensional subrepresentations. Here the
traces of Frobenius correspond to eigenvalues of the Hecke operators on S3(Γ)
as we have seen in the example above. In the noncongruence case, there is a
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conjectural congruence relation due to Atkin–Swinnerton-Dyer (cf. [12] and the
references therein).

10.2. Example: Γ1(6). We conclude this paper with a detailed analysis of the
elliptic modular surface S for Γ1(6). We study the lifts of Γ1(6) and compute the
corresponding cusp forms of weight 3. Then we compare with the zeta function of
the corresponding twists of S.

A model of S over Q can be given as follows:

S : y2 = x(x2 + (t2 − 6t− 3)x+ 16t).

Either six-torsion section (4t,±4t(t− 1)) generates the Mordell-Weil group of S:

MW(S) = {(4t,±4t(t− 1)), (4,±4(t− 1)), (0, 0)}.

The j-invariant of S is

j =
(t− 3)3(t3 − 9t2 + 3t− 3)3

(t− 9)(t− 1)3t2
.

One can describe the elliptic parameter t by

t = 9η(2τ)4η(3τ)8η(τ)−8η(6τ)−4.

The connection with the set-up in Example 18 is summarised in the following table:

cusp c ∞ 1/3 1/2 0
width 1 2 3 6
t(c) 9 0 1 ∞

stabilizer T AB−1 B AT

Thus S is a rational elliptic surface with singular fibers of types I1, I2, I3, I6. As
explained, the different lifts of Γ1(6) from PSL2(Z) to SL2(Z) correspond to twists
of S by certain d ∈ Q(t) as in (10). We collect this information in the next table.
Six of the twists are K3 surfaces as indicated. The zeta function of each of them
again contains a factor corresponding to some newform of weight three by [11].
The precise newform depends on the model of the K3 surface. By the classification
in [20], very few Fourier coefficients suffice to determine the newform (see [20,
Rem. 2.]). In the present situation, we achieved this by point counting at the first
few good primes through Lefschetz’ fixed point formula.

We express the resulting newforms in terms of some particular newforms (which
are minimal in the sense of [20]) involving twists by the Legendre symbols χu =
(u/p). Let

f8 = η(τ)2η(2τ)η(4τ)η(8τ)2 , f12 = (η(2τ)η(6τ))3

and let f24 denote the newform of level 24 from [20, Table 1] (given by a Hecke
character for Q(

√
−6) of ∞-type 2 and conductor (2

√
−6)).

The full quadratic twist of S is not K3, but has h2,0 = 2 and Euler number
e = 36. In terms of the Enriques-Kodaira classification of algebraic surfaces, it is
honestly elliptic (Kodaira dimension one). We compute the decomposition of its
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zeta function in terms of cusp forms g1, g2 below (see (12)).

d fibres lift of Γ1(6) level dimS3 zeta surface
1 1 , 2 , 3 , 6 〈 T, A, B〉 6 0 − rational
t− 9 1∗, 2 , 3 , 6∗ 〈−T, A, B〉 − 1 f24 ⊗ χ3 K3
t(t− 9) 1∗, 2∗, 3 , 6 〈−T,−A, B〉 − 1 f8 ⊗ χ3 K3
(t− 1)(t− 9) 1∗, 2 , 3∗, 6 〈−T,−A,−B〉 6 1 f12 K3
t(t− 1)(t− 9) 1∗, 2∗, 3∗, 6∗ 〈−T, A,−B〉 12 2 g1, g2 e = 36
t 1 , 2∗, 3 , 6∗ 〈 T,−A, B〉 12 1 f12 K3
(t− 1) 1 , 2 , 3∗, 6∗ 〈 T,−A,−B〉 − 1 f8 ⊗ χ−1 K3
t(t− 1) 1 , 2∗, 3∗, 6 〈 T, A,−B〉 − 1 f24 ⊗ χ2 K3

In order to compute the cusp forms in S3(Γ) for the lifts Γ, we shall again argue
with extracting square roots, this time from S6(Γ) = S6(Γ1(6)). In contrast to the
case in 10.1 where the dimensions matched exactly, we have to take into account the
following subtlety for square roots of f ∈ S6(Γ1(6)): For

√
f to define a holomorphic

function with respect to the lift Γ, we require f to vanish quadratically at all regular
cusps of Γ and at all zeroes in the upper half plane. In the present situation, this
criterion suffices to find all cusp forms.

We shall use the following modular forms of weight one for Γ1(6):

cusps (and widths) ∞(1) 1
3 (2)

1
2 (3) 0(6)

weight one forms for Γ1(6) order of vanishing

a = η(z)η(6z)6

η(2z)2η(3z)3 = q − q2 + q3 + q4 + · · · 1 0 0 0

b = η(2z)η(3z)6

η(z)2η(6z)3 = 1 + 2q + 4q2 + 2q3 + · · · 0 1 0 0

c = η(3z)η(2z)6

η(6z)2η(z)3 = 1 + 3q + 3q2 + 3q3 + · · · 0 0 1 0

d = η(6z)η(z)6

η(3z)2η(2z)3 = 1− 6q + 12q2 − 6q3 · · · 0 0 0 1

Note that there are relations c = a+ b, d = b − 8a. It follows that any product of
six of them defines a weight 6 form for Γ1(6) – and cusp forms include the product
g = abcd = (η(τ)η(2τ)η(3τ)η(6τ))2 which in fact generates S4(Γ1(6)). Looking at
dimensions, it follows that these cusp forms generate S6(Γ1(6)). A basis could be
chosen as ga2, gab, gb2.

Consider the six lifts that geometrically correspond to K3 surfaces. For each
lift Γ, we will exhibit a cusp form of weight 6 for Γ1(6) whose square root gives
a cusp form of weight 3 for Γ. As we have seen in Example 18, each lift has two
regular cusps where extracting a square root requires quadratic vanishing of the
weight 6 cusp form f . At the two irregular cusps, simple vanishing of f suffices.
By inspection, these conditions determine the following normalised cusp forms of
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weight 6 for Γ1(6) whose square roots yield cusp forms of weight 3 for the six lifts:

cusps (and widths) ∞(1) 1
3 (2)

1
2 (3) 0(6)

weight six forms for Γ1(6) order of vanishing lift

abc2d2 = η(z)5η(2z)5η(3z)η(6z) 1 1 2 2 〈−T,−A,B〉
a2b2cd = η(z)η(2z)η(3z)5η(6z)5 2 2 1 1 〈T,−A,−B〉
a2bc2d = η(2z)6η(6z)6 2 1 2 1 〈T,−A,B〉
ab2cd2 = η(z)6η(3z)6 1 2 1 2 〈−T,−A,−B〉
a2bcd2 = η(z)9η(2z)−3η(3z)−3η(6z)9 2 1 1 2 〈T,A,−B〉
ab2c2d = η(z)−3η(2z)9η(3z)9η(6z)−3 1 2 2 1 〈−T,A,B〉

In the congruence cases, the zeta function of the elliptic modular surface thus
indeed agrees with that of the corresponding generator of S3(Γ). In the non-
congruence cases, one easily checks the Atkin–Swinnerton-Dyer relations for the
square root of the corresponding weight six form generating S3(Γ) (which does not
have integral Fourier coefficients) and the cusp form associated to S (which is the
indicated twist of f8 or f24).

Finally we come to the lift Γ = 〈−T, A,−B〉 where all cusps are irregular.
Here S3(Γ) is two-dimensional, and any product of two cusp forms gives a form in
S6(Γ1(6)).

Lemma 37. For the lift Γ = 〈−T, A,−B〉, we have with √
g = η(τ)η(2τ)η(3τ)η(6τ)

S3(Γ) = 〈√ga,
√
gb〉.

Proof. Fix a basis h1, h2 of S3(Γ). A priori, we only have h1, h2 ∈ C[[q1/2]], but
since their product is in S6(Γ1(6)) and thus in C[[q]], we actually deduce that either
h1, h2 ∈ q1/2C[[q]] or h1, h2 ∈ qC[[q]]. Under the latter alternative we would have
a cusp form h ∈ q2C[[q]] ∩ S3(Γ). Then h2, which is in S6(Γ1(6)), would vanish to
order 4 at ∞. In comparison, the cusp form in S6(Γ1(6)) with the highest vanishing
order at ∞ is ga2, but the vanishing order is only three, contradiction.

Under the first alternative, there is a cusp form h ∈ q3/2C[[q]] ∩ S3(Γ). Along
the same lines as above, one deduces that h2 = λga2 for some λ ∈ C. This shows
that

√
ga ∈ S3(Γ). We proceed by considering the product

√
gah1 ∈ S6(Γ1(6)). In

terms of our basis, we write this product as gγ for some quadratic form γ(a, b). By
assumption, we can also write h1 =

√
gδ for some quadratic form δ(a, b). This gives

an equality of modular forms a
√
δ = γ ∈ M2(Γ1(6)). Upon squaring, we obtain

the relation a2δ = γ2 in M4(Γ1(6)). Since M4(Γ1(6)) has basis a
4, a3b, a2b2, ab3, b4,

spelling out the last relation shows that the quadratic form δ is in fact the square
of a linear form in a, b. As the same argument applies to h2, the lemma follows. �

Lemma 37 exhibits a basis of the vector space S3(Γ). Recall that the lift Γ
is congruence. Hence the zeta function of the elliptic modular surface S = S(Γ)
encodes the Fourier coefficients of another basis g1, g2 of S3(Γ) which consists of
Hecke eigenforms. We compute the relevant degree 4 factors Lp(T ) of the zeta
function of S at the first few good primes with Lefschetz’ fixed point formula (over
Fp and Fp2). We then read off the resulting Fourier coefficients ap of g1, g2 (up to
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conjugacy) from the real quadratic factors of Lp(T ):

p Lp(T ) ap
5 T 4 + 18T 2 + 54 ±4

√
2

7 (T 2 + 6T + 49)2 −6

11 T 4 + 210T 2 + 114 ±4
√
2

13 (T 2 − 20T + 132)2 20

17 T 4 + 66T 2 + 174 ±16
√
2

With some linear algebra on the vector space S3(Γ), one then verifies that (for the
right sign choices between the Fourier coefficients of g1 and g2)

(g1 + g2)/2 =
√
gb, (g1 − g2)/(2

√
2) =

√
ga.(12)
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[11] R. Livné: ‘Motivic Orthogonal Two-dimensional Representations of Gal(Q̄/Q)’, Israel J. of
Math. 92 (1995), 149–156.

[12] L. Long: ‘Finite index subgroups of the modular group and their modular forms’, Modular
forms and string duality, 83–102, Fields Inst. Commun. 54, Amer. Math. Soc., Providence,
RI, 2008.

[13] R. Miranda, U. Persson: ‘On Extremal Rational Elliptic Surfaces’, Math. Z. 193 (1986),
537–558.

[14] T. Miyake: ‘Modular Forms’, Springer 1989.
[15] M. Newman: ‘Normal congruence subgroups of the modular group’, Amer. J. Math. 85

(1963), 419–427.
[16] M. Newman, J. R. Smart: ‘Note on a subgroup of the modular group’,

Proc. Amer. Math. Soc. 14 (1963), 102–104.
[17] M. Nori: ‘On certain elliptic surfaces with maximal Picard number’, Topology 24 (1985),

no. 2, 175–186
[18] PARI/GP, version 2.3.4, Bordeaux, 2008, http://pari.math.u-bordeaux.fr/.

[19] H. Rademacher: ‘Über die Erzeugenden von Kongruenzuntergruppen der Modulgruppe’,
Abh. Math. Sem. Univ. Hamburg 7 (1929), 134–148.
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