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ON ASTHENO-KÄHLER METRICS

ANNA FINO AND ADRIANO TOMASSINI

Abstract. A Hermitian metric on a complex manifold of complex dimension
n is called astheno-Kähler if its fundamental 2-form F satisfies the condition
∂∂Fn−2 = 0. If n = 3, then the metric is strong KT, i.e. F is ∂∂-closed.
By using blow-ups and the twist construction, we construct simply-connected
astheno-Kähler manifolds of complex dimension n > 3. Moreover, we construct
a family of astheno-Kähler (non strong KT) 2-step nilmanifolds of complex di-
mension 4 and we study deformations of strong KT structures on nilmanifolds
of complex dimension 3.

Finally, we study the relation between astheno-Kähler condition and (lo-
cally) conformally balanced one and we provide examples of locally conformally
balanced astheno-Kähler metrics on T2-bundles over (non-Kähler) homoge-
neous complex surfaces.

1. Introduction

Let (M,J, g) be a Hermitian manifold of complex dimension n. By [17] there
exists a one-parameter family of canonical Hermitian connections

∇t = t∇C + (1 − t)∇0,

where ∇C and ∇0 denote the Chern connection and the first canonical connection
respectively. This family includes for t = −1 the Bismut connection ∇B considered
by J.M. Bismut in [4].

If the fundamental 2-form F (·, ·) = g(J ·, ·) is closed, then the metric g is Kähler
and any connection ∇t in the above family coincides with the Levi-Civita connec-
tion. In the literature, weaker conditions on F have been studied and they involve
the closure with respect to the ∂∂-operator of the (k, k)-form F k = F ∧ · · · ∧ F .
Some of these conditions are characterized by some properties of either the Chern
or Bismut connection.

More precisely, if ∂∂F = 0, then the Hermitian structure (J, g) is said to be
strong Kähler with torsion and g is called strong KT (see e.g. [15]). In this case the
Hermitian structure is characterized by the condition that the Bismut connection
has skew-symmetric torsion. Strong KT metrics have been recently studied by
many authors and they have also applications in type II string theory and in 2-
dimensional supersymmetric σ-models [15, 39, 23]. Moreover, they have also links
with generalized Kähler structures (see for instance [15, 19, 22, 2, 11, 12]). New
simply-connected strong KT examples have been recently constructed by A. Swann
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in [40] via the twist construction, by reproducing the 6-dimensional examples found
previously in [18].

If ∂∂Fn−2 = 0, then in the terminology of J. Jost and S.-T. Yau ([26, 30]) the
Hermitian metric g on M is said to be astheno-Kähler. Therefore, on a complex
surface any Hermitian metric is automatically astheno-Kähler and in complex di-
mension n = 3 the notion of astheno-Kähler metric coincides with that one of strong
KT. For n > 3, as far as we know, not many results and examples of astheno-Kähler
manifolds are known.

Some rigidity theorems concerning compact astheno-Kähler manifolds have been
showed in [26, Theorem 6] and in [30], where, in particular, a generalization to
higher dimension of the Bogomolov’s Theorem on V II0 surfaces is proved (see [30,
Corollary 3]). Astheno-Kähler structures on Calabi-Eckmann manifolds have been
constructed in [34].

In [13] we proved that the blow-up of a complex manifold M at a point or along
a compact complex submanifold Y is still strong KT, as in the Kähler case (see for
example [5]). In Section 2 we will show that the results of [13] about resolutions of
strong KT orbifolds can be extended to Hermitian orbifolds satisfying the conditions

(1) ∂∂ F = 0 , ∂∂ F 2 = 0.

We will show that these manifolds satisfy ∂∂F k = 0 for all k > 1 and therefore
they are a proper subset of the astheno-Kähler manifolds.

As an application, we will construct a simply-connected example of compact
astheno-Kähler manifold satisfying previous conditions. Moreover, we will show
that other 8-dimensional examples may be obtained by applying the twist con-
struction of [40] to astheno-Kähler manifolds with torus action.

In complex dimension 3 invariant astheno-Kähler structures on nilmanifolds, i.e.
on compact quotients of nilpotent Lie groups by uniform discrete subgroups, were
studied in [11] showing that the existence of such a structure depends only on the
left-invariant complex structure on the Lie group. In Section 2 we will construct
a family of astheno-Kähler 2-step nilmanifolds of complex dimension 4, showing
that in general, for n > 3, there is no relation between the astheno-Kähler and
strong KT condition (Theorem 2.7) and that is not anymore true that if (J, g) is
astheno-Kähler, then any other J-Hermitian metric g̃ is astheno-Kähler.

By the classification obtained in [11] one of the strong KT nilmanifolds is the
Iwasawa manifold. In contrast with the Kodaira-Spencer stability theorem [29]
and the case of complex surfaces, in [13] we proved that on the Iwasawa manifold
the condition strong KT is not stable under small deformations of the complex
structure. Deformations of complex structures on nilmanifolds have been studied
in [38, 7, 32, 8] and recently S. Rollenske proved in [36, 37] that, in the generic case,
small deformations of invariant complex structures on nilmanifolds are again invari-
ant. This result can be applied to the strong KT 6-dimensional nilmanifolds and
then we have that any small deformation and deformation in large of an invariant
strong KT complex structure J0 on a 6-dimensional nilmanifold is still invariant.
By using the results of [27, 41] we will prove that the space of deformations of a
strong KT complex structure J0 on a 6-dimensional nilmanifold for which there ex-
ists a strong KT metric is parametrized generically by a real algebraic hypersurface
of degree 4 in C4 through the origin (Theorem 3.6). Furthermore, we show that the
origin is non singular (respectively singular) according to the fact that J0 is non
abelian (respectively abelian).
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If Fn−1 is ∂∂-closed or equivalently if its Lee form is co-closed, then the Her-
mitian metric g is called standard or a Gauduchon metric [16]. The Hermitian
structure is said to be balanced if its Lee form vanishes and conformally balanced if
its Lee form is exact. Astheno-Kähler and strong KT metrics on compact complex
manifolds cannot be balanced for n > 2 unless they are Kähler (see [33, 1]). More-
over, by [23, 35] a conformally balanced strong KT structure on a compact manifod
of complex dimension n whose Bismut connection has (restricted) holonomy con-
tained in SU(n) is necessarily Kähler.
We will prove a similar result for the astheno-Kähler metrics (Theorem 4.1) and
we will show that any non-Kähler compact homogeneous complex surface admits
a non-trivial compact T2-bundle M carrying an astheno-Kähler metric whose Lee
form is closed. In the case of the T2-bundle over the secondary Kodaira surface we
will obtain a “locally conformal solution”of the Strominger’s system considered in
[39].

Acknowledgements. We would like to thank Gueo Grantcharov and Simon Salamon
for useful comments and conversations. We are also grateful to CIRM-FBK and
to the Department of Mathematics of Trento for their warm hospitality. We also
would like to thank the referee for valuable remarks which improved the contents
of the paper.

2. Astheno-Kähler manifolds

Let (M,J) be a complex manifold of complex dimension n. Following Jost and
Yau (see [26]), we recall the following

Definition 2.1. A Hermitian metric g on (M,J) is said to be astheno-Kähler if
its fundamental 2-form form F satisfies the condition

∂∂Fn−2 = 0.

Thus, by definition, any Hermitian metric on a complex surface is astheno-Kähler
and in complex dimension 3, an astheno-Kähler structure means a strong KT met-
ric.

Remark 2.2. The product of two strong KT manifolds is still strong KT. This
property is not true anymore for astheno-Kähler metrics. Indeed, for instance
the product metric on the product of the Hopf surface and the Kodaira-Thurston
surface is strong KT but it is not astheno-Kähler.

If n > 3, then the condition ∂∂Fn−2 = 0 is equivalent to

d(c ∧ Fn−3) = 0 ,

where c = −JdF is the torsion 3-form of the Bismut connection.
Note that, in general, if a Hermitian manifold (M,J, g) satisfies the conditions

(1) then one has ∂∂ F k = 0, for any k ≥ 1 and in particular g is astheno-Kähler,
strong KT and standard. This follows by

∂∂F k = k ∂
(

∂F ∧ F k−1
)

= k
(

∂∂ F ∧ F − (k − 1)∂ F ∧ ∂ F
)

∧ F k−2, k > 1 .

Indeed, if (1) holds, then ∂F ∧ ∂F = 0 and therefore any F k is ∂∂-closed.
Following [16] we recall that a Hermitian metric g on (M,J) is said to be standard

if Fn−1 is ∂∂-closed. Then, if n = 4 a Hermitian metric which is at the same time
strong KT and astheno-Kähler metric, it must be also standard.
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A necessary condition for the existence of astheno-Kähler metrics on compact
complex manifolds was found in [26, Lemma 6], proving that any holomorphic
1-form must be d-closed.

We will provide a compact complex 3-dimensional manifold satisfying the previ-
ous condition on holomorphic 1-forms, with no astheno-Kähler metrics.

We start to note that, by using similar methods to those ones used in [10, The-
orem 2.2] and in [41, Prop. 21] in the context of strong KT geometry, it is possible
to show that ifM is a compact quotientM = Γ\G of a simply-connected Lie group
G by a uniform discrete subgroup Γ, endowed with an invariant complex structure
J and having no invariant astheno-Kähler J-Hermitian metrics, then M does not
admit any astheno-Kähler J-Hermitian metric at all.

Example 2.3. Let us consider the 6-dimensional nilpotent real Lie algebra g with
structure equations

(0, 0, 0, 0, 0, e12 + e34),

where, with this notation, we mean that the dual space of g is generated by
{e1, . . . , e6} satisfying

{

dei = 0 , i = 1, . . . , 5,

de6 = e12 + e34 ,

where eij stands for ei ∧ ej . Let G be the simply-connected Lie group whose Lie
algebra is g and set

ηj = e2j−1 + ie2j , j = 1, 2, 3 .

Then {η1, η2, η3} are complex (1, 0)-forms that define a left-invariant rational com-
plex structure J on the nilmanifold M = Γ\G, where Γ is a co-compact discrete
subgroup of G such that J(Γ) ⊂ Γ.
In view of [11, Theorem 3.2], there are no strong KT metrics on (M,J). On the
other hand, by [7, Theorem 2], it turns out that the Dolbeault cohomology group

H1,0

∂
(M) is spanned by {η1, η2}. Therefore, any holomorphic 1-form on M is d-

closed.

2.1. Examples by blow-ups and resolutions. The proof of the result by [13]
about the blow-up of a strong KT manifold at a point or along a compact complex
submanifold can be adapted to the class of Hermitian manifolds whose fundamental
2-form F satisfies the conditions (1), since in both cases the new fundamental 2-

form on the blow-up is obtained by adding a d-closed form to a ∂∂-closed form.
The Hermitian manifolds satisfying (1) are exactly equivalent to those which satisfy

∂∂F k = 0 for all k ≥ 1 and therefore such manifolds are a proper subset of the
astheno-Kähler manifolds.

Then one can prove the following

Proposition 2.4. Let (M,J, g) be an astheno-Kähler manifold of complex dimen-
sion n such that its fundamental 2-form F satisfies (1). Then both the blow-up

M̃p of M at a point p ∈ M and the blow-up M̃Y of M along a compact complex
submanifold Y admit an astheno-Kähler metric satisfying (1) too.

Thus by Proposition 2.4 it is possible to construct new examples of astheno-
Kähler manifolds by blowing-up a given astheno-Kähler manifold M (satisfying
(1)) at one or more points or along a compact complex submanifold.
Moreover, one may resolve singularities of a complex orbifold endowed with a special
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astheno-Kähler metric (satisfying (1)). We recall that orbifolds are a special class
of singular manifolds and they have been used by Joyce in [25] to construct compact
manifolds with special holonomy, in [6, 9] to obtain non-formal symplectic compact
manifolds and in [13] to construct new examples of strong KT manifolds.

One may give the following

Definition 2.5. A Hermitian metric g on an n-dimensional complex orbifold
(M,J) is said to be astheno-Kähler if the fundamental 2-form F of g satisfies

∂∂ Fn−2 = 0 .

An astheno-Kähler resolution of an astheno-Kähler orbifold (M,J, g) is the datum

of a smooth complex manifold (M̃, J̃) endowed with a J̃-Hermitian astheno-Kähler

metric g̃ and of a map π : M̃ → M , such that

i) π : M̃ r E → M r S is a biholomorphism, where S is the singular set of
M and E = π−1(S) is the exceptional set;

ii) g̃ = π∗g on the complement of a neighborhood of E.

As in [13], we can apply Hironaka Resolution of Singularities Theorem [21], for
which the singularities can be resolved by a finite number of blow-ups and we may
use the previous results about blow-ups to prove the following

Theorem 2.6. Let (M,J) be a complex orbifold of complex dimension n endowed
with a J-Hermitian astheno-Kähler metric g satisfying (1). Then there exists an
astheno-Kähler resolution of (M,J, g) satisfying also (1).

We may apply the previous theorem to the complex orbifold, quotient of the
standard complex torus by an involution. Let T2n = R2n/Z2n be the standard
torus and denote by (x1, . . . , x2n) global coordinates on R2n. Consider the complex
structure J on T2n defined by

(2)

{

η1 = dx1 + i (f(xn, x2n)dxn + dxn+1) ,

ηj = dxj + i dxn+j , j = 2, . . . , n,

where f = f(xn, x2n) is a C∞, Z2n-periodic and even function.
Let σ be the J-holomorphic involution σ : T2n → T2n induced by

σ ((x1, . . . , x2n)) = (−x1, . . . ,−x2n).

Thus, (M = T2n/〈σ〉, J) is a complex orbifold with singular set

S =

{

x+ Z2n | x ∈
1

2
Z2n

}

,

which consists of 256 points for n = 4. Since σ∗(ηj) = −ηj , j = 1, . . . , n , the
natural Hermitian metric and the corresponding fundamental 2-form on T2n

g =
1

2

n
∑

j=1

(

ηj ⊗ ηj + ηj ⊗ ηj
)

, F =
i

2

n
∑

j=1

ηj ∧ ηj

are both σ-invariant and by [13] g is strong KT. For n > 3, a direct computation
gives ∂∂ F 2 = −2∂ F ∧∂ F = 0 , i.e. the metric g is also astheno-Kähler. According
to Theorem 2.6, now we may resolve the singularities of T2n/〈σ〉 in order to obtain

a simply-connected astheno-Kähler manifold M̃ . More precisely, for any singular
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point p ∈ S, we take the blow-up at p. As in [25] we deduce that the astheno-Kähler

resolution M̃ of the orbifold T2n/〈σ〉 is simply-connected.

2.2. Examples by twist construction. We recall that in general, given a man-
ifold M with a torus action and a principal torus bundle P with connection θ, if
the torus action lifts to P commuting with the principal action, then one may con-
struct the twist W of the manifold, as the quotient of P by the torus action (see
[40]). Moreover, if the lifted torus action preserves the principal connection θ, then
tensors on M can be transferred to tensors on W if their pullbacks to P coincide
on H = Ker θ. A differential form α on M is H-related to a differential form αW

on W , α ∼H αW , if their pull-backs to P coincide on H.
By applying the twist construction of [40, Prop. 4.5] to 8-dimensional astheno-

Kähler manifolds with torus action, one can get new simply-connected astheno-
Kähler examples.
Let (N6, J) be a 6-dimensional simply-connected compact complex manifold with
a J-Hermitian structure g which is strong KT and standard. Consider the product
M8 = N6 × T2, where T2 is a 2-torus with an invariant Kähler structure. Then
M8 is astheno-Kähler and strong KT with torsion c supported on N6.
Assume that there are two linearly independent integral closed (1, 1)-forms Ωi ∈

Λ1,1
Z

(N6), i = 1, 2, with [Ωi] ∈ H2(N6,Z). If

2
∑

i,j=1

γijΩi ∧ Ωj = 0

for some positive definite matrix (γij) ∈ M2(R), then by [40, Prop. 4.5] there is a

compact simply connected T2-bundle W̃ over N6 whose total space is strong KT.
The manifold W̃ is the universal covering of the twist W of N6 × T2, where the
Kähler flat metric over T2 = C/Z2 is given by the matrix (γij) with respect to the
standard generators with a compatible complex structure and topologically W is
a principal torus bundle over N6 with Chern classes [Ωi]. Under the additional
condition

(3) c ∧ Ωj = 0 , j = 1, 2,

we will prove that the total space is astheno-Kähler.
By [40, Prop. 4.2], W has torsion 3-form cW such that

cW ∼H c− a−1Ω ∧ ξb,

dcW ∼H dc+
∑2

i,j=1 γijΩi ∧ Ωj ,

where a−1Ω = (Ω1,Ω2) and ξ is the standard action of the torus on the T2-factor.
Denote by F = FN6+FT2 and FW respectively the fundamental 2-form associated to
the Hermitian structure (J, g) onM8 and the induced Hermitian structure (JW , gW )
on W . Then, since FW ∼H F we have that also F 2

W ∼H F 2. Therefore, by [40,
Prop. 4.2]

cW ∧ FW ∼H (c− a−1Ω ∧ ξb) ∧ F.

By using again [40, Cor. 3.6], it follows that

d(cW ∧ FW ) ∼H d((c− a−1Ω ∧ ξb) ∧ F )− a−1Ω ∧ iξ((c− a−1Ω ∧ ξb) ∧ F ) ,
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where iξ denotes the contraction by ξ.
Now, iξc = 0 and iξF = Jξb and thus

(4)
d(cW ∧ FW ) ∼H (dc+

∑2

i,j=1 γijΩi ∧ Ωj) ∧ F − (c− a−1Ω ∧ ξb) ∧ dF

+a−1Ω ∧ (c− a−1Ω ∧ ξb) ∧ iξF .

Observe that

(5) a−1Ω ∧ a−1Ω ∧ ξb ∧ iξF =

2
∑

i,j=1

γijΩi ∧ Ωj = 0 ,

and that dFN6∧a−1Ω = 0, since a−1Ω is of type (1, 1). Therefore, by the assumption
(3), by (5) and by the astheno-Kählerianity of the metric g on M8 = N6 × T2, it

follows that the right hand side of (4) vanishes. Hence W̃ is strong KT and astheno-
Kähler.

2.3. 8-dimensional nilmanifolds. We will construct a family of astheno-Kähler
(non strong KT) 2-step nilmanifolds of real dimension 8, showing that in higher
real dimension than 6 there is in general no relation between astheno-Kähler and
strong KT structures. Let {η1, . . . , η4} be the set of complex forms of type (1, 0),
such that

(6)























dηj = 0, j = 1, 2, 3,

dη4 = a1 η
1 ∧ η2 + a2η

1 ∧ η3 + a3η
1 ∧ η1 + a4 η

1 ∧ η2 + a5 η
1 ∧ η3

+a6 η
2 ∧ η3 + a7 η

2 ∧ η1 + a8 η
2 ∧ η2 + a9 η

2 ∧ η3 + a10 η
3 ∧ η1

+a11 η
3 ∧ η2 + a12 η

3 ∧ η3,

where aj ∈ C, j = 1, . . . , 12.
Then the complex forms {η1, . . . , η4} span the dual of a 2-step nilpotent Lie

algebra n, depending on the complex parameters a1, . . . , a12 and define an integrable
almost complex structure J on n. Let N be the simply connected Lie group with
Lie algebra n. Then, for any a1, . . . , a12 ∈ Q[i], by the nilpotency of N , in view of
Malcev’s theorem [31], there exists a uniform discrete subgroup Γ of N such that
M = Γ\N is a compact nilmanifold.

Theorem 2.7. Let a1, . . . , a12 ∈ Q[i] and (M = Γ\N, J) be the corresponding
compact complex nilmanifold of real dimension 8. Then the Hermitian metric

g =
1

2

4
∑

j=1

ηj ⊗ ηj + ηj ⊗ ηj

is astheno-Kähler if and only if

(7)
|a1|

2 + |a2|
2 + |a4|

2 + |a5|
2 + |a6|

2 + |a7|
2 + |a9|

2+

|a10|
2 + |a11|

2 = 2ℜe (a3a8 + a3a12 + a8a12) .

If, in addition a8 = 0 and |a4|
2 + |a11|

2 6= 0, then the astheno-Kähler metric g
is not strong KT. Moreover, if a8 = 0, the astheno-Kahler metric g is strong KT if
and only if a1 = a4 = a6 = a7 = a9 = a11 = 0.
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Proof. The fundamental 2-form of (J, g) is given by

F =
i

2

4
∑

j=1

ηj ∧ ηj .

A straightforward computation yields

∂∂ F 2 = − 1

2
∂∂

(

∑

i<j η
iijj

)

= 1

2
(|a1|

2 + |a2|
2+|a4|

2+|a5|
2+|a6|

2 +|a7|
2 +|a9|

2 +|a10|
2 +|a11|

2

−2ℜe (a3a8 + a3a12 + a8a12)) η
123123.

where, for instance, ηiijj denotes the wedge product ηi ∧ ηi ∧ ηj ∧ ηj .
Hence ∂∂ F 2 = 0 if and only if (7) holds.

The last part of the Theorem can be easily showed by a direct computation. �

As an application of the last result, we explicitly construct an astheno-Kähler
metric which is not strong KT. Take

a1 = a2 = a5 = a6 = a7 = a8 = a9 = a10 = 0, a3 = a4 = a11 = a12 = 4

and set ηj = e2j−1 + ie2j , j = 1, . . . , 4 . Then n has structure equations

(8)











dei = 0 , i = 1, . . . , 6 ,

de7 = 4(e13 + e24 − e35 − e46) ,

de8 = 4(e23 − e14 + e45 − e36 − 2e12 − 2e56) .

Let M = Γ\G be the associated compact nilmanifold. Then, the Hermitian metric

g =
∑8

i=1 e
j⊗ej is an astheno-Kähler metric onM , that is not strong KT, according

to Theorem 2.7.
If we take

a1 = a2 = a4 = a6 = a7 = a8 = a9 = a11 = 0, a3 = a5 = a10 = a12 = 2

and set ηj = e2j−1 + ie2j , j = 1, . . . , 4 , then we get a Hermitian metric satisfying
conditions (1).

Remark 2.8. In real dimension six, by [11] the existence of a strong KT structure
on a nilpotent Lie algebra depends only on the complex structure on the nilpotent
Lie algebra. The same property is not anymore true for a astheno-Kähler structure
on a nilpotent Lie algebra of real dimension eight. Indeed, for the nilpotent Lie
algebra defined by (6) with the coefficients aj , j = 1, . . . , 12, satisfying the condition
(7), the J-Hermitian metric given by

1

2
[2(η1⊗η1+η1⊗η1)+3(η2⊗η2+η2⊗η2)+4(η3⊗η3+η3⊗η3)+5(η4⊗η4+η1⊗η4)]

is not any more astheno-Kähler.

3. Deformations of strong KT complex structures on 6-dimensional
nilmanifolds

We will say that a complex structure J on a nilmanifold Γ\G is invariant if it
arises from a corresponding left-invariant complex structure on the Lie group G.
We recall that a complex structure J on a Lie algebra g is called abelian, if and only
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if [JX, JY ] = [X,Y ], for any X,Y ∈ g (see [3]) and it is bi-invariant if J commutes
with the adjoint representation.

By using the result of [11] together with the results about “symmetrization”of
non-invariant structures obtained in [10, 41], one has the following

Theorem 3.1. Let M6 = Γ\G be a 6-dimensional nilmanifold with an invariant
complex structure J . Then there exists a J-Hermitian strong KT metric g if and
only if J has a basis (ω1, ω2, ω3) of (1, 0)-forms such that

(9)







dω1 = 0
dω2 = 0

dω3 = Aω12 +Bω22 + Cω11 +Dω12 + Eω12

where A,B,C,E, F are complex numbers such that

(10) |A|2 + |D|2 + |E|2 + 2Re(BC) = 0

and ωij stands for ωi ∧ ωj. Moreover, the Lie algebra g of G is isomorphic to one
of the following:

h2 = (0, 0, 0, 0, e12, e34) ,

h4 = (0, 0, 0, 0, 0, e12, e14 + e23),

h5 = (0, 0, 0, 0, e13 + e42, e14 + e23) ,

h8 = (0, 0, 0, 0, 0, 0, e12) .

Remark 3.2. By the previous theorem one has that J0 is abelian, i.e. the differ-
ential of the (1, 0)-forms are only of type (1, 1), if and only if E = 0.

In the sequel, we will denote by J0 the strong KT complex structure, i.e. J0 is
the complex structure which gives rise to a strong KT structure, associated to the
basis (ω1, ω2, ω3) satisfying the condition (10).

We will use as in [11] the notation

Yω = Aω12 +Bω22 + Cω11 +Dω12 ,

where

Y =

(

A B
C D

)

so that

dω3 = Yω + Eω12 .

Moreover, we will denote as in [11] by

adj(Y) =

(

D −B
−C A

)

.

The 1-forms ωj , j = 1, 2, 3, associated to the strong KT complex structure J0, are
left-invariant on G and they define a basis (e1, . . . , e6) of real 1-forms by setting

ω1 = e1 + ie2 , ω2 = e3 + ie4 , ω3 = e5 + ie6 .

These 1-forms are pull-backs of corresponding 1-forms on M6, which we denote by
the same symbols.

Since for the dual basis (e1, . . . , e6) we have

[ej , ek] ⊆ span < e5, e6 > ,
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for any j, k = 1, . . . , 4, the quotient M6 is the total space of a principal T2 -bundle
over T4. The space of invariant 1-forms annihilating the fibres of π :M → T4 is

V = span < e1, e2, e3, e4 >⊆ ker(d : g∗ → Λ2g∗),

with equality for the Lie algebras hj , j = 2, 4, 5.
As in [27] we can prove the following

Lemma 3.3. Let J be any invariant complex structure on a strong KT nilmanifold
M6 = Γ\G . Then the projection π induces a complex structure J̃ on T4 such that

π : (M6, J) → (T4, J̃) is holomorphic.

Proof. In order to prove the result is sufficient to show that V is J-invariant. By
Theorem 3.1 the Lie algebra g is isomorphic to h2, h4, h5 or h8.
Any complex structure on h8 is abelian, so the center given by span < e5, e6 > is
preserved by the complex structure and therefore V is J-invariant. By [41, Lemma
11] for any invariant (non bi-invariant) complex structure on the Lie algebras h2,
h4 and h5 there is a basis (η1, η2, η3) of (1, 0)-forms such that

dηj = 0 , j = 1, 2 ,

dη3 = ρη12 + η11 +Gη12 +Hη22 ,

with ρ = 0, 1 and G,H ∈ C. Then, since the real space associated to the complex
space spanned by η1, η2 coincides with the kernel of d : g∗ → Λ2g∗, we have that
also in this case V is J-invariant.

If J is bi-invariant, then the Lie algebra g has to be isomorphic to h5 and the
result follows by [27]. �

Let (M6 = Γ\G, J0) be a 6-dimensional nilmanifold with J0 an invariant strong
KT complex structure. By Theorem 3.1 we know that g is 2-step nilpotent with
dim g1 ≥ 2 and with center of dimension 1 or 2. Therefore, we may apply Theorem
4.1 and 4.3 by Rollenske in [37] and conclude that any small and large deformation
of J0 is still invariant. Consequently, we may consider invariant deformations and
work on the space of complex structures of g

C(g) = {J ∈ End(g) |J2 = −1, NJ = 0},

where by NJ we denote the Nijenhuis tensor.
We denote by C+(g) the space of complex structures of g inducing the same

orientation on V as J0 and by C·
0(g) the open subset of C+(g) whose elements are

such that there exists a basis (η1, η2, η3) for which η123 ∧ ω123 6= 0.
We can prove the following

Theorem 3.4. Let (M6, J0) be a 6-dimensional strong KT nilmanifold with J0
defined by the (1, 0)-forms (ω1, ω2, ω3). If J ∈ C·

0(g), then there exists a basis of
(1, 0)-forms (η1, η2, η3) such that

(11)











η1 = ω1 + aω1 + bω2

η2 = ω2 + cω1 + fω2

η3 = ω3 + xω1 + yω2 + uω3,

with a, b, c, f, x, y, u ∈ C satisfying

(12) − (detX)E +
(

tr(XY)− E
)

u+ tr(X adj(Y)) = 0,
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where

(13) X =

(

a b
c f

)

.

Therefore, the generic complex structure on M6 has a space of (1, 0)-forms gen-
erated by the previous forms η1, η2 and η3.

Proof. In view of Lemma 3.3, we have that η1 and η2 can be chosen so that their
real and imaginary components span V. The condition

η123 ∧ ω123 6= 0

implies that ω1, ω2, ω3 appear with non-zero coefficients.
The equation (12) follows from the integrability condition dη3 ∧η12 = 0 express-

ing the fact that dη3 has no term involving η12.
By a direct computation one has that

dη3∧η12 = −(cEb−cB+cuB−fEa+fA+fuD−uE−bC+buC+aD+auA)ω1212.

Therefore the complex structure is integrable if and only if the equation (12) is
satisfied. �

Consider the space Λ = 〈η1, η2, η3〉 generated by the modified complex 1-forms
(11). If Λ is maximally complex, then it defines an invariant almost complex struc-
ture on M6 that we will denote by JX,x,y, where X is given by (13).

By the previous theorem, the almost complex structure JX,x,y is integrable if
and only if the equation (12) holds.

Remark 3.5. In the case of Iwasawa manifold (with the bi-invariant complex
structure J0 which is therefore non strong KT) one has E = 1 and Y = 0 and
therefore the integrability condition reduces to the equation

u = bc− af = − detX

already considered in [11].

We are ready to prove the following

Theorem 3.6. Let (M6 = Γ\G, J0) be a 6-dimensional nilmanifold with an in-
variant strong KT complex structure J0. Then the space of deformations of J0 for
which there exists a strong KT metric is parametrized generically by a real algebraic
hypersurface of degree 4 in C4 through the origin O = (0, 0, 0, 0). Furthermore, O
is non singular (respectively singular) according to the fact that J0 is non abelian
(respectively abelian).

Proof. By Theorem 3.4, the generic complex structure J on M6 is defined by the
(1, 0)-forms (η1, η2, η3) given by (11). We have

η12 = ω12 + aω12 + bω22 + cω11 + fω12 + (af − bc)ω12

= ω12 +Xω + (detX)ω12.

We write the characteristic polynomial of XX as p(x) = x2 − γx+ δ, so that

γ = tr(XX) = |a|2 + |f |2 + bc+ bc ,

δ = det(XX) = |a|2|f |2 + |b|2|c|2 − afbc− bcaf.
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The relations
η1122 = (1 − γ + δ)ω1122 ,

η112233 = (1− γ + δ)(1− |u|2)ω112233

express volume changes associated to a switch of basis from (ωi) to (ηi). As a
consequence, Λ ∩ Λ = {0} if and only if

(14) |u| 6= 1 and p(1) 6= 0

and these are the conditions that ensure that the complex structure JX,x,y is well
defined.

From now we suppose that the conditions (10), (12) and (14) hold.
For simplicity, we will also assume that x = y = 0, and we will denote the

complex structure JX,0,0 by JX, since the strong KT condition is determined in
terms of dη3, which does not involve x, y.

As in the proof of Lemma 4.1 of [11] consider the two bases (ω1, ω2, ω1, ω2) and
(η1, η2, η1, η2). The second is related to the first one by the block matrix

M =

(

I X

X I

)

.

Set Z = (I −XX)−1 so that p(1) = det(Z)−1. Then the inverse of M is given by

M−1 =

(

Z −ZX

−XZ Z

)

with

Z =
1

p(1)

(

1− bc− |f |2 ab+ bf,
ca+ fc 1− cb− |a|2

)

and

ZX =
1

p(1)

(

a− a|f |2 + bcf b− |b|2c+ afb
c− |c|2b+ afc f − |a|2f + cba

)

.

Therefore

p(1)ω1 = (1− bc− |f |2)η1+

+(ab+ bf)η2 + (−a+ a|f |2 − bcf)η1 + (−b+ |b|2c− afb)η2,

p(1)ω2 = (ca+ fc)η1 + (1− cb− |a|2)η2+

+(−c+ |c|2b− afc)η1 + (−f + |a|2f − cba)η2.

By [41, Theorem 19] a complex structure J0 on the Lie algebra g of G is strong KT
if and only if the complex structure J0 is equivalent to the one defined by

(15)

{

dωj = 0 , j = 1, 2 ,

dω3 = ρω12 + ω11 +Gω12 +Hω22

with ρ = 0, 1, G,H ∈ C such that ρ+ |G|2 = 2Re (H). Therefore, comparing with
the structure equations (9), the expression of the matrix Y in the new parameters
ρ,G,H is the matrix

Y =

(

0 −H
ρ G

)

.

We will examine separately the two cases: ρ = 1 (J0 non abelian) and ρ = 0 (J0
abelian).
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For ρ = 1, the equation (12) reduces to

−(detX) +
(

tr(XY)− 1
)

u+ tr (Xadj(Y)) = 0

i.e. to

(fa− cb− cH + b− aG)− (fG− cH + b− 1)u = 0 .

If we denote by

γ1 = −1 + c+ |f |2 −Gfc+ |c|2H , γ2 = b+Gab− |b|2 +H −H |a|2 ,

γ3 = G− f + bf + acH − bcG , γ4 = −a− bf + afG− acH ,

γ5 = 1− b−Gf + cH , γ6 = af − cb− cH − aG ,

then we have that given the complex structure J0 equivalent to (15) with the
complex numbers G,H satisfying the condition

1− 2ReH + |G|2 = 0 ,

the new complex structure JX is integrable and strong KT if and only if the fol-
lowing equations hold

(16)











γ5u+ γ6 = 0 ,

(1 + |u|2)
(

|γ3|
2 + |γ4|

2 + 2Re(γ1γ2)
)

+ |γ5|
2
(

1− |u|2)2+

+4Re (u(γ3γ4 − γ1γ2)) = 0 ,

since in terms of the γj , j = 1, . . . , 5, we have that

p(1)dη3 = γ5(1− |u|2)η12 + (−γ1 + uγ1)η
11 + (γ3 + uγ4)η

12

+(γ4 + uγ3)η
12 + (−γ2 + uγ2)η

22.

Assuming that γ5 6= 0 and by using the first equation of (16), we may eliminate
the complex parameter u. Then, the second equation of (16) becomes

(|γ5|
2 + |γ6|

2)
(

|γ3|
2 +|γ4|

2 + 2Re(γ1γ2)
)

+
(

|γ5|
2 − |γ6|

2)2+

−4Re (γ5γ6(γ3γ4 − γ1γ2)) = 0 ,

which is a real equation in the complex variables a, b, c and f and thus defines a
real hypersurface of degree 4 in C4, non singular at the point O = (a = 0, b = 0, c =
0, f = 0). Therefore, we have that the complex structure JX (deformation of J0),
defined by the (1, 0)-forms















η1 = ω1 + aω1 + bω2 ,

η2 = ω2 + cω1 + fω2 ,

η3 = ω3 − γ6

γ
5

ω3 ,

has a compatible strong KT metric if and only if (a, b, c, f) belongs to the previous
hypersurface. This completes the case ρ = 1.

For ρ = 0, the equation (12) reduces to

tr(XY)u+ tr (X adj(Y)) = 0 ,

or equivalently to

−fuG− cH + cuH + b− bu− aG = 0 .
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We set

δ1 = |b|2 −Gab−H +H |a|2 , δ2 = −1 + |f |2 −Gfc+H |c|2 ,

δ3 = G+ bf −Gbc+ caH , δ4 = −bf + faG− caH ,

δ5 = −fG+ cH − b , δ6 = −cH + b− aG .

Then, we have that, given the complex structure J0 equivalent to (15) with ρ = 0
and G,H such that |G|2 = 2Re (H), the new almost complex structure JX is
integrable and strong KT if and only if the following equations hold

(17)















δ5u+ δ6 = 0 ,

(1 + |u|2)(|δ3|
2 + |δ4|

2 − 2Re (δ1δ2)) + |δ5|
2(1 − |u|2)2+

+4Re (u(δ1δ2 + δ3δ4 + δ4δ3)) = 0

since
p(1)dη3 = (δ1u− δ1)η

22 + (δ2u− δ2)η
11 + (δ4u+ δ3)η

12

+(−δ3u− δ4)η
21 + (δ6u+ δ5)η

12.

Assuming that δ5 6= 0 and by using the first equation of (17) we may eliminate the
complex parameter u. Then, the second equation of (17) becomes the real equation
in the complex variables a, b, c, f

(|δ5|
2 + |δ6|

2)(|δ3|
2 + |δ4|

2 − 2Re (δ1δ2)) + (|δ5|
2 − |δ6|

2)2+

−4Re (δ5δ6(δ1δ2 + δ3δ4 + δ4δ3)) = 0

which defines a real hypersurface of degree 4 in C4, singular at the point (a = 0, b =
0, c = 0, f = 0). In this way we prove that JX, deformation of J0, defined by the
(1, 0)-forms











η1 = ω1 + aω1 + bω2,

η2 = ω2 + cω1 + fω2,

η3 = ω3 − δ6
δ5
ω3,

has a compatible strong KT metric if and only if (a, b, c, f) belongs to the previous
hypersurface. This completes the case ρ = 0. Then the theorem is proved. �

4. Locally conformally balanced structures

In general, if a Hermitian manifold (M,J, g) is compact, then by using its funda-
mental 2-form F , one has two natural linear operators acting on differential forms:

Lϕ = F ∧ ϕ,

and the adjoint operator L∗ of L with respect to the global scalar product defined
by

< ϕ,ψ >= p!

∫

M

(ϕ, ψ)volg,

where (ϕ, ψ) is the poinwise g-scalar product and volg is the volume form.
As in the strong KT case, the astheno-Kähler condition on a compact Hermitian

manifold is complementary to the balanced one, since by [33, Theorem 1.1], for
n ≥ 3, one has

(18) L∗n−1(2i∂∂Fn−2) = 4n−1(n− 1)!(n− 2)[2(n− 2)d∗θ + 2||θ||2 − ||T ||2],
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where θ = Jd∗F is the Lee form, d∗θ its co-differential, ||θ|| its g-norm and T is
the torsion of the Chern connection ∇C on (M, g).
Therefore, if (J, g) is balanced, then θ = 0 and, consequently, the astheno-Kähler
condition implies that T = 0, i.e. g is Kähler.

By [23, 35], a conformally balanced strong KT structure on a compact manifod of
complex dimension n whose Bismut connection has (restricted) holonomy contained
in SU(n) is necessarily Kähler. We now prove a similar result for the astheno-Kähler
metrics.

Theorem 4.1. A conformally balanced astheno-Kähler structure (J, g) on a com-
pact manifold of complex dimension n ≥ 3 whose Bismut connection has (restricted)
holonomy contained in SU(n) is necessarily Kähler and therefore it is a Calabi-Yau
structure.

Proof. Since the Hermitian structure is astheno-Kähler, then by (18), we have

2(n− 2)d∗θ + 2||θ||2 − ||T ||2 = 0 .

Therefore,

(19) d∗θ =
1

2(n− 2)
[||T ||2 − 2||θ||2] .

By [1, formula (2.11)], the trace 2u of the Ricci form of the Chern connection is
related to the trace b of the Ricci form of the Bismut connection by the equation

(20) 2u = b+ 2(n− 1)d∗θ + 2(n− 1)2||θ||2 .

We recall that the condition that the Bismut connection has (restricted) holonomy
contained in SU(n) implies that the Ricci form of the Bismut connection vanishes
and, if in addition M is compact, then the first Chern class c1(M) vanishes.

Therefore, by using (19) and (20), we get

(21) 2u =
(n− 1)

(n− 2)
[||T ||2 − 2||θ||2] + 2(n− 1)2||θ||2

and then, if (J, g) is not Kähler, we must have u > 0.
Since in addition (J, g) is conformally balanced, then it was shown in [39, 35]

that there exists a nowhere vanishing holomorphic (n, 0)-form α̃.
Let be f = − 1

2
||α||2 and denote by LC the complex Laplacian defined by

LC(f) = ∆f + (df, θ) ,

where ∆ is the standard Laplace operator and ( , ) is the scalar product on the
forms induced by g. Then, since α̃ is holomorphic, as in [35] (see also [24, formula
(19)]) we have

L(f) = 2u ||α̃||2 + ||∇C α̃||2 ,

where ∇C is the Chern connection and u is given by (21).
By the fact that u > 0 and α̃ 6= 0, it follows that LCf > 0. From the maximum

principle, we have that f is constant which implies that u = 0.
The theorem is proved. �

Remark 4.2. The previous theorem for n = 3 was already proved in [23, 35].
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5. T2-bundles over complex surfaces

By [20] a complex (non-Kähler) surface diffeomorphic to a 4-dimensional compact
homogeneous manifold X = Θ\L, where Θ is a uniform discrete subgroup of L, and
which does not admit any Kähler structure is one of the following:

a) Hopf surface;

b) Inoue surface of type S0;

c) Inoue surface of type S±;

d) primary Kodaira surface;

e) secondary Kodaira surface;

f) properly elliptic surface with first odd Betti number.

A T2-bundle over the Inoue surface of type S0 was considered in [12] in order
to construct a 6-dimensional compact solvmanifold with a non-trivial generalized
Kähler structure. A similar construction can be done for any of the non-Kähler
complex homogeneous surfaces, by using the description of L and Θ in [20]. Indeed
we can prove the following

Theorem 5.1. On any non-Kähler compact homogeneous complex surface X =
Θ\L there exists a non-trivial compact T2-bundle M carrying a locally conformally
balanced strong KT metric.

Proof. For the Inoue surface of type S0, we already proved the result. For the sur-
faces a), c), d) and e) we may consider respectively the 6-dimensional Lie algebras:

g1 = (e23, e31, e12, 0, π
2
e64, π

2
e45),

g2 = (e12, 0, e14, e24, π
2
e26,−π

2
e25),

g3 = (0, 0, e12, 0, π
2
e46,−π

2
e45),

g4 =
(

e24,−e14, e12, 0, π
2
e46,−π

2
e45

)

.

endowed with the complex structure J , defined by the (1, 0)-forms

η1 = e1 + ie4, η2 = e2 + ie3, η3 = e5 + ie6

and the inner product g defined by g =
∑6

j=1
ej ⊗ ej . Thus g is J-Hermitian and,

denoting by F the fundamental 2-form associated with the Hermitian structure
(J, g), by a direct computation we have that JdF is closed and that the Lee form
is closed.

For the surface f) we may take the Lie algebra

g5 =
(

2e13,−2e23,−e12, 0,
π

2
e46,−

π

2
e45

)

endowed with the complex structure

Je1 = 1

2
(e3 + e4) , Je2 = 1

2
(e3 − e4) , Je3 = −(e1 + e2) ,

Je4 = −e1 + e2 , Je5 = e6 , Je6 = −e5 .

and the inner product

g = e1 ⊗ e1 + e2 ⊗ e2 + 2(e3 ⊗ e3 + e4 ⊗ e4) + e5 ⊗ e5 + e6 ⊗ e6.

The fundamental form

F = −e13 − e14 − e23 + e24 + e56
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is such that the 3-form JdF = 2e123 + 2e124 is closed. Moreover, the Lee form is
closed.

For every Lie algebra gi we have that the span of {e1, e2, e3, e4} can be viewed
as the dual of the Lie algebra of the Lie group L.

Let H3 be the real 3-dimensional Heisenberg Lie group and H = R ⋉ϕ R2 be
the semidirect product of the groups R and R2, where ϕ : R → GL(2,R) is the
homomorphism given by

ϕ(t) =

(

cos(π
2
t) sin(π

2
t)

− sin(π
2
t) cos(π

2
t)

)

.

We have

G1 = SU(2)×H , G3 = H3 ×H , G5 = ˜SL(2,R)×H

and a uniform discrete subgroup of H is of the form Γ′ = Z ⋉ϕ Z2. Therefore the
Lie groups Gi, i = 1, 3, 5 admit a uniform discrete subgroup.

Let (mjk) ∈ SL(2,Z) with two real positive eigenvalues a and b and denote by
(a1, a2) and (b1, b2) the corresponding eigenvectors. The remaining Lie groups G2

and G4 are the semidirect products (see [20] for the description of the corresponding
Lie group L)

G2 = R ⋉ν (H3 × C) , G4 = R⋉ν̃ (H3 × C) ,

where the automorphisms ν(t) and ν̃(t) are given respectively by

ν(t) : (x+ iy, u, z) 7→ (atx+ ibty, u, ei
π

2
tz) ,

ν̃(t) : (x+ iy, u, z) 7→ (ei
π

2
t(x+ iy), u, ei

π

2
tz) ,

by identifying the matrix




1 x u
0 1 y
0 0 1





in H3 with (x+ iy, u) ∈ C× R.
The Lie group G2 admits a compact quotient by a uniform discrete subgroup of

the form Γ2 = Z⋉ν (Γ̃n × Z2), where Z2 is the standard lattice of C and Γ̃n is the
lattice of H3 generated by the elements

g1 =





1 a1 c1
0 1 b1
0 0 1



 , g2 =





1 a2 c2
0 1 b2
0 0 1



 , g3 =





1 0 c3
0 1 0
0 0 1



 , ci ∈ R

such that

i) [g1, g2] = gn3 ,

ii) ν(1)(g1) = gm11

1 gm12

2 gk3 , ν(1)(g2) = gm21

1 gm22

2 gl3 , with l, k ∈ Z.

Let Θn be the discrete sugroup of H3 defined by

Θn =











1 a c
n

0 1 b
0 0 1



 , a, b, c ∈ Z







,

then Z ⋉ν̃ (Γn × Z2) is a uniform discrete subgroup of the solvable Lie group G4.
By construction any quotient Γi\Gi is a T2-bundle over the complex surface

Θ\L. �
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If X is either a Hopf surface or a primary Kodaira surface or a properly elliptic
surface with odd first Betti number, then the T2-bundle M is a product of two
3-dimensional manifolds. Then the interesting cases are the remaining.

The T2-bundle Γ4\G4 over the secondary Kodaira surface satisfies the equation

(22) 0 = 2i∂∂F =
α′

4
tr (RB ∧RB),

where we denote by RB the curvature of the Bismut connection and by F the fun-
damental 2-form. This equation is of interest in the context of superstring theory,
since it is a particular case of an equation in the Strominger’s system considered in
[39] for Hermitian manifolds of complex dimension three:

(23) dH = 2i∂∂F =
α′

4
[tr (R ∧R)− tr (FA ∧ FA)] ,

where A is a Hermitian-Einstein connection on an auxiliary semi-stable bundle on
M , ∇ is a metric connection with skew-symmetric torsion H on M , FA and R
denote respectively the curvature of the two connections A and ∇.
By [39, 35] the Hermitian manifold has to be conformally balanced with a holomor-
phic (3, 0)-form.

The first solutions of the complete Strominger’s system on non-Kähler manifolds
were constructed by J. X. Fu and S. -T. Yau (see [14]).

The locally conformally balanced strong KT manifold Γ4\G4 gives a solution
in dimension 6 of the equation (23) with FA = 0. Indeed, for the Lie algebra g4
we have that JdF = −e123. Thus, the non-zero torsion 2-forms and connections
1-forms of the Bismut connection ∇B are

τ1 = e23 , τ2 = −e13 , τ3 = e12 ,

ω1
2 = −e3 + e4 = −ω2

1 , ω5
6 = −π

2
e4 = −ω6

5 .

Therefore, we get that the only non-zero curvature forms for ∇B are given by

Ω1
2 = −e12 = −Ω2

1

and consequently

tr (Ω ∧ Ω) =
∑

i,j

Ωi
j ∧Ωi

j = 0 .

We will show now that Γ4\G4 does not admit any non-vanishing holomorphic (3, 0)-
form. By a straightforward computation, we have that the non-vanishing curvature
forms for the Chern connection ∇C are

Ω̃1
2 = −Ω̃3

4 =
1

2
e12 , Ω̃5

6 = −e12 .

Denote by R̃i
jhk the curvature components defined by

Ω̃i
j =

6
∑

h,k=1

R̃i
jhke

h ∧ ek,

and consider the curvature operator R̃(X,Y ) of the Chern connection defined by

R̃(X,Y )Z =
6

∑

i,j,h,k=1

R̃i
jhk(e

h ∧ ek)(X,Y ) ej(Z) ei.
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By [28, Lemma 2, p. 151], if (Γ4\G4, J, g) admits a non-zero holomorphic (3, 0)-

form, then the traces of the two operators R̃(X,Y ) and J ◦ R̃(X,Y ) must vanish,
but, by a direct computation, we have that the

tr (J ◦ R̃)(e1, e2) = −π .

Although in physics the most preferred connection for the anomaly cancellation
condition is the non-Hermitian connection with skew-symmetric torsion equal to
the opposite of the torsion of ∇B , also the case of a Hermitian connection may be
interesting. Indeed, we obtain an example, which can be interpreted as a “locally
conformal solution”of the Strominger’s system, since locally there is a holomorphic
(3, 0)-form and conformal change to a balanced metric, plus the anomaly cancella-
tion.
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ON ASTHENO-KÄHLER METRICS 20

[21] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic
zero, I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1064), 205–326.

[22] N. J. Hitchin, Instantons and generalized Kähler geometry, Comm. Math. Phys. 265 (2006),
131–164.

[23] S. Ivanov, G. Papadopoulos, Vanishing theorems and string backgrounds, Classical Quantum
Gravity 18 (2001), 1089–1110.

[24] S. Ivanov, G. Papadopoulos, A no go theorem for string warped compactifications, Phys.
Lett. B 497 (2001), 309–316.

[25] D. D. Joyce, Compact Manifolds with Special Holonomy, Oxford Mathematical Monograph,
Oxford university Press, 2000.

[26] J. Jost, S. -T. Yau, A non-linear elliptic system for maps from Hermitian to Riemannian
manifolds and rigidity theorems in Hermitian geometry, Acta Math. 170 (1993), 221–254;
Corrigendum Acta Math. 173 (1994), 307.

[27] G. Ketsetzis, S. Salamon, Complex structures on the Iwasawa manifold, Adv. Geom. 4 (2004),
165–179.

[28] S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol. II. Interscience Tracts
in Pure and Applied Mathematics, No. 15 Vol. II Interscience Publishers John Wiley and
Sons, Inc., New York-London-Sydney 1969.

[29] K. Kodaira, D. C. Spencer, On deformations of complex analytic structures. III. Stability

theorems for complex structures, Ann. of Math. (2) 71 (1960), 43–76.
[30] J. Li, S. -T. Yau, F. Zheng, On projectively flat Hermitian manifolds, Comm. Anal. Geom.

2 (1994), 103–109.
[31] A. I. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Translation Ser. 1, 9

(1962), 276–307.
[32] C. Maclaughlin, H. Pedersen, Y. S. Poon, and S. Salamon, Deformation of 2- step nilmanifolds

with abelian complex structures, J. London Math. Soc. (2) 73 (2006), 173–193.
[33] K. Matsuo, T. Takahashi, On compact astheno-Kähler manifolds, Colloq. Math. 89 (2001),

213–221.
[34] K. Matsuo, Astheno-Kähler structures on Calabi-Eckmann manifolds, Colloq. Math. 115

(2009), no. 1, 33–39.
[35] G. Papadopolous, KT and HKT geometries in strings and in black hole moduli spaces,

hep.th/0201111.
[36] S. Rollenske, Lie-algebra Dolbeault-cohomology and small deformations of nilmanifolds, J.

Lond. Math. Soc. (2) 79 (2009), 346–362.
[37] S. Rollenske, Geometry of nilmanifolds with left-invariant complex structure and deformations

in the large, Proc. Lond. Math. Soc. (3) 99 (2009), 425–460.
[38] S. M. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra, 157

(2001), 311–333.
[39] A. Strominger, Superstrings with torsion, Nuclear Phys. B 274 (1986), 253–284.
[40] A. Swann, Twisting Hermitian and hypercomplex geometries, arXiv: 0812.2780, to appear

in Duke Math. J..
[41] L. Ugarte, Hermitian structures on six-dimensional nilmanifolds, Transform. Groups 12

(2007), 175–202.
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