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Chapter 1

Introduction

Abstract.
We consider the formal Hamiltonian system

(1.1) JY' = (M + B)Y,

where JJ = —1I,, A and B are C™"-valued functions on [a,b), A is pointwise self-adjoint
and positive semidefinite, but B need not be self-adjoint. The order n is arbitrary.

Our aim is to construct closed differential operators with non-empty resolvent set, which
realize the formal system within an appropriate Hilbert space. Therefor we first construct
the corresponding resolvent operator via a matrix-valued Titchmarsh-Sims-Weyl type M-
function.

It turns out that the analysis of the adjoint problem is essential for the theory. Fortunately
this analysis does not generate any further assumptions.

Besides the norm generated by A, another Sobolev-type norm appears which seems to be
some kind of natural for the problem. The geometry of the generalised Weyl limit-sets de-
pend strongly on the number of linearly independent solutions of (1.1), of which this second
norm is finite. The limit-point and limit-circle classification is transferred, whereas the na-
ture of this problem yields several cases to be distinguished.

Furthermore a connection between the geometry of the limit-sets and the deficiency indices
is presented.

1. The classical Titchmarsh-Weyl theory (see [23], [20], |8, Chapter XIII|) analyses the
Sturm-Liouville eigenvalue equation

(1.2) —y"+aqy =Ny
on [a,b), where ¢ : [a,b) — R is continuous and b = oo is allowed, with the following results:
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For a € [0,27) let 0y, ¢y : [a,b) — R the unique solutions of (1.2) with initial values
Ox(a) =cosa,  0)(a) =sina,
dr(a) =sina,  ¢\(a) = —cosa.

For ¢ € (a,b) and A within the upper (or the lower) halfplane of C, the set of all I € C such
that

(1.3) / 10, + 16 |2da < _ﬂ
Im )\

is a closed disc in C. Let us call it Dy(c).
Equation (1.3) shows two things: For [a,b) > ¢ > ¢ we have D,(¢) C D,(c), so the discs are

nested. Hence
ﬂ D)\(C)

c€la,b)
is not empty.
Furthermore, for [ € D,(b), the function 0, + [¢, is square integrable over (a, b).

There are two geometric possibilities for Dy (b):
It may consist of one point. This is called the limit-point case. The element | of D,(b) is
called the limit-point. In this case there exists no further linearly independent solution of
(1.2) in L?(a,b) besides 0y + ¢zl

Alternatively D, (b) could be a disc, which is called the limit-circle case. The boundary of
D, (b) is called the limit-circle. In this case every solution of (1.2) is in L?*(a,b).
The case is independent of the choice of A € C\ R.

For fixed ¢ € (a,b) and for € [0,27), one can choose | € dDy(c) by the modified M6bius

transformation

L(c) = (c) cot B + 6, (c)

M ox(c) cot B+ ¢l (c)
(The mapping 3 — [\(c) maps [0,27) onto dD,(c).) In each case [) converges to some point
m(A) € 0D, (b) as ¢ tends to b, when [ is kept fixed.
The resulting function m is called the Titchmarsh-Weyl m-coefficient. m is holomorphic on
the upper halfplane of C, even meromorphic on C in the limit-circle case.
We choose some (3 € [0,27) and therewith some function m. (In the limit-point case there

is only one m-function, independent of /3.)
We set 1 := 0\ + m(A\)¢x € L*(a,b). The function

VAy)oa(z)  for z <y,
Ua(z)pa(y) fory <,

is a Green’s function for (1.2). This means that for f € L?(a,b), the function g defined by

b
(1.4) o(z) = / G, y) () dy

Gy :[a,0)* = R, Gr(x,y) = {
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solves —¢"" + (¢ — \)g = f, where g,¢' € ACj,.. Let p in the upper halfplane. For the
operator L, defined by
(1.5)
D(L) = {h e L*a,b) N AC\[a,b) : N € AC.la,b), —h" + qh € L*(a,b),
h(a)cosa + h'(a)sina = 0, and Llirll) Y (z)h(x) = 0},
Lh= —h"+qhfor he D(L)

we have furthermore g € D(L) with (L — M )g = f. Hence (1.4) defines the resolvent of L
at A. The definition of L does not depend on the actual choice of .

It is shown that L is self-adjoint. To achieve this, the choice of m on the boundary of D, (b)
is crucial.

In the limit-point case, the boundary condition at b is redundant.

2. The theory was generalized to the equation

(1.6) —(py") + qy = Iy,

with %,q,w € L. [a,b), w >0 on [a,b) and w > 0 on a set of positive measure, further to

the higher order formally symmetric scalar differential equation
h =
(1.7) DD ey + 5 Z(—l)] ((ij(”)(”” + (qj-y("“))(”) = dwy,
Jj=0 7=0
with real coefficient functions p; € C?(a,b), ¢; € C7"'(a,b). See |9, section 3|, [10], and for
an historical survey, [11].

Here a larger set of linearly independent solutions 0 ; and ¢, ; is required, fulfilling

(1.8) 63200, 1(@) = [ér5: 62,1(a) = 0 and [, 6n,)(a) = &

for some symplectic product [-, -], except, if the highest derivative in (1.7) is odd; then the
requirement (1.8) becomes a little more involved. Furthermore the function m is matrix-
valued.

More cases in between limit-point and limit-circle are possible.

It should be remarked that in this setting, the symmetric operator, created by the theory, is
not always self-adjoint. Some criteria even yield that no self-adjoint representation of (1.7)
exists (cf. [17, §14,17]).

For a more general version of (1.7) with Li.. coefficient functions see [18, section 15 and

loc
16], [21] and the survey paper [24].

3. Equation (1.7) may be transformed into a first-order system of differential equations.
So it is a natural question, if the Titchmarsh-Weyl theory can be transferred to systems.
Important results are for example in [1], [13], |14] and [16].
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For this thesis, the most important paper for formally self-adjoint systems is [12]|, where
Hinton and Schneider have investigated the Hamiltonian System

(1.9) JY' = (M + B)Y,

with matrix-valued, self-adjoint, locally integrable functions A and B. A is positive semidef-
inite on [a,b). Furthermore ¢.J is unitary and self-adjoint.

O, and &, are matrix-valued functions, such that (@,\|<I>,\) is a solution of (1.9), where the
number of columns of these functions equals the dimensions of the eigenspaces of J to the
eigenvalues plus and minus 4, respectively. These numbers interchange when Im(\) changes
its sign. So does the number of rows and columns of the M-function (see below).

The property, that

(1.10) (@AM)/\) (a) is unitary and of a special shape,

takes the place of (1.8).

With a limit-circle assumption, the existence of a unique (in general non-square) matrix-
valued M-function is shown, such that every column of ©y + ®,M()) is in L?(a,b). This
means

/b (Ox+ PAM(N)) A(Or + PAM(N))dz < oo

The M-function is holomorphic on C\ R.

Using the M-function, a resolvent is constructed, and therewith a closed operator A and its
adjoint B within a suitable Hilbert space. The upper halfplane is in the resolvent set of A,
the lower halfplane in the resolvent set of B. There are further statements on the spectrum
of A and B within the respective other halfplane.

4. Another generalization of (1.2) is to allow ¢ to be complex. Sims has examined this
problem in [19]. He required, besides continuity of ¢, that the imaginary part of ¢ is restricted
to one sign. For A € C\ R, where Im() is of the opposite sign, the two cases (limit-point
or limit-circle) appear. Again they depend on ¢ alone, not on the choice of .

Yet now the limit-point case does not imply that only one solution of (1.2) is square inte-
grable.

In both cases there exist analytic m-functions. In the limit-circle case, for fixed A and any
point z on the corresponding limit-circle, there exists an m-function with m(\) = z.
Furthermore, if there are two square integrable linearly independent solutions of (1.2), then
any m-function is meromorphic on C.

5. In [6], equation (1.6) is considered, again with %,q,w € Li.la,b), w >0 on [a,b) and
w > 0 on a set of positive measure. Now p and ¢ are allowed to have complex values.
To get the complex quantities p and ¢ under control, some adequate rotation parameter n
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and some shift parameter K are introduced. The additional requirement that, for every
positive r and every z € [a,b),

q(z) -
1.11 R ( _K “7) >0,
(L.11) e((rple) + 225~ K)e") >
is now necessary to transfer the Titchmarsh-Sims-Weyl theory.
A is chosen in the rotated and shifted halfplane

A, =K+ {v € C:Re(ve™) < 0}.

Besides the weighted Hilbert space L? with norm (ffw|f|2dx)_1/2 a second Sobolev-type
norm was introduced, which dominates the first norm. Therewith the limit-point case with
yet two linearly independent solutions in L2 could be explained:

The limit-point case appears if and only if there is only one solution of (1.6) of which the
second (Sobolev-type) norm is finite.

An m-function is constructed, analytic in A, ;¢ and, if all solutions of (1.6) are in L2, mero-
morphic on C.

Therewith a closed operator L is constructed. A, g is a subset of the resolvent set of L.
Varying the constant K, some other rotation parameter n may be possible.

Also further choices of (K,n) may be possible, if (1.11) should only hold for all = € [a,b)
with some a € (a,b).

The investigation of these further choices improves the estimations of the spectrum of L.

6. This thesis mainly bases on the paper [5] by Brown, Evans and Plum.
]0 _d,”> and locally inte-
grable functions A, B : [a,b) — C?"?" where A is self-adjoint and positive semidefinite on
[a,b). Yet B need not be self-adjoint.

Additional assumptions on A and B are made.

The place of (1, K) in [6] is taken by some adequate matrix Us,, and again some constant k.
In the following, for any square matrix X we use ReX for the self-adjoint matrix %(X + X™).
The aforementioned additional assumptions yield that

Therein the Hamiltonian system (1.9) is considered with J = (

is positive semidefinite on [a,b), and that

Ak, Usy) =k +{N € C: Re (AU, A) — § Upn A U,

is positive semidefinite on [a,b) for some 6 > 0}

is not empty.
A is now chosen in A(k,Us,). Again Oy and ®, are C*>" solutions of (1.9), with initial
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condition (0,|®,)(a) = E for some unitary matrix F.
Furthermore the adjoint problem

(1.12) JZ'=(NA+B"Z

is considered, with C*™" solutions 7y and X, such that (nx]|x.)(a) = E, for a certain matrix
E. The new version of (1.8) reads

B T _ 0 _In
(1.13) [E,E) = E*JE = ([n 0 ) .

The Weyl-Sims-Titchmarsh sets, corresponding to the circular disks, are defined by
D,(\) :=={l € C"" : (O + P\)" Us, J(O)+ )\l)(z) is negative semidefinite}.

It is shown that these sets are non-empty, closed, and eventually nested. The geometry of
the limit-set correlates to the number of independent solutions y of (1.9) such that

b
yl2, = / y*Cayda

is finite, respectively to the corresponding quantity of the adjoint problem (which need not
be the same). || - ||¢, and the respective norm for the adjoint problem correspond to the
Sobolev-type norm in [6] that determines the limit-point or the limit-circle case.

An M-function is constructed, holomorphic at least in A(k,Us,), furthermore, with an im-
portant additional assumption, a resolvent. An operator L for (1.9) is defined via boundary
conditions, while the just mentioned assumption yields well-definedness. The corresponding
operator for (1.12) is adjoint to L. A(k,Us,) is a subset of the resolvent set of L.

7.  This thesis is mainly a generalization of [5] from the even to the arbitrary order.
Furthermore it is partially a generalization of [12] to the non self-adjoint case. Some results
therein depend on B being self-adjoint and hence could not be achieved here.

In chapter 2 the setting and the fundamental requirements are stated:
(1.9) is considered with locally integrable functions A, B : [a,b) — C™", where A is self-
adjoint and positive semidefinite on [a,b). iJ is unitary and self-adjoint.
The existence of some self-adjoint matrix V' is assumed (which takes the role of Uy, J in [5]),
such that

Ck,V = —Re(VJ(kA + B))

is positive semidefinite a.e. on [a,b) for some k € C (which, in contrast to [5], is allowed to
vary here), and the set

Ay :={A e C: —Re (A\VJA) — §A is positive semidefinite a.e. on [a,b) for some 6 > 0}
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is not empty.

For a fixed V like this, the number of its positive and negative eigenvalues (n" and n”) de-
termines the number of rows of ©, and ®,, and also the number of rows and columns of the
M-function.

In this non-self-adjoint setting £ = (©,(a)|Px(a)) need not be unitary. To omit this require-
ment is crucial in one proof and useful for an example.

The theory follows the footsteps of [5] to construct the generalized Weyl-circles, now as sub-
sets of C""""

In chapter 3, the adjoint problem is considered. Using linear algebraic theory, it is shown
that no further assumption is necessary for the existence of some corresponding self-adjoint
matrix V. The constants n* and n~ exchange their parts in the adjoint setting.

In chapter 4 an appropriate M-function is constructed. Just one further assumption is re-
quired to obtain the corresponding resolvents and operators L, respectively L for the adjoint
problem. L is adjoint to L. There are n", respectively n', boundary conditions at a in the
domains of definition of L, respectively of L.

A connection of the shape of the limit-set to the deficiency indices of the maximal operator
(cp. |17, §14]) closes this chapter.

In chapter 5 the classification into limit-circle and limit-point by the geometrical shape of the
Weyl-limit-set is transferred. The nature of (1.9) yields more essentially different possibili-
ties, whence more cases are established. Also the number of linearly independant solutions
of (1.9), respectively of (1.12), that are in L?(a,b) was used for further case distinction.
Further investigations of the M-function and of the number of linearly independent solutions
that are in L%, respectively in LZ, , have been transferred from [5] and supplemented.

By restricting the problem to [a,b) for some a € (a,b), the spectral estimates are improved.
This result corresponds to the ansatz in [6] of posing assumptions on (K, 7) only on the
interval [a, b).

Furthermore the variation of the self-adjoint matrix V' yields better spectral estimates under
some strict limit-point condition.

In chapter 6, finally, some linear algebra theory provides an insight into various possibilities
of choosing parameters (like V). An augmentation method, which augments the problem to
an equivalent problem of higher order yields further miscellaneous results.

Since this thesis is based on [5], some statements are transferred. To point this out, the
corresponding statements are marked as follows:

"Statement. *'" means the statement and the proof have been essentially transferred from
[5].
"Statement.*?" means the statement has been transferred from [5|. The proof has partially

been varied.
"Statement.**" means the statement and the proof have been partially transferred from |[5].
"Statement.**" means little parts of the statement and the proof have been transferred from

[5]-
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Chapter 2

Weyl-circle analysis

In this chapter we introduce the general settings of the problem, we are concerned with.
We define the generalisations of the Weyl-circles as subsets of C"" for some n',n~ € N.
Finally, we introduce scalar equations that lead to Hamiltonian systems as an example for
the theory of this thesis.

2.1 Preliminaries

We are concerned with the Hamiltonian system
(2.1) Jy\(z) = (AA(z) + B(z))ya(x)
with J, A(z) and B(z) € C™" for x € [a,b). A € C is the spectral parameter.
We assume that
(1) A(x) is self-adjoint and positive semidefinite for a.e. x € [a,b), A # 0 on a set of
positive measure,
(22) J is unitary and i/ is self-adjoint,
(14i) A and B are locally integrable on [a, b).

Our aim is to construct closed differential operators with non-empty resolvent set, realizing
the formal equation (2.1), via a matrix-valued M-function, and to give estimates for their

spectra.

12



In our approach we need a fundamental matrix Y for the differential equation (2.1) with
initial conditions at a. Not every initial condition is suitable for our approach. Further there
is no canonical size for the M-function. This question is equivalent to where the fundamental
matrix should be split into two sub-matrices

(2.2) Y = (0]9).

In [5], where the even-order case is examined, ® and © have the same size. In our more
general approach n is an arbitrary natural number. Also if n is even we do not only consider
the "canonical" splitting into two equal parts. Later we will see that sometimes there is no
choice of how Y can be split except exchanging the sizes of ® and O, such that the following
theory will lead to a result. Yet for every successful choice there will occur an own operator
realization of (2.1) with an own number of boundary conditions at a.

Lemma 2.1.1. Equivalent to assumption (iii) is each of the following statements:

(13i"): For A € C,£ € C", ¢ € [a,b), there is exactly one solution y of (2.1) in ACjy[a,d)
with y(c) = &.

(13i"): For A € C,=Z € C™", there is exactly one solution Y of (2.1) in AC.|a,b) with
Y(a) = Z; If E is regular then Y (c) is regular for all ¢ € |a,b).

Proof. In [22, §10, Theorem XVIII|, the implication (i7i) = (iii') on [¢, b) is shown. On [a, c]
we substitute £ := a + ¢ — x and use the same Theorem again.

If (i7i)" holds, for = € C™" there is exactly one solution Y of (2.1) with Y (a) = E.
Let ¢ € [a,b) and & € C" with Y (¢)§ = 0. Thus Y¢ solves (2.1) and (Y¢)(c) = 0. With the
assumed uniqueness, (ii7) implies Y¢ = 0 on [a, b), in particular Z¢ = 0. Hence (i7i)” holds.

Now we suppose (i7i") to hold.
Let ¢ € (a,b) arbitrary. We have to show that A, B € L'(a, c).
Therefor let Y a regular solution of (2.1) for A = 0. We know |det Y| > € on [a, ¢] for some
e > 0, because Y is continuous and nowhere zero. Thus Y ! is continuous. Since Y is in
ACiyc|a, b), we know that —JBY =Y lies in L'(a,c), and thus also B = J(—JBY)Y 1.
If we put A = 1, with the same argument we obtain —JA — JBY € L'(a,c) and therefore
A€ LY(a,c). O

Since B need not be self-adjoint, we introduce some kind of generalized rotation matrix
for the M-function theory. This matrix corresponds to the rotation parameter 7 in [6], where
the non-self-adjoint scalar case is considered.

In [5] the regular matrix Uy, was introduced for this purpose, with the property that Uy, J
is self-adjoint with as many positive eigenvalues as negative ones. Here the matrix V' below
takes the place of Uy, J.
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Let V € C™" be self-adjoint and regular . We call V' admissible if there exists some
A, k € C such that the following two conditions hold:

(2.4) ~Re(A\VJA) = A

Here, for matrix-valued functions F', GG, the pre-order relation F' »= G means that there ex-
ists some § > 0 such that F' > 0G almost everywhere on [a,b). Thus F' = 0 means F'(z) >0
for a.e. = € [a,b).

Assumption 1. There exists an admissible V € C™".

This is the only assumption we need to construct an M-function, at least on the set
Adi + Av, with

(25) Admv = {k S C: Ck,V = O},
(2.6) Ay :={ e C:—-Re(A\VJA) = A}
Admissibility of V' is equivalent to Admy + Ay not being empty. Sometimes we also use

the short notation Wy := Admy + Ay.

Following the lines of [5], the condition in the definition of Ay would read —Re(AV JA) =
VJAJ*V. But as we will see in Theorem 3.1.3, this will amount to the same condition.

For any admissible V', let n" = nf(V') and n~ = n (V') be the numbers of positive, respec-
tively negative eigenvalues of V' (counted by multiplicity). Note that n*+n~ = n, since V is
regular.

For a regular matrix £ € C™", let Y), g be the fundamental matrix of (2.1) which satisfies
Y\ e(a) = E. Furthermore, let

(2-7) (@)\,nﬁE |CI))\,7L+,E) = Y)\,E

with O, : [a,0) = C™" and ®, .+ p : [a,b) — C™"", Moreover let

1.,
(2.8) P\vE = §CI))\,n+,E Vq)A,ntE-

It should be mentioned that n* = 0 or n~ = 0 is allowed (with straightforward calculus). If
we recall CY = {0}, then for arbitrary ni,ny € Ny, we can associate C""2 with the set of all
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linear mappings C" — C™. For a detailed definition of C"*"2 see (even in more generality)
[4, Chapter II, §10].

For m € N we use the notation g g, 0pm, Omo for the only element in C%° C*™ or C™0,
respectively. Note that 0y is regular.

We call a pair (V, E) suitable if V' is admissible,
(29) P)\7V7E(CL) = P\/,E(CL) Z 0,

and for every ¢ € C"', X\ € Admy + Ay,

(2.10) (PVE(a)C = 0 and (Cry®y,i5)(x)C = 0 for ace. x € [a, b)) )

Note that Py v g(a) does not depend on A.

Remark 2.1.2. Both assumptions (2.9) and (2.10) obviously hold if Py g(a) is positive
definite.

Lemma 2.1.3. For every admissible V', there exists a reqular E € C™" such that (V, E) is
suitable.

Proof. Let {&1,...,&-,11,...,¢%+} be an orthonormal basis of eigenvectors of V, where
W1, ..., Y+ correspond to the positive eigenvalues. If we set

E = (&l [&rltn] - )

then @y, p(a) = (1] - [tn), and so for any ¢ € C™ \ {0} we have

®A,n+,E (CL)C € Span(qvbh s 7wn+) \ {0}

which implies
CPvE(a)C = (P i (a)C) VO uk(a)C > 0.
This means that Py g(a) is positive definite and hence (V, E) is suitable. O

Now we fix a suitable pair (V, E'). All dependence on V' and on E shall refer to this pair
from now on unless otherwise stated. So we can omit the indices V', E, n~ and n'.

Remark 2.1.4. Let z € C\ {0}. As one can easily verify, (V,zE) is suitable. The whole
theory below is not essentially changed by such a scalar factor for E, in the sense that we
obtain the same M -function, the same differential operator and the same estimates.
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2.2 Generalized Weyl-circles

We define the Weyl-Sims sets for (2.1) by

(2.11) Dy(z) := {l € C™ - [(Oy + BA)* V(O + ®x1)](x) < 0}.

These sets are obviously closed and it will turn out that they are nonempty, inclusion-
decreasing in x and eventually compact. For A € Admy +Ay and M € Ucpop) Nue(eny Pr(@)
we will see that Oy + ®\M lies in L4,

For the following we need the equation™!
YIVY,[ = / (Y VY, de

:/ YIVY, + (YIVY) dx

_ / Re(Y;VY])dz
(2.12) — /Re YV (—J)JY])de
_ / Re(YV (=J)(M + B)Y;)dz

/ YiRe(—VJ(M + B))Yrdz

a

== 2/ Y;C)\Y)\dﬂj,

and furthermore

Corollary 2.2.1. For A € Admy + Ay, we have

(2.13) Oy = A= 0,

which is obvious by the definition of C and equations (2.5), (2.6). This yields

If we define
1
(2.15) Ax(l) = -5 [(©x + 22 V(O + @p)](a),
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for | € C™" we obtain an alternative representation of Dy (x) in

Lemma 2.2.2.*

(2.16) Da(e) = {l e C . / (O + B0 Cr (O + Brl)dr < A1)}

Proof. Let | € C™"™ . Equation (2.12) yields

[(©x + @A)V (O) + Pyl

N | —

oozl ()
(2.17) (L) / YO\ Yada (%)
_ / (O + By1) Oy (O + By}
Subtracting Ay (l) shows that
/C(@,\ + @,\0)*CA(O) + Pal)dx — Ax(l) <0

if and only if
[(@,\ + O,\)*V (0, + @,\l)} (c) <0.

By definition, this is equivalent to [ € D,(c). ]

Using this Lemma, we obtain

Corollary 2.2.3.*' For A € Admy + Ay and ¢,d € [a,b) holds

c<d = D)\(C> D) D/\(d)
Proof. Let | € Dy(d). Using (2.16) and C, > 0 almost everywhere on [a,b), we can estimate
d c
./4)\<l> > / (@,\ + (ID,\Z)*C)\<@)\ + (I))\l)dl’ > / (@)\ + (I))\l)*C)\(@)\ + (I))\l>dx
Again (2.16) shows [ € Dy(c). O

As in [5] we define correspondingly

Sy Th _ 1. _l/e3ve, eV,
(2.18) (T; PA) o QYAVY*_Q(GD;V@ PV, )
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with Py(z) € C™"", Sy(z) € C"" and Ty(z) € C"" for z € [a,b).

Note that Py and S) are self-adjoint, and (2.18) is consistent with the former definition of
Py. So equation (2.12) reads

(2.19) (Si TA) :/ Y;OAYACZZE:/ (@KCA@A @ich))\) d.
T: P, ’ i

O1C\O, P3C\Dy
Lemma 2.2.4." For A € Admy + Ay :

a

(1) Py is non-decreasing,
(ii) Px(c) = 0 for c € [a,b),

(1ii) There exists co(N) such that Py(c) is reqular for ¢ > co(N).

Proof. We can assume n" > 0 w.l.o.g. because otherwise Py, = 0po and thus all statements
are true.

Equation (2.19) implies

(220) PA‘Z :/ (I)KCACI)ACZ{L‘,

a

which shows that P, is nondecreasing since C\(x) > 0 for a.e. € [a,b) by (2.13). Due to

0
Py(a) > 0, we conclude that Py(¢) > 0 for all ¢ € [a,)).

To prove that P, > 0 eventually, we assume, on the contrary, that there exist sequences
() with x,, — b and ((,,) such that Py\(2,,)Gn = 0 and (% (¢n = 1 for m € N. W.lo.g,
((m) converges (otherwise we could extract a convergent subsequence).

Let ¢ € C" the limit, which is nonzero. Since P, is positive semi-definite and nondecreasing,
G lies in the null-space of Py(z) for every m € N and z € [a, z,,] and so ( lies in the null-
space of Py(z) for every = € [a,b).

Thus, using C(z) > 0 and (2.20) we have

PA(CL)C =0, C*(q)ich))\)(l‘)C =0 forae x€ [a,b).
Taking into account that C) is self-adjoint, this creates a contradiction to (2.10). ]

Lemma 2.2.5."* For A\ € Admy + Ay and z € [a,b) the set Dy(x) is nonempty.

Proof. We can assume w.l.o.g n~ > 0. Otherwise 0,9 € Dy(x), since the inequality in the
brackets of (2.11) reads 0po < Og .
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Sx T

Definition (2.18) shows that n~ eigenvalues of < .

) (x) are negative since this holds

for V and Y, is regular.

—_

Let the columns of (El> € C™™ be corresponding orthonormal eigenvectors with =; € C" ™

=2

and =, € C"""", Then,

—k |k S)\ T)\ E1
(2.21) = (R p)@(2) <o

If Z; was not regular, some non-trivial ( € C" would exist with Z;¢ = 0. Since ( is not
zero, (2.21) and Lemma 2.2.4 (4i) would yield

0= cEE ()@ (2)¢

(2.22) B ey [N T 0
- (0|C “2) T;\k p)\ (JZ) EQC
= (TS PA(2)E2¢ 2 0.

This contradiction implies that = is regular.

On multiplying (2.21) by (Z;1)* and =" from the left and the right, respectively, we

obtain
o (S T I~
(32 m) o) <o
with [ := (2,2 ") (x). Thus, [ € Dy(z) by (2.18) and (2.11). O

Recall equation (2.11):

Di(z) ={l € C™" : [(Oy + B,1)*V (O, + D\)](x) < 0}.
Using (2.18), we obtain

1
(2.23) 5(@“ + Q) V(0N + @)l) = (I"PAl + Tol + T + S)).

For A € Admy + Ay, on [co(A), b) we use the notation

(2.24) Cy = —P;'Ty,

(2.25) Ry = TaPy ' Ty — S,
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in which case

(Ox+ OV (Or + Brl) = 2((1 = Cr)* Pr(I— Cy) = R»).

Thus, for z € [co(N), b),

(2.26) Dy(z) = Cy(x) + {l € C™" : I*Py(2)l < Ri(z)}
(2.27) — Cy(2) + {P,*(2)NRY?(z) - N € C"™" with N*N < I,-}.

Note that the last expression makes sense because of the following

Lemma 2.2.6." Let A € Admy + Ay. R,y is non-increasing on [co(N),b). If n= > 0 then
Ri(x) > 0 for x € [co(N), D).

Proof. On using (2.25), (2.19) and (2.24), we obtain

R = TP TS + TPy (TR) = ThPy PO TS = S,
(2.28) = O30, D\ P Ty + Th P 050\ 05 — Ty Py 05 CL @, Py Ty — 50,0,
= —(0) + ,C))*Cr(Ox + DAC)).

It follows from (2.13) that R\(z) < 0 for a.e. x € [a,b), and consequently R, is non-
increasing.

Moreover, R, > 0 by (2.26) since Dy(z) is nonempty and Py(x) > 0.

S

; TA) is pointwise regular by definition (2.18)

It remains to show that R, is regular. (

as a product of regular matrices. Let

N_ n,n
( N+) cC

be such that

Sy T\ N~ - I~

Ty Py \NT) \0,
This yields
(2.29) Nt =P TN~
and with (2.25),
(2.30) RAN™ = —1,-.
So R, is invertible, whence R, > 0. n
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Theorem 2.2.7.°2 Let A € Admy + Ay. For ¢,d € [cy(N),b) holds:

(1) Daz(c) is compact and conver,
(i4) ¢ <d = Dx(c) = Ci(c) 2 Di(d) — Cx(d),
(1ii) Cx(D) := iiil}jc)\(x) erists,
(1v) E[ﬂ ) (Da(x) — Cx(x)) = Da(b) — Cx(b) with Dy(b) := e[ﬂ ) Dy(x),

(v) Cx(b) € Da(D).

Proof. By Lemma 2.2.5, the cases n~ = 0 or nt = 0 are trivial, so we can exclude them for
the proof.

(i) Equation (2.27) yields closedness and boundedness of Dy(c). So it is compact as a
subset of a finite dimensional space.
Using the triangle inequality in C™', we obtain convexity of {N € C"" : N*N < I, } and,
with (2.27) again, convexity of D,(c).

(17) Let [ € Dy(c) — Cx(c); then (2.26) gives [*Py(c)l < Ry(c). Since P, is increasing and
R, is decreasing by Lemmata 2.2.4 and 2.2.6 we have [*Py\(d)l < I*Py(c)l < Ry(c) < Rx(d).
Again equation (2.26) implies [ € Dy(d) — Cx(d).

(i17) We associate C*" with C™™ (for the scalar product).
If (C(z)) would not converge for  — b, there would be an ascending sequence (x,,) in [co, b)
with Cy(xem) — C1 and Cy(zg9,,—1) — Ca for two points C; # Cy € (e
We define the continuous linear mapping ¢ : C"" — R, 2 — Re(< z,C; — C3 >).

Since ©(C1)—p(Cs) = p(C1—Cs) > 0 we can assume w.l.0.g. that |p(Cx(x))—p(Cr(Tma1))] >
e>0forall meN.

©(Dy(x1)) is a bounded interval. From (i) we know
D)\(xm—i-l) g D)\<:Em) - C)\(Im) + C)\(xm—&—l)-

With Corollary 2.2.3 we can conclude

P(DA(Em11)) € ¢(DA(Em) (1 ($(Da(m)) = (#(Calm)) = 9(Cr(wms1))).

where the right-hand side is an interval of length at least ¢ less than the length of ¢(D(z,))-
So there is an m € N such that (D, (x,,)) is empty which means D,(z,,) is empty. This
contradicts Lemma 2.2.5.

Thus (Cx(x)) converges as x — b.
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(iv) Let p€ () (Dx(z) —Cx(z)). Then for x € [co,b),

x€|[co,b)
p= 1, — Cx(x)

for some [, € D,(x). Since Cy(z) — Cy(b) as © — b we obtain [, — [, := p + Cy(b) and
Ib€ [\ Dx(z) in view of Corollary 2.2.3 and the closedness of D) (z). Thus

x€|[co,b)
=1, — Cx(b) € DxA(b) — Ca(b).

Conversely let =1, — Cx(b) with [, € () Dax(x).

T€[co,b)
Then v(z) =1, — C\(z) — p as © — b, and v(x) € Dy(x) — C\(z) for all = € [cy,b). By (ii)
and the closedness of D) (x), we obtain € [ (Da(z) — Ci(x)).

x€[co,b)

(v) By (2.27), Cx(z) € Dy(z) (choose N = 0). So, with (iv), we know that 0 € D,(b) —
Cx(b), which yields the statement.

]

Theorem 2.2.7 and Corollary 2.2.3 show the behavior of these generalized Weyl-Sims circles.
Already in [1, section 9.10] Atkinson observed the intersection of these kinds of Weyl-Sims
sets. Those set replaces the circular disk.

According to the shape of D,(b) we will later classify the problem. As we will see this
classification does not depend on the actual choice of X\ in Admy + Ay.

We will say that problem (2.1) is in the limit-point case, if D, (b) consists of one point.

We will say that problem (2.1) is in the limit-circle case, if n7>0 and the span of {Z¢ : = €
Dy (D) — C\(b), & € C™ } is the whole C™".

It will turn out that there are cases in between, and even further distinctions are useful.

2.3 Examples

Throughout this thesis we will repeatedly consider the special case that B(z) is self-adjoint
for all € [a,b). This is the setting of [12]. The theory therein does not require any matrix
corresponding to V. To achieve the same results as in [12], we can choose the admissible
matrices V' = +iJ, which we call the canonical choices of V for the self-adjoint case (i.e. for
the case that B is self-adjoint).
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With this choice, we obtain CO,VW =0 and Av1/2 = Admvl/2 + AV1/2= which is respectively
the lower or the upper halfplane. For the calculations see sections 6.1 and 6.2 below.

We furthermore consider the even-order scalar differential equation

(2.31) = pov + Z ((pev™®)® — (guo®))E=D — (o ®=D)E) = Ny

and the odd-order scalar differential equation
(2.32)

To[v] : = pov + (—1)™i(s(sv"™ m>+z ((pev™)® — (guo™)*=1 — (g *=1))
= \wv,

where all coefficient functions (except those for the highest derivate) are locally integrable
over [a,b). The coefficient function for the highest derivate s, respectively p,, in the even
case, is a.e. non-zero. Furthermore 1 respectively - o in the even case, is locally integrable.

w is a non-negative weight functlon on [a, b), furthermore w > 0 on a set of positive measure.

We first examine the even case (2.31).
In the style of [3], to obtain a Hamiltonian system, we introduce the following quasi-

derivatives:

bl = () for0<j7<m-—1,
o™ = pmv(m) _ rmv(m_l),

and for 1 <j7<m—1

plm il —(v [mﬂ'*l])/ + P jv(m*j) — T pm=i=1) | G jHU(m*jH)

@ m k—m+ —-m k—1—m+j
Z k +j pkv( ) _rkv(k 1))( J)+ Z )k 1— +j(qu(k))( +a).
k=m—j k=m—j+1

This yields
Tev] = =) 4 pgo 4 gl

except for m = 1, since here v!!l # v(1), In this case,

.
o] = — (WY + (po + L2ypl0 — Ly,

b1 b
We set y := (vl ol 9Bm=I)T (here we deviate from [3], where the shape of J is
prescribed and therefore this setting would not match). So the equation 7.[v] = Awv is

equivalent to y' = AMqy + Mgy for certain matrices Mg, M§.
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Indeed, using the abbreviation

(2.33)

with s, 1=
We set
(2.34)

with
(2.35)

and

(2.36)

<j
codiag(z1, ..., 7;) == :
<1
we have, for m > 2, M4 = codiag(—w,0,...,0) and
0 1
0 1
Tm 1
Pm Pm
My =
—Tm-1 Sm % -1
Pm—2 qm—1 0
—T1 ' —1
Po @1 0
dmTm
P +pm—1-
Jy :=codiag(1,...,1,—1,...,—1),
obtaining the required Hamiltonian System
Jiy' = (A1 + By,
Ay = 1 M§ = diag(w,0,...,0),
—Po —q1
IS '
—Pm—2 —Gm-1
Tm—1 —Sm g_z
B1 = JleB =
Tm 1
I; Pm
0 1
0 1
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For m = 1 the matrices M and A; are of the same shape, with J; := ((1) _01), but

1 1 (—qiry — _
Mg = — ( 1 1) and By = — @ P @)
p1 \d171 +P1Po G 2} T 1

For the odd case, we slightly deviate from [3|, defining the quasi-derivatives as follows:

=09 for 0 <j<m-1,

oM = jsp™),
oMt = s (ulml) 4 i(p,—mv[m] — rpol™ ) = —s(sv™) 4 ip 0™ — it
is
and for 1 <j7<m
— (_1)j+1(8(8v(m))l)(j) + Z( Z (_1)k—m+j <pkv(k) _ rkv(k—l))(kferj)
k=m—j

This yields

T,[v] = '(v[zm})/ + povl® + o™,

Finally we set i := (0%, ... v[?")T and
(2.37) Jy := codiag(,...,1)
to obtain

=M = Y =0OM +M)y << Jiy=NA+B)y,

where M§ = codiag(—iw,0,...,0) and A, := JyM§ = diag(w,0,...,0), furthermore
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0 1
0 1
0 _i
My = mo |
_Z.Tm—l Z'pm—l q?m 0 —1
Zqm—l 0
—ir ip -1
Po 11 0
and
—Po —¢ 0
noom S
—Gm—1 0
"'m—1 —Pm-1 i 0 —i
B1 = JlM]_%: g Tm _p_’; 1
0 Lo
0 0
0 1 0

The case m = 1 is no exception for the structure of My and B;. They consist of the 3 x 3
matrices in the middle of the matrices above.

In the following we like to examine the two problems in several cases with regard to the
existence of suitable pairs. For each suitable pair we estimate the set Admy + Ay.
In the first part we consider the case that B is self-adjoint, firstly for the odd-order case, then
for the even-order case. We furthermore show, within an example, that the actual choice of
J is less important for the theory of this thesis.
In the second part the case m = 1 for the odd-order problem is considered, and in most
generality the case m = 1 for the even-order case in the third part.
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1. We like to consider the case that B is self-adjoint. So we are in the setting of [12].

We already know that the canonical choices V' = +iJ are admissible. For these choices we
further know that Admy + Ay is the lower, respectively the upper halfplane.
For the choice V' = +iJ (thus Admy + Ay is the lower halfplane), we are now searching for
regular matrices E, such that (V, E) is suitable. Such matrices E exist by Lemma 2.1.3. The
proof of this Lemma is constructive. Hence we can, and will use the construction therein.

1.1 In the odd case, the matrix B is self-adjoint if and only if s is real on [a, b) and
(2.38) forall j € {1,...,m}, x € [a,b) holds 7;(z) = —q¢;(z), p;(z) € R, and py(z) € R.

All this holds true in the setting of [3].

With J; chosen according to (2.37), we obtain V, := V_; := codiag(—1,...,—1), with eigen-
vectors ej+egm 1o, (for j < m) and e, associated with the eigenvalue —1, and eigenvectors

e; — €amta—j (for j < m) associated with the eigenvalue +1.

Thus we have it = m, n~ = m+1. Furthermore, with E. := E.; := diag(1,...,1,0,—1,...,—1)+
codiag(1,...,1) the pair (V,, E.) is suitable according to the construction in the proof of
Lemma 2.1.3.

1.2 In the even case, the matrix B is self-adjoint if and only if (2.38) holds (cp. again
[3])-
With J; chosen according to (2.34), we obtain V. := V., := codiag(s, ..., —1,..., —1), with
eigenvectors e; — i€gm41—;, which are associated with the eigenvalue —1 for j < m, and
with the eigenvalue +1 for m < j < 2m. Thus we have n* = n~ = m. Furthermore, with
E.:= E.; :=diag(1,...,1) + codiag(—i, ..., —i), the pair (V,, E.) is suitable.

Unfortunately, it will turn out that this choice of a suitable pair cannot lead to a self-
adjoint operator. For this reason we introduce the following matrix E, := diag(1,...,1) +
codiag(0,...,0,1,...,1) as an alternative to E.;. To assure that the pair (V,, E;) is suitable,
we pose the additional assumption w > 0 on an interval (a,b) C [a,b).

Obviously, E; is regular. Furthermore Py(a) = :®3(a)V.®5(a) = 0. (As we will see, Py(a) =
0 is the crucial point for the resulting operator to be possibly self-adjoint.) It remains to
show, that ¢ € C"" with

(2.39) Chv.®x( =0 a.e. in [a,b)

implies ¢ = 0.
So let ¢ € C™ such that (2.39) holds. The relation Cyy, = A, yields

(2.40) A1®,¢ =0 a.e. in [a,b).
Let v the first component of ®,(. Recall A; = diag(w,0,...,0). Therewith (2.40) implies

vw = 0 a.e. on [a,b). By continuity, v is zero on (@, b), the interval where we assumed w to
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be positive.
Let v; the 5 component of ®,¢ for 0 < j < 2m — 1. Since @, solves J;®\ = (\A; + By)®,,
which is equivalent to ®, = (AM§ + M§)®,, we also have

(2.41) (PAQ)" = (AMG + M) 1,

where for (a;1)jr=1,..m = (AM§+Mp) holds a; ;11 # 0 for j < 2m and a;, = 0 for k > j+1.
We already know v; = v = 0 on (@, b), hence also v} = 0 on (a,b). By induction, using (2.41),
we obtain v; = 0 on (a@,b) for all j < 2m. Thus ®,¢ = 0 on (a,b). By regularity of the

differential equation J;Y" = (AA; + B;)Y, of which ®,( is a solution, we obtain ¢ = 0.
Hence (V,, Ey) is suitable. As we will see, this choice can lead to a self-adjoint operator.
1.3 For B; to be self-adjoint in the even case, we required 7; = —g¢;.

Yet now, besides p; € R, we assume 7; = +¢; (for all j < m).
To obtain a self-adjoint B, we consider an alternative choice for J, namely

(2.42) Jy = codiag(1,—1,1,—1,...,1,—1).

Straightforward calculation shows Ay := JoM§ = Ay, furthermore that By := Jo M} is self-
adjoint. Thus, in this case, we could canonically choose V' = %iJ,. Again we fix V_. 5 := +i.Js.
We obtain n"=n"= m.

The construction E., := diag(l,...,1) + codiag(—i,7,...,(—=1)"¢, (=1)™, ..., i, —i) yields
the suitable pair (V.2, E.2), where Admy, , + Ay, is the lower halfplane.

Now we return to the original choice (2.34) of J. The calculations

(243) CY]C’VC’2 = —Re(‘/ggjl(kAl—'—Bl)) = —Re(‘/gz(kMﬁ—i-Mg)) = —Re<‘/;72J2(kA2+BQ)),

(244) —Re(A‘/C72J1A1) = —Re()\Vc,ng,) = —Re()\‘/c72J2A2)

show that (V.2, E.2) is still suitable and Admy,, + Ay, , is the lower halfplane. The actual
choice of J does not influent these properties.

Other assumptions on the coefficient functions p;, ¢; and r; may be possible, under which
we obtain the self-adjoint case for some choice of J.

2. We want to go into more detail in the odd-order case for m = 1. So we have

) w —po % 0
Ji = i ;A= 0 , Bi= i - !
i 0 0 < 0



We examine the case that s is real, furthermore the case that e’s is real on [a,b).
2.1 So first we assume that the highest order coefficient s is real valued.

The requirement —Re()\VJA) = A for some A € C implies Vo3 = V33 = V33 = 0 as
a necessary condition. Hence —Re(VJ (A + B)) %= 0 yields further, by straightforward
calculation, that Vi3 = V5 € R and V5, = Vi3 = 0, and for

Vo

(2.45) V=

< O
o < O
o O

with vy, v € R, finally that

(2) Re Z‘Upl = 07
(ii) 4v’Re(—i w + ipy)Re(ipy) — |[v(q1 + T1) — ivp]? 5= 0.
It is easily seen that (2.45), together with (i), (i7), is indeed also sufficient for admissibility.

Admy is the set of all A\ € C such that (i) holds. Ay is the set of all A\ € C, such that
Re(—iAvw) = w; this is the upper or the lower halfplane, since v is real.

2.2 Now we assume that e1’s is real.

For an admissible V' again we obtain Vis = V51 = Vo3 = V3 = V33 = 0. But now we have
1Vig = Vyo € ]R, and thus

vo 0 —w
V=10 v 0
w 0 0

for some vy, v € R.

Again there are further requirements, analogous to (i) and (i7) above.
Now Ay is either the left or the right complex half-plane.

If s is real on [a,b), we could achieve the required assumption of ei’s being real by just
multiplying the original equation with —i and setting § := e~ ’s. In this way we obtain the
result of two non-intersecting halfplanes for Ay also by the previous example 2.1. Obviously
multiplying by —i just rotates the problem by this factor (because 7,[y] = Awy becomes
—i71,[y] = (—iN)wy). One might conjecture that a corresponding rotation argument holds
true also for multiplication by other factors than —i. But if we multiply with by, say, e %"
(and set § := e~5's), we obtain ei'V}3 = V3, € R as a necessary condition for admissibility,
and finally that Ay is one of two halfplanes, which do intersect (their relative rotation is 7).
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3. In most generality, we study the even-order case for m = 1. To simplify the formulas,
we set p :=p1, ¢ :== q1, and r := r;. Thus the scalar equation reads

(2.46) pov — (pv') + qu' + (rv)’ = Awv.

The modeling leads to the Hamiltonian System J;Y’ = (AA; + B;)Y with

_ -1 _(w 1 f—qr—ppy —q
=i ) =) me g (T ).

As we have already realized, the existence of some A\ € C such that —ReAV J A, = A,
implies that V' has some zero-entries since the rank of A is one. In this two-dimensional case
we obtain V55 = 0. Thus any admissible matrix is of the shape

(2.47) V= <1;° g)

for some real vy and some non-zero v € C.

Therefore, V' has a negative determinant. Hence we obtain nt = n~ = 1, and furthermore

(2.48) Chyv = —Re(VJi(AA; + By)) = =

1 <2Re(%+ (£ + po) — ATw) %+@(g+g)>
2 v )
p

The requirement C) y = 0 is equivalent to

VoT qr

Re(— 4+ 7(— + po) — A\vw) = 0,
p p
(2.49) Re % 0, and
iRe * Re(M +5(ﬂ + po) — Avw) > |@ —I—U(g + 2)|2 a.e. on [a,b).
p p p p p P

Admy is the set of all A € C for which these inequalities hold. Ay is the halfplane
{\ € C: ReMv < 0}. Hence V is admissible if and only if Admy is not empty.

In [5], the scalar equation (2.46) was considered with ¢ = r = 0 and modeled in the same
way to achieve a Hamiltonian system. The choice Uy, = diag(—w, @) in [5], corresponds to
V' = UspJ; = codiag(w, u). This is of the form (2.47) with vg = 0 and v = w. With all these
choices, (2.49) reads

Re — = 0, and Re(u(po — Aw)) 3= 0.

< |l

An equivalent condition is given in [5, page 425].
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Chapter 3

The adjoint problem

In this chapter we introduce the adjoint problem.

In the previous chapter most definitions and conclusions were mainly transferred from [5] to
a more general situation. However in this chapter, using some linear algebraic theory, we are
able to omit any further assumptions on the corresponding functions in the adjoint setting
(like they were posed in [5]).

3.1 Some linear algebraic statements

The theory in this section provides us with some general knowledge on matrices. There is
no direct statement on operator theory. But the statements in this section are very useful
for the following theory.

Lemma 3.1.1. Let U € C™" with

(3.1) U*AU = A.
Then also
(3.2) A= U*AU.

The proof of this Lemma is essentially due to Stefan Kiihnlein.

Proof. Let § > 0 such that U*A(x)U > §A(x) for a.e. = € [a,b). W.l.o.g. this inequality
holds for all z € [a,b) and furthermore § < 1.
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First we assume that A(z) > 0 for all € [a,b). Then (3.1) implies that U is regular.

Now we set
5n—1
€= —s >
|det U]

Y

and
N = A V2U AU A~V/2,

N is selfadjoint with |det N| = |det U|*. Let A\; < Xy < --- < ), denote the eigenvalues of
N. On [a,b) holds:

U'AU —6A>0= N —461,>0

= Al Eﬁé
=det N =X ... -\, >0\,
(3.3) ldet U)* 1
S, < ==
on—1 €

=1,—ecN >0
= A—-cU"AU > 0.

Before examining the more general cases, we consider some simple implications.

For x € [a,b) with (3.1) we know that ker U*AU C ker A. On the other hand the finite
dimension of the null-space of U* AU is not smaller than the dimension of the null-space of

A. So we can conclude

(3.4) ker U* AU = ker A.

Thus for ¢ € ker A we have
0= U AUE = (A'2U€)* (AU,

and hence

(3.5) Ul(ker A) C ker AY? = ker A.

Now we only assume that U is regular.
Let x € [a,b). Since A(x) is self-adjoint, there exists a unitary matrix W such that

W* A(2)W = <‘§ 8)
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with A regular. From the inclusion (3.5) we see that

e (U0
WUW—(* X),

with regular matrices U and X, where U and A are of the same size.
Assumption (3.1) implies o )
U*AU > §A.

Since A is regular and § < 1, we obtain

(3.6) As> " _gean,

| det U|?
which implies

n—1

(3.7) W*A(x)W > —W*U"A(x)UW,

| det U|?
and thus

5n—1 .

(3.8) Ax) > et [7‘2U A(x)U.

Since U may depend on x, we consider characteristic polynomials. For those holds:

CP(U) = CP(U) CP(X).

Thus, CP(X) is a normalized divisor of CP(U), of which there are only finitely many.
Since further det X = ( CP(X))(0), the definition

n—1
(3.9) €= Mmin{]det Z*: 2 e ", CP(E)|CP(U)} >0

makes sense. This definition is independent of the actual choice of = € [a, ).
As det U = det X det U, it holds

So with (3.8), we have for all x € [a, ),
A(z) > eU"A(x)U.
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The last case to consider is where U is singular, which we treat for completeness although
it does not occur later. We assume w.l.o.g.

U o
v=(20):
with U regular. (Otherwise this structure of U can be achieved by a unitary basis transfor-
mation.)

From equations (3.4) and since A is self-adjoint we see that
A0
A= :

U*AU & A.

(3.1) implies

Let € as in the case where U is regular, with U instead of U. So we have
A> U AU,

which yields

A(z) > eU"A(x)U
for every z € [a,b). O
Lemma 3.1.2. Let U € C™" be such that
Re(AU) = A.
Then,
U*AU = A.

Proof. Let 6 > 0 such that Re(A(z)U) > 0A(z) for a.e. x € [a,b). For these x we can
estimate
U'A(z)U = (U = 61 + 61)*A(z)(U — 61 + 61)
= (U - (5]) A(x)(U = 8I) + SU*A(z) + §A(2)U — §*A(x) — 6*A(x) + 5*A(x)
= (U —6I)*A(x)(U — 6I) + 26Re(A(z)U) — 62 A(x)
>0+ 52A( ) — 62 A(x) = 0% A(x).

Thus U*A(z)U > 6*A(x) for a.e. = € [a,b). O
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The following Theorem is significant for many simplifications in the subsequent analysis.

Theorem 3.1.3. Let U € C™" reqular and A € C. For the statements
(1) Re(AUA) = UAU~,
(i) Re(\UTTA) = A,

)
)
(i1i) Re(\UA) = A,
(iv) A=< UAU",
)

(v) Vue C: A= Re(uUA),

we have
(i) < (i1) & (iii) = (iv) = (v),

where F' < G :< (F = G and G = F) for functions F,G : [a,b) — C™".

Proof. First of all we remark that, for F,G : [a,b) — C™™ and H € C™",

(3.10) F»G= HFH* = HGH".

For A = 0, each of the statements (i), (i7), or (i77) implies A(z) = 0 for a.e. = € [a,b),
whence the Theorem is trivial. So we can assume that A # 0.

With (3.10) we obtain statement (i¢) from () by multiplication with U~! and (U*)~! from
left and right, respectively. The other direction follows in the same way, multiplying by U
and U*. Thus, we have (i) < (ii).

Now let (i) and (i) hold. Since Re(AU'A) = Re(A(AU~Y)*), (ii) together with Lemma
3.1.2 yields
INUTTAUH* = A

Using Lemma 3.1.1 we obtain
A= UTAUY

Multiplication of U and U* from left and right, respectively, gives
(3.11) UAU™ = A.

Again Lemma 3.1.1 yields
A= UAU".
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These two equations are statement (iv). So we have shown (i) = (iv).
Statement (¢) and (3.11) imply statement (i7). Thus, (i) = (7).

Now let (ii7) hold. With Lemma 3.1.2 we know that UAU* > A, whence Lemma 3.1.1
yields A = UAU*. Statement (iii) together with this relation implies (z). Thus, (7ii) = (7).

Finally let (iv) hold, and let p € C. W.lL.o.g. we can assume |u| = 1 since A = 0. From

0 < (uU — AU — 1"
(3.12) =A+UAU" — pUA — A(uU)*
= A4+ UAU" — 2Re(pUA)
we can conclude

1 1 1 1
A -A+-UAU"<x-A+-A=A
Re(uUA) 5 +2U U 5 +2 ;

which is statement (v). O

We finally need one more technical

Lemma 3.1.4. Let F' € C™™ self-adjoint and reqular with ezactly p positive eigenvalues.
Further let H be a p-dimensional subspace of C™ with x*Fx > 0 for all x € H. Then it
holds

Vye HY: y'Fly<o.

Proof. We assume there exists y € H+ with y*F~'y > 0 and lead this to a contradiction.
For z :== F~!y holds

(3.13) ZFz=y"Fly>0.

For x € H we have

(3.14) r*Fz=2z2"y=0.

Together with (3.13), this shows that z € C™\ H. Thus, H +span(z) is (p+ 1)-dimensional.
The min-max principle therefore yields the existence of some

w=1x+ Kz € H + span(z),

with x € H and k € C, such that
w*Fw < 0.

Moreover with (3.13) and (3.14) we obtain
w Fw = (x4 k2)*F(z + k2) = 2" Fz + |s[° 2 Fz > 0,

a contradiction. Thus, the Lemma follows. O
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3.2 A suitable pair (V, F) for the adjoint Problem
To achieve a suitable initial condition for the adjoint fundamental system we use the matrix
Jo defined in (3.18) below. It is remarkable that, in the setting of [5], Jo = J.

Recall that we have already fixed a suitable pair (V, E') whose existence we have assumed.

For the formal adjoint problem

(3.15) J2\(2) = (VA(z) + B*(2))2x(2),
we define

(3.16) Vi=JV'y=—JvJr
and

(3.17) E = —J(E*) ",

with the unitary matrix
0 —1,
(3.18) Jo = <[n+ 0 > .

We will see that (V,E) is suitable for (3.15). First we observe from (3.16) that V is
selfadjoint with n~ positive and n' negative eigenvalues since —V ! is. This means that in
the adjoint problem, n™ and n~ have exchanged their roles.

Note that the adjoint problem for (3.15) is the original problem, V = JV-1J and E =
J(E*)~1Jr, where —J; is of the form (3.18) with exchanged roles of n™ and n™.

Let Z, the fundamental matrix for (3.15) with Z(a) = E, and let
(3.19) (mxx) = 2i
with 7 : [a,b) — C™" and ¥, : [a,b) — C™".
Lemma 3.2.1."

(3.20) Z =—J(Y Y.

Proof. The right-hand side of (3.20) fulfills the initial condition. Furthermore,

0= ((JY)J(Y =1y
= (JY')JY )+ (JY)(JY )Y
= (M+B)Y)' JY Y +Y* T (J(Y )
=Y*ONA+B)JY Y =Y JJYHY,

(3.21)
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thus J(J(Y 1)) = (M + B*)J(Y~!)*. This shows that the right-hand side of (3.20) also
fulfills the differential equation. With the assumed regularity, the initial value problem is
uniquely solvable, whence the statement holds. O]

Equivalent to this Lemma is
(3.22) Y*JZ = J.

Taking the adjoint on both sides, and multiplying with —JY .J, from the left and with (JY)!
from the right we obtain

(3.23) JY JWZ* = —1,.
We will need these equations later on.

Now we want to proof admissibility of YA/, which means there exist A\, k € C such that

(3.24) Cy = —Re(VJ(kA+ BY)) =0
and
(3.25) ~Re(AVJA) = A.

We show even more:

Theorem 3.2.2.** Fquations (3.24) and (3.25) are equivalent to (2.3) and (2.4), respec-
tively, the corresponding equations for V.

Proof. Since Re(F) = Re(F*) and Re(G*FG) = G*Re(F)G for any matrices F' and G, it
holds
Re(
—Re(
= —Re(
= (V-

—~

kA+ B)JV)

kA+ B)V ')
VI)*VI(kA+ B)V L)

“Cr(VL).

—~

(3.26)

\_//\

(V=1J) is regular and so Cy 3= 0 if and only if Cy, =

The second equivalence follows from Theorem 3.1.3 (i1) < (éi7) with U := —VJ (and
hence U~! = =V J). O

An immediate consequence of this Theorem is
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Corollary 3.2.3. Vis admissible for the adjoint Problem and

(3.27) A/cﬁn(/ ={keC: @(w) =0} = Admy,

—

(3.28) Ay :={\eC:

We define, in analogy to (2.18),

(3.29) (5

T

—Re(AVJA) = A} = Ay.

-~
DY)~ lzvz,
p) "2

with Py € C"", Sy € C™" and T € C"™

Then,

which corresponds to (2.8).
Lemma 3.2.4.

— 1 P
P)\ = _X,\VX)\v

2

Py(a) > 0.

Proof. P\(a) > 0 and the definition of P, yield

Vo € span{e,—y1,...,6,} : 2" E*VEx > 0,

with e; := (0,...,0,1,0,...,0)7. Since E*V E has exactly n" = n — n™ positive eigenvalues,
——

j—1
Lemma 3.1.4 implies

(3.30) Vy € span{eq, ..

Furthermore, by definition,

T, Py

Len )y (E*VE) 1y <0,

) (% Z) @)= BVE

(3.31)

By the form of Jy, for z € span{e,+.1, ..

yields

Vr € span{e, i1, . ..

which means Py(a) > 0 by (3.31).

= (J(E*) " Jo) IV II(ES) ",

_JO*E—lv—l(E*)—ljo
—Jo*(E*VE)" .

., €, } we have Jyx € span{e, ..

en} s —a* o (E*VE) ' Joz >0,
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The last statement to prove for (\A/, E) to be suitable for the adjoint problem is
(3.32) (f’;(a)g =0 and (CA’,\XA)(:C)C =0 for a.e. x € [a,b)) = ( =0,
for all ( € C" and A € Admy + Ay.

Theorem 3.2.5."2 For A € C, (2.10) and (3.32) are equivalent.

Proof. By symmetry it suffices to show that (3.32) implies (2.10). So let (3.32) hold and let
¢ € C™ satisfy the left-hand side of (2.10).

By assumption, a.e. on [a,b),
0 =20\®\( = —2Re(VJ(AA + B))®y( = (A + B*)JV®\( — VJ(AA + B)®,(,
and hence
J(JVO\C) = —VOC =V I(JP\)( = VIAA+ B)®y( = (A + B)JV®,(.

This shows that .JV ®,( solves the adjoint problem (3.15). Thus there exist & € C*', & € C™
such that

(3.33) JV®,( = Zy (51) :
3

Using (2.18) and (3.22) we have (on [a, b))

T . . . &\ _ &) _ (¢
(3.34) 2 (Pi> ¢ =YV = —YJIV O = —YJZ, (é) =—Jo <§;) = <_§1) :

Py(a)¢ = 0 yields & = 0, and thus (3.33) reads

(3.35) JV®A( = xa&e-

Since C\®,( = 0 for a.e. = € [a,b), we obtain with (3.26)

(3.36) Caxala =0  forae. z € [a,b).

Equation (3.20) implies ZyJ; = —J(Y, !)* and thus

JZNJYE =1,
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Furthermore (3.16) gives R
VJVJ =1,.
With the equations above and (3.22) we obtain
Tt = Zi Y
= ZL(VI(JZAJEY)V I)TYy
(3.37) = —(ZVZ2)J5(Y3VY))

Sy Th\ . (S Ty
— a2 2 ) (2 ,
T)\ P/\ T)\ P)\

Let Nt € C"™™" and N~ € C""" (cp. Lemma 2.2.6) such that

CNEN A+
(3.38) o I (AT ::(Lﬁ).
T, P, N 0
This yields

(3.39) PN =T\ N*.
With (3.37) we obtain

(% Rz

(3.40) :46% R)%(%j
(& 7)
(

Using (3.39) we obtain
(3.41) P\ =T) P

Thus (3.34) yields
(3.42) Pr(a)és = 2Py (a)Ty(a)¢ = 2T (a)* Pa(a)C = 0

(3.36) and (3.42) is the premise of (3.32) for &, whence {&; = 0 by assumption. Consequently
JV®,( =0 by (3.35), implying ¢ = 0 since JV ®, has rank n'. O
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Now, all required estimates are proven for

Corollary 3.2.6. (‘7, E) is suitable for the adjoint problem.

3.3 Weyl-Sims circles in the adjoint setting

We define for A € Admy + Ay, in analogy to section 2.2,
(3.43) Da(x) = {1 € €™ [(mx 4 o)V (a + xaD)] () < 0},

and for x large enough

~ ~—1—x

(3.44) Cyi=—Py T,
— o~~~ — 1 —~x —
(345) R,\ = T)\P)\ T/\ — S)\.

By symmetry all statements of section 2.2 hold correspondingly.
We can assume w.l.o.g. that for A € Admy + Ay and = > ¢o(\) also ﬁ;(x)>0.

Let A € Admy + Ay. Using (3.41) and (2.30), we obtain, on [cy(N), b),

(3.46) Co= Py Tn =Py Th BP L= TP =L,
1
(3.47) Ra= 75 g

and by symmetry

(3.48) Ry =-P;"

Therewith we can determine the connection between the Weyl-Sims sets of the original
problem and those of the adjoint problem.

Lemma 3.3.1.2 For A\ € Admy + Ay and x > ¢o(\) it holds
Dy(z) = Dj(x).
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Proof. We use the notation (2.27) for Dy(x). The corresponding "adjoint" statement reads

/2

(3.49) Da(x) = Cu(z) + {By *(@)NRy " (x) : N € C™ with N*N < L.},

Let Cy(z) + P, () NRY?(x) € Dy(z) with N € C™"" N*N < I,

The last property means that the norm of N as an operator (C™,||-||2) — (C™, [ - ||2)
is not bigger than 1. This is equivalent to the corresponding statement for N*. Thus, by
(3.49),

~ 1/2

Ci(z)+ B o)V Ry (x) € Di(a).

Since Py(x) and R, (z) are self-adjoint, (3.47) and (3.48) yield

—~1/2 —~—1/2 —~—1/2 —~1/2 *
PP @NRY @) = RPN @) = (B v R @)
With equation (3.46), and symmetry, the assertion follows. O

3.4 Smoothness of A\ — Y)

We will show pointwise (in z) analyticity of Y, with respect to A, furthermore continuity
thereof within L%. The author presumes that this is a statement known already, but could
not find a suitable direct reference. We will use it further below, to show some spectral
estimates.

First we need the following
Lemma 3.4.1."% For Ao, A € C,c € [a,b), the problem
(3.50) Jy = (M + B)y

15 equivalent to the following problem:

There exists some & € C" such that, for oll x € [a,b),
(3.51) i) = i@ — = M)Vay () [ Zi,(0AWDu(0)dr
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Proof. Since the solution-space of (3.50) has dimension 7, it suffices to show that any solution
of (3.51) solves (3.50).
So let y a solution of (3.51). From (3.23) we see that y solves

i) = V()6 — = 2y (o) [V 0T A@(0)
Pre-multiplication with J, differentiation, and use of JJ = —1I,, shows that y solves

Now we are able to prove

Theorem 3.4.2. (i) For fized v € a,b), the function X — Y\(x) is (componentwise)
analytic.

(it) If all solutions of (2.1) and all solutions of (3.15) are in L? for all X € C, then the

mapping
C—=R, A= [Vl

is continuous for any j < n, where (Y)); denotes the j-th column of Y.

(For the proper definition of L% see section 4.1 below.)

Proof. The main idea of the proof of (7) is due to Michael Plum.

Let Ao € C and ¢ := a in view of Lemma 3.4.1. For every A € C, equation (3.51) implies

Yi(z) =Y, (2)2 — (A — Ao)Yy (2)Jp /x Z5,(s)A(s)Yx(s)ds.

a

Evaluation at a yields = = I,,. Now we pick an arbitrary column of Y), which we call y,. Let
Y, the corresponding column of Y),. For statement (i) it suffices to show analyticity of y,.
We already know

(3.52) Ua(T) = yno () — (A = Ao)Y), (a:)JO/ 75, (5)A(s)yx(s)ds.
Let d € (a,b). We define the operator
F:L(a,d) — L%(a,d),

(Fz)(x) ==Yy (x)Jo /x Zy,(8)A(s)z(s)ds.

a

(3.53)
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Now we show that F' is well-defined and bounded:
Therefor we use the abbreviations  := Y, Jo, || ||z := || - || 4,(a,2), and &; for the j-th row of
Z3,. For z € L%(a,d) we can estimate

ymm_/‘/ ZwykKN@AQ@)/ZQ@M@Amkm

a

/ |/ $)Zx (s ds‘2 {Q* JAQ(x }2 ’/ Z3, (s A(s)z(s)ds{2 dx
(350 :/ ‘Q*([E)AQ(ZE)lQ ‘/ Z;O(S)A(s)z(s)ds‘2 dx
n d T
:Z/Kmmm%dgmmmmww

no o

<Y [ 1w @A), g1 s
j=1"7a
n d n

< [ e @acwl, el < 5 (el [ [0°@anw), ar)
j=1v¢ J=1

Using (3.52) we know that y, satisfies

Yn = Ung — (A — Xo) Fyx.

This is equivalent to

(3.55) (Ln = (Ao = A)F)yr = Y-

Let 6 := 2|| 7. For A € C with Ao — A| < § there exists exactly one function in L?(a, d)

solving (3.55). So this equation uniquely characterizes y,, which is given by the Neumann
series:

(3.56) Yx = Z(Ao = N Flyy,.
=0
The series converges in L?(a,d). But it also converges uniformly, i.e. in (Cla,d]", || - ||s0):
For 7 € N we have
(3.57) 1o = N FTyaoll 2 aay < 2770122 (0

by assumption on §. By definition of F', the Cauchy-Schwarz inequality yields

F2|cofaa < K|2||a@a forall z € L7(a,d),
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with a constant K, only depending on Yy, and [|Z)||12 (a,0)- Thus, (3.57) gives

IO = AoV L FT ey oo o < K277,

proving the desired || - ||o-convergence of the series (3.56).
Since || - ||so-convergence implies convergence in L?(a,d), the limit coincides with y,.
With ||F|| = 5, the Neumann series shows that, for each fixed z, A — y,(x) is analytic

on {\ € C:|\— X\| <} and therefore analytic on C, since ), is arbitrary.

For proving (ii) we choose again some Ay € C. If we set y, := (Y));, we obtain (3.52)
again.
With the stronger assumption made now we can choose d := b to define the operator F' :
L% — L2 via (3.53). The estimation (3.54) still holds, implying that F is bounded with
|F[|2, < @ for some constant @ depending on Ag but not on A.

For all A € C with [\ — A| < %, equation (3.56) yields

yx — Yaollrg < Z (Ao — A)ijon||L124 < Z Ao — AP Q7 Y2022, -

j=1 j=1

The right-hand side tends to 0 as A tends to Ag. Hence statement (ii) follows. [
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Chapter 4

A differential operator

In this chapter we define an M-function, operators R, and ﬁA,Aand, with one further as-
sumption, differential operators (L for the original problem and L for the adjoint problem).
It turns out that L* = L and Ry = (L — A\)~* for A € Admy + Ay.

Finally, we define the maximal operator for (2.1) and examine the deficiency indices.

4.1 Hilbert spaces

Definition 4.1.1. Let a,b € [a,b) U {b} with a < b. For F : a, b) — C™" such that F(z)
is self-adjoint and F(x) > 0 for a.e. x € [a,b), let L3(a,b) denote the Hilbert space of
(equivalence classes of ) measurable functions f : [a,b) — C" such that

b
]2 = / FEfde < oo,

where functions f, g are reqarded as equivalent if their difference lies in the null-space of F
almost everywhere, which means ||f — g||r = 0.
We further use the abbreviation L3 for L%(a,b).

Thus for such F and G we have

(4.1) FeG=1%ClL%,
and
(4.2) Fi=G=|fllr = dllflle,

for some § > 0 and all f € L3..
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Besides L%, also L% and Lz/\ occur in the following theory. In this section we give some
estimates showing relations between these spaces.

For U = —VJ statement (i77) in Theorem 3.1.3 is equivalent to A € Ay. With (3.16) we
obtain

Corollary 4.1.2. Forv € Ay and u € C,

This Corollary is essential for many conclusions in the further examination.

Corollary 2.2.1 states C'\ = A for A € Admy + Ay. We can extend this statement to

Lemma 4.1.3. For A € Admy + Ay holds Cy = A, in particular L, C L%,

There is even a function § : Admy + Ay — RT with C\ — §(\)A = 0 such that \ —
locally bounded.

1 .
WZS

Proof. Let k € Admy and v € Ay with A =k + v. With Cy > 0 and —Re(vVJA) = A we

can estimate
(43) OA = Ck - Re(VVJA) = —Re(VVJA) = A.

A £ 0 and (4.3) ensure that for A € Admy + Ay we can choose some d(A) > 0 such that
Cy — (M)A = 0and Cy —25(\)A # 0.

Let §(A) be chosen like this for every A € Admy + Ay.

Corollary 4.1.2 (v) ensures that there exists some ¢ > 0 such that
A+ceReVJA =0 and A+xcReiVJA=O.

Let % € Admv -+ Av.
For every A € Admy + Ay with [A — p| < 10(u)e and a.e. z € [a,b) we can calculate:

Ci(z) = Cu(z) — Re((A — p)VJA(z))
(4.4) = Cu(z) — Re(A — p)Re(VJA(z)) — Im(A — p)Re(iV JA(x))

> 0(n) A(x) ~ [Re(A — )| 2 A(z) — | Tm(x — ] ZA(r) > 26(x) A(x).
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Thus §(A) > 16(p), which yields the assertion. O

From now on we use the already mentioned shorter notation Wy, = Admy + Ay.

Lemma 4.1.4. Let A\, € Wy. Then Cx < C,. In particular, L, and L, contain the
same functions and have equivalent norms.

Proof. Using Corollary 4.1.2 (v) and Lemma 4.1.3, we can estimate
Chn=Cy+Re((p—ANVJA) K C,+A<C,+C, < C,.
By symmetry, the statement follows. O
Lemma 4.1.5. Let A\, Ao, A3, \y € Wy. Then
C), xA(:)E*;xAiC&xa;.
Proof. With Lemma 4.1.4, the corresponding statement for the adjoint problem, and the
transitivity of =, it suffices to show the assertion for A\ = Ay = A3 = Ay =: \.
Let Cy = A. Using (3.26), Corollary 4.1.2 (iv) and (3.10), we obtain
Cy = VJICLJ'V < VJAJV = A= C,.

With the symmetric argument, the whole assertion follows. O]

Finally we have

Lemma 4.1.6. If B is self-adjoint and V = +iJ, then A < C)\ for A € Wy,.

Proof. For A € Wy we know C, = A. The statement follows by the calculation

Cy = —ReVJ(A + B) = £Re i(AM + B) = +Re(i\)A < A.

So in all our self-adjoint examples with the canonical choice of V' we have A < C).
In particular in Example 1.3 on page 28 with J = J, we obtain

Ay X Chviy = Crvin i

for A in the lower halfplane. But also for the original choice, J = J; (see (2.34)), as in
equation (2.43), we can calculate

CA,VC,Q = CA,VC,VQ,J1 = —Re(Vc,zjl(kA1+B1)) = _Re(‘/c72j2(kA2+B2)) = C/\,VC,Q,JQ = Ay =A.
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Again, the actual choice of J has no influence on this matter.

In Example 3 on page 30 we have the even order problem with m = 1. We know A; =

U) . For such a

diag(w,0). Furthermore any suitable matrix is of the shape V = <1;? 0

suitable V' with Re v > 0, (2.48) shows A % C).

4.2 The M-function

In this section we want to construct an analytic M-function with M () € Dy (b) (with Dy (b)
defined in Theorem 2.2.7) for A\ € Wy,.

For A € Wy and [ € D, (b), we define

\I/)\J = G)A + CD)J,

(4.5) .
Oy =m ol

By definition, [ € D,(c) for every ¢ € [a,b), and so (2.16) yields
/ \IfilC)\\If)\’ld.fE < AA(Z)

Thus, for every £ € C" , we obtain
(46) \If,\Jf € L%«A,
and furthermore, using Lemma 4.1.3,

(4.7) Uy €€ LA

Since l/)\A(b) — D, (b)* by Lemma 3.3.1, with the same argument we obtain, for & € C™,

(4.8) (nig € L € LY.

For arbitrary ns,n, € Ny and functions f : [a,b) — C™"/, g : [a,b) — C™"s, we use the
notations

(4.9) [f.9)(2) = g" () f(z)  (z € [a,b)),
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and

(4.10) [f,g](b) := lin%)[f, g](z)  if the limit exists.

Using equation (3.22), we obtain
Corollary 4.2.1.

(4.11) (]2 _é”+) =—h =N =2 = ([[gi@]] [[gi@]]) '

We need one more technical

Lemma 4.2.2.* Let \,u € Wy and |l € D,(b). For c € [co(N),b), the regular boundary
value problem

Jy = (M + B)y on (a,c)
(4.12) [y, xul(a) =0,
[y, Guil(e) =0

has only the trivial solution.

Proof. Let y be a solution of (4.12). Since (0,|®,) is a fundamental matrix for the differential
equation, there exists & € C, & € C"" such that y = ©,& + D).

Since xx(a) = xu(a), (4.11) and the boundary condition at a imply

0= [y, xa](a) = [Ox, xa](a)&1 + [Pr, X2l (a)§2 = & .

Using (4.11) again (with A replaced by p), we can conclude

113 WGl = ezl () = e (2 75 () =0

Since U,,; and (,,; have full ranks n~and n*, respectively, the boundary condition at ¢ implies
y =W, for some £ € C™ .

Thus, since [ € D,(b) C D,(c), equation (2.11) yields
y* (©)Vy(c) <0.

If & were not zero, Lemma 2.2.4 (iii) would imply
Y ()Vylc) = EPA()V Pa(c)& = 26 P ()& > 0,

a contradiction. Hence & = 0 and thus y = 0. ]
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Now we can state the existence of an M-function in

Theorem 4.2.3.2 For any p € Wy and My € D, (b), there exists a function
M : Wy — C

such that

(1) M(p) = Mo,
and, for every A € Wy,

(12) M(A) € DA(b),

b

MO) =My = (A= 10) [ G Ao
(iid) .
== ) [ Gy ATande.
Proof. We first show that, for A € Wy and ¢ € [co(N),b), the matrix [Py, ,,](c) =
Cumo (€)* P (c) is invertible:
Let £ € C™ be in its null-space. The function ®,¢ solves the boundary value problem (4.12),

since @, solves the differential equation; (4.11) yields the boundary condition at a; note that
xa(a) = xu(a). Thus &3¢ =0 by Lemma 4.2.2, which yields £ = 0 because ®, has rank n*.

Therefore we can define, on [co(A),b),
(4.14) Ine = = ([®x, Gt (€)) [O: Gt (€)-
By this definition we obtain, for ¢ € [¢y(N), ),
(4'15) I:WAJ)\,C’ §;4,M0](C) = [@/\v C/LMO](C) + [(DA» CIL,MO](C)ZNC =0,
whereas (4.13) gives

(4.16) [Wua105 Guam] (€) = 0.

(4.15) and (4.16) yield that the ranges of both W, 17, (c) and Wy, (c) are in the null-space
of ¢} v, (c)J, which has dimension 7~ because (,, a, has rank n*. Furthermore W, r;,(c) and
Wy, (c) both have rank n~, hence their ranges coincide. Thus we obtain

(4.17) VA€ Wy,c € [co(A),b) : range(Way, (c)) = range(W,, s, (c)).
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Consequently, there exists =, € C" " such that
Uiy (€) = Wpnr (€)En
Since My € D, (c), Definition (2.11) yields
Ui, (VU (€)= E3T) s (VP par (€)20 <0,
so, again by (2.11),

(4.18) Ine € Dy(c).

With corresponding arguments for the adjoint problem (including an adjoint version of
Lemma 4.2.2) we conclude that for all A € Wy the ranges of (5, . (c) and of {, ar, (c) coincide.
Therewith, equations (4.17) and (4.16) imply

(4.19) Vi, A€ Wy, c € le(N),b) Nc(v),b): [(Waiser Gl (€) = 0.
For v, A € Wy and ¢ € [co(A),b) N [co(v), b), we obtain by (2.1), (3.15), and J* = —J that

(420) I:‘I])\yl)\,c7 CV,lu,c]/ = (C:,ly,cj\lj)\al)\,c), = ()\ - V)C:,ZV?CA\IJAJ)\,C'
Integrating from a to ¢ and use of (4.19), (4.11) and Z,(a) = E = Z(a) yields
(A= ’/)/ Gt AU A = —[Ung, G (@)

(4.21) = — (I, o) [Ya, 23] (a) ({:)

0 Lo\ (L) , _
- <[n+7 lu,c) (_In 0 ) (l/\,c> - l)\,c lu,c-

The same calculation with (4.15) and (p, M) instead of (4.19) and (v,l,.) yields

(4.22) ZA,C - MO — ()\ - M)/ C;,]\/[()Al:[;)\vl)\,cdx'
With A = p, this implies [, . = M.

So (4.21), with changed roles of v and A, and then v put equal to u, reads

(4.23) Dye — Mo =(A—p) / C;,lA,CA\I/u,Modm-

We fix some A\ € Wy, for the rest of the proof.
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Using Lemma 4.1.3 and (2.12), we conclude that there exists a constant k such that, for

¢ € [co(N), D),

(& C 1 c
(4.24) ogt/ Wih@Aqum¢E§kl/ W;h£C&W&thﬁ:ékWXUJVWNuJW

The boundary term at ¢ is non-positive by (2.11) and (4.18). The term at a is bounded
with respect to ¢ € [co(A),b) by (4.5), since 1), € Dy(c) € Dy(co(A)) and the latter set is
bounded by Theorem 2.2.7.

If we set \ilc = lia,g Wiy, the estimation above yields boundedness, and thus weak con-
vergence of U, in L? to some F' € L% at least along a sequence (c,,) tending to b.

Since (I, ) is bounded we can assume w.l.o.g. that
(4.25) Ihe, — M(N) as  m — o0,

for some M(\) € C*"
Using Corollary 2.2.3, Theorem 2.2.7 and (4.18), we obtain

(4.26) M(X) € Dy(b).

Thus, by (4.7) and (4.8), we know that all columns of W y/») and Cy ar(y) are in L7,

By definition of ., (4.25) yields locally uniform convergence of U, to Uy m(n)-
The compactly supported test-functions are dense in L%, thus F = Wy oy in L.

Because (1, € Li, the weak convergence @Cm — W, ar(n) shows in particular that

b b
(4.27) /C;yMOA\I/CmdxH/ G AVaydr  as m — oo,

Using (4.22) and (4.25), we obtain
M) — My = lim Iy, — My

m—0o0

(4.28) = lim (A — ,u/ Cuntg AVl ., dx

m—>oo

m*)OO

b
= lim (A — / CMMOA\PC"de— /\—,u)/ Gty AV vy d.

The second equation of statement (iiz) can be shown analogously, with exchanged roles
of ¢ and ¥ and use of (4.23). W.lLo.g. we can assume that the limit M()) is the same as
before. u
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4.3 The resolvent operator

In this section we define (at least on Wy ) the A-dependent functions Ry via a kernel G,. It
will turn out that R, is the resolvent of the differential operator we are looking for.

For the following we fix some u € Wy, My € D,(b), and a corresponding M-function given
by Theorem 4.2.3.

For A € Wy, let

\I/)\ = \I’)\7M(/\) = @)\ + (I))\M()\),

4.29
(4.29) Oo=Oomy =M F M (A"

Lemma 4.3.1.*2 For \ € Wy,

(4.30) [V, ¢uJ(0) =0,
(4.31) [Py, G(b) = 0.

Proof. Using Zy(a) = E = Z,(a), we obtain from (4.11), by multiplication with (]\4]75:\))
from the right and with (7,+|M(x)) from the left,

a3 gl = @) () (41 = Mo - dea

Since Wy and (, solve (2.1) and (3.15), respectively, and J* = —J,

(W, G = (I WN)" = (A = p) LAY

Integration provides, for all ¢ € [a, b),

05, C)(e) = [Wa, G(a) + (A — ) / AU
(4.33) a

= M(p) — M\ + (A= p) / C AW da,

The right-hand side converges to zero by Theorem 4.2.3 (iii), as ¢ — b, which proves (4.30).

Equation (4.31) can be proven correspondingly, using the second equation of Theorem
4.2.3 (ii7). ]
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We further define

) ea(=@)G(y) if a<z<y<hb,
Crwy) = { Uy(2)xXi(y) i a<y<az<b,
(4.34) a ] xa@)wi(y) if a<z<y<hb,
A& y) = G@)®i(y)  if a<y<a<b
= Gi(y,2)
and for f € L%
Raf(@)i= [ Galwy) Aw)F )y
(4.35) A .
Raf@) = [ Gae) A )iy
By definition,
B OO0 1wl )
(4.30) miw =vi [, 0, o) wsmaw s

With (3.23), this yields
Corollary 4.3.2.% R, f € AC,.|a,b) with

(4.37) J(Rxf) = (NA+ B)(Ryf) — JYAJoZLAf = (AMA+ B)(Ryf) + Af.

Using (4.36), (4.11), and (4.8), we obtain*

[BAf, xa](a) =0,
[Raf. G0 = (Lo MOV, Z3)(0) [ (hxg% 1%{;) (1) Z3() Aly) f(w)dy
sy =t () ) [0y, ) 0z

=lim [ (=L@p Lol M) — M(N) (W) Z3 () A() f(y)dy

—
ccba

r—b

b
~ lim / Ciy)Aly) f(y)dy = 0.
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Analogous calculations for the adjoint problem yield*
J(Raf) = (AA+ BY)(Raf) + Af.

(4.39) [Ryf, ®,](a) =0,

[RAf, 0, (b) = 0.

Theorem 4.3.3.%% For each X\ € Wy, Ry is a bounded operator L} — L%, Lz, — L¢, , and
L4 — La.
Furthermore, A — ||Ry||a and X\ — ||R)||c, are locally bounded.

Proof. By Corollary 4.1.2 (iv) there exists ¢ > 0 with A — eV JAJ*V = 0.
Lemma 4.1.3 yields a function ¢ : Wy, — R with C\ — §(A\)A = 0 on Wy, such that
locally bounded on Wy . Thus,

is

=

(4.40) Cy — e6(\VJAJV = 0.

We will show that ||Ra||a, ||Ral|c, < m, which proves the desired locally boundedness.

Let A € Wy and let f € L%. For ¢ € [a,b) we set f. := 1, qf and T := R, f..
Using (4.37) and the chain rule, we obtain

2 / POy Y = / " (Raf)2Re(VI(MA + B))(Baf.)da
— _9Re /C(RAfC)*VJ(/\A + B)(Ryf.)dx
= —2Re /C(RAfc)*VJ(J(RAfC)/ — Afe)dx

(4.41) o

= 2Re / TVY + YVJIAf.dx

_ / TV 4 (TYVT + 2Re(TVJAL)dx

=TV + 2Re/ TV JAfdz.

a

Moreover, since supp(f.) C [a, c], (4.36) implies

(4.42) T(e) = V() ( Ajf(lk)) F
for F:= ["x}3Af. dz. Thus,

(4.43) (T*VY)(c) = F*(Or + ®AM (M) V(0 + AM(N)) F <0,
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by (2.11), since M(\) € Dy(c).

Using Y, (a) = E and (4.36) again, we obtain

(4.44) T(a) = E < I?ﬁ M(()M) G,

for G := [*Z;Af. dz. Thus, by (2.18) and (2.9)

(4.45) (T*VY)(a) = 2G* ( Mi“;)*) Py(a)(I+|M(N\)G > 0.

Using (4.41), (4.43), (4.45) and (4.40), together with the Cauchy-Schwarz inequality in
L4 (a,c), we can estimate

/ T*C\Ydx < y/ Y*VJAf. da|

< / FrAS. dx) < / ) T*VJAJ*VTd:z:) v

(4.46) < 25(5()\) 1f11% + 555()\)||T||%/JAJ*V,[CL,C}

1
2 2
+ §||T||C>\,[a,c}

1
— 2e5(N)
1
2e6(N)

Thus we have, for d € [a,b) and ¢ € [d, D),

1 (&
1A+ [ e

d d c
aan  [mproms - [ Tote < [ rore s Sk

ed(N)
/ Gy y)dy,

then k(c) — 0 for ¢ — b, since ¢y, f € L%. By (4.34) and (4.35), we obtain Ry(f — f.) =
®,\k(c) on [a,d], for d < c.

If we define

Therefore, on |a, d],

(BAf) OaRAf — (Bafe)"CxRafe
(4.48) = (BA(f = 1o))"CARA(f) + (B f)" CARA(f — fo) = (RaA(f = fo))"CARN(Sf — [2)
= k?*(C>CI)§C)\R)\(f) + (R)\f)*CACI)Ak(C) - k*(C)(I)KCACI)Ak(C)
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The integral over [a, d] of this term tends to zero as ¢ tends to b. Thus (4.47) yields

1

d
/a (af) Caifdn < S I

for arbitrary d € [a,b). This shows Ryf € L, , and

1
1B Pl < g1

Thus R, is even a bounded operator L% — LQCA. Using C\ = A, we see that R, is a
bounded operator L% — L% and Lg, — L . More precisely, we can estimate

2 1 2 1 2
< <
||R)\f||A—6<>\)HR)\f||C)\—852<>\)HfHA

and, for f € L3, C L7,

1

2 < 2 <
IR, < S5l <

1

EERLLY

Hence the assertions follows. O

Theorem 4.3.3 and G,(z,y) = G5 (y, z) imply

Corollary 4.3.4.! JSL,\ is the L*-adjoint of Ry and vice versa.

4.4 Definition and properties of the differential operator

To define an operator for the formal problems (2.1) and (3.15), respectively, we need one
more

Assumption 2. The operators R, }A%M : L% — L% are one-to-one.

Theorem 4.4.8 below shows that under this assumption, for every A € Wy, the operators
Ry and R, are one-to-one from L% into itself.

The following remark is slightly technical but sometimes well applicable.
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Remark 4.4.1. If the sets N,,, given by

Ny = ker(A)
(4.49) B
Npi1:=N,NB (JNm + range A),
are constant on [a,b) for all m € {1,...n}, and N,, = {0}, then R, is one-to-one for any

€ Wy The corresponding statement holds for R, with B* in place of B.

Proof. Let f € L% with R,f =01in L3.

We set T := R, f. Thus T is continuous and AT = 0 a.e. on [a,b). Since ker A is constant,
we obtain AY(c) = 0 for every ¢ € [a,b).

We show Y(c) € N,, for every ¢ € [a,b) and m € N by induction. The case m = 1 holds
by definition. Now let the assertion hold for m € N, and let ¢ € [a, b).

For T(c) to be in N, 11, we need to show

(4.50) T(c) € B~ (JN,, + range A).

Since N, is constant, Y'(c) € N,.
Using (4.37), we obtain JY' = (uA+ B)Y + Af = BY + Af.
Thus BY (¢) = JY'(¢) — Af € JN,, + range A, which yields (4.50).
So in particular Y(c) € N,, = {0}, and hence Y(c) = Y'(¢) = 0 for every ¢ € [a,b). Thus,
Af =JY' — BY =0on [a,b). O
Another sufficient condition for Assumption 2 is given by
Remark 4.4.2. If, for almost every x € [a,b), either A(z) =0 or A(x) > 0, then Assump-
tion 2 is fulfilled.
Proof. 1t suffices to show injectivity of R, : L% — L%, by symmetry.

We assume the existence of some f € L%, Af # 0 on a set of positive measure, with
R,f=0in L%, i.e. AR,f =0 a...

Let a < ¢y < ¢; < b such that Af =0 a.e. on [a, ¢y| and

(4.51) / Af dx # 0 for all ¢ € (¢o, ).

co
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We set D := {c € (co,c1) : A(c) > 0}. For a.e. ¢ € D we have A(c)R, f(c) = 0 and thus,
by (4.36),

0 Lol (g
0=R.f(c)=Y,(c) / (%b) I MM) ) (2)Z;(2)Alz) f (x)dz.
Since Y),(c) is regular we even obtain
’ 0 1((1,0)[71— *
0= / (%b) P ) (2)Z2(2) A(2) f(x)dz.

Thus, for a.e. ¢,¢c € D,

0= [ (n i) e [(, 0 i) @A e
_ / i (_%ﬁ %) 7 (@) A(x) () da
_ (_(;n Ig) / @) A@)f(2) do

and hence 0 = ff Z(x)A(x) f(v) dv. By (4.51) and the assumption on A of this Remark, we
can chose ¢ > ¢y arbitrarily close to ¢y, whence we obtain

0— / ' Z:(0)A@)f(2) da

co

for a.e. ¢ € D and therewith for all ¢ € (cg,c1). (Otherwise, by continuity of the integral
term with respect to ¢, there is an interval (&, ¢;) C (co, 1) such that the integral term is
zero for ¢ = ¢y, but is not zero for all ¢ € (&, ¢;). But the integrand is zero a.e. in (¢, ¢;),
because for = € (cy,c1) \ D holds A(z) =0.)

This implies, for a.e. = € (co,c1), Zi(x)A(z)f(z) = 0, and thus A(x)f(x) = 0 by the

o
regularity of Z,. This causes a contradiction to (4.51). O

We are going to define the differential operator. Since L% consists of equivalent classes,
we have to take care of well-definedness. For this purpose, we will use

Lemma 4.4.3.*2 Let y1, yo : [a,b) — C", with

(Z) Y1,Y2 € L,247 Y1 = Yo mn leq;
(i1) y1, Y2 € AClpcla,b),

(#1) [yj, xul(a) = ly;, Gu(b) = 0 for j € {1,2}.
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Then, for fi, fo € Ly with Jy; — By; = Af; a.e. on [a,b) (for j € {1,2}),
fi=/f2 inL?.
Proof. 1f we set y := y; — y2, we obtain Ay = 0 a.e. on [a,b).
Further we define f := f; — f5. Therewith,
Jy = By+ Af = (uA+ B)y+ Af a.e. on [a,b),
whence y = R,,f + ©,& + ®,& by (4.37), for some & € C* and & € C™".

Using (4.11) and (4.38), the boundary condition [y, x,](a) yields & = 0, and so the bound-
ary condition [y, (,](b) implies & = 0 since ¢, = 1, + x, M*(1).

Thus we know y = R,,f. Since y = 0 in L%, Assumption 2 yields f = 0 in L% and hence
fl = f2 in Li O

Now we can define

D(L):={y € Ly N ACic[a,b) = [y, xul(a) =0, [y, GJ() =0,
(4.52) and there exists f € L% : Jy — By = Af a.e.},
Ly:=f fory € D(L), f € L% with Jy — By = Af.

D(L) := {z € L} N ACjc|a,b) : [z, ®,](a) =0, [2,V,](b) =0,
(4.53) and there exists f € L% : J2 — B*z = Af a.e.},
Lz:=f forze D(L), fe L with J2/ — B*z = Af.

More precisely D(L) and D(L) consist of all equivalence classes in L% such that at least
one representative of the class satisfies the conditions after the colons. Lemma 4.4.3 and an
analogous statement for the adjoint problem ensure that L and L are well-defined.

Note that the boundary conditions at a are independent of ;, because so are x,(a) and
P, (a).

Lemma 4.4.4."" For A € Wy and f € L? holds Ryf € D(L) and (L — \)Ryf = f.

Proof. Theorem 4.3.3 implies Ry f € L?.
Corollary 4.3.2 yields Ry f € ACj,. and

(4.54) J(Ryrf) = BRyxf + A(ARAS + f).
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Since xx(a) = xu(a), equation (4.38) shows that R, [ satisfies the boundary condition at a
required in D(L).

For the second boundary condition we first assume f has compact support.
Let ¢ large enough, such that supp(f) C [a,c|]. On [¢,b), equations (4.34) and (4.35) yield
Ryf =W,
for some £ € C". Thus, by (4.30),

(4'55) [R)\f, Cu](b) = [\I[)\v CMKb)g =0.

To obtain the boundary condition in the general case, we first calculate, for arbitrary
g €L,

[Rag, Cul" = €, J(Rag) — (JC,)" Rag
(4.56) = (A + B)Ryg + Ag) — ((rA + B*).) Rag

Now let f € L% and let (f,,) a sequence of compact support functions converging to f in
L%. Using (4.55) and (4.56), we obtain

[BAf, Cul(0) = [RA(f — fm), Cul (D)

b
= (BaF = s Gl@ + [ (N WGARMS = F) + GAU = F))da

4.57 b
10 ZC;(G)J%(G)/ GA(S = fm)da+

b b
(=) [ GARMS = fuldo+ [ GA(f = fu)de

Since Ry is bounded, f — f,, — 2 0 implies Ry(f — fim) —2 0 for m — oo. Since (, € L%,
the right-hand side of (4.57) tends to zero for m — oo. Hence [Ryf,(,](b) = 0.

In view of (4.54), we have shown R,f € D(L), and LR\f = f + AR, f, and thus (L —
MNEAf =T O

Lemma 4.4.5.2 D(L) and D(L) are dense in L.

Proof. Let f € L% be orthogonal to D(L). For all g € L2,
<y, ﬁuf >=<R,g9,f>=0
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by Corollary 4.3.4 and Lemma 4.4.4. This shows }A%Mf = 0 and hence f =0 by Assumption
2.

~

With a corresponding argument, the denseness of D(L) follows. O]

We denote the resolvent set of of an operator by p(-).
We will see that Wy C p(L), with Ry = (L — X\)~! for A € Wy,. We first show this assertion
for A = u:

~ ~

Lemma 4.4.6.> 11 € p(L) with (L — p)~* = R,, and ji € p(L) with (L — i)"' = R

1

Proof. For y € D(L) with (L — p)y = 0 holds Ly = py and thus Jy = (uA + B)y. This
yields y = ©,& + ®,& for some & € C" and & € Cc™'.

The boundary condition for y at a, together with (4.11), implies & = 0.
Using ¢, = 0, + x, M, the boundary condition at b and (4.11) yield & = 0, thus y = 0.
Hence L — y is one-to-one.

Let f € L4 and y € D(L). Lemma 4.4.4 yields R, f € D(L), (L — pu)R,f = f, and
(L = ) Ru(L = p)y = (L — p)y,
which implies R,(L — p)y = y.

Together we conclude: (L — p) : D(L) — L% is bijective and R, is its inverse, which is
bounded by Theorem 4.3.3.

With a corresponding argument, the statement for L and }A%u follows. [

Lemma 4.4.6 and Corollary 4.3.4 yield (L — i)~ = (L — p)~)*, and thus

Corollary 4.4.7.*" L is the L?-adjoint off and vice versa.

Now we are able to show
Theorem 4.4.8.** Wy C p(L), and Ry = (L — \)™! for A\ € Wy.
Analogously for the adjoint problem {\ : X € Wy} C p(L), and Ry = (L —\)~! for A € Wy.

Proof. Let A € Wy,. . R o
For f € L2, the adjoint analog of Lemma 4.4.4 yields Ryf € D(L) and (L — A\)Ryf = f,
whence in particular the range of L — X is L?.

Corollary 4.4.7 implies (L — \)* = L — X. Hence L — X is one-to-one.
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The rest of the proof is exactly the same as the second part of the proof of Lemma 4.4.6
with A instead of p. O

Because their resolvent sets are not empty, we conclude

Corollary 4.4.9."* L and L are closed.

Now we take a look at the scalar examples on pages 23 to 30.
From now on we assume for all scalar examples that w > 0 on [a, b).

We use Remark 4.4.1 to show that Assumption 2 is satisfied for all scalar examples.
Remark 4.4.1 poses assumptions only on J, A, and B, whence we need not distinguish
different choices of V' and F.

We study the odd case with m = 1 in detail. We have A = A; = diag(w,0,0), J = J; =

codiag(i,,1) and

1 (P ¢ 0

B=B==-|ir -2 -1

N0 -1 0
This leads to
Ny = ker(A) = span{es, e3},
Ny, = Ny N B~Y(JN; +range(A)) = N; N B~ '(span{e;, ea}) = Ny Nspan{e;, e3} = span{es},
N3 = Ny N\ B™Y(JN; + range(A)) = span{es} N B~ (span{e;}) = {0}.

The same calculation holds for B* in place of B. All requirements of Remark 4.4.1 are
fulfilled, hence Assumption 2 holds.

In the same way, for arbitrary m and both cases (even and odd) and in the even case for
both choices of J (J; or Jy), with n = 2m, or n = 2m + 1, respectively, we obtain

N; = span{e;;1,...e,}

for j < nand N,, = {0}. Hence Assumption 2 holds for all of our scalar examples by Remark
4.4.1.

Now we give some thoughts to the question in which cases the constructed operator L
is self-adjoint. Certainly, we cannot expect L to be self-adjoint in the non-self-adjoint case
B # B*. But even in the self-adjoint case B = B*, with the canonical choice of V', the
resulting operator L need not be self-adjoint. R
Indeed, in this case, Ly = Ly = L*y for y € D(L) N D(L). But the number of boundary
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conditions at a for L and L may not coincide; in the odd case it is even impossible for them
to coincide.

Furthermore, in the even case, also if n™ = n~, the boundary conditions at a need not
be the same. Straightforward calculations show that they are the same if and only if

—_
—

E*JE (IO ) = (6) for some = € C" ™. By regularity of J and FE, this is equivalent
nt

to (0L) E*JE ( 0

I = 0. For the canonical choice V = 4iJ this is finally equivalent to
nt

P\(a) = %be\(a)VCI)A(a) = 0.

In our examples for the even case this does not hold for the suitable pairs (V,, E.) and
(Ve2, Ec2), but it does hold for (V,, Ej).
The same boundary condition at a still does not imply L = L. We will return to this subject
at the end of this chapter.

Now we examine the set Wy, knowing that this is a subset of the resolvent set of the
corresponding operator L.
In the self-adjoint setting with the canonical choice V = +iJ, we already know that Wy is
the lower, respectively the upper halfplane.

In all our scalar examples we have A = diag(w,0,...,0). The condition —Re(A\VJA) = A
for some \ € C requires that the first column of —V'.J is of the form (v,0,...,0) for some
v € C\ {0}. (Otherwise —Re(AV JA) would be indefinite or zero.) Thus,

—Re(A\VJA) = Re(Adiag(vw,0,...,0)) = diag(Re(Av)w,0,...,0) = Re(\v)A,
and therewith
(4.58) Ay ={\ € C: Re(\v) > 0},
which is a halfplane.

Wy = Admy + Ay is a (possibly) shifted halfplane. This holds, because Ay is a halfplane,
and therewith

Wy = U (A+Ay)

A€Admy
is a halfplane or the whole complex plane.

We exclude Wy = C as follows: Let v again the first entry of —V'J, we assume w.l.o.g
lv| = 1.
Since 7 € Ay, there exists some large k£ > 0 such that Cpy + kRe(WV JA) # 0.
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Let A € C with Re(A\v) < —k. We set \; := Re(A\v)v and Ay := X — ;.
Therefore, —Re(AVJA) = Re(A\v)A = 0.

Using Re(M\v) < —k and —Re(vV JA) = 0, we can calculate

Cry = Coy — Re(AVJA)
= Cov — Re(MVJA) — Re(\VJA)
— Oy — Re(A\v)Re(7V JA) — 0
< Coy + kRe(TV JA) # 0.

(4.59)

Accordingly, A € Admy, whence A ¢ Wy, by (4.58).

4.5 The maximal operator and deficiency indices

This section mainly bases on Don Hinton’s idea that the geometric shape of D,(b) (in
particular the quantity r defined on page 75 below) is related to the deficiency indices of the
maximal operator (see [17, §14-18]).

In this section we are going to define the maximal operator for (2.1). The relation of its
domain of definition to D(L) provides a better understanding of the boundary conditions
posed in D(L).

We set
(4.60) D(Laz) := {y € L N AC\oc[a, b) : there exists f € L% : Jy — By = Af a.e.},
' D(Emal,) = {z € L} N ACi[a,b) : there exists f € L% : J2' — B2 = Af a.e.}
and
(4.61) Dy :={y € D(Lmaz) : [anu}(a) =0},
Dy :={z € D(Lpaz) : [z,P,](a) = 0}.

~

As in the definition of D(L) and D(L), these sets are meant as subsets of L. Le. y € L% isin
one of these sets if and only if one representative of its class fulfills the required assumptions.

To define the maximal operator for (2.1) and for (3.15), we need one more

Assumption 3. For every y € AC,c([a,b),C") and f € L?, such that y =0 in L% and y
solves one of the equations Jy — By = Af or Jy' — B*y = Af a.e. on [a,b), holds f =0 in
L.
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This assumption is equivalent to uniqueness of a corresponding function f € L% for ev-

ery Y € D(Lyq,) and every z € D(Lpq,). Assumption 2 demands the same, but only for
functions y, that fulfill the boundary conditions in D(L), respectively in D(E) Hence As-
sumption 3 is stronger than Assumption 2.
Fortunately, the proofs of Remarks 4.4.1 and 4.4.2 (which give criteria that assure Assump-
tion 2 to hold), only use, that Ry f fulfills J(R)f) — BRyf = Af for some f € L?, to show
Ryf =01in L% = f = 0in L%. Tt does not require the boundary conditions, that R)f
fulfills. Whence the same proofs, with y € D(L,,.,) in place of R, f, yield that the premises
of these Remarks even imply Assumption 3. So we obtain

Corollary 4.5.1. If the premises of Remark 4.4.1 together with corresponding premises
for the adjoint problem are fulfilled, or if the premises of Remark 4.4.2 are fulfilled, then
Assumption 3 holds true.

For the rest of this section we assume that Assumption 3 holds true.

Lemma 4.5.2.*3

(4.62) Dy = D(L)+ {®,6: €€ C” and ®,& € [},

(4.63) D(Lpaz) = Dy + {0,£: £ €C"}

(4.64) = D(L) + {6, + D6y : 6 €C7 & €C™, and B8 € L2},
(4.65) Dy = D(L) +{x,£: € €C" and x,& € LA},

(4.66) D(Lmaz) = Dy +{¢u6: € €C™Y

(4.67) =D(L) +{¢& + Xl G €T, & ECT, and & € LA},

Proof. We only show (4.62), (4.63), and (4.64). The other equations can be proven analo-
gously.

We first show (4.63). Therefor let y € Dy with corresponding f € L% such that Jy' — By =
Af ae. on [a,b), and let § = y + V,£ for some £ € C”. Since ¥, solves (2.1) and
every column of ¥, is in L% by (4.7), we conclude that § is in D,,,,, with corresponding
Jim f4u,8 € L2,

On the other hand, for arbitrary y € D(Ly.), we set & = [y,xu](a). Using ¥, =
O, + ®,M, (and hence [V, &, x,](a) = ¢ by (4.11)) and the above knowledge again, we real-
ize that y — W ,¢ is in D;. This proves (4.63)
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Now we show (4.62), except that the sum is direct. This statement follows by (4.64).
Therefor let § =y + ®,£ € L% with y € D(L).

D; is obviously a superset of D(L), thus it contains y.
By (4.11), [®,&, xu](a) = 0 and for f := u®,¢ € L3 holds
JOLE = Af + Bb,E.
So D; contains ®,&, too, and thus also g.

Now let § € Dy, i.e. § € L4 N ACioc[a,b) with [7,x,](a) = 0, and f € L? such that
Ji — Bj = Af.

Lemma 4.4.4 yields y := R, (f — py) € D(L).
It suffices to show that ¢ :=y — § = ®,£ for some £ € C”. Equation (4.37) yields
Jo' = (pA+ B)y + A(f — pgy) — By — Af = (A + B)e.
Thus ¢ = 0,& + @, for some & € C, & € C"". Using y € D(L), we obtain

[907 Xu](a) = [y> Xu](a) - [@, Xu](a) =0,

which implies & = 0 by (4.11). Hence ¢ € {®,£: € € C" and ®,¢ € L4}

It remains to show that the sum in (4.64) is direct.
So let y := (¥,|®,)¢ € D(L) for some & € C" (in particular y € L%). We have to show that
y=0in L3.

We know, that y solves Jy' — By = pAy. Furthermore there exist some y € L% that
vanishes in L%, such that y + 7 fulfills the premises in the definition of D(L). Whence there
is some f = Ly with

Jy+y) - Bly+y) =Af.
Thus, for f:: f — py, we obtain N
Jy — By = Af.
Assumption 3 yields f: 0 in L%, whence f = uy in L%. So we obtain Ly = f = uy. We
know that p is in the resolvent set of L. Thus we conclude y = 0 in L%. [

Lemma 4.5.2 shows, in particular, that, if there is no L%-function ®,¢ for some non-trivial
¢ € C", then there are no boundary conditions in D(L) at b (i.e., [y,(.](b) = 0 follows
automatically from the other conditions posed in D(L)). Later we will call this the strict
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limit-point case.

We want to define the maximal operator for (2.1). With Assumption 3, the following
operator is well-defined:

_ {D(LW) — I3

4.68
(4.68) yr— f with Jy' — By = Af a.e. on [a,b).

We call L., the maximal operator for (2.1). Furthermore, for A € C, let
(4.69) Ny :=ker(Lpgz — M)
denote the deficiency space, and its dimension d) the deficiency index of L,,q..
For & € C" and & € C" such that ®,& € L%, we have Ly, (V.6 + ®,&) = (V& +
$,&). Since p is in the resolvent set of L, (4.64) yields
Corollary 4.5.3.
N, ={U,£:£€C"}+{D,£:£cC” and D€ L[4} C LA

If only the trivial solution of (2.1) (with X = u) vanishes in L%, then, since (¥,|®,) has full
rank,
d, =n 4 dim{®,¢ : £ € C" and € € L[4}

1 € Wy was chosen arbitrarily, furthermore the maximal operator and the deficiency
indices do not depend on this choice. Thus we can conclude

Corollary 4.5.4. For every A € Wy,
Ny={U,£: €T+ {B\&: €€ C™ and ®\& € L4} C LA
If only the trivial solution of (2.1) vanishes in L%, then
dy =n +dim{®,\& : £ € C" and ®,¢ € LA},

Now we consider the scalar examples. For the differential expressions 7.[v] and 7,[v] in L?,
on page 23, with arbitrary coefficient functions in L} ., we define the maximal operators by

D(L7*) .= {v € L2 (a,b) : vV € ACyc[a,b) for 0 < j < 2m —1
and T.[v] = wf for some f € L?(a,b)},
Ly .= f e L2 such that 7.[v] = wf,

D(L™) .= {v € L2 (a,b) : v € AC)cla,b) for 0 < j < 2m
and 7,[v] = wf for some f € L?(a,b)},

Lmety .= fe L2 such that 7,[v] = wf.
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Since w > 0 on [a,b), and wf = wf implies w(f— f) = 0, we see that the maximal operators
are well-defined.

We like to compare these maximal operators with the maximal operator for (2.1) with corre-
sponding functions. If we choose for example J = J;, we obtain A = A; = diag(w,0,...,0)
and B = B (see pages 24 to 25 for the even and pages 25 to 26 for the odd case. Again, as
we will see, the actual choice of J has no influence in the following.)

We have shown that Assumption 2 holds true by showing the premises of Remark 4.4.1.
Hence Corollary 4.5.1 yields, that also Assumption 3 holds true.

Furthermore, since w > 0 on [a, b), the following shows that only the trivial solution of (2.1)
vanishes in L%: Let Y = (v1,...,v,)" a solution of JY' = (AA; + B;) with A;Y = 0 a.e.
on [a,b). Then v; is a solution of one of the scalar equations (2.31), respectively (2.32).
Furthermore wv; = 0 a.e. on [a,b) (whence, by continuity, v; = 0) and v; = vgj_l} = 0 for
J < n. Thus follows Y = 0.

For simplicity, now we only consider the even case. The following results hold correspond-
ingly for the odd case with analog proofs.

Let L,q, the maximal operator for J;1Y' = (AA; + By)Y.

For functions f,g € L? let fi, g1 denote the first components. We have

b b
</f9 >L?4_/ g*AfdiU_/ gw frde =< fi1,91 >12 .

This shows that IT : L} — L2, f ~ f; is well-defined and isometric. Obviously II is also
surjective and therewith bijective.

Lemma 4.5.5. II maps Lyaz to L™, i.e. TLpq, 11" = LMo,
(The corresponding statement for the odd case can be shown analogously.)

Proof. For y € D(Lypas) let f := Ljyey. By definition, we know that y and f are in L%,
hence v := y; = Iy and f; = IIf are in L?. Furthermore each component of y is in
ACyc[a,b) and it holds J1y' = By + A, f. By multiplication with —.J; we obtain

(4.70) y' = Mgy +M5f = Mgy +(0---0—wfr)".
By construction of M§ and M§ on pages 23 to 25, (4.70) is equivalent to y; = g™ = yli=1]
for 2 < j <2m and 7.[y1] = wfi.
Hence all quasi-derivatives of v are in ACo, and 7.[v] = 7.[y1] = wfi. Thus we conclude
that [ly = v € D(L7*") and

L?ax(ny) = L;naz,u = fl = Hf = HLmaxy'
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Since II is injective, it remains to show that II maps D(L,a,) onto D(LI**).
For v € D(L™%), we set y := (vV~Y) <o, and f := (L0, 0,...,0)T. Using (4.70) again,
we see that y € D(Lyge), furthermore Iy = v = v. Thus

H(D(Lmaa:)) = D(LGax)'

We conclude that the deficiency index of L., is equal to that of L***.

Now we consider again the self-adjoint even order Example 1.2 on page 27, with the
suitable pair (V, Fs). This is the self-adjoint example with canonical choice of V' = V,
n"=mn", and £ = E, is chosen such that the corresponding operators L and L have the same
boundary condition at a (since Py(a) = 0). Thus we have D; = D;.

If we furthermore assume that ®,&;, x,& € L7 for some & € C", & € C" implies ®,6 =
Xu&2 = 0 in L2, then (4.62) and (4.65) yield D(L) = Dy = Dy = D(L). This would mean
L=L=1L"

In particular dz = d, = n~ implies L = L*. (Since B is self-adjoint in this example, dj is the
deficiency index of the maximal operator for the adjoint problems.)
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Chapter 5

Results

This chapter contains various results.

Relations between the geometrical shape of Dy (b) —Cy(b) and the dimensions of the solution
spaces of (2.1) within certain Hilbert spaces are examined. According to those quantities we
introduce some limit-point and limit-circle type classification.

Properties of the M-function may yield further information about the spectrum of L.

With the aim to obtain yet further estimations for the spectrum of L, we restrict (2.1) to
some smaller interval [@,b) C [a,b), furthermore we vary the choice of an admissible matrix

V.

5.1 Dimensions of the solution spaces

In this section we examine connections between the shape of D) (b) —C,(b) and the dimension
of the solution spaces of (2.1) and (3.15), respectively, intersected with L% or with L2,

respectively with LQCA .
A

We will recover the two common cases of limit-point and limit-circle. But, since we consider
the higher order and non-self-adjoint situation, these cases require a more sophisticated
distinction.

Every statement and definition in this section, formulated for problem (2.1), also holds
correspondingly for the adjoint problem. Recall the exchanged roles of n" and n™ there.

For F' € {A,C\}, m € Ny and any matrix-valued function Y : [a,b) — C™™ we use the
notation

[T]F:={Y¢: £ € C™and YE € LT}
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Lemma 5.1.1.2 For A € Wy, F € {A,C,} let
mp = dim[®,] .

There are exactly n~+ mp linearly independent solution of (2.1) which lie in L.
Proof. From

(5.1) U, = YA<M[’6)>,

we see that Wy has rank n~. The columns of Wy are in L, and in L7 by (4.6) and (4.7).

Let FF € {A,C,}. Using &) = Y)‘(IO+>7 with (5.1) we conclude the directness of the sum
[(Uy]p + [®A]F- Thus this space, consisting of functions in L%, has dimension n~ + mp.
Therefore, with n~+ m denoting the exact number of linearly independent solutions of (2.1)
in L3, we have m > mp.

On the other hand, n~+m independent solutions of (2.1) are of the form Y,= with a matrix
= e Crrtm = ¢t tm of full rank 7+ m. W.lo.g. let = a block matrix of the shape

=1 On—,m
=2 =3

with 23 € €™, This implies that every column of ®,Z; lies in [®)\]p. Thus mp >m. O

Lemma 5.1.2.%2 For A € Wy let m the number of eigenvalues of Py(c) that remain bounded
as ¢ — b.
There are exactly n~+ m linearly independent solutions of (2.1) which lie in LQCA.

Proof. 1f there are n~+m linearly independent solution of (2.1) which lie in L2CX, by Lemma

5.1.1 there exists = € C™™ with rank m, such that the columns of ®,= are in L%A. Using
(2.20) and (2.13), we obtain for every £ € C™

EZ"Py(0)Z€ = 2" Py(a)=E +/ (PAZE) " CLDAEE do < E'E"Py(a)=€ + ||<P,\E§||%A.

The space {Z¢ : £ € C™} has dimension m. Hence the min-max-principle yields that the m
smallest eigenvalues of Py(c) remain bounded as ¢ tends to b.

Conversely, let 0 < A(c) < Ag(c) < -+ < Ap(c) the smallest eigenvalues of Py(c) with
corresponding orthonormal eigenvectors &;(c), ..., &n(c). We set T := (&]&] . .. [&n). Since
C™™ has a compact unit sphere, there exists some increasing sequence (c,) tending to b such
that Y(c,) converges to some = € C™™ for p — oco. The columns of = are orthonormal, thus
= has rank m.
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If m eigenvalues of Py are bounded, then \,, < k on [a,b) for some constant k. Using
Py(a) > 0 and (2.20) again, this yields for any p,p € N with p > p:

(T(cp))*/ BL0NDy dz T(c,) < (T(c)” /‘pcb Oy @y dz Y(c,)
= (Y(

Cp ) Py(ep)Y(ep) — Y(ep)* Pala)Y(cp)
< k(Y(cp) T(ep) = kil

Convergence of T(c,) to = yields

for any p € N. With ¢ — b (as p — 00) and Cy = 0, we conclude ®»= € LZ, . O

Note that Lemmata 5.1.1 and 5.1.2 do not state that the solutions are linearly independent
within LZ, or L7, respectively. The number of linearly independent solutions of (2.1) within

L%, , or within L7, respectively, may be smaller.

For A € Wy, we define the geometrical variables

(5.2) L5 == Da(b) — C(b),

(5.3) r ;= dim <span ({B¢:2e Ly e C“_})>.

Theorem 5.1.3.** Let A € Wy,

(1) There are at least n~+ r linearly independent solutions of (2.1) which lie in L%A.

(i7) If Rx(x) - 0 as © — b, there are exactly n~+r linearly independent solutions of (2.1)
which lie in L, .

Proof. The proof is completely analogous to the proof of [5, Theorem 4.2 and Lemma 4.3],
with the exception that n must be replaced by n~. The required corresponding assertions
are Theorem 2.2.7, Lemma 5.1.2, Corollary 2.2.3, (2.26) and (2.27). ]

Lemmata 5.1.1, 5.1.2 and Theorem 5.1.3 together yield

5



Corollary 5.1.4. Let A € Wy,.

The number of linearly independent solutions of (2.1) which lie in L%A, minus n_, 1S equal
to dim[®y|¢, and equal to the number of bounded eigenvalues of Pj.

If Ra(z) - 0 as © — b, then it is also equal to r.

For further conclusions we need the following topological properties of Admy and Ay (see
(2.5) and (2.6)).

Lemma 5.1.5. Admy is convex, Ay is an open wedge. Thus Wy = Admy + Ay is open and
convex. Furthermore Wy, is the set of the interior points of Admy, .

Proof. Let ky, ky € Admy and g € (0,1). Definition (2.5) yields
—Re(k;VJA) > Re(VJDB) a.e. on [a,b)
for j =1,2. Thus for k := gk; + (1 — g)ko, we obtain
—Re(kVJA) > oRe(VJB) + (1 — o)Re(VJB) = Re(VJB) a.e. on [a,b),
which means & € Admy. Hence Admy is convex.
Let A1, Ao € Ay with corresponding 1, do > 0 from Definition (2.6) such that
—Re(\;VJA) > §;A a.e. on [a,b)

for j = 1,2. Furthermore let ¢ € (0,1). For A := o\ + (1 — 9)\2 and § := min{dy,do} we
obtain
“Re(AVJA) > 001 A+ (1 — 0)8A > 00A + (1 — 0)0A = 6A.

Thus we know A € Ay, which shows convexity of Ay.
For o > 0 and A € Ay,
~Re(oA\VJA) = o( — Re(\VJA)) = —Re(A\VJA) = A
shows oA € Ay.

Finally let A € Ay with corresponding 6 > 0, such that —Re(AVJA) > 0A a.e. on [a,b).
By Corollary 4.1.2 (v) there exists ¢ > 0 with

A > +eRe(VJA), A> +eRe(iVJA) a.e. on [a,b).
Thus for v € C with | — A] < 18z we have
—Re(vVJA) > —Re(vVJA) — (—Re(AVJA) — §A)
= —Re((r —NVJA) +0A

(5.4) — —Re(r — MRe(VJA) — Im(v — \)Re(iVJA) + 64
1.1, 1.1 1
> 3665A 355€A—|—5A 35A a.e. on [a,b)
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Hence v € Ay, which shows that Ay is open.

We have shown that Admy is convex and Ay is an open wedge. Thus Wy, = Admy + Ay
is open and convex.

Since Wy C Admy, by (2.14), we obtain that every element of the open set Wy is an
interior point of Admy, .
On the other hand, let A an interior point of Admy . Let € > 0, such that an e-neighborhood
of A lies in Admy. We chosen some Ay € Ay with |A\g| < e. Therewith A — A\g € Admy,
whence, by definition, A = X\ — \g + \g € Admy + Ay = Wy, O

Now we can conclude

Theorem 5.1.6.% Let N4(X), N, (A) the number of linearly independent solutions of (2.1)
that are in L or in L, , respectively. Then Ny and Ng, are constant on Wy

Proof. Let F' € {A,Cy\}.

By Lemma 5.1.5, the set Wy, is convex and open. Therewith it suffices to show that N is
locally constant. The assertion then follows by standard connectivity arguments.

Let \g € Wy. By Theorem 4.3.3 there exists some k,gy > 0, such that ||Ry||r < k for all
A € Wy with [y — A| < .

Let ¢ := min{eo, +} > 0.
Furthermore let Ay, Ay € Wy with A\; # Ay and [A\g — \j| < e for j =1,2.
By symmetry it suffices to show Np(A1) < Np(A2).

We set m := Np(A) —n~. We assume w.l.o.g. m > 0, for otherwise the assertion follows
by Lemma 5.1.1.
The same Lemma yields some matrix = € C" ™ with rank m such that the columns of &), =
are in L%. With

J(®3,Z) = (AsA+ B)®y,Z + (A1 — \p)AD), =

and (4.37), we obtain

(5.5) Dy, Z = (A — A) Ry, (P, 2) + 0,1 + Py, 0,

for some matrices Oy € C"™, Q, € C"™.  Multiplication with X3,/ from the left and
evaluation at a shows ; = 0 by (4.11), (4.38), and x, (a) = xx,(a).

Hence the columns of ®,,Q, are in L%, because so are the columns of all other terms in (5.5)

by assumption on = and Theorem 4.3.3.
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If Q5 would have rank less than m, some nontrivial £ € C™ would exist with 2, = 0.
Whereas Z¢ # 0 since = has rank m. With (5.5) we could calculate

1

Ry, (93, E8) = Ry (91, E)E = A — Ao

d, Z¢.

This would imply ||Ry, || > (A1 — A2)™ > k, a contradiction.

Thus Qy has full rank. This shows that dim[®,,]r > m. Hence Lemma 5.1.1 yields

Since the number of linearly independent solutions of (2.1) that are in L% does not depend
on the choice of a suitable pair, we obtain

Corollary 5.1.7.*2 The number of linearly independent solutions of (2.1) that are in L? is
constant on every connected component of the open set

U s

V admissible

Now we want to classify the problem. Therefor let A € Wy,.

In view of Theorem 5.1.6, Theorem 5.1.10, Lemma 5.1.12, and Theorem 5.1.14 below, in
the following classifications there is no dependence on the actual choice of this X in Wy,. Thus
we do not note any dependences on A. Yet it should be remarked, that the classification
may depend on V.

We say, that problem (2.1) is in the limit-point case, if £, = {0}. That is equivalent to
D, (b) consisting of exactly one point, respectively to r being zero.

The occurrence of an intermediate case, neither limit-point nor limit-circle is well known
(e.g. see [16]). This naturally arises in higher order systems. £y # {0} does not imply that
Ly is an open set in C"" (as long as n'n~ > 1).

Therefore we say that problem (2.1) is in the non-limit-point case, if it is not in the limit-
point case. To emphasis the geometrical role of r (which is at least 1 in the non-limit-point
case), we also call it the r-non-limit-point case.

For the n™-non-limit-point case we use the notation limit-circle case. Theorem 5.1.10
below shows that (2.1) is in the limit-circle case, if and only if all solutions of (2.1) are in
L% .

A

An even stronger geometric assumption on Dy(b) is to have interior points within C”""
and ntn~ > 0. We name this the full limit-circle case.
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If r < n', then there may exist more than n +r linearly independent solution of (2.1) that
are in L%. There are three reasons for this.
First of all L% may be larger than Lg, , while the behavior of Dy(z), and therewith the value
of r, depends on C'\ rather than on A. Already 1957, Sims observed this phenomenon in the
two-dimensional case in [19)].

The second reason is the freedom in n* and n~. For example if n~ = 0, only the limit-point
case can occur because Dy (b) € C™ where C*"" is a vector space of dimension zero. Yet
there may exist solutions of (2.1) in L? (for an example see section 6.4 below). Thus, also
if A =< C) (e.g. in the self-adjoint case with canonical choice of V), there could exist more
than n~ linearly independent solution of (2.1) that are in L?.

The third reason is the following: As it will turn out, if R tends to 0, then r = 0. But the
amount of linearly independent solutions of (2.1) that are in L% depends on the behavior of
P, and may be larger than n" (cp. Theorem 5.1.3 (i7)).

To distinguish further characteristics of the problem (which are mainly of importance if
A # C)), we also use the following classifications:

If there are exactly n~ independent solutions of (2.1) that are in L%, we say that problem
(2.1) is in the strict limit-point case.

We say that problem (2.1) is in the weak limit-circle case, if all solutions of (2.1) are
in L%.

Since C = A, the limit-circle case implies the weak limit-circle case, and, by definition,
the non-limit-point case.

If A= CYy and n'n~ > 0, then the weak limit-circle case is equivalent to the limit-circle case.

In the following, we use the notation n'(-) for the number of positive eigenvalues of a
self-adjoint matrix counted in their algebraic multiplicity.

Theorem 5.1.6 yields

Cor01~lar3r 5.1.8. If (2.1) is in the weak limit-circle case, then this holds for every suitable
pair (V, E) with Wy N Wy # 0.

If (2.1) is in the strict limil-point case, then this holds for every suitable pair (17, E) with
Wy NWg #0 and n (V) =n".

Furthermore holds

Lemma 5.1.9. If R)(x) — 0 as x — b, then (2.1) is in the limit-point case.
Proof. Let I € Dy(b) — C\(b). We show that [ = 0 € C""", which gives £, = {0}.
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Theorem 2.2.7 (iv) yields [ € Dy(c) — C\(c) for each ¢ € [¢o(AN),b). By (2.26) this means
Z*P,\(C)l S R)\(C).

Using Lemma 2.2.4 we obtain
I*Py(co(MN)l < TI"Py(2)l < Ra(2)

for every « € [co(A),b). Since the right-hand side tends to zero, and Py(co(A)) > 0, we obtain
= 0. [

Theorem 5.1.3 and Lemma 5.1.9 yield

Theorem 5.1.10.*2 In the r-non-limit-point case there are exactly n~+ r independent solu-
tions of (2.1) in Lz, .

In the non-limit-point case, r equals to the number of eigenvalues of P, that are bounded,
by Corollary 5.1.4. Since P, is increasing, we can conclude

Corollary 5.1.11. In the non-limit-point case, equation (2.1) is in the limit-circle case if
and only if P\(x) converges as x tends to b.

This helps us to show

Lemma 5.1.12. FEquation (2.1) is in the full limit-circle case if and only if both (2.1) and
(3.15) are in the limit-circle case.

Proof. If Dy(b) has interior points, then also Dy(b) — Cx(b) and Dy(b) — Cx(b) = (Dx(b) —
C\(b))* have interior points. Hence the ranges of D,(b) — Cy\(b) and of D,(b) — C,(b) are
the whole C"", respectively the whole C" .

On the other hand, if (2.1) is in the limit-circle case, then the previous Corollary shows
that P, converges to some P, ;. If (3.15) is in the limit-circle case, we obtain the same result
for P,. Therewith (3.47) shows that R converges to some Ry (b) > 0. Since Py ' and Ry
are decreasing, any element of

D= P,*{N € C""" : N*N < I, }R,\(b)'/?

is in Dy(z) — C\(x) by (2.27) for every z € [a, b) and therewith in D, (b) — C\(b) by Theorem
2.2.7.

D has interior points because P;;ﬂ > el and Ry (b)"/* > el for some € > 0. Thus also
D) (b) has interior points. O

1/2
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It should be mentioned that r and the analogous value T for the adjoint case need not
coincide. Yet there is an important connection: r = 0 is equivalent to Dy (b) consisting of

one point. Thus, by Lemma 3.3.1, D,(b) also consists of one point, which means ¥ = 0. We
obtain

Corollary 5.1.13. (2.1) is in the limit-point case if and only if (3.15) is in the limit-point
case.

Furthermore holds

Theorem 5.1.14. (2.1) is in the limit-point case if and only if at least one of the following
assertions holds:

(1) There are exactly n~ independent solutions of (2.1) that are in LQCA.

(i7) There are exactly nt independent solutions of (3.15) that are in LQCA.
A

Proof. If Ry(z) — 0 as « — b, then Lemma 5.1.9 states that (2.1) is in the limit-point case,

furthermore (3.47) implies that no eigenvalue of P(z) is bounded as  tends to b. Thus the
corresponding assertion of Lemma 5.1.2 for the adjoint case yields that there are exactly n'
independent solutions of (3.15) which are in L%.

A

If Ra(z) - 0, then (3.47) implies that at least one eigenvalue of j’:(x) is bounded as x
tends to b, hence there are more than n* independent solutions of (3.15) that are in L%\. So
A

statement (ii) is false.
Theorem 5.1.3 yields: There are exactly 7~ independent solutions of (2.1) that are in Lg, if
and only if r = 0, which means (2.1) being in the limit-point case. O

The statement in Theorem 5.1.14 about the number of linearly independent solutions that
lie in LQCA in the limit-point case, is weaker than the corresponding statement in Theorem
5.1.10 for the non-limit-point case. In section 6.3 below, using an augmentation method, we
will obtain a nearly comparable assertion for the limit-point case in Lemma 6.3.3.

Since C'\ %= A, Theorem 5.1.14 yields
Corollary 5.1.15. If (2.1) or (3.15) is in the strict limit-point case, then (2.1) is in the
limit-point case.

Furthermore Theorem 5.1.14 and Lemma 4.1.5 imply

Corollary 5.1.16. If A < C), then (2.1) is in the limit-point case if and only if (2.1) or
(3.15) is in the strict limit-point case.

81



We transfer the proof of |7, Chapter 9, Theorem 2.1] to show

Lemma 5.1.17.2 If (2.1) and (3.15) are both in the weak limit-circle case, then all solutions
of (2.1) are in L% for all X € C and therewith Ry is a compact operator.

Proof. Let A € C and let y a solution of (2.1).
We choose \g € Wy (so that all columns of Yy, and of Z,, are in L?) and ¢ € [a,b), such
that for

1/2

b b b
K := (max{\/ g*Y;‘OAYAofdeH/ Y;OAYAdeHOO,H/ JoZy AZy, Jydx|| )

holds K? < m, where || - ||s means the maximum norm in C*", and £ € C" is as in
Lemma 3.4.1 for the chosen function y.

For any d € [c,b), x € [¢,d], and ¥, Uy € L%(c,d), we define

(i), = | " U5 (5) A(s)d(s)ds

and correspondingly |||
In the following we use the notation (-); for the j™ column. The Schwarz inequality in
L4 (c, x) yields

(5.6) 1Y (20 T0)i) | < Mylla 1(Zae T3)slle < Kllylle < Kllylla,

for 7 < n. Correspondingly we obtain

(5.7) (Y2l v),| < Kllylla-

Using (3.51), (5.7) and (5.6), we can estimate
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Ioll = (&= Yau@)€ = (0= M)¥as (o) [ 23, (9AG)us)ds . v),

< Kllylla+ A=l [ {2 = Vi@ [ Zi()Aus)ds , v) |

= Klslla+ 1A= ol | [ L @A @) [ 23y 9)(s) s

J

d
(5.8) — Kllylla+ A= Aol Z/ (@A@Y (@) | (v (Zri)s), o

n
j:

nood
< Klolla+ Klolla 1= 2al 3 [ 5" @A) (o)) i

< Kllylla + Kllylla X = Xol Y llylla 11(Yao);1la

j=1

1
< Klfylla+nEZX = ol [yl < Kllylla + S lylla

Thus, ||y||lqs < 2K for every d € [c,b) and hence y € L?[c,b). The result follows, since any
solution of (2.1) lies in L?[a, cJ.

If all solutions of (2.1) are in L%, then G, defined in (4.34), is a Hilbert-Schmidt kernel.
Thus Ry is compact. [

5.2 Connection between the limit sets and the deficiency
index of the maximal operator

For this section we assume that Assumption 3 holds true, furthermore that for A € Wy, only
the trivial solution of (2.1) vanishes in L%.

We consider again the deficiency index d) of the maximal operator for (2.1).

Corollary 4.5.4 states dy = n~ + dim[®,]4 for A € Wy. Therewith, Lemma 5.1.1 and
Theorem 5.1.6 show that A +— d, is constant on Wy, .

Now we assume A =< C) (which, for example, holds true in the self-adjoint setting with
the canonical choice of V).
Therewith L% equals L, as a set of classes of functions. Thus, dy = n~+ dim[®,]¢, .
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Using Corollary 5.1.4, we obtain that d) is equal to n~ plus the number of bounded eigen-
values of Py and equal to the number of linearly independent solutions of (2.1), which lie in
Lz, .

If Ry(x) - 0 as @ — b, then it is also equal to n+r.
If r > 0 then (2.1) is in the non-limit-point case, whence R, (x) - 0. Thus we obtain

(5.9) r>0 = dy=n +r.

The latter equation shows a connection between the geometrical shape of the limit sets and
the deficiency index of the maximal operator in the case A < C.

Now we withdraw the assumption A < C).
We still have C = A, whence any function ®,§ € Lg, (for some £ € C™) also lies in L?.
Hence d) = n~+ dim[®,]4 > n~ + dim[®, ], . As above, we obtain correspondingly

r>0 — dy>n +r.
With n= < dy < n + n' we conclude
(5.10) n+r<dy<n +n"

This again shows a connection between the geometrical shape of the limit sets and the defi-
ciency index of the maximal operator in the general case.

5.3 Properties of the M-function

As usual in the Titchmarsh-Weyl theory we have

Theorem 5.3.1."' M s analytic on Wy, .

Proof. For A € Wy, we first want to show the relation
(5.11) Uy =0, + (A= p)RyT,.
Since ¥, solves JV| = (uA + B)V,, we obtain

JU, = (ANA+ B)V, + (n— M)AV,
Equation (4.37) implies

(512) \I’,u = (,u — )\)quju + U= + Pyr=o,
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for some matrices =, € C"" | =5 € (C” ™ because (V,|®,) is a fundamental matrix for
(2.1). We pre-multiply with (I,-|0)E~! and evaluate (5.12) at a. Using U\ = O, + P M (N),
furthermore Y (a) = E, and (4.36), we obtain Z; = I,-.

Moreover pre-multiplication with (5J and use of (4.11) gives

W, O] = [V, Q) = (1 = N[RAY,, G = [Py, O] =Zs
(5.13) = ([@x,m] + M(N)[Dr, x2]) E2

=
= —Z9.

With (4.11), again, we obtain

(5.14)  [Wn G = (L M) Y2, 2] (MI?A)) = (1, M) (IS —én+> (MI?A)) _0.

Using furthermore (4.31) and (4.38), we see that every column of the left-hand-side of (5.13)
tends to zero as = tends to b. Thus =5 = 0. This proves equation (5.11).

Therewith, using Theorem 4.2.3, we obtain:

b
M(X) = My+ (A — u)/ AV dx
(5.15) a

b
= My + () — u)/ CAW,dr 4+ (A — p)?(RaT,, <“>L?4'

By Theorem 4.4.8, R, is the resolvent of L at A\, thus A — R, is analytic on p(L) D Wy (cf.
[15, III, Theorem 6.7]). Hence (5.15) shows that A — M () is analytic on Wy. O

We can use the information of the proof of Theorem 5.3.1 to extend the M-function
analytically on p(L):

Corollary 5.3.2.** By (5.15), the definition
(5.16) M) :=My+(A—p / G AV, dx + ( )\—[L)2<(L—)\)_1\IIM7CM>L%4

is an analytic extension of M to p(L

Theorem 5.3.3.% [If (2.1) is in the weak limit-circle case, then (5.16) defines a meromorphic
extension of M to the whole of C. The poles of M are eigenvalues of L.
If also (3.15) is in the weak limit-circle case, then every eigenvalue of L is a pole of M.

Proof. In the weak limit-circle case, for A = y all solutions of (2.1) are in L?.

Therewith, equations (4.34) and (4.35) imply that (L — u)~' = R, is a Hilbert-Schmidt op-
erator and thus compact. Hence the spectrum of L consists only of isolated eigenvalues with
finite algebraic multiplicity and (L — A\)~! is compact for all A € C except these eigenvalues.
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Meromorphicity of A — (L — X\)~! with poles only at the eigenvalues of L, follows, for
example, from |15, III, §5].

Equation (5.16) shows that any pole of M is a pole of A +— (L — A\)™!, and thus in the
spectrum of L.

If also (3.15) is in the weak limit-circle case, Lemma 5.1.17 and a corresponding statement
for the adjoint problem yield that for every A € C, all solutions of (2.1) and of (3.15) are
in L%. M has no poles in the resolvent set of L. Thus, (4.36) defines an extension of R) to

p(L).
Ry is a bounded operator L% — L%. With the same argumentation as for A € Wy, we obtain
Ry=(L—X\)""

Let v € C such that M has no pole in v. Thus M is bounded on a neighborhood N of v.
Theorem 3.4.2 (i) and a corresponding statement for Zy yield that A — [[(Y));|[z2 and
A — ||[(Z));l]a are locally bounded for any j < n. So the same holds for A — ||(®,);]]4,
A= ()11, A= (160514, and A [[(xa)j]]a, where Wy = Oy + @M (A) and ¢\ =
na + XaM(A)*. We assume w.l.o.g. that these functions are bounded on N.

We want to show that A\ — [|Ry|[;2 ;2 is bounded on N. Therefor let f € L% with
l|f]|la = 1. We set

ga(x) = Wi (2) / QW) AW )y
and
ha(z) = By (o / G AW) F(y)dy.

Thus we have Ryf = gx+ hy by (4.34) and (4.35). It suffices to show A — (||gal|a, ||ha]]4) is
bounded on N with an upper bound independent of f. We show this assertion for hy. The
proof for g, is analogous.

hall3 = / ( / FAWGWdy () Ax) Bx(2) /:Ci(y)A(y)f(y)dy> dx
=Z [ ([ 1w1waw y)j(@i(x)A@m(x))M( [ Gwamsma), Jas

[
PIA(
[
< 1(C)slla 1)kl a [1(@a)s]]a [[(@a)]]a-

j7k:

T fI),\(a:))M <(C/\)j7f>L?4(x,b)<f’ (C)‘>k>L?4(x,b))d'r

@}(2)A()
(B@AD2) |l 1l W,))dx

-
<
jk=1

—_
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The righthand side is bounded on N as a function of A. Thus we know, that
A= [|Rall 2z = [I(L = N7z e
is bounded on a punctured neighborhood of v. This shows that v is no eigenvalue of L. [

For the cases n* = 0 or n~ = 0, Theorem 5.3.1 and Corollary 5.3.2 bear no information,
because M = 0,,+,- has no entries. But Theorem 5.3.3 with the stronger assumption yields

p(L) =C.

5.4 Further spectral estimates

This section consists of two parts.

In the first part (2.1) is examined on [a, b) for some @ > a. This may yield better spectral
estimates (cp. [6, Theorem 4.5]).

The second part assumes the strict limit-point case. By variation of the admissible matrix
V', we also obtain further spectral estimates (cp. [5, Theorem 6.4]).

5.4.1 Restriction of the problem to [a,b) C [a,b)

To consider (2.1) on [a,b), we need one constraint such that Assumption 2 (see page 59)
remains true. Therefor we set

b= sup{a € [a,b) : For all f € L with supp f C [a,b), ess supp AR, f C [a,a]
and [R,f,x,](@) =0 holds f =0in L?.
Furthermore for all g € L% with supp g C [a,b), ess supp A}A%Hg C [a,al
and [}A%ug,(bu](d) =0 holds g =0 in L%.},

(5.17)

where the essential support of a function f is defined by

ess supp(f) = ﬂ{ e D)\ Ny : f(x) 0}

P : Ny has measure 0}.

As we will see @ < b is necessary and sufficient for Assumption 2 to hold, when restricting
the problem to [a,b). But, unless we can choose a > co(u), another problem occurs with
(2.10), the condition that provides eventually definiteness of Py for all X in Wy.
Fortunately Corollary 5.4.3 below yields two criteria, which imply b = b. Furthermore if
Py(a) > 0 then we could set co(p) = a.
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Theorem 5.4.1. Let @ € [a,b). If we consider (2.1) on [a,b) and name Wy = W{} the set
which corresponds to Wy, we have the following result:

(1) WV 2> Wy, WV = W{} is increasing as a function of a.
(ii) If b > co(p), then Wy \ p(L) consists at most of isolated points.

(iii) If furthermore, for A € Wy \ p(L), only the trivial solution of (2.1) vanishes in L3,
then X lies in 0,(L), the point spectrum of L.

In [6, Theorem 4.7] a corresponding result is shown in the limit-point case for second order
Sturm-Liouville problems.

Proof. For the proof we also name all further corresponding quantities for the problem on
[a,b) with a tilde.

If we recall Wy, = Admy + Ay, Definitions (2.5) and (2.6) yield statement (7).

Now we assume b > co(p).
With (7), we can furthermore assume w.l.o.g. @ > ¢o(p) and that a fulfills the premise in the
braces of (5.17).

If A=0a.e. on [a,b), then both, (2.1) and (3.15) are in the weak limit-circle case, because
any column of Yy or of Z, is continuous and A € L[ [a,b). Lemma 5.1.17 yields that the

loc
whole spectrum of L consists of isolated points in o,(L).

So we can furthermore assume w.l.o.g. Ajap # 0 on a set of positive measure. This is the
only fundamental requirement, which may be violated by considering the problem on [a, b).

Let E = Y,(a). We first show that (V, E) is suitable for problem (2.1) on [a,b) (with
nt=nt n-=n").

Admissibility of V' is equivalent to WV not being empty, which is given by (7). Using the
definition of E, equation (2.8) yields

Py pa) = %qﬁ(&)V%(a) = P(a) > 0,

since @ > co(p). Thus Remark 2.1.2 shows suitability of (V, E).

Again by (i) we know 1 € Wy Since Y, solves (2.1) and Y, (a) = E, we obtain 37; = Y, |[an)-
Therewith, the corresponding relations hold for ©,,, ®,, Z,,, 17,,, and X, by (2.7), (3.20), (3.19)
and (4.34).
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Using (2.11), we can conclude BL(C) = D,(c) for every ¢ € [a,b). So by definition
D,(b) = D,(b) and thus M, € D,(b). Hence we can choose the same pair (u, M) for

the construction of the M-function M. In particular, we obtain M(,u) = My = M(p). With
the above knowledge we obtain W, = W, |ja0), (u = Culap), and Gy = Gi|f@ap)-

We still need to show that Assumption 2 is fulfilled for the problem on [a,b).
Therefor let f € L?[a,b) such that § := R, f is zero in L%(a,b). We have to show f =0 in
L%4[a,b).

For the function
0 on (a,a)

we know that E,:f = R, fiap) by (4.35). With (4.38) we obtain that f fulfills the correspond-
ing premise in the braces of (5.17). Thus, by assumption on a, we conclude f = 0 in L% and
hence f = 0 in L3[a,b). A corresponding conclusion shows that fiu is one-to-one.

(As we can see, the existence of such an f # 0 or g # 0 in L%(a,b), which fulfills the cor-
responding premise in the braces of (5.17), would violate Assumption 2 for the problem on

[, b).)

All necessary assumptions are fulfilled for the problem, restricted on [a,b). Hence all
results of the previous chapters hold correspondingly true. The theory in chapter 4 yields
an operator L with Wy C p(L).

We pick an arbitrary A € Wv, and want to examine whether \ is in the resolvent set of
L or not. We recall that the property A € p(L) means that, for any f € L?, there exists a
unique g € D(L) such that (L — \)g = f and the mapping f +— g is bounded.

So let f € L?.

In the following, for functions ¢ : [a, b) — C™™2 (with my, mg € Ny), we use the notations

E" =€, &= Ena.

For g := Ry f" holds g, € D(z) and Lgo = AfF, which means

(5.18) g2 € L4(a,b) N AC\oc[a, b),
(5.19) (92, G (b) = [92. G](b) = 0,
(5.20) Jgh = (ANA+ B)gy + Af",
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and a boundary condition at @, which we are not interested in. For any & € C" the function
(5.21) g2 + W&

has the same properties by (4.30), and for regularity reasons, every function with these
properties, has the form (5.21).

For x € [a,a], we define g;(x) := fad G(z,y)A(y) f(y) dy.
Since A € Li ., the same calculations as for Corollary 4.3.2 and for (4.38) yield

(5.22) 91 € ACiocla,a] N L (a, a),
(5.23) [91, xul(a) = [g1, xx:](a) = 0,
(5.24) Jgy = (VA + B)g: + Af™.

Using (4.11), we obtain that for any & € C™" the function
(5.25) g1+ 06
has the same properties, and every function with these properties, has the form (5.25).

By definition of D(L), for any function g : [a,b) — C™ the following assertions are equiva-
lent:

(4)
(5.26) g€ D(L) and (L—\)g=f.

(ii) g" fulfills properties (5.18) to (5.20) and g™ fulfills properties (5.22) to (5.24).

So any solution of (5.26) has the form g7 = g; + ®)&;, g7 = go + W, &, for some & € C™,
& € C". And vice versa any such function solves (5.26). The crucial point is continuity in
a. We conclude:

There is exactly one function g : [a,b) — C" with g € D(L) and (L — \)g = f if and only if
there exists exactly one & = (g) € C™ such that

(5.27) (91 + PRE)(@) = (g2 + Vr&) (@)
We define
(5.28) Oy = ((I))\(CNLM - \I/;;\(d)) = ((I)/\(&> - E (jé?/\)) )7
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and K := —g1(a) + g2(a).

Therewith (5.27) is equivalent to Q,¢ = K, which is uniquely solvable if and only if €, is
regular.

The knowledge p(L) C Wy does not yield regularity of Q, for A € Wy, it only implies
uniqueness of a solution of (5.26) in L%. But for A = u, the above choice of E and M yields

0, = (@@ - @) =v@ (7).

where the right-hand side is a product of regular matrices. Theorems 5.3.1 and 3.4.2 ()
show that all entries of the right-hand side of (5.28) are analytic in A and thus this holds for
1) and therewith also for its determinant. This is not zero for A = p.

The set Wy, where €2 is defined, is open and convex by Lemma 5.1.5, so A — det(€2)) has

only isolated zeros in Wy, .

Now we choose some A € Wy with det(Q2,) # 0.

We have already established that for every f € L% there exists exactly one g € D(L) with
(L — \)g = f. Finally we have to show boundedness of (L — \)~!.

The restrictions f — f" and f — f7 are bounded L% — L%(a,b) and L% — L3(a,a),
respectively. B
Since A € p(L), the mapping f™ + g = (L — A\)7' f" is bounded, too. This also holds for
™+ g1, because every column of Y\ and Z, is in L?(a,a).

The calculation
(5.29)

K = —g1(a) + gald) = — / " Cr(@y)Aly) f ) dy + / G, v)AW) () dy

0@ [ G@AGIW) dy+ @) [ 8 0)AWI) dy

shows that f — K is bounded L% — C", since \} € L2(a,a) and ¢, € L3(a,b). Hence
f—&=0Q,'K is bounded.

The canonical embeddings L?(a,a) — L% and L?(a,b) — L% are bounded.

Since ®, € L2(a,a) and W, € L2(a,b), we can finally conclude

g1+ ®)\& on [a,adl,

5.30 — (L—=\)" = Z
(5:30) s s {927“1’)\52 on [a,b)
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is bounded L% — L%. Thus we have A € p(L), which holds true for all A\ € Wy with
det(Q)\) 75 0.

It remains to show assertion (iii) of this Theorem. So let A € Wy \ p(L). We assume that
only the trivial solution of (2.1) is in the class of the null-functions of L%. We have to show
that A is in the point spectrum of L.

We know that Q) is singular (otherwise A € p(L)). Hence there exists some nontrivial
&= (g) € C™ such that
0 =& = Px(a)s1 — Wa(a)Eo.
This implies continuity of
®,\&  on [a,al,
@;\52 on [dv b)7
which is a non-trivial solution of (2.1). Moreover y € D(L) with Ly = Ay by (4.52), (4.11),

(4.30), and f,; = le. By assumption, y is not zero in L%, hence A is in the point spectrum
of L. O]

y:la,b) — C", y::{

-~

Since @ was chosen arbitrarily in [a,b), Theorem 5.4.1 implies

Corollary 5.4.2. If b > co(p) then

U Wg \ p(L) consists at most of isolated points,

acla,b)

where /V[v/{} means /I/I7V as in Theorem 5.4.1 with respective choice of a.

It should be remarked that those isolated points may accumulate on the boundary of
Uwg.

The proof of Theorem 5.4.1 shows that a fulfills the premise in the braces of (5.17) if
and only if Assumption 2 holds for the restricted problem with the suitable pair (V,Y)(a)).

Remarks 4.4.1 and 4.4.2 provide criteria which yield Assumption 2. If one of these criteria
holds for some ag € [a,b), then it holds for every a € [ag, b). Hence we can conclude

Corollary 5.4.3. If eventually the premises of Remark 4.4.2 or the premises of Remark
4.4.1 (together with the corresponding premises for R,,) are fulfilled, then b= b.

Proof. Let a € [a,b). If Ajzp > 0 on a set of positive measure, then the thoughts above
show that a fulfills the premise in the braces of (5.17). Otherwise any function f € L%
with supp(f) € [a,b) is zero in L?%, whence a fulfills the premise in the braces of (5.17)
anyway. L]
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A second criterion to estimate b from below is the following
Corollary 5.4.4. If A > 0 on a set of positive measure, then
(5.31) b > sup{ao € [a,b) : Ajjaop)(x) > 0 on a set of positive measure}.

Proof. Let ag € [a,b) such that A, (x) > 0 on a set of positive measure. We can choose
some @ € [agp, b) such that for any continuous functions f holds

Af =0 almost everywhere on [a,0) = f(a) = 0.

We show that a fulfills the premises in the braces of (5.17) for corresponding functions f.
The statement for corresponding functions g can be shown analogously. Thus, b > a > a,.

So let f € L% with supp f C [a,b) and ess supp(ARyf) C [a,a]. Then, by assumption on
a, we obtain Ry f(a) = 0. The function y := (R f)|ja,a solves

Jy =M+ B)y+ f=(MA+B)y

on [a,a] and y(a) = 0. By regularity of this equation we conclude y = (R f)|jq,a) = 0. Thus
Ryf=01in L?%, hence f =0in L%. O

5.4.2 Examples

We take a look at the examples on pages 23 to 30.

In the case that A has compact essential support, both (2.1) and (3.15) are in the weak
limit-circle case, thus we already know that L has only point spectrum. Theorem 5.4.1 does
not yield any better spectral estimation. Therefore, in the following consideration of the
examples, we assume that, for every a € [a,b), Ajjzp) # 0 on a set of positive measure.

In the self-adjoint case with the canonical choice of V', we know that Wy is the upper,
respectively the lower halfplane. This does not change when restricting the problem to [a, b).
Hence Theorem 5.4.1 yields no further information.

Now we consider the scalar examples, i.e. those examples that model the scalar equations
o] 1= pov + 32 (=DM (o)) = (@) ) = (D)) = daw,
k=1
respectively

rale] = pow - (~1)i(s(s0™)) ) 37 (D4 () = () — (gl )
k=1
= \wv.
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With the additional assumption w > 0 an [a, b), we have shown that Assumption 2 holds

by showing the premises of Remark 4.4.1. Thus Corollary 5.4.3 yields b= b. Hence Theorem
5.4.1, respectively Corollary 5.4.2 can be applied with the result that there are only isolated
points of the spectrum of L within

(5.32) U v

a€la,b)

Using the assumption w > 0 an [a,b), on page 71 we have shown that, for every A € C,
only the trivial solution of (2.1) vanishes in L?.
By Theorem 5.4.1 (iii), the isolated points of the spectrum of L within |J
the point spectrum of L.

— '
aelab) Wy are in

In all the scalar examples we have A = diag(w,0,...,0) and therewith Ay = {\ € C :
Re(\v) > 0} for some constant v € C \ {0} (which is the first entry of —V'J; for the
calculations see page 66). Restricting the problem to [a,b) does not affect Ay. Thus, we
only have to consider Admy .

We estimate, for a € [a, b), the set A/d\m/v in the three dimensional case with real leading
coefficient function s. On page 29, we have calculated that Admy is the set of all A € C
such that

(5.33) 4v*Re(—idw + ipg)Re(ip1) — [v(q +71) — ivp]* > 0

almost everywhere on [a,b) (where v, vg are entries of V| furthermore p1, ¢1, r1, and p, are
given functions of the scalar problem).

The same calculation on the restricted problem yields that m/ is the set of all A € C

such that (5.33) holds almost everywhere on [a,b). Thus Admy may be a proper superset of
Adi.

Correspondingly, in item 3 on page 30, which is the even order example with m = 1, we

obtain that Admy is the set of all A € C such that the estimations in equation (2.49) hold
on [a,b).

5.4.3 Variation of the admissible matrix V

For the second part of this section we assume that (2.1) or (3.15) is in the strict limit-point
case.

For another suitable pair (V, E) with n"(V) = " and Wi MWy # 0 we have the following
results: According to Corollary 5.1.8 (and a corresponding statement for the adjoint prob-
lem), (2.1), respectively (3.15), remain in the strict limit-point case. The strict limit-point
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case of (2.1) or of (3.15) implies the limit-point case and thus there is no freedom in choosing
an appropriate M-function for such a pair. Let us call it M.

In the following lines, the other corresponding quantities for (\7, E) are also labeled by a
tilde.

Recall

(5.34) qg:Y;Cé&Q, g;:ZAQJay>,

which shows that ¥, and ¢, have full rank. Using (4.7) or (4.8), respectively, we see that
there holds at least one of the statements (depending on whether (2.1) or (3.15) is in the

strict limit-point case)

i) Uy = U,\ZE,
(5.35) e
(ZZ) C)\ = C)\:‘Qa

. —_ - = —_ + it .
for some regular matrices =; € C" " or =, € C"™', respectively.

If we furthermore assume E = E (which gives Y =Y, Z = Z), then (5.34) together with
any of both statements in (5.35) imply

—

(5.36) M=M on WynWs.

Let Wy, the connected component of

J
(V,E)suitable

nt(V)=nt

which contains Wy Since all W are open, with the above arguments we obtain, for all
suitable pairs (V1, E), (V2, E) with n"(V1) = n'(V) = n" and Wi 0N W5 N Wy # 0, that
M‘ZO‘) = ]T/[/%()\) for A € Wi; N Wy, Thus Theorem 5.3.1 yields

Corollary 5.4.5.*3 If (2.1) or (3.15) is in the strict limit-point case, then the definition

(5.37) M) := M)  for (V,E) suitable with n*(V) = n* and X € Ws,

15 a well-defined analytic extension of M to Wy .

Furthermore we can conclude

Theorem 5.4.6. If (2.1) or (3.15) is in the strict limit-point case, then Wy is a subset of
p(L).

95



Proof. Let V admissible with (V, E) suitable, n(V) = n*, and Wy N W # 0.

We choose 1 € Wy N Wy and Mo € Eb(ﬁ) to construct an M-function for (17 E) and
therewith R~ The considerations above show that there is no other choice but My = M (/7)
Since Y = Y and Z = Z, equations (4.34) and (4.35) imply R = Ry, in particular R~ :

L% — L2 is one-to-one. The same holds for R~ SO Assumptlon 2 is fulfilled.
We obtain an operator L while Theorem 4.4.8 yields L=0L.

The same Theorem implies W5 C p(L) = p(L).
Because all W5 are open, standard arguments yield the statement on Wy. O

We can use this knowledge and connect it with the theory in the first part of this section.

For the case that (2.1) or (3.15) is in the strict limit-point case, the proof of Theorem 5.4.6
even shows the following: For any suitable pair (V, E) with n"(V) = n" and W € Wy,
Assumption 2 is fulfilled and the resulting differential operator L equals L.

Now we show that the quantity g, that corresponds to b for the suitable pair (XN/, E) with
some choice of p € Wy equals b: We have established that @ € [a, b) fulfills the properties
in the braces of (5.17) if and only if Assumption 2 holds true for problem (2.1) restricted to
[a,b) with the suitable pair (V,Y),(@)). By definition, b is the supremum of all these .

The strict limit-point case of (2.1), respectively of (3.15), can not get lost by restricting
the problem to [a,b) (for a detailed explanation of this statement see the proof of Theorem

5.4.8 below). Furthermore WV 2 Wy and W~ W3, whence WV N W~ # 0 (and thus
W; - Wv) The same considerations as above yleld that, if Assumption 2 holds true for the
restricted problem with the suitable pair (V,Y),(a)), then Assumption 2 holds true for the
restricted problem with the suitable pair (V/, Y,(a)). Thus b >, and by symmetry b = b,

If, furthermore, for every such suitable pair, we could assure ¢o(1) < b (for some choice of
ft € W), then Corollary 5.4.2 would yield an estimation of the spectrum of L for the suitable

pair (V, E). The estimation co(f1) < b surely holds true if b = b or if Py(a) > 0 (whence we
can choose ¢y = a for all V). We conclude

Corollary 5.4.7. Let

WU U

VeT aclab)

where T consist of all admissible V, such that (V, E) is suitable, n"(V') = n* and Wy € Wy
If (b =10 or P\(a) > 0) and at least one of the equations (2.1) or (3.15) is in the strict
limit-point case, then Wy \ p(L) consist at most of isolated points.

In the following, we use the notation S™* for the set of all self-adjoint, regular matrices.
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We can go one step further:

Theorem 5.4.8. For a € [a,b) let PE the connected component of

W2V es™, nf(V) =n", and (0 L+)Y;i(a)VY,(a) ( ]O ) > 0},
nt

which contains WE.
If b > co(p) and at least one of the equations (2.1) or (3.15) is in the strict limit-point case,
then

U PF \elD)

a€leo(p),b)

consist at most of isolated points.

~

Proof. Let a € [a,b). The proof is mostly analog to the proof of Theorem 5.4.1. With the
same arguments we can assume w.l.o.g. that Ay = 0 on a set of positive measure.

We need to show that PZ is increasing as a function of a.
As in the proof of Theorem 5.4.1, from its definition we see that W‘i} is increasing as a
function of a. It suffices to show that

B3 Tes Werh wd L@@ () >0

implies (0 L+)Y;(d)VY,(d) (;1) > 0 for d > a.

(5.38) implies that (V, Y, (a)) is suitable for the problem restricted on [a, b), with ﬁu(d) > 0,
whence P, is increasing by Lemma 2.2.4 . Thus we obtain

(0 L)Y (DT, () (IO) _9B,(d) > 0.

So PE is increasing as a function of a@. Therewith we can assume w.l.o.g. that a fulfills the
premise in the braces of (5.17) (which is necessary for Assumption 2 to hold).

With the suitable pair (V,Y),(@)), as in the proof of Theorem 5.4.1, we obtain an operator
L with resolvent set p(L). In this proof we have used W& C p(L), to show that in the set
W only isolated points of the spectrum of L may exist. The same proof even shows that

in the open set p(L) only isolated points of the spectrum of L may exist. (Yet for obvious
reasons, this statement could not be part of the statement of the Theorem.)

Thus it suffices to show W‘E‘; C p(L) for any self-adjoint matrix V with n(V) = n, W‘»‘; C PL,
and which fulfills (5.38). (For W‘»“; = (), the statement would be trivial.)
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Again, (5.38) implies that (V/, Y, (a)) is suitable for the restricted problem.

All columns of Zy and Y, are continuous, A € L{ , thus all columns of Z, and Y, are in

L%(a,a). Hence the number of linearly independent solution of (2.1), respectively of (3.15),
which are in L%, equals the corresponding number for the restricted problem. Thus, by

~ —~—

assumption and n (V) = n7, at least one of the corresponding equations, (2.1) or (3.15), is
in the strict limit-point case.

Theorem 5.4.6, applied to the restricted problem, yields 17\/‘// C p(Z) By definition of P&
and of Wy (on page 95), we obtain

5.4.4 Examples

We like to apply Theorem 5.4.6, Corollary 5.4.7, and Theorem 5.4.8 to example 3 on page
30. This means

7 —1 4 (w o L f—qr—ppy —q
e N T R )

Recall that for Y = (yo,y1)T, equation (2.1) is equivalent to y; = y([)l] and

Poyo — (PYo)" — ayo — (T40)" = Awyp.

We already know that any admissible matrix has the form

(5.39) V= (1;0 g) ,

where vg is real and v # 0. Such a matrix V' is not definite, whence nt=n"=1. Thus we will
require that @, or x, is not in L% to obtain the strict limit-point case for (2.1) or for (3.15),
respectively (which is necessary to apply the desired Theorems).

The first entry of —V'J is —v. We conclude that (see (4.58))
(5.40) Ay ={X € C: Re(—\v) > 0}.

1. We first examine the case that B is self-adjoint (thus p, pg are real and ¢ = —7).
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We fix the initial matrix E = E, = (_12 _12>
0 —1
0

halfplane, so is Wy, . This is a subset of the resolvent set of the corresponding operator L..

For the canonical choice V. = iJ; = , we already know that Ay, is the lower

We want to construct further admissible matrices V with rotated sets W4, for which

(‘7, E) is suitable. We choose Re v = 1. Because B is self-adjoint, equation (2.49), which is
equivalent to A € Admg, reduces to

1
(5.41) voRe 7 + g7 + ppo — Re(\0)pw — 03 = 0.

We assume pw = —qr — ppo with a corresponding (preferably small) Iy € R such that
lopw + qr + ppo = 0. (If gr + ppo = 0, even [y < 0 is possible.)

0 1 — ke
1+ ki 0
(Vi, E.) is suitable for k& > 0 by straightforward calculation and Remark 2.1.2, with

The choice vy 1, := 0, v, := 1 + ki provides the matrix V}, =

lo .
)\k = —m(l + k'l) c Adik7

Av, ={\€C:Re(=\;) >0} = {\ € C: —kIm X — ReX > 0}.

We conclude
Ak 4+ Ay, © Wy,

By Theorem 5.4.6 the union of all these sets for k£ > 0 is in the resolvent set of L..

Our estimation of the spectrum of L. would be even better if we could also choose v with
negative imaginary part. Therefor we additionally assume

pw = —Re(r) and pw = 1.
Let [y, € R such that l;pw+ Re(r) = 0 and lsppw —1 = 0. (Again l; could be non-positive.)

For £ < 0 and € > 0 we obtain an admissible matrix V0 by choosing vy . := ¢ — 2k,
Uge = 1+ ki,
(ViE, E.) is suitable by Remark 2.1.2 with

1
)\i = —(Z() + vO,k,gll + ng,k,sb)(l + k’2)_11}]§’5 S Admvks7
Ave ={A € C: Re(—\v;.) >0} ={A € C: —kIm A — ReA > 0}.
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We conclude
Ap + Ave € Wye Cp(L).

This holds for every ¢ > 0. We set

(lo — 2kl; + Kk21,)

A=A\ = —
SR (1+k2)

(1 + ki).

By standard arguments we conclude that also the open set
M +{A e C: —kIm A — Re)\ > 0}

is a subset of the resolvent set of L for k < 0, and therewith the union of these.

Now we assume that @y or x, is not in L%, so we have the strict limit-point case for (2.1)
or for (3.15).
If, by restriction of the functions on [a,b) for some a € [a, b), the constants I3, I9, or I3 could
be chosen smaller, then the corresponding sets A{ + Ay, are larger. Furthermore these are

subsets of 17\/; By Corollary 5.4.7, in the union of these sets are only isolated points of the
spectrum of L..

2. We consider the case ¢ = r = 0. So we are in the setting of [6] and of |5, example on
page 425].

Thus B = diag(—po, 119) Again we have to consider matrices V' of the form (5.39).

With ¢ = r =0, in view of (2.49), any choice of V' with vy # 0 would not yield any larger
set Admy than with vy = 0. Hence we only consider matrices of the form V = codiag(v, v).
Multiplication of V' with a positive real factor does not change the result, so it suffices to
consider the matrices

V =V, := codiag(e'?, e™"?)

for ¢ € [0,27). Therewith, equation (2.49) reduces to
(5.42) Re(e ™ (po — Mw)) =0 and Re(e ¥p) = 0.
Admy,, is the set of all A, for which (5.42) holds. In [5] the existence of some A with the
same properties is required.
By (5.40), Ay, is the following halfplane
Ay, ={\ € C:Re(—Xv) > 0} = {A € C: Re(Ae ™) < 0}.
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2.1 We want to consider the following example in |6, page 1251]:

[a,b) = [1,00), arg(p) =ca on [1,00), po(z) = cia® +icox®, w(x)= 2,

2,2] c1 <0, ¢ <0, dy > dy > w.
2} or ¢ = 0 (for simplicity and to assure the existence of an

for real constants «, ¢, ¢, dl, dy, and w with a € [—
We exclude the cases o € {—Z
admissible matrix.)

2732

The second condition in (5.42) reads ¢ € [a@ — 7, o+ 7], (modulo 27).

The first condition in (5.42) reads
(z — Re(e ™ (c1z™ + icoz® — Aa¥)) = 0,
which is equivalent to
(5.43) Re(—Xe ) > 217 (—¢; cosp — cpz® P sing)  for all 2 > 1.

The right-hand side tends, as © — oo, to plus infinity for ¢ € [0,7) and to minus infinity
for ¢ € (—m,0), while the lefthand side is constant. Thus Admy, = () for ¢ € [0,7), but for
¢ € (—m,0), equation (5.43) shows that Admy, is a halfplane.

We conclude that V,, is admissible exactly for ¢ € [a — 7,0).

With E = (é 1), we obtain Py (1) > 0, for ¢ € (—m,0), whence (£, V,,) is suitable for

P e {04_%70)

We fix some ¢, € (a—%,0). For the resulting differential operator L, we know Admy,, +
Av<po g p(LLPo)'

With w > 0 on [a,b) = [1,00), we have shown for all our scalar examples that b =b.
We like to apply Corollary 5.4.2. For @ € [1,00), we have Wi = Adm¢{, + Ay, , where
K%D = Ay,. Hence we have to calculate Uzcp o) K&r/n?/%.

For a € [1,00), by the first condition of (5.43), we obtain that A € K&r/n%o if and only if
(5.44) Re(—Xe ™) > 217 (—c; cosp, — cox™ P sing,)  for all 2 > a.

Since the right-hand side tends to minus infinity, as r — oo, for every A € C, there exists an
a € [1,00) such that A € Admv Hence (J;¢(; o) Admv =C.
Corollary 5.4.2 yields that the spectrum of L,, consists of isolated points.

Now we assume that ®, or x, is not in L%, so we have the strict limit-point case for (2.1)
or for (3.15).
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Thus, Theorem 5.4.6 yields
(5.45) U (Admy, +Av) Cp(Ly,).
p€la—7,0)
Note, that Ay, is a halfplane with rotation ¢ relative to the left halfplane.

In [6], a corresponding differential operator is constructed. Its spectrum is estimated, in
general, to be in a (possibly shifted and rotated) halfplane.
In the case that only one solution is square integrable (this is the strict limit-point case
in this thesis), the spectrum is estimated to be a subset of some set Q(a), which may be
"smaller" than a halfplane. For this particular example, the estimation of C\ Q(a) are alike
the left-hand side of (5.45).

2.2 We consider the following example to give an application for Theorem 5.4.8:
a.0) = [L,), w= ()], pla) = —a —ica®, w(z) >0 (for a € [1,00)),

for real constants ¢, di, and ds, with ¢ > 0 and dy > d;.

Let (z) := arg(p(z)) = 7 + arctan(ca®>*). We have 3(z) € (m, ), and § converges
monotonically to 37, thus range(8) = [3(1), 2x). The second condition in (5.42) becomes

(5.46) Yz > 1: Re (@79 >0,
which is equivalent to ¢ € [, 3(1) + 5] (modulo 27).

The first condition in (5.42) becomes
(5.47) Re(—Xe )w > Re(—poe ),

n [1,00). With w = |pg|, we see that (5.47) is solvable for every ¢.

We conclude that V,, = codiag(e?, %) is admissible exactly for ¢ € [r, (1) + 5]. (5.47)
shows that Admy,, is a halfplane.

With E = (1) 1) we obtain Py v, g(1) > 0, for ¢ € (7,27), whence (E,V,,) is suitable
for o € (m, B(1) + 5.

For fixed ¢, € (m, 3(1) + 7] we obtain an operator L, with Admy, + Ay, C p(L,,).

We want to apply Theorem 5.4.8. Therefor we assume, that ®, or y, is not in L%, so
we have the strict limit-point case for (2.1) or for (3.15). (If this was not the case, both
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problems would be in the weak limit-circle case, whence the whole spectrum of of L, would
consist of isolated eigenvalues.)

Again we know that b = oo.

Theorem 5.4.8 yields that in W{}w only isolated points of the spectrum of L, exist for all
a € [co(p), 00), and for all matrices V,, that are suitable for the problem restricted to [a, b)

such that W{}w N Wy, # 0 and for which holds

(5.48) (0 L)Y @)V, Y,.(a) ( IO+) > 0.
(This matrix is Qﬁmvau(a)(d) for the problem restricted to [a, b)).

First we calculate the set of matrices V,, that are admissible for the problem on |a,b).
Equation (5.46) becomes
(5.49) Vo > a: Re(e'7")79)) > 0,

which is equivalent to ¢ € [r, 3(a) + 5] (modulo 2r). If we recall 3(a) — 3, as @ — oo, we

see that, for every ¢ € [m, 37), there exists an @ > 1 such that (5.49) holds true.

For such ¢, the set K&r/n‘{@ is the set of all A that fulfill (5.47) on [a, 00). As above we see
that this is a closed halfplane. Thus W{“}W is a halfplane by Lemma 5.1.5 .

Unfortunately not every admissible matrix is suitable for the restricted problem with E=
Y,(@). (We even require that the matrix corresponding to P(a) is definite.)
For ¢y := (1) + §, though, we know P, v, y,1)(1) > 0 and that (V,,, F) is admissible for
the original problem, whence P, v, v, (1) 18 increasing. Thus, for a > 1,

O < 2p#7vm7yu(1)(a) = (0 ]TLJF)Y’M (a)VCPIYM(CO (_[n+) .

By continuity reasons, we obtain

(0 L)Y @)V, V(@) ( 1(;) >0

for all ¢ in a neighborhood of ;. So the set of all matrices V,, that are suitable for the
restricted problem and that fulfill (5.48), is larger than the set of all suitable matrices for
the original problem. Therewith, for a>1, the set

Ve 2V, € 8™, nt(V,) = nf, Wi N Wy, # 0, and (0 1s)Y; @)V, Y, (@) ([0+> > 0}

is larger than the same set with @ = 1. (Note that, again, the parameter ¢ determines the

rotation of the halfplane W{}w) There are only isolated points of the spectrum of L, in the
union of all these sets for a € [1, 00).
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Chapter 6

Final considerations

In this chapter, with some linear algebra theory, we obtain an insight into various possibilities
of choosing parameters (like V).

An augmentation method, which augments the problem to an equivalent problem of higher
order, yields further miscellaneous results.

Finally we examine the one dimensional example (i.e. n =n"+n = 1).

Below we use the notation S™ for the set of all self-adjoint matrices in C™" (and again S™*
shall name the set of all regular matrices in S™).

6.1 On the choice of an admissible V'

Assumption 1 requires the existence of an admissible matrix V. The number of positive
(respectively negative) eigenvalues of V' determine the sizes of nearly every matrix in this
theory. If there are two admissible matrices V7 and V5 with n'(V3) # n'(V}), we obtain two
operators, for which the number of boundary conditions at a (and maybe at b) are different.
So it is a natural question, if, for given A, B, and J, such admissible matrices V; and V5 may
exist.

We will realize that, under certain conditions, for such matrices the sets Admy, and Admy,
are disjoint or this may hold for Ay, and Ay,.

We first need some linear algebraic results.

Lemma 6.1.1. If K € C™" is singular, then ReK is not definite.

Proof. Let 0 # b € C" with Kb =0. Then 2b*(ReK)b = b*Kb+ b*K*b = 0. [l
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Lemma 6.1.2. Let K € C™". For
K:={NeS":Re(NK) > 0}
holds

(1) K is an open wedge within S™, in particular K is conver.

(i) For Ny, Ny € K holds n(Ny) = n'(N).

Proof. K is open since both Re and multiplication with K, are continuous.

We note that, for ¢t > 0 and N € IC, also tN € K. For Ny, N, € K, by linearity we obtain
N1+ Ny € K. Thus assertion () follows.

For j € {0,...,n} we define M, := {N € S"* : nf(N) = j}. These sets are obviously
disjoint and open in S"™. By Lemma 6.1.1 we know that K is a subset of the union of these
sets. Since K is connected within S, it is a subset of M; for some j < n. Thus assertion
(17) follows. O

Lemma (6.1.2) with K = AJA, and (2.6) yield

Corollary 6.1.3. If A is positive definite on a set of positive measure, then for any admissible
matrices Vi, Vo for which there exists A € Ay, N Ay, holds n(Vy) = nf(V3).

We even know

Lemma 6.1.4. If the matriz A is positive definite on a set of positive measure then for any
admissible V' holds

n'(V) € {n(+iJ)},

while nH (V') = n*(iJ) holds if there is some X\ € Ay with Im(\) < 0
and nt(V') = nf(—iJ) holds if there is some A € Ay with Im(\) > 0.

Proof. By Theorem 6.2.2 below any A € Ay is non-real.
Let A in the lower half-plane. For V} :=1J,
—Re(A\V1JA) = —Re(A(iJ)JA) = Re((iA)A) = —(Im(A))A = A
shows A € Ay,. Corollary 6.1.3 implies the assertion for any admissible V" with A € Ay.

The assertion for A in the upper half-plane can be shown analogously with V; := —iJ. [
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We need one more linear algebraic
Lemma 6.1.5. Let K € C™". We define

K:={NeS" :Re(NK) > 0},

(6.1) Ko = {N €S" : Re(NK) > 0}

(1) Either KC is empty or Ky is the closure of IC in S™.
(i7) If K is not empty, then for any regular matrices N1, Ny € Ko holds nt(Ny) = nf(Ny).
Proof. Since 0 € Ky, at least one of both assertions in () is wrong. Thus it suffices to

show: if K is not empty, then it is dense in Ky, which is obviously closed in S™ by standard
continuity arguments.

Now let Ny € Ko and 0 > 0. If K is not empty, since it is an open wedge by Lemma 6.1.2,
there exists some N € K with ||N|| || K|| < § (where || - || is the operator norm C" — C").
By linearity Re((N + Ny)K) > 0 and thus N + Ny € K. Hence statement (i) follows.

For Ny, Ny € K, statement (éi) is shown in Lemma 6.1.2. The statement still holds for Ny,
Ny € K = Ky as long as no eigenvalue is zero, by continuity of the eigenvalues with respect
to every matrix-norm. ]

Regarding assumptions (2.3) and (2.4) for admissibility, we obtain

Lemma 6.1.6. Let
Adm = {keC:3U €S" : —Re(UJ(kA+ B)) > 0 on more than a set of measure zero}.

For admissible Vi, Vy with Admy, O Admy, N Adm # 0 holds nt(V) = nt(Vs).

Proof. Let k € Admy, N Admy, N Adm. For z € [a,b) we define

K(z):={U e S™ : —Re(UJ(kA(z) + B(z))) > 0},

(6.2) Ko(z) :={U € S": —Re(UJ(kA(z) + B(z))) > 0}.

For a.e. z € [a,b) we have V},V, € Ko(z). Furthermore I # () on more than a set of
measure zero. Hence there exists some ¢ € [a,b), such that K(c) # 0 and Vi, Va € Ko(c).
The statement follows by Lemma 6.1.5, using the regularity of Vi and V5. O

If A and B have no common nulls-pace and rank A is large on a set of positive measure,
the set Adm may be large. So this statement is a weaker version of Lemma 6.1.4.
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The previous statements in this section provide criteria according to which the set of
admissible matrices is restricted. On the other hand, though, in the case that B is self-
adjoint on [a,b), there is always the canonical choice of an admissible matrix:

Lemma 6.1.7. If B is self-adjoint on |a,b), then V := +iJ is admissible with 0 € Admy
and Fi € Ay.
Proof. The formula JJ = —I,, and straightforward calculation gives

CO’:EZ"] = iRe(zB) =0

and
—Re(Fi(£iJJA)) = A.

A little weaker premise is required in

Lemma 6.1.8. If A = —Im(B) or A = Im(B) then V = —iJ, respectively V = iJ is
admissible.

Proof. We only show the case A = —Im(B). For k > 0 such that kA + Im(B) = 0 we have

and
—Re(i(—iJ)JA) = A.

Thus ¢k € Admy and ¢ € Ay, whence V = —i.J is admissible. O

We like to consider the scalar examples with regard to Lemma 6.1.8. We choose the even
case where A; and B are specified in (2.35) and (2.36).
To achieve A; = +Im(DBj), we can tighten the condition that B is self-adjoint to

(6.3) w=+Impy and forall j € {1,...,m} holds 7; = —¢;, £Imp; <0 a.e. on [a,b).

6.2 On the wedges Ay and the convex sets Wy,

In this section we examine the set Ay. It will turn out that two different circumstances may
cause Ay to remain within the upper or the lower half-plane.

The proof of the following linear algebraic Lemma is partially due to Ludwig Elsner.
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Lemma 6.2.1. For K, PN € S" with N > 0, the matrizc Im(KPN) is either zero or
indefinite, wn particular it is not definite.

Proof. We can assume w.l.o.g. that K is diagonal. Since K and P are self-adjoint, the
diagonal entries are real and therewith so are the diagonal entries of (K P), whence those
entries of Im(K P) are zero. The trace of Im(K P), which is consequently zero, is the sum
of all eigenvalues. Hence the statement holds for N = [,,.

For arbitrary positive definite N € S” let N := N2, We can calculate
Im(KPN) = NIm ((N"'KN"')(NPN))N.

The righthand side is congruent to Im((N"'KN~—1)(NPN)), which is is zero or indefinite,
as already shown. Thus so is Im(K PN). O

This simple Lemma leads to

Theorem 6.2.2. If A is positive definite on a set of positive measure, then for arbitrary
admissible V' holds
Ay NR = 0.

Proof. Let A € R and let J C [a,b) the set, where A is definite. We recall that i/ is
self-adjoint. Using Lemma 6.2.1, we obtain for x € J that

~ReAVJA(z) = — Im (iAVJA(z)) = — Im(AV)(i.]) A(x)

is not definite. (2.6) implies A ¢ Ay. O

So if A is definite, any of these open wedges Ay is only a subset of the upper or the lower
half-plane. On the other hand, in the case that B is self-adjoint on [a,b), we can achieve Ay
and Wy, to be any of both half-planes for the admissible choices of V' in Lemma 6.1.7:

Lemma 6.2.3. If B is self-adjoint, then for V := £iJ holds

Ay =Wy ={A€C:Im) < 0}.

Proof. We only show the case V = —iJ. So let A € C with y := Im A\ > 0 and = := Rel.
The estimation

—Re(A\VJA) = Re(iyiJJA) + Re(ziJJA) = yReA — zRe(iA) = yA < A
yields A € Ay by (2.6).
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No A € Ris in Ay, because
“Re(\VJA) = \Re(iJJA) = \Re(—iA) = \Im(A) = 0 £ A.
Since Ay is connected, we obtain Ay, = {\ € C: Im \ > 0}.

0 € Admy by Lemma 6.1.7, thus Admy D Ay. It suffices to show that any k in the lower
half-plane is not in Admy . For such a & holds:

Crv = —Re((—iJ)J(kA+ B)) = Re(—i(kA+ B)) = Im(kA) + Im B = Im(k) A # 0.
Thus k£ ¢ Admy . O
We have just discussed the shape of Ay. If A > 0 on a set of positive measure, Ay is

contained in one of the halfplanes. Yet Wy, of which we know that it is a subset of p(L),
may be larger. Nevertheless we have to following

Lemma 6.2.4. If A > 0 on a set of positive measure, then Wy is contained in the (possibly

shifted) upper or lower halfplane.

Proof. We already know that Ay is contained in one of the halfplanes. We assume w.l.o.g.
it is a subset of the upper halfplane. We show that Wy is a subset of the upper halfplane
plus some constant, which means Im(Wy ) is bounded from below. It suffices to show that
Im(Admy ) is bounded from below.

By assumption on the open set Ay, we can fix some Aj, Ao € Ay with Im(\;) = Im(\g) =1
and ki := Re(\1) < k2 := Re(\y).
We have —Re(\V JA) = A for | € {1,2}, whence for a.e. z € {T € [a,b) : A(T) > 0} holds
—Re(NMVJA(x)) > 0 for [ € {1,2}.

Let J the subset of [a, ), where A, —Re(A\V JA), and —Re(\V JA) are positive definite.
J has positive measure.

We first show that, for x € J, the imaginary part of
N(z):={r e C, Cy\(z) >0}
is bounded from below. So let z € 7.
For this proof, we use the abbreviation = := Re(V JB(z)).
Any Ao = si +t with s,¢ € R lies in M () if and only if C\,(xz) > 0. This is equivalent to
E =Re(VJB(z)) < —Re(AVJA(z)) = —sRe(V(iJ)A(z)) — t Im (V(iJ)A(z)).

By Lemma 6.2.1, Im(V (iJ)A(x)) is either zero or indefinite. We distinguish these cases.
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First case: Im (V (i.J)A(z)) = 0.

We know —Re(\V JA(z)) is positive definite, so there exists some sy < 0 such that
—soRe(AMVJA(x)) < Z. Hence for all A = is +t with s < sq

—sRe(V(iJ)A(z)) — tIm (V(iJ)A(z)) = —sRe(V (iJ)A(z)) — sk Im (V(iJ)A(z))
= —sRe(\VJA(z))
< —SORe()qVJA(ZE)) < E,

thus \g ¢ NV (z). So A € N(z) implies Im(\) > s.
Second case: Im (V (iJ)A(x)) is indefinite.

Then there exist j; < 0 < ja, such that for all j € R\[j1, jo] the matrix j Im(V (iJ)A(z))—=
is not positive semi definite.

For \yg = si +t with s < — 72 f; we have t — sky < j; or t — sky > jo.

For [ € {1,2}, using \; = k; + 4, we can estimate

Ch(2) = —Re(VJB( )) —Re(VJINA(z)) = —E — Re(VJ\A(z))
— Re(VJAA(z)) — (—s)Re(VINA(z))
—Re(VJ(t — sk)A(z))

+ (t — sk) Im (V (i) A(x)).

/\

(6.4)

(1] [I] [I

At least once (t — sk;) ¢ [j1,j2], whence the righthand sides is not positive semi definite.
Thus \g ¢ NV (z). So A € N(z) implies Im()\) > —£2=4

ko—k1 "

Since the imaginary part of A'(z) is bounded from below for every z € J, there is a function
f ' J — R, such that for every x € J and every A with Cy(x) > 0 holds Im(\) > f(z).
Since J has positive measure, there exists some fy € R, such that f='([fy, o0]) is not a set
of measure zero. (Otherwise J = U{f *([—7j,c]) : j € N} would be of measure zero.)

For any A € Admy holds Cy(z) > 0 for almost every x € [a,b), in particular for a.e.
x € J. This finally implies Im(\) > f;. Thus the Theorem follows. O

6.3 An augmentation method

In this chapter we introduce a method to augment the problem to one of higher order which
remains equivalent to the original problem. Though this seems to be of no real importance,
it provides an insight into some questions of possibility.
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Let m*,m~ € NU{0}. These are the dimensions by which we will augment the problem.

We assume we have chosen some suitable (V) E) with corresponding n* = nf(V), n~ =
n (V).

First we declare some abbreviations:

We set,

no=n+m +m, no=n +m, n=nt+m'
For matrices N € C»n, P~ € C™ ™ pt e Cmm' Q- eCrn, Q+ e Crhn,

OecC™ ,deC™ and T € C"" we use the notations

[N, P~, P*] := diag(P~, N, P*) e C*™",
E = [Na Om‘a 0m+]7

_ P~ 0
(Q,P) = (]Z) c;—) ec™, @,P] =0 o|cc,
0 0
(6.5)
0 0
+ L L
(QF, Pt = (% ]i) e CT @, Pt:=|® 0 | eC™,
0 Pt
= 0 0 et « (0 T kA
|._(T O)G(C : T '_(O 0)6@ :

Note that in each of these abbreviative functions each first argument on the left side will
be a function (or constant) of the original problem.

For matrices with adequate dimensions, the following holds:

@ (G &) o)
(6.7) [N, P~, Pt]* = [N*, P~", P*7],

(6.8) [N, P~, P*]|[N, P-, P*] = [NN, P~ P—, P*P+],

(6.9) [N, P~, P*][®, P*]* = [N®, P*P+*, [N|[®, P*]* = [N®,0]*,
(6.10) (Q*, PIU =|Q'U, TIQ,P)” =TQ,
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(6.11) | |[U = (TU,0)", | | = (UT,0)",

(6.12) [, P |U = [®U, 0]

We want to pose the augmented problem. Therefor let J— € C™ ™ J+ e C™" guch
that ¢J~ and iJ" are unitary and self-adjoint. We mark the corresponding matrices for the

augmented problem in this section with a tilde.

Let A:=|A|, B:=|B|, J:= [J,J~,J*]. The formal augmented problem reads

(6.13) Ji\(x) = (A\A(z) + B(2))ja(z)

For E := [E, L, Is] and V := [V, — I, I,,+], we obtain

Lemma 6.3.1. The pair (‘N/, E) 18 suitable for the augmented problem with

(6.14) n(V)=mn, n'(V)=nt
(615) Admv = Admv, //\\\// = Av, é\; = @,
(616) /};; = [Y)n[m—a [m+]7 /@\j\ = [@Aalm—}77 (/ﬁ;\ = [(I)/\ajm+]+7
Q. 1 - DL 1 + T T T *
(6.17) Sy = (Sh, _élm*) , Py= (P, anﬁ) , Th="T\|, T\ =Ty,
- N 1
(6.18) Cr=1Cr, Ro=(Raghe)

Corresponding statements hold for the respective functions of the adjoint problem.

should be mentioned that the shape of 7y, 77, and Y, is as follows:

B 0 0 J- 0
Zy=(mxx) with qx=(nm 0 | and \x=| 0 xu
0 —J+ 0 0
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Proof. The calculations for 7, nt, 6; , /)};, @)j\ and (IA& are straightforward.
Therewith obviously C v = 0 if and only if C\ v = 0 and thus holds Admy = Admy.
Furthermore VJA = |V JA| by (6.8), and so (2.6) yields Ay = Ay. Since admissibility of V'

is equivalent to these sets not being empty we conclude that V is admissible.
(2.18), (6.7), and (6.8) yield

g T T I * _ S T
2(%* ﬁ) =Y*'VY = [Y*VY,~1,1| = [2 (T* P),—I,I]-

Hence (6.6) implies the statements for S, P and T

Since P(a) > 0, we know P(a) > 0. For any £ = (g) e C™ with & € C", & € C™, which
fulfills the premise for the definiteness assumption (2.10) for the augmented problem, (6.17)
yields §; = 0 and & fulfills the same premise for the original problem and therefore is zero.
It follows that (V, E) is suitable.

The statements for Cy and R, hold by (2.24), (2.25), (6.10), and (6.11). O

We fix the suitable pair (V, E). With equations (2.26), (6.10), (6.11), (6.17), and (6.18)
we obtain

Dy(z) 2 {|l : 1 € Dx()}.

The choice fi = p and M := | My € ZA?;(b) yields M = |M by straightforward (yet technical)
calculations (the crucial equations in the construction of the M-function are (4.14) and
(4.25)). This leads to

N Ly 0 N 0 0
Uy=[W\L, ] =10 Wy| and (= O
0 0 0 —J*

For f € L%[a, b) let f = (Foits- -y forsn)T. If f was not zero in L%[a, b), then f is
not zero in L by construction of A. Again by straightforward calculation, using (4.34) and
(4.35), we obtain

Ryf=(0,...,0, Raf, 0,...,0)" and Ryf=1(0,...,0, Raf, 0,...,0)7,
—— ~—— —— ——

m mt m mt

which shows that Assumption 2 of the augmented problem is fulfilled, as long as it is
fulfilled in the original problem.

The theory finally yields the operator L. With
619 D(L) = {j € L} N ACicla.b) : X" (a) T(a) = 0 = lim G, (2) Jyi(x)
' and jﬂ'—éﬂzflﬁ for some f:: Lje L%}.
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Let Z the projection

([avb) - Cﬁ) - ([avb) - Cn)7 I((fh...,f%)T) = (fm*—&-lw--afm*—l—n)T'

The coustruction of A vields that Z maps L% onto L%, bijectively, isometrically, and
isomorphically. B
Straight calculations yields that for any y € D(L) and any y € D(L) holds

1(j) € D(L) with LZ(§) = Z(Ly) and Z~'y € D(L) with LI '(y) = Z*(Ly). (Recall
that the assumptions on ¥y to be in D(Z) is posed for one representative of this element vy,
which is a class of functions.)

Thus we obtain

Corollary 6.3.2. B _
L=T'LT and L=TLT!

2

%> respectively in L.

as operators in L

By (6.15) we do not have any better approximation of the spectrum of L. Yet the aug-
mentation method shows some things:

With an appropriate choice of m~, m*, J~ and JT, such that n(iJ) = n'(iJ) and n~ = 0,
and with an appropriate basis transform (such that J = codiag(I,,, —1,,-)), the augmented
problem fulfills the assumptions in [5], furthermore Uy, = —V.J is a suitable matrix for
the theory therein fulfilling all necessary assumptions. Thus the augmentation method may
transform the original problem into an even order problem (where even further assumptions

are fulfilled).

Since P = (P, %Im+)+, we know that in the augmented problem, additionally m* eigenval-

ues of P(x) remain bounded as x tends to b. Thus Lemma 5.1.2 states that in the augmented
problem, m* more linearly independent solutions of (6.13) exist that are in Lé;.

Yet Cy = @ and thus Z maps LQ& onto Lg, isometrically and isomorphically. For any
solution y € L%: of the augmented version of (2.1) we know Zy is a solution of (2.1). So
those m' further linearly independent solutions are not linearly independent within L%v.

A
This shows that we really have to distinguish between linearly independence as functions

[a,b) — C" and linearly independence in L7, .

Another conclusion is the following: If both m™ and Q?fr are not zero, (6.17) and a corre-

sponding statement for P shows that of both, P(z) and ﬁ(w), at least one eigenvalue remains
bounded (as = tends to b). Using Lemma 5.1.2 and an analogous statement for the adjoint
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problem, Theorem 5.1.14 yields that (2.1) is in the non-limit-point case. Thus we can change
from limit-point case to non-limit-point case without changing the problem essentially (in
view of Corollary 6.3.2).

Since in the non-limit-point case we have better approximations of the number of linearly
independent solutions of (2.1) that are in L?‘;A, we can use the augmentation method to
obtain

Lemma 6.3.3. Let (V, E) suitable for (2.1). We augment the problem by one dimension,
choosing m™:=0, m =1, J :=1.

For t, the value that corresponds to v (see (5.3)) for the augmented problem, holds:
There are exactly =+ T independent solutions of (2.1) that are in LQCA.

Proof. Using Ry = (R, %)_, equation (3.47) yields that at least one eigenvalue of ﬁ(x)
remains bounded as x tends to b. Thus there are more than 7" independent solutions of

the augmented version of (3.15) that are in L% by the dual version of Lemma 5.1.2 for the
A
augmented problem.

Hence, if the augmented problem is in the limit-point case, Theorem 5.1.14 implies that
there are exactly n~ = 1 4 n~ solutions of the augmented version of (2.1) that are in L%v.
A

Furthermore holds ¥ = 0 in the limit-point case by definition.

If the augmented problem is in the in the non-limit-point case, Theorem 5.1.10 yields that
there are exactly n~+f = n~+ 1 4 I solutions of the augmented version of (2.1) that are in
L% .

Cx

In both cases there are exactly n~+ 1 4+ T solutions of the augmented version of (2.1) that
are in L% .
Cx

The number of linearly independent solutions of (2.1) that are in LZ, is exactly one
less, than the corresponding number in the augmented problem (with the further solution
y = (1,0,...,0)7, which is even zero in L%}) Hence the statement follows. O

If the original problem is in the limit-point case, then the geometrical quantity r does
not yield the amount of linearly independent solutions of (2.1) (in view of Theorem 5.1.10).
After appropriate augmentation, the resulting quantity r does by Lemma 6.3.3.
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6.4 The case n =1

We finally consider the case that n is one.
The one-dimensional problem has the advantage that we can calculate the solutions of (2.1)
explicitely. Even this rather simple case offers an insight into some questions of possibility.

With @ := 0, b := 00, J := —i, A € LL.([0,00),R{), B € L. ([0,),C), problem (2.1)

loc loc
reads
(6.20) —iy' = (M + B)y.
The alternative choice J =i would create a similar problem.

The only possible choices for V' (up to an irrelevant positive constant) is +1 so (nf,n") €

{(1,0),(0,1)}.
Therewith

Ay ={A e C:Re(£iNA) = A} ={A € C: FIm(NA) = A} ={A € C:Im()\) = 0},
the lower, respectively the upper half-plane. Since
(6.21) Cyyv =Re(*i(kA+ B)) = FIm(kA + B),

we have

Admy = {k € C: F(Im(k)A + Im(B)) 3= 0}.

Thus Assumption 1 reads

(6.22) A>Im(B) or Ax»—-Im(B).
Assumption 2 holds always true by Remark 4.4.2.

In view of Theorem 5.4.1, we furthermore have b = oo by Corollary 5.4.3.

We distinguish three possible cases:

case 1: A= —Im(B) and A ¥ Im(B),
(6.23) case 2: A ¥ —Im(B) and A =Im(B),
case 3: A= —Im(B) and A»>Im(B).

By Remark 2.1.4, the choice ' = 1 does not restrict the generality of our examination;
using additionally Lemma 2.1.3, we see that for an admissible V', the pair (V, E) is suitable.

Y, solves Y, = i(AA + B)Y, and Y,(0) = 1. Thus we have for all ¢ € [0, c0)
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Y)\(C) = exp (Z /C AA + Bd.CE)
(6.24) . c
= exp (2/0 Re(\)A + Re(B)dz) exp(— /0 Im(\)A + Im(B)dz).

The formal adjoint problem (3.15) reads

(6.25) 2\ = i(A + B)z,.

Remark 6.4.1. Since Im(B) = —Im(B), for the adjoint problem, the cases 1 and 2 inter-
change. Furthermore V.= =V by (3.16).

For V € {£1}, by (3.18) and (3.17) we obtain Jo = V and E = iV. Thus we have for all
c € [0,00)

Zx(c) =iV exp (i /OC Re(A\)A + Re(B)dz) exp (/Oc Im(A\)A + Im(B)dz).

First we assume A = —Im(B), so we are in case 1 or 3.
Let k_y :=inf{k € R: kA + Im(B) = 0}.
The choice V := —1 is admissible with (n",n7) = (0,1) and

Adm_;={AeC:Im\ >k ,}.

So we have
W,1 = {)\ ceC:Im)\ > kfl}.
With n =0 and n~ =1 we obtain ©, =Y}, &, = 01, 7x = 010 and x» = Z,.

Because Py_1(c) € C™" = C%° we have Py_; = 0g on [0,00). This no eigenvalues.
Thus no eigenvalue of P, _; is bounded. By Lemma 5.1.2 there is a non-trivial solution of
(2.1) that lies in Lg, . So Y\ € Lg, C L% for A € W_;. We know the explicit shape of Yy, so
this can already be checked in (6.24) with fundamental analysis means, using

Im(\)A + Im(B) = k_1 A + Im(B) + (Im(A\) — k_1)A = (Im(A) — k_1)A = A.
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Since §) # Dy _1(c0) € C™" we can conclude Dy _;(c0) = C™™ = {0}, so only the
limit-point case occurs with M = 0g;, and hence

U,=0,+d,M=Y,+0=Y,,

(6.26) .
O =+ xoaM™ =ny = 01.

With (4.36) and (4.35), we obtain

(6.27) Raf(z) = Ya(o) / ") AW)f () dy.

(6.28) Faf(z) = Zu(a) / VW) Ay fy)dy.

The domain of definition of the operator L_; is given by

(6.29) D(L_;) ={y € L3N AC),c[0,00) : 3f € L% : Af = —iy/ — By a.e. and y(0) = 0}.

Before considering further results, we examine the other possible choice of V.

We now assume A = Im(B), so we are in case 2 or 3.
Let ky :=sup{k € R: —kA —Im(B) = 0}.

The choice V :=1 is admissible with (n",n7) = (1,0) and
Adm; ={k € C:ImX < k; }.
So we obtain
Wi={AeC:ImA < ki }.
With these values of nt and n~ we obtain O, = 01, @) =Y}, n\ = Z, and x, = 0y.

Again (2.1) is in the limit-point case, now with D) ;(c0) = Cr'm = {010}. Hence M =0y
on Wi and therewith

\If/\ == @)\ + q))\M — 0170,

(6.30) .
Oo=m+xaM* =n = 2.

118



For A € Wj holds

Poy = YiVY, = TaYh = exp (- 2 / Im(\)A + Im(B)dz)

(6.31) . 5

= exp (1// A dx) exp (2/ —k1A— Im(B)dx),
0 0

with v := —2(Im(X\) — k1) > 0.

Lemma 5.1.2 yields that Yy € Lg, if and only if Py;(c) is bounded as ¢ tends to infinity.
Both integrands (and therewith both brackets) on the right-hand side of (6.31) are non-
negative. Therewith we obtain

Remark 6.4.2. Y € L, if and only if A,Im(B) € L'(0, c0).

If this is not the case, we only know that Y) is not in L%A' The theory does not state that
Y\ may not be in L%. So we can distinguish three sub-cases:

sub-case a: Y, € L?Av
(6.32) sub-case b: Y\ € L% and Y\ & Lg, ,

sub-case c: Y\ & L3,
for some A € W;. (By Theorem 5.1.6, the actual choice of this A € W is irrelevant.)

In case 3, using A = —Im B and (6.21), we obtain for A € W,
Chi=—-—Im(\A—-Im(B) < A,

which shows C\; < A. Hence only sub-cases a and ¢ are possible in case 3.

The operator L, has the domain of definition

(6.33)

D(Ly) ={y € L} N ACc[0,00) : If € L% : Af = —iy — By a.e. and lim Z,(z)y(z) = 0}.
Using (4.62), in sub-case ¢ we obtain

(6.34) D(L,) = {y € L} N ACy,c[0,00) : 3f € L : Af = —iy — By a.e.}.

In case 3.c (where also L_; exists), this is a proper superset of D(L_1).
On the intersection of their domains, both operators are equal. Thus we obtain
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Corollary 6.4.3. In case 3.c, the operator Ly is a proper extension of L_1 and hence their
resolvent sets are disjoint.

We have not yet shown that all these cases are really possible. To fill this gap, we regard
some simple concrete examples.

For case 1 we could choose A(z) := 1 and B(z) := ix.

For case 2.a, the choices A(z) := (z + 1) and B(z) := —i(z + 1)? will do by Remark
6.4.2.

The choice A(x) := (z +1)™* and B(x) := —i(z + 1)~! is obviously in case 2.
Remark 6.4.2 yields Yy ¢ L7, , since Im(B) ¢ L'(0,00).
With this choice of A and B, we obtain k; = 1. Thus we have A = 0 € W;. For this \, we
can calculate

|Y>\(C)| _ efOC—Im(B)dgc _ efoc(;r—&—l)*ldx _ 6log(c—‘,-l)—O —c+ 1.

This shows that Yy € L%, so this is case 2.b.

For case 2.c let A(z) := 1 and B(z) := —i(z + 1). Again case 2 is obvious with k; = 1.
For A = 0 € W, the estimation

Ya(c)| = eJo ~Im(B)dz _ [7x+1 do > ¢

shows Y, & L?.

The choice B := 0 yields case 3. Remark 6.4.2 shows that both sub-cases 3.a and 3.c can
occur, depending on whether A is in L*(0, 00) or not.

These simple examples show that A % C) is possible and even the number of linearly
independent solutions of (2.1) that are in L% may differ from the corresponding number for
L% .

A

Our theory yields the estimation Wy C p(L). The following shows that even equality

(

may hold. For this we want ImAfB) to be constant, which yields case 3, furthermore we need
sub-case 3.c.

For example let A(z) := 1, B(z) := 2? on [0,00). Because A ¢ L', this is subcase 3.c.

We obtain k_; = k; = 0. Thus W_; is the upper, W; the lower half-plane. So the upper
half-plane is a subset of the resolvent set of L_;, the lower half-plane is a subset of the
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resolvent set of L;. Corollary 6.4.3 yields the assertion.

A weaker assumption would be that Im(B is bounded and convergent to some k. This also

is case 3 and, if A is not in L'(0, 00), sub case 3.c.

Let a > 0. We want to apply Theorem 5.4.1. For this we set

k%, :=inf{k € R: kA+Im(B) >0 a.e. on [d,00)} and

(6.35) —
ki :=sup{k € R: —kA —Im(B) > 0 a.e. on [a,00)}.

As for the original problem we conclude
Wi ={AeC:Im()\) > k% } and Wi = {A e C:Im()\) < k?}.

Im(B

The assumption on yields that k% and k%, converge to k (as @ tends to infinity).

Recall b = co. Theorem 5.4.1 (respectively Corollary 5.4.2) yields that there are at most
isolated points of the spectrum of L_; in {\ € C : Im()\) > k} and there are at most isolated
points of the spectrum of Ly in {\ € C : Im()\) < k}.

Using Corollary 6.4.3 again, we can conclude that ki plus the lower half-plane is in the
spectrum of L_; and ki plus the upper half-plane is in the spectrum of L;.

We can even go further. If we examine the proof of Theorem 5.4.1, we realize that A is an
isolated point in W&\ p(L) only if the matrix Qy in (5.28) is singular. This matrix however,
independent of V' € {£1}, equals Y)(a) # 0 and thus is regular. We conclude

Im B(z

Corollary 6.4.4. In case 3.c, if A )

) converges to some k (as x — c0), then

p(L_1) ={AeC:Im(\) >k} and

(6.36) -
p(L1) ={X € C:Im()\) < k}.

We can use Theorem 5.4.1 and the above considerations (that there are no isolated points
in W&\ p(L)), to conclude generally in case 1 or 3:

and in case 2 or 3:

Recall the shape of W, and the deﬁnition of k@, above (respectively of W@ and k%).
Thus if A and B are such, that ) converges to plus or minus infinity, the corresponding
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operator has empty spectrum . An example would be A = 1 and B(t) = —it on [0, 00). This
is case 1. The domain of L_; is given in (6.29) with Ly := —iy’ — By for y € D(L_,).

The following consideration is independent of the case (1, 2 or 3):
If both problems ((6.20) and (6.25)) are in the weak limit-circle case, (this means Y, and Z,
are in L% for some A € Wy, respectively A € W_,), then Theorem 5.3.3 and the extraordinary
M function (with no entries) yield that the spectrum of the corresponding operator (L,
respectively L_;) is empty.
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