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Chapter 1

Introduction

Abstract.
We consider the formal Hamiltonian system

(1.1) JY ′ = (λA+B)Y,

where JJ = −In , A and B are Cn,n-valued functions on [a, b), A is pointwise self-adjoint
and positive semide�nite, but B need not be self-adjoint. The order n is arbitrary.
Our aim is to construct closed di�erential operators with non-empty resolvent set, which
realize the formal system within an appropriate Hilbert space. Therefor we �rst construct
the corresponding resolvent operator via a matrix-valued Titchmarsh-Sims-Weyl type M -
function.
It turns out that the analysis of the adjoint problem is essential for the theory. Fortunately
this analysis does not generate any further assumptions.
Besides the norm generated by A, another Sobolev-type norm appears which seems to be
some kind of natural for the problem. The geometry of the generalised Weyl limit-sets de-
pend strongly on the number of linearly independent solutions of (1.1), of which this second
norm is �nite. The limit-point and limit-circle classi�cation is transferred, whereas the na-
ture of this problem yields several cases to be distinguished.
Furthermore a connection between the geometry of the limit-sets and the de�ciency indices
is presented.

1. The classical Titchmarsh-Weyl theory (see [23], [20], [8, Chapter XIII]) analyses the
Sturm-Liouville eigenvalue equation

(1.2) −y′′ + qy = λy

on [a, b), where q : [a, b) → R is continuous and b = ∞ is allowed, with the following results:
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For α ∈ [0, 2π) let θλ, φλ : [a, b) → R the unique solutions of (1.2) with initial values

θλ(a) = cosα, θ′λ(a) = sinα,

φλ(a) = sinα, φ′λ(a) = − cosα.

For c ∈ (a, b) and λ within the upper (or the lower) halfplane of C, the set of all l ∈ C such
that

(1.3)
∫ c

a

|θλ + lφλ|2dx ≤ −
Im l

Imλ

is a closed disc in C. Let us call it Dλ(c).
Equation (1.3) shows two things: For [a, b) 3 c̃ ≥ c we have Dλ(c̃) ⊆ Dλ(c), so the discs are
nested. Hence

Dλ(b) :=
⋂

c∈[a,b)

Dλ(c)

is not empty.
Furthermore, for l ∈ Dλ(b), the function θλ + lφλ is square integrable over (a, b).

There are two geometric possibilities for Dλ(b):
It may consist of one point. This is called the limit-point case. The element l of Dλ(b) is
called the limit-point. In this case there exists no further linearly independent solution of
(1.2) in L2(a, b) besides θλ + φλl.

Alternatively Dλ(b) could be a disc, which is called the limit-circle case. The boundary of
Dλ(b) is called the limit-circle. In this case every solution of (1.2) is in L2(a, b).
The case is independent of the choice of λ ∈ C \ R.

For �xed c ∈ (a, b) and for β ∈ [0, 2π), one can choose l ∈ ∂Dλ(c) by the modi�ed Möbius
transformation

lλ(c) :=
θλ(c) cot β + θ′λ(c)

φλ(c) cot β + φ′λ(c)
.

(The mapping β 7→ lλ(c) maps [0, 2π) onto ∂Dλ(c).) In each case lλ converges to some point
m(λ) ∈ ∂Dλ(b) as c tends to b, when β is kept �xed.
The resulting function m is called the Titchmarsh-Weyl m-coe�cient. m is holomorphic on
the upper halfplane of C, even meromorphic on C in the limit-circle case.
We choose some β ∈ [0, 2π) and therewith some function m. (In the limit-point case there
is only one m-function, independent of β.)
We set ψλ := θλ +m(λ)φλ ∈ L2(a, b). The function

Gλ : [a, b)2 → R, Gλ(x, y) :=

{
ψλ(y)φλ(x) for x ≤ y,

ψλ(x)φλ(y) for y ≤ x,

is a Green's function for (1.2). This means that for f ∈ L2(a, b), the function g de�ned by

(1.4) g(x) :=

∫ b

a

Gλ(x, y)f(y)dy
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solves −g′′ + (q − λ)g = f , where g, g′ ∈ ACloc. Let µ in the upper halfplane. For the
operator L, de�ned by
(1.5)
D(L) = {h ∈ L2(a, b) ∩ ACloc[a, b) : h′ ∈ ACloc[a, b), −h′′ + qh ∈ L2(a, b),

h(a) cosα+ h′(a) sinα = 0, and lim
x→b

ψµ(x)h(x) = 0},
Lh = −h′′ + qh for h ∈ D(L)

we have furthermore g ∈ D(L) with (L − λI)g = f . Hence (1.4) de�nes the resolvent of L
at λ. The de�nition of L does not depend on the actual choice of µ.
It is shown that L is self-adjoint. To achieve this, the choice of m on the boundary of Dλ(b)
is crucial.
In the limit-point case, the boundary condition at b is redundant.

2. The theory was generalized to the equation

(1.6) −(py′)′ + qy = λwy,

with 1
p
, q, w ∈ L1

loc[a, b), w ≥ 0 on [a, b) and w > 0 on a set of positive measure, further to
the higher order formally symmetric scalar di�erential equation

(1.7)
h∑

j=0

(−1)j(pjy
(j))(j) +

1

2
i

k−1∑
j=0

(−1)j
(
(qjy

(j))(j+1) + (qjy
(j+1))(j)

)
= λwy,

with real coe�cient functions pj ∈ Cj(a, b), qj ∈ Cj+1(a, b). See [9, section 3], [10], and for
an historical survey, [11].

Here a larger set of linearly independent solutions θλ,j and φλ,j is required, ful�lling

(1.8) [θλ,j, θλ,r](a) = [φλ,j, φλ,r](a) = 0 and [φλ,j, θλ,r](a) = δjr

for some symplectic product [·, ·], except, if the highest derivative in (1.7) is odd; then the
requirement (1.8) becomes a little more involved. Furthermore the function m is matrix-
valued.
More cases in between limit-point and limit-circle are possible.
It should be remarked that in this setting, the symmetric operator, created by the theory, is
not always self-adjoint. Some criteria even yield that no self-adjoint representation of (1.7)
exists (cf. [17, �14,17]).

For a more general version of (1.7) with L1
loc coe�cient functions see [18, section 15 and

16], [21] and the survey paper [24].

3. Equation (1.7) may be transformed into a �rst-order system of di�erential equations.
So it is a natural question, if the Titchmarsh-Weyl theory can be transferred to systems.
Important results are for example in [1], [13], [14] and [16].
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For this thesis, the most important paper for formally self-adjoint systems is [12], where
Hinton and Schneider have investigated the Hamiltonian System

(1.9) JY ′ = (λA+B)Y,

with matrix-valued, self-adjoint, locally integrable functions A and B. A is positive semidef-
inite on [a, b). Furthermore iJ is unitary and self-adjoint.
Θλ and Φλ are matrix-valued functions, such that

(
Θλ

∣∣Φλ

)
is a solution of (1.9), where the

number of columns of these functions equals the dimensions of the eigenspaces of J to the
eigenvalues plus and minus i, respectively. These numbers interchange when Im(λ) changes
its sign. So does the number of rows and columns of the M -function (see below).
The property, that

(1.10)
(
Θλ

∣∣Φλ

)
(a) is unitary and of a special shape,

takes the place of (1.8).
With a limit-circle assumption, the existence of a unique (in general non-square) matrix-
valued M -function is shown, such that every column of Θλ + ΦλM(λ) is in L2

A(a, b). This
means ∫ b

a

(
Θλ + ΦλM(λ)

)∗
A
(
Θλ + ΦλM(λ)

)
dx <∞.

The M -function is holomorphic on C \ R.
Using the M -function, a resolvent is constructed, and therewith a closed operator A and its
adjoint B within a suitable Hilbert space. The upper halfplane is in the resolvent set of A,
the lower halfplane in the resolvent set of B. There are further statements on the spectrum
of A and B within the respective other halfplane.

4. Another generalization of (1.2) is to allow q to be complex. Sims has examined this
problem in [19]. He required, besides continuity of q, that the imaginary part of q is restricted
to one sign. For λ ∈ C \ R, where Im(λ) is of the opposite sign, the two cases (limit-point
or limit-circle) appear. Again they depend on q alone, not on the choice of λ.
Yet now the limit-point case does not imply that only one solution of (1.2) is square inte-
grable.
In both cases there exist analytic m-functions. In the limit-circle case, for �xed λ and any
point z on the corresponding limit-circle, there exists an m-function with m(λ) = z.
Furthermore, if there are two square integrable linearly independent solutions of (1.2), then
any m-function is meromorphic on C.

5. In [6], equation (1.6) is considered, again with 1
p
, q, w ∈ L1

loc[a, b), w ≥ 0 on [a, b) and
w > 0 on a set of positive measure. Now p and q are allowed to have complex values.
To get the complex quantities p and q under control, some adequate rotation parameter η
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and some shift parameter K are introduced. The additional requirement that, for every
positive r and every x ∈ [a, b),

(1.11) Re
((
rp(x) +

q(x)

w(x)
−K

)
eiη
)
≥ 0,

is now necessary to transfer the Titchmarsh-Sims-Weyl theory.
λ is chosen in the rotated and shifted halfplane

Λη,K := K + {ν ∈ C : Re(νeiη) < 0}.

Besides the weighted Hilbert space L2
w with norm (

∫ b

a
w|f |2dx)−1/2 a second Sobolev-type

norm was introduced, which dominates the �rst norm. Therewith the limit-point case with
yet two linearly independent solutions in L2

w could be explained:
The limit-point case appears if and only if there is only one solution of (1.6) of which the
second (Sobolev-type) norm is �nite.
An m-function is constructed, analytic in Λη,K and, if all solutions of (1.6) are in L2

w, mero-
morphic on C.
Therewith a closed operator L is constructed. Λη,K is a subset of the resolvent set of L.
Varying the constant K, some other rotation parameter η may be possible.
Also further choices of (K, η) may be possible, if (1.11) should only hold for all x ∈ [ã, b)
with some ã ∈ (a, b).
The investigation of these further choices improves the estimations of the spectrum of L.

6. This thesis mainly bases on the paper [5] by Brown, Evans and Plum.

Therein the Hamiltonian system (1.9) is considered with J =

(
0 −In
In 0

)
and locally inte-

grable functions A,B : [a, b) → C2n,2n, where A is self-adjoint and positive semide�nite on
[a, b). Yet B need not be self-adjoint.
Additional assumptions on A and B are made.
The place of (η,K) in [6] is taken by some adequate matrix U2n and again some constant k.
In the following, for any square matrix X we use ReX for the self-adjoint matrix 1

2
(X+X∗).

The aforementioned additional assumptions yield that

Ck := Re
(
U2n(kA+B)

)
is positive semide�nite on [a, b), and that

Λ(k,U2n) := k + {λ ∈ C : Re (λ U2nA)− δ U2nA U∗2n

is positive semide�nite on [a, b) for some δ > 0}

is not empty.
λ is now chosen in Λ(k,U2n). Again Θλ and Φλ are C2n,n solutions of (1.9), with initial
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condition (Θλ|Φλ)(a) = E for some unitary matrix E.
Furthermore the adjoint problem

(1.12) JZ ′ = (λA+B∗)Z

is considered, with C2n,n solutions ηλ and χλ, such that (ηλ|χλ)(a) = Ê, for a certain matrix
Ê. The new version of (1.8) reads

(1.13) [E, Ê] = Ê∗JE =

(
0 −In
In 0

)
.

The Weyl-Sims-Titchmarsh sets, corresponding to the circular disks, are de�ned by

Dx(λ) := {l ∈ Cn,n : (Θλ + Φλl)
∗ U2n J(Θλ + Φλl)(x) is negative semide�nite}.

It is shown that these sets are non-empty, closed, and eventually nested. The geometry of
the limit-set correlates to the number of independent solutions y of (1.9) such that

||y||2Cλ
:=

∫ b

a

y∗Cλydx

is �nite, respectively to the corresponding quantity of the adjoint problem (which need not
be the same). || · ||Ck

and the respective norm for the adjoint problem correspond to the
Sobolev-type norm in [6] that determines the limit-point or the limit-circle case.
An M -function is constructed, holomorphic at least in Λ(k,U2n), furthermore, with an im-
portant additional assumption, a resolvent. An operator L for (1.9) is de�ned via boundary
conditions, while the just mentioned assumption yields well-de�nedness. The corresponding
operator for (1.12) is adjoint to L. Λ(k,U2n) is a subset of the resolvent set of L.

7. This thesis is mainly a generalization of [5] from the even to the arbitrary order.
Furthermore it is partially a generalization of [12] to the non self-adjoint case. Some results
therein depend on B being self-adjoint and hence could not be achieved here.

In chapter 2 the setting and the fundamental requirements are stated:
(1.9) is considered with locally integrable functions A,B : [a, b) → Cn,n , where A is self-
adjoint and positive semide�nite on [a, b). iJ is unitary and self-adjoint.
The existence of some self-adjoint matrix V is assumed (which takes the role of U2nJ in [5]),
such that

Ck,V := −Re
(
V J(kA+B)

)
is positive semide�nite a.e. on [a, b) for some k ∈ C (which, in contrast to [5], is allowed to
vary here), and the set

ΛV := {λ ∈ C : −Re (λV JA)− δA is positive semide�nite a.e. on [a, b) for some δ > 0}
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is not empty.
For a �xed V like this, the number of its positive and negative eigenvalues (n+ and n−) de-
termines the number of rows of Θλ and Φλ, and also the number of rows and columns of the
M -function.
In this non-self-adjoint setting E = (Θλ(a)|Φλ(a)) need not be unitary. To omit this require-
ment is crucial in one proof and useful for an example.

The theory follows the footsteps of [5] to construct the generalized Weyl-circles, now as sub-
sets of Cn+,n−.

In chapter 3, the adjoint problem is considered. Using linear algebraic theory, it is shown
that no further assumption is necessary for the existence of some corresponding self-adjoint
matrix V̂ . The constants n+ and n− exchange their parts in the adjoint setting.

In chapter 4 an appropriate M -function is constructed. Just one further assumption is re-
quired to obtain the corresponding resolvents and operators L, respectively L̂ for the adjoint
problem. L̂ is adjoint to L. There are n−, respectively n+, boundary conditions at a in the
domains of de�nition of L, respectively of L̂.
A connection of the shape of the limit-set to the de�ciency indices of the maximal operator
(cp. [17, �14]) closes this chapter.

In chapter 5 the classi�cation into limit-circle and limit-point by the geometrical shape of the
Weyl-limit-set is transferred. The nature of (1.9) yields more essentially di�erent possibili-
ties, whence more cases are established. Also the number of linearly independant solutions
of (1.9), respectively of (1.12), that are in L2

A(a, b) was used for further case distinction.
Further investigations of theM -function and of the number of linearly independent solutions
that are in L2

A, respectively in L2
Cλ
, have been transferred from [5] and supplemented.

By restricting the problem to [ã, b) for some ã ∈ (a, b), the spectral estimates are improved.
This result corresponds to the ansatz in [6] of posing assumptions on (K, η) only on the
interval [ã, b).
Furthermore the variation of the self-adjoint matrix V yields better spectral estimates under
some strict limit-point condition.

In chapter 6, �nally, some linear algebra theory provides an insight into various possibilities
of choosing parameters (like V ). An augmentation method, which augments the problem to
an equivalent problem of higher order yields further miscellaneous results.

Since this thesis is based on [5], some statements are transferred. To point this out, the
corresponding statements are marked as follows:

"Statement. ∗1" means the statement and the proof have been essentially transferred from
[5].
"Statement.∗2" means the statement has been transferred from [5]. The proof has partially
been varied.
"Statement.∗3" means the statement and the proof have been partially transferred from [5].
"Statement.∗4" means little parts of the statement and the proof have been transferred from
[5].
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Chapter 2

Weyl-circle analysis

In this chapter we introduce the general settings of the problem, we are concerned with.
We de�ne the generalisations of the Weyl-circles as subsets of Cn+,n− for some n+, n−∈ N0.
Finally, we introduce scalar equations that lead to Hamiltonian systems as an example for
the theory of this thesis.

2.1 Preliminaries

We are concerned with the Hamiltonian system

(2.1) Jy′λ(x) = (λA(x) +B(x))yλ(x)

with J , A(x) and B(x) ∈ Cn,n for x ∈ [a, b). λ ∈ C is the spectral parameter.

We assume that

(i) A(x) is self-adjoint and positive semide�nite for a.e. x ∈ [a, b), A 6= 0 on a set of
positive measure,

(ii) J is unitary and iJ is self-adjoint,

(iii) A and B are locally integrable on [a, b).

Our aim is to construct closed di�erential operators with non-empty resolvent set, realizing
the formal equation (2.1), via a matrix-valued M-function, and to give estimates for their
spectra.
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In our approach we need a fundamental matrix Y for the di�erential equation (2.1) with
initial conditions at a. Not every initial condition is suitable for our approach. Further there
is no canonical size for the M-function. This question is equivalent to where the fundamental
matrix should be split into two sub-matrices

(2.2) Y =
(
Θ|Φ

)
.

In [5], where the even-order case is examined, Φ and Θ have the same size. In our more
general approach n is an arbitrary natural number. Also if n is even we do not only consider
the "canonical" splitting into two equal parts. Later we will see that sometimes there is no
choice of how Y can be split except exchanging the sizes of Φ and Θ, such that the following
theory will lead to a result. Yet for every successful choice there will occur an own operator
realization of (2.1) with an own number of boundary conditions at a.

Lemma 2.1.1. Equivalent to assumption (iii) is each of the following statements:

(iii′): For λ ∈ C, ξ ∈ Cn, c ∈ [a, b), there is exactly one solution y of (2.1) in ACloc[a, b)
with y(c) = ξ.

(iii′′): For λ ∈ C,Ξ ∈ Cn,n , there is exactly one solution Y of (2.1) in ACloc[a, b) with
Y (a) = Ξ; If Ξ is regular then Y (c) is regular for all c ∈ [a, b).

Proof. In [22, �10, Theorem XVIII], the implication (iii) ⇒ (iii′) on [c, b) is shown. On [a, c]
we substitute x̃ := a+ c− x and use the same Theorem again.

If (iii)′ holds, for Ξ ∈ Cn,n there is exactly one solution Y of (2.1) with Y (a) = Ξ.
Let c ∈ [a, b) and ξ ∈ Cn with Y (c)ξ = 0. Thus Y ξ solves (2.1) and (Y ξ)(c) = 0. With the
assumed uniqueness, (iii)′ implies Y ξ = 0 on [a, b), in particular Ξξ = 0. Hence (iii)′′ holds.

Now we suppose (iii′′) to hold.
Let c ∈ (a, b) arbitrary. We have to show that A,B ∈ L1(a, c).
Therefor let Y a regular solution of (2.1) for λ = 0. We know | detY | > ε on [a, c] for some
ε > 0, because Y is continuous and nowhere zero. Thus Y −1 is continuous. Since Y is in
ACloc[a, b), we know that −JBY = Y ′ lies in L1(a, c), and thus also B = J(−JBY )Y −1.
If we put λ = 1, with the same argument we obtain −JA − JBY ∈ L1(a, c) and therefore
A ∈ L1(a, c).

Since B need not be self-adjoint, we introduce some kind of generalized rotation matrix
for the M-function theory. This matrix corresponds to the rotation parameter η in [6], where
the non-self-adjoint scalar case is considered.
In [5] the regular matrix U2n was introduced for this purpose, with the property that U2nJ
is self-adjoint with as many positive eigenvalues as negative ones. Here the matrix V below
takes the place of U2nJ .
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Let V ∈ Cn,n be self-adjoint and regular . We call V admissible if there exists some
λ, k ∈ C such that the following two conditions hold:

(2.3) Ck,V := −Re(V J(kA+B)) < 0,

(2.4) −Re(λV JA) < A.

Here, for matrix-valued functions F , G, the pre-order relation F < G means that there ex-
ists some δ > 0 such that F ≥ δG almost everywhere on [a, b). Thus F < 0 means F (x) ≥ 0
for a.e. x ∈ [a, b).

Assumption 1. There exists an admissible V ∈ Cn,n .

This is the only assumption we need to construct an M-function, at least on the set
AdmV + ΛV , with

(2.5) AdmV := {k ∈ C : Ck,V < 0},

(2.6) ΛV := {λ ∈ C : −Re(λV JA) < A}.

Admissibility of V is equivalent to AdmV + ΛV not being empty. Sometimes we also use
the short notation WV := AdmV + ΛV .

Following the lines of [5], the condition in the de�nition of ΛV would read −Re(λV JA) <
V JAJ∗V . But as we will see in Theorem 3.1.3, this will amount to the same condition.

For any admissible V , let n+ = n+(V ) and n−= n−(V ) be the numbers of positive, respec-
tively negative eigenvalues of V (counted by multiplicity). Note that n++ n−= n, since V is
regular.

For a regular matrix E ∈ Cn,n , let Yλ,E be the fundamental matrix of (2.1) which satis�es
Yλ,E(a) = E. Furthermore, let

(2.7) (Θλ,n−,E |Φλ,n+,E ) := Yλ,E

with Θλ,n−,E : [a, b) → Cn,n− and Φλ,n+,E : [a, b) → Cn,n+
. Moreover let

(2.8) Pλ,V,E :=
1

2
Φ∗

λ,n+,EV Φλ,n+,E .

It should be mentioned that n+ = 0 or n−= 0 is allowed (with straightforward calculus). If
we recall C0 = {0}, then for arbitrary n1, n2 ∈ N0, we can associate Cn1,n2 with the set of all
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linear mappings Cn2 → Cn1 . For a detailed de�nition of Cn1,n2 , see (even in more generality)
[4, Chapter II, �10].
For m ∈ N we use the notation 00,0, 00,m, 0m,0 for the only element in C0,0, C0,m or Cm,0,
respectively. Note that 00,0 is regular.

We call a pair (V,E) suitable if V is admissible,

(2.9) Pλ,V,E(a) = PV,E(a) ≥ 0,

and for every ζ ∈ Cn+
, λ ∈ AdmV + ΛV ,

(2.10)
(
PV,E(a)ζ = 0 and (Cλ,V Φλ,n+,E )(x)ζ = 0 for a.e. x ∈ [a, b)

)
⇒ ζ = 0.

Note that Pλ,V,E(a) does not depend on λ.

Remark 2.1.2. Both assumptions (2.9) and (2.10) obviously hold if PV,E(a) is positive
de�nite.

Lemma 2.1.3. For every admissible V , there exists a regular E ∈ Cn,n such that (V,E) is
suitable.

Proof. Let {ξ1, . . . , ξn−, ψ1, . . . , ψn+} be an orthonormal basis of eigenvectors of V , where
ψ1, . . . , ψn+ correspond to the positive eigenvalues. If we set

E := (ξ1| · · · |ξn−|ψ1| · · · |ψn+)

then Φλ,n+,E (a) = (ψ1| · · · |ψn+), and so for any ζ ∈ Cn+ \ {0} we have

Φλ,n+,E (a)ζ ∈ span(ψ1, . . . , ψn+) \ {0}

which implies
ζ∗Pλ,V,E(a)ζ = (Φλ,n+,E (a)ζ)∗V Φλ,n+,E (a)ζ > 0.

This means that PV,E(a) is positive de�nite and hence (V,E) is suitable.

Now we �x a suitable pair (V,E). All dependence on V and on E shall refer to this pair
from now on unless otherwise stated. So we can omit the indices V , E, n− and n+.

Remark 2.1.4. Let z ∈ C \ {0}. As one can easily verify, (V, zE) is suitable. The whole
theory below is not essentially changed by such a scalar factor for E, in the sense that we
obtain the same M-function, the same di�erential operator and the same estimates.
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2.2 Generalized Weyl-circles

We de�ne the Weyl-Sims sets for (2.1) by

(2.11) Dλ(x) := {l ∈ Cn+,n− : [(Θλ + Φλl)
∗V (Θλ + Φλl)](x) ≤ 0}.

These sets are obviously closed and it will turn out that they are nonempty, inclusion-
decreasing in x and eventually compact. For λ ∈ AdmV +ΛV andM ∈

⋃
c∈[a,b)

⋂
x∈(c,b)Dλ(x)

we will see that Θλ + ΦλM lies in L2
A.

For the following we need the equation∗1

(2.12)

Y ∗
λ V Yλ|ca =

∫ c

a

(Y ∗
λ V Yλ)

′dx

=

∫ c

a

Y ∗
λ V Y

′
λ + (Y ∗

λ V
∗Y ′

λ)
∗dx

= 2

∫ c

a

Re(Y ∗
λ V Y

′
λ)dx

= 2

∫ c

a

Re(Y ∗
λ V (−J)JY ′

λ)dx

= 2

∫ c

a

Re(Y ∗
λ V (−J)(λA+B)Yλ)dx

= 2

∫ c

a

Y ∗
λ Re(−V J(λA+B))Yλdx

= 2

∫ c

a

Y ∗
λCλYλdx,

and furthermore

Corollary 2.2.1. For λ ∈ AdmV + ΛV , we have

(2.13) Cλ < A < 0,

which is obvious by the de�nition of Cλ and equations (2.5), (2.6). This yields

(2.14) AdmV ⊇ AdmV + ΛV .

If we de�ne

(2.15) Aλ(l) := −1

2

[
(Θλ + Φλl)

∗V (Θλ + Φλl)
]
(a),
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for l ∈ Cn+,n−, we obtain an alternative representation of Dλ(x) in

Lemma 2.2.2.∗1

(2.16) Dλ(c) = {l ∈ Cn+,n− :

∫ c

a

(Θλ + Φλl)
∗Cλ(Θλ + Φλl)dx ≤ Aλ(l)}.

Proof. Let l ∈ Cn+,n−. Equation (2.12) yields

(2.17)

1

2

[
(Θλ + Φλl)

∗V (Θλ + Φλl)
]∣∣∣c

a
=

1

2
(In−|l∗)

[
Y ∗

λ V Yλ

]∣∣∣c
a

(
In−
l

)
= (In−|l∗)

∫ c

a

Y ∗
λCλYλdx

(
In−
l

)
=

∫ c

a

(Θλ + Φλl)
∗Cλ(Θλ + Φλl)dx.

Subtracting Aλ(l) shows that∫ c

a

(Θλ + Φλl)
∗Cλ(Θλ + Φλl)dx−Aλ(l) ≤ 0

if and only if [
(Θλ + Φλl)

∗V (Θλ + Φλl)
]
(c) ≤ 0.

By de�nition, this is equivalent to l ∈ Dλ(c).

Using this Lemma, we obtain

Corollary 2.2.3.∗1 For λ ∈ AdmV + ΛV and c, d ∈ [a, b) holds

c < d =⇒ Dλ(c) ⊇ Dλ(d).

Proof. Let l ∈ Dλ(d). Using (2.16) and Cλ ≥ 0 almost everywhere on [a, b), we can estimate

Aλ(l) ≥
∫ d

a

(Θλ + Φλl)
∗Cλ(Θλ + Φλl)dx ≥

∫ c

a

(Θλ + Φλl)
∗Cλ(Θλ + Φλl)dx.

Again (2.16) shows l ∈ Dλ(c).

As in [5] we de�ne correspondingly

(2.18)

(
Sλ Tλ

T ∗λ Pλ

)
:=

1

2
Y ∗

λ V Yλ =
1

2

(
Θ∗

λVΘλ Θ∗
λV Φλ

Φ∗
λVΘλ Φ∗

λV Φλ

)
,
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with Pλ(x) ∈ Cn+,n+
, Sλ(x) ∈ Cn−,n− and Tλ(x) ∈ Cn−,n+

for x ∈ [a, b).

Note that Pλ and Sλ are self-adjoint, and (2.18) is consistent with the former de�nition of
Pλ. So equation (2.12) reads

(2.19)

(
Sλ Tλ

T ∗λ Pλ

) ∣∣∣∣c
a

=

∫ c

a

Y ∗
λCλYλdx =

∫ c

a

(
Θ∗

λCλΘλ Θ∗
λCλΦλ

Φ∗
λCλΘλ Φ∗

λCλΦλ

)
dx.

Lemma 2.2.4.∗1 For λ ∈ AdmV + ΛV :

(i) Pλ is non-decreasing,

(ii) Pλ(c) ≥ 0 for c ∈ [a, b),

(iii) There exists c0(λ) such that Pλ(c) is regular for c ≥ c0(λ).

Proof. We can assume n+> 0 w.l.o.g. because otherwise Pλ = 00,0 and thus all statements
are true.

Equation (2.19) implies

(2.20) Pλ

∣∣c
a

=

∫ c

a

Φ∗
λCλΦλdx,

which shows that Pλ is nondecreasing since Cλ(x) ≥ 0 for a.e. x ∈ [a, b) by (2.13). Due to
Pλ(a) ≥ 0, we conclude that Pλ(c) ≥ 0 for all c ∈ [a, b).

To prove that Pλ > 0 eventually, we assume, on the contrary, that there exist sequences
(xm) with xm → b and (ζm) such that Pλ(xm)ζm = 0 and ζ∗mζm = 1 for m ∈ N. W.l.o.g.,
(ζm) converges (otherwise we could extract a convergent subsequence).
Let ζ ∈ Cn+

the limit, which is nonzero. Since Pλ is positive semi-de�nite and nondecreasing,
ζm lies in the null-space of Pλ(x) for every m ∈ N and x ∈ [a, xm] and so ζ lies in the null-
space of Pλ(x) for every x ∈ [a, b).
Thus, using Cλ(x) ≥ 0 and (2.20) we have

Pλ(a)ζ = 0, ζ∗(Φ∗
λCλΦλ)(x)ζ = 0 for a.e. x ∈ [a, b).

Taking into account that Cλ is self-adjoint, this creates a contradiction to (2.10).

Lemma 2.2.5.∗1 For λ ∈ AdmV + ΛV and x ∈ [a, b) the set Dλ(x) is nonempty.

Proof. We can assume w.l.o.g n− > 0. Otherwise 0n,0 ∈ Dλ(x), since the inequality in the
brackets of (2.11) reads 00,0 ≤ 00,0.
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De�nition (2.18) shows that n− eigenvalues of

(
Sλ Tλ

T ∗λ Pλ

)
(x) are negative since this holds

for V and Yλ is regular.

Let the columns of

(
Ξ1

Ξ2

)
∈ Cn,n− be corresponding orthonormal eigenvectors with Ξ1 ∈ Cn−,n−

and Ξ2 ∈ Cn+,n−. Then,

(2.21) (Ξ∗1|Ξ∗2)
(
Sλ Tλ

T ∗λ Pλ

)
(x)

(
Ξ1

Ξ2

)
< 0.

If Ξ1 was not regular, some non-trivial ζ ∈ Cn− would exist with Ξ1ζ = 0. Since ζ is not
zero, (2.21) and Lemma 2.2.4 (ii) would yield

(2.22)

0 > ζ∗(Ξ∗1|Ξ∗2)
(
Sλ Tλ

T ∗λ Pλ

)
(x)

(
Ξ1

Ξ2

)
ζ

= (0|ζ∗Ξ∗2)
(
Sλ Tλ

T ∗λ Pλ

)
(x)

(
0

Ξ2ζ

)
= ζ∗Ξ∗2Pλ(x)Ξ2ζ ≥ 0.

This contradiction implies that Ξ1 is regular.

On multiplying (2.21) by (Ξ−1
1 )∗ and Ξ−1

1 from the left and the right, respectively, we
obtain

(In−|l∗)
(
Sλ Tλ

T ∗λ Pλ

)
(x)

(
In−
l

)
≤ 0

with l := (Ξ2Ξ
−1
1 )(x). Thus, l ∈ Dλ(x) by (2.18) and (2.11).

Recall equation (2.11):

Dλ(x) = {l ∈ Cn+,n− : [(Θλ + Φλl)
∗V (Θλ + Φλl)](x) ≤ 0}.

Using (2.18), we obtain

(2.23)
1

2
(Θλ + Φλl)

∗V (Θλ + Φλl) = (l∗Pλl + Tλl + l∗T ∗λ + Sλ).

For λ ∈ AdmV + ΛV , on [c0(λ), b) we use the notation

(2.24) Cλ := −P−1
λ T ∗λ ,

(2.25) Rλ := TλP
−1
λ T ∗λ − Sλ,
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in which case

(Θλ + Φλl)
∗V (Θλ + Φλl) = 2

(
(l − Cλ)

∗Pλ(l − Cλ)−Rλ

)
.

Thus, for x ∈ [c0(λ), b),

Dλ(x) = Cλ(x) + {l ∈ Cn+,n− : l∗Pλ(x)l ≤ Rλ(x)}(2.26)

= Cλ(x) + {P−1/2
λ (x)NR1/2

λ (x) : N ∈ Cn+,n− with N∗N ≤ In−}.(2.27)

Note that the last expression makes sense because of the following

Lemma 2.2.6.∗1 Let λ ∈ AdmV + ΛV . Rλ is non-increasing on [c0(λ), b). If n− > 0 then
Rλ(x) > 0 for x ∈ [c0(λ), b).

Proof. On using (2.25), (2.19) and (2.24), we obtain

(2.28)

R′
λ = T ′λP

−1
λ T ∗λ + TλP

−1
λ (T ∗λ )′ − TλP

−1
λ P ′

λP
−1
λ T ∗λ − S ′λ

= Θ∗
λCλΦλP

−1
λ T ∗λ + TλP

−1
λ Φ∗

λCλΘλ − TλP
−1
λ Φ∗

λCλΦλP
−1
λ T ∗λ −Θ∗

λCλΘλ

= −(Θλ + ΦλCλ)
∗Cλ(Θλ + ΦλCλ).

It follows from (2.13) that R′
λ(x) ≤ 0 for a.e. x ∈ [a, b), and consequently Rλ is non-

increasing.

Moreover, Rλ ≥ 0 by (2.26) since Dλ(x) is nonempty and Pλ(x) ≥ 0.

It remains to show that Rλ is regular.

(
Sλ Tλ

T ∗λ Pλ

)
is pointwise regular by de�nition (2.18)

as a product of regular matrices. Let (
N−

N+

)
∈ Cn,n−

be such that (
Sλ Tλ

T ∗λ Pλ

)(
N−

N+

)
=

(
In−
0n+

)
.

This yields

(2.29) N+ = −P−1
λ T ∗λN

−

and with (2.25),

(2.30) RλN
− = −In−.

So Rλ is invertible, whence Rλ > 0.
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Theorem 2.2.7.∗2 Let λ ∈ AdmV + ΛV . For c, d ∈ [c0(λ), b) holds:

(i) Dλ(c) is compact and convex,

(ii) c < d =⇒ Dλ(c)− Cλ(c) ⊇ Dλ(d)− Cλ(d),

(iii) Cλ(b) := lim
x→b

Cλ(x) exists,

(iv)
⋂

x∈[c0,b)

(
Dλ(x)− Cλ(x)

)
= Dλ(b)− Cλ(b) with Dλ(b) :=

⋂
x∈[c0,b)

Dλ(x),

(v) Cλ(b) ∈ Dλ(b).

Proof. By Lemma 2.2.5, the cases n−= 0 or n+ = 0 are trivial, so we can exclude them for
the proof.

(i) Equation (2.27) yields closedness and boundedness of Dλ(c). So it is compact as a
subset of a �nite dimensional space.
Using the triangle inequality in Cn+

, we obtain convexity of {N ∈ Cn+,n− : N∗N ≤ In−} and,
with (2.27) again, convexity of Dλ(c).

(ii) Let l ∈ Dλ(c) − Cλ(c); then (2.26) gives l∗Pλ(c)l ≤ Rλ(c). Since Pλ is increasing and
Rλ is decreasing by Lemmata 2.2.4 and 2.2.6 we have l∗Pλ(d)l ≤ l∗Pλ(c)l ≤ Rλ(c) ≤ Rλ(d).
Again equation (2.26) implies l ∈ Dλ(d)− Cλ(d).

(iii) We associate Cn+,n− with Cn+n− (for the scalar product).
If (Cλ(x)) would not converge for x→ b, there would be an ascending sequence (xm) in [c0, b)
with Cλ(x2m) → C1 and Cλ(x2m−1) → C2 for two points C1 6= C2 ∈ Cn+,n−.
We de�ne the continuous linear mapping ϕ : Cn+,n−→ R, x 7→ Re(< x, C1 − C2 >).

Since ϕ(C1)−ϕ(C2) = ϕ(C1−C2) > 0 we can assume w.l.o.g. that |ϕ(Cλ(xm))−ϕ(Cλ(xm+1))| ≥
ε > 0 for all m ∈ N.

ϕ(Dλ(x1)) is a bounded interval. From (ii) we know

Dλ(xm+1) ⊆ Dλ(xm)− Cλ(xm) + Cλ(xm+1).

With Corollary 2.2.3 we can conclude

ϕ(Dλ(xm+1)) ⊆ ϕ(Dλ(xm)) ∩
(
ϕ(Dλ(xm))−

(
ϕ(Cλ(xm))− ϕ(Cλ(xm+1))

))
,

where the right-hand side is an interval of length at least ε less than the length of ϕ(Dλ(xm)).
So there is an m ∈ N such that ϕ(Dλ(xm)) is empty which means Dλ(xm) is empty. This
contradicts Lemma 2.2.5.
Thus (Cλ(x)) converges as x→ b.
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(iv) Let µ ∈
⋂

x∈[c0,b)

(Dλ(x)− Cλ(x)). Then for x ∈ [c0, b),

µ = lx − Cλ(x)

for some lx ∈ Dλ(x). Since Cλ(x) → Cλ(b) as x → b we obtain lx → lb := µ + Cλ(b) and
lb ∈

⋂
x∈[c0,b)

Dλ(x) in view of Corollary 2.2.3 and the closedness of Dλ(x). Thus

µ = lb − Cλ(b) ∈ Dλ(b)− Cλ(b).

Conversely let µ = lb − Cλ(b) with lb ∈
⋂

x∈[c0,b)

Dλ(x).

Then ν(x) := lb − Cλ(x) → µ as x→ b, and ν(x) ∈ Dλ(x)− Cλ(x) for all x ∈ [c0, b). By (ii)
and the closedness of Dλ(x), we obtain µ ∈

⋂
x∈[c0,b)

(Dλ(x)− Cλ(x)).

(v) By (2.27), Cλ(x) ∈ Dλ(x) (choose N = 0). So, with (iv), we know that 0 ∈ Dλ(b) −
Cλ(b), which yields the statement.

Theorem 2.2.7 and Corollary 2.2.3 show the behavior of these generalized Weyl-Sims circles.
Already in [1, section 9.10] Atkinson observed the intersection of these kinds of Weyl-Sims
sets. Those set replaces the circular disk.

According to the shape of Dλ(b) we will later classify the problem. As we will see this
classi�cation does not depend on the actual choice of λ in AdmV + ΛV .

We will say that problem (2.1) is in the limit-point case, if Dλ(b) consists of one point.

We will say that problem (2.1) is in the limit-circle case, if n+>0 and the span of {Ξξ : Ξ ∈
Dλ(b)− Cλ(b), ξ ∈ Cn−} is the whole Cn+

.

It will turn out that there are cases in between, and even further distinctions are useful.

2.3 Examples

Throughout this thesis we will repeatedly consider the special case that B(x) is self-adjoint
for all x ∈ [a, b). This is the setting of [12]. The theory therein does not require any matrix
corresponding to V . To achieve the same results as in [12], we can choose the admissible
matrices V = ±iJ , which we call the canonical choices of V for the self-adjoint case (i.e. for
the case that B is self-adjoint).
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With this choice, we obtain C0,V1/2
= 0 and ΛV1/2

= AdmV1/2
+ ΛV1/2

, which is respectively
the lower or the upper halfplane. For the calculations see sections 6.1 and 6.2 below.

We furthermore consider the even-order scalar di�erential equation

(2.31) τe[v] := p0v +
m∑

k=1

(−1)k
(
(pkv

(k))(k) − (qkv
(k))(k−1) − (rkv

(k−1))(k)
)

= λwv

and the odd-order scalar di�erential equation
(2.32)

τo[v] : = p0v + (−1)mi(s(sv(m))′)(m) +
m∑

k=1

(−1)k
(
(pkv

(k))(k) − (qkv
(k))(k−1) − (rkv

(k−1))(k)
)

= λwv,

where all coe�cient functions (except those for the highest derivate) are locally integrable
over [a, b). The coe�cient function for the highest derivate s, respectively pm in the even
case, is a.e. non-zero. Furthermore 1

s
, respectively 1

pm
in the even case, is locally integrable.

w is a non-negative weight function on [a, b), furthermore w > 0 on a set of positive measure.

We �rst examine the even case (2.31).
In the style of [3], to obtain a Hamiltonian system, we introduce the following quasi-
derivatives:

v[j] := v(j) for 0 ≤ j ≤ m− 1,

v[m] := pmv
(m) − rmv

(m−1),

and for 1 ≤ j ≤ m− 1

v[m+j] := −(v[m+j−1])′ + pm−jv
(m−j) − rm−jv

(m−j−1) + qm−j+1v
(m−j+1)

=
m∑

k=m−j

(−1)k−m+j
(
pkv

(k) − rkv
(k−1)

)(k−m+j)
+

m∑
k=m−j+1

(
− 1)k−1−m+j(qkv

(k)
)(k−1−m+j)

.

This yields
τe[v] = −(v[2m−1])′ + p0v

[0] + q1v
[1],

except for m = 1, since here v[1] 6= v(1). In this case,

τe[v] = −(v[1])′ + (p0 +
q1r1
p1

)v[0] − q1
p1

v[1].

We set y := (v[0], v[1], . . . , v[2m−1])T (here we deviate from [3], where the shape of J is
prescribed and therefore this setting would not match). So the equation τe[v] = λwv is
equivalent to y′ = λM e

Ay +M e
By for certain matrices M e

A, M
e
B.
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Indeed, using the abbreviation

(2.33) codiag(z1, . . . , zj) :=

 zj

. .
.

z1

 ,

we have, for m ≥ 2, M e
A = codiag(−w, 0, . . . , 0) and

M e
B =



0 1
. . . . . .

0 1

rm

pm

1
pm

−rm−1 sm
qm

pm
−1

. . . pm−2 qm−1 0
. . .

−r1 . . . . . . . . . −1
p0 q1 0


with sm := qmrm

pm
+ pm−1.

We set

(2.34) J1 := codiag(1, . . . , 1,−1, . . . ,−1),

obtaining the required Hamiltonian System

J1y
′ = (λA1 +B1)y,

with

(2.35) A1 := J1M
e
A = diag(w, 0, . . . , 0),

and

(2.36) B1 := J1M
e
B =



−p0 −q1 0

r1
. . . . . . . .
.

1
. . . −pm−2 −qm−1 0 . .

.

rm−1 −sm − qm

pm
1

rm

pm

1
pm

0 1 0

. . . . . . . . .
0 1 0



.
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For m = 1 the matrices M e
A and A1 are of the same shape, with J1 :=

(
0 −1
1 0

)
, but

M e
B =

1

p1

(
r1 1

q1r1 + p1p0 q1

)
and B1 =

1

p1

(
−q1r1 − p1p0 −q1

r1 1

)
.

For the odd case, we slightly deviate from [3], de�ning the quasi-derivatives as follows:

v[j] := v(j) for 0 ≤ j ≤ m− 1,

v[m] := isv(m),

v[m+1] := is(v[m])′ + i
(pm

is
v[m] − rmv

[m−1]
)

= −s(sv(m))′ + ipmv
(m) − irmv

(m−1)

and for 1 ≤ j ≤ m

v[m+j+1] := −(v[m+j])′ + i
(
pm−jv

(m−j) − rm−jv
(m−j−1) + qm−j+1v

(m−j+1)
)

= (−1)j+1(s(sv(m))′)(j) + i
( m∑

k=m−j

(−1)k−m+j
(
pkv

(k) − rkv
(k−1)

)(k−m+j)

+
m∑

k=m−j+1

(−1)k−1−m+j
(
qkv

(k)
)(k−1−m+j)

)
.

This yields

τo[v] = i(v[2m])′ + p0v
[0] + q1v

(1).

Finally we set y := (v[0], . . . , v[2m])T and

(2.37) J1 := codiag(i, . . . , i)

to obtain

τo[v] = λw ⇐⇒ y′ = (λM1
o +M2

o )y ⇐⇒ J1y
′ = (λA1 +B1)y,

where M o
A = codiag(−iw, 0, . . . , 0) and A1 := J1M

o
A = diag(w, 0, . . . , 0), furthermore
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M o
B =



0 1
. . . . . .

0 1

0 − i
s

rm

s
ipm

s2 − i
s

−irm−1 ipm−1
qm

s
0 −1

. . . . . . iqm−1 0
. . .

−ir1 ip1

. . . . . . −1
ip0 iq1 0


and

B1 := J1M
o
B =



−p0 −q1 0

r1 −p1
. . . . . . −i

. . . . . . −qm−1 0 . . .
rm−1 −pm−1 i qm

s
0 −i

i rm

s
−pm

s2
1
s

0 1
s

0
0 i 0

. . . . . . . . .
0 i 0



.

The case m = 1 is no exception for the structure of M o
B and B1. They consist of the 3× 3

matrices in the middle of the matrices above.

In the following we like to examine the two problems in several cases with regard to the
existence of suitable pairs. For each suitable pair we estimate the set AdmV + ΛV .
In the �rst part we consider the case that B is self-adjoint, �rstly for the odd-order case, then
for the even-order case. We furthermore show, within an example, that the actual choice of
J is less important for the theory of this thesis.
In the second part the case m = 1 for the odd-order problem is considered, and in most
generality the case m = 1 for the even-order case in the third part.

26



1. We like to consider the case that B is self-adjoint. So we are in the setting of [12].

We already know that the canonical choices V = ±iJ are admissible. For these choices we
further know that AdmV + ΛV is the lower, respectively the upper halfplane.
For the choice V = +iJ (thus AdmV + ΛV is the lower halfplane), we are now searching for
regular matrices E, such that (V,E) is suitable. Such matrices E exist by Lemma 2.1.3. The
proof of this Lemma is constructive. Hence we can, and will use the construction therein.

1.1 In the odd case, the matrix B1 is self-adjoint if and only if s is real on [a, b) and

(2.38) for all j ∈ {1, . . . ,m}, x ∈ [a, b) holds rj(x) = −qj(x), pj(x) ∈ R, and p0(x) ∈ R.

All this holds true in the setting of [3].
With J1 chosen according to (2.37), we obtain Vc := Vc,1 := codiag(−1, . . . ,−1), with eigen-
vectors ej+e2m+2−j (for j ≤ m) and em+1 associated with the eigenvalue −1, and eigenvectors
ej − e2m+2−j (for j ≤ m) associated with the eigenvalue +1.
Thus we have n+ = m, n−= m+1. Furthermore, withEc := Ec,1 := diag(1, . . . , 1, 0,−1, . . . ,−1)+
codiag(1, . . . , 1) the pair (Vc, Ec) is suitable according to the construction in the proof of
Lemma 2.1.3.

1.2 In the even case, the matrix B1 is self-adjoint if and only if (2.38) holds (cp. again
[3]).
With J1 chosen according to (2.34), we obtain Vc := Vc,1 := codiag(i, . . . , i,−i, . . . ,−i), with
eigenvectors ej − ie2m+1−j, which are associated with the eigenvalue −1 for j ≤ m, and
with the eigenvalue +1 for m < j ≤ 2m. Thus we have n+ = n− = m. Furthermore, with
Ec := Ec,1 := diag(1, . . . , 1) + codiag(−i, . . . ,−i), the pair (Vc, Ec) is suitable.

Unfortunately, it will turn out that this choice of a suitable pair cannot lead to a self-
adjoint operator. For this reason we introduce the following matrix Es := diag(1, . . . , 1) +
codiag(0, . . . , 0, 1, . . . , 1) as an alternative to Ec,1. To assure that the pair (Vc, Es) is suitable,
we pose the additional assumption w > 0 on an interval (ã, b̃) ⊂ [a, b).
Obviously, Es is regular. Furthermore Pλ(a) = 1

2
Φ∗

λ(a)VcΦλ(a) = 0. (As we will see, Pλ(a) =
0 is the crucial point for the resulting operator to be possibly self-adjoint.) It remains to
show, that ζ ∈ Cn+

with

(2.39) Cλ,VcΦλζ = 0 a.e. in [a, b)

implies ζ = 0.
So let ζ ∈ Cn+

such that (2.39) holds. The relation Cλ,Vc < A1 yields

(2.40) A1Φλζ = 0 a.e. in [a, b).

Let v the �rst component of Φλζ. Recall A1 = diag(w, 0, . . . , 0). Therewith (2.40) implies
vw = 0 a.e. on [a, b). By continuity, v is zero on (ã, b̃), the interval where we assumed w to
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be positive.
Let vj the jth component of Φλζ for 0 ≤ j ≤ 2m− 1. Since Φλ solves J1Φ

′
λ = (λA1 +B1)Φλ,

which is equivalent to Φ′
λ = (λM e

A +M e
B)Φλ, we also have

(2.41) (Φλζ)
′ = (λM e

A +M e
B)Φλζ,

where for (aj,k)j,k=1,...,m := (λM e
A+M e

B) holds aj,j+1 6= 0 for j < 2m and aj,k = 0 for k > j+1.
We already know v1 = v = 0 on (ã, b̃), hence also v′1 = 0 on (ã, b̃). By induction, using (2.41),
we obtain vj = 0 on (ã, b̃) for all j ≤ 2m. Thus Φλζ = 0 on (ã, b̃). By regularity of the
di�erential equation J1Y

′ = (λA1 +B1)Y , of which Φλζ is a solution, we obtain ζ = 0.

Hence (Vc, Es) is suitable. As we will see, this choice can lead to a self-adjoint operator.

1.3 For B1 to be self-adjoint in the even case, we required rj = −qj.
Yet now, besides pj ∈ R, we assume rj = +qj (for all j ≤ m).
To obtain a self-adjoint B, we consider an alternative choice for J , namely

(2.42) J2 := codiag(1,−1, 1,−1, . . . , 1,−1).

Straightforward calculation shows A2 := J2M
e
A = A1, furthermore that B2 := J2M

e
B is self-

adjoint. Thus, in this case, we could canonically choose V = ±iJ2. Again we �x Vc,2 := +iJ2.
We obtain n+ = n−= m.
The construction Ec,2 := diag(1, . . . , 1) + codiag(−i, i, . . . , (−1)mi, (−1)mi, . . . , i,−i) yields
the suitable pair (Vc,2, Ec,2), where AdmVc,2 + ΛVc,2 is the lower halfplane.

Now we return to the original choice (2.34) of J . The calculations

(2.43) Ck,Vc,2 = −Re(Vc,2J1(kA1+B1)) = −Re(Vc,2(kM
e
A+M e

B)) = −Re(Vc,2J2(kA2+B2)),

(2.44) −Re(λVc,2J1A1) = −Re(λVc,2M
e
A) = −Re(λVc,2J2A2)

show that (Vc,2, Ec,2) is still suitable and AdmVc,2 + ΛVc,2 is the lower halfplane. The actual
choice of J does not in�uent these properties.

Other assumptions on the coe�cient functions pj, qj and rj may be possible, under which
we obtain the self-adjoint case for some choice of J .

2. We want to go into more detail in the odd-order case for m = 1. So we have

J1 =

 i
i

i

 , A1 =

w 0
0

 , B1 =

−p0 i q1

s
0

i r1

s
−p1

s2
1
s

0 1
s

0

 .
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We examine the case that s is real, furthermore the case that e
π
4
is is real on [a, b).

2.1 So �rst we assume that the highest order coe�cient s is real valued.

The requirement −Re
(
λV JA

)
< A for some λ ∈ C implies V23 = V33 = V32 = 0 as

a necessary condition. Hence −Re
(
V J(λA + B)

)
< 0 yields further, by straightforward

calculation, that V13 = V22 ∈ R and V21 = V12 = 0, and for

(2.45) V =

v0 0 v
0 v 0
v 0 0

 ,

with v0, v ∈ R, �nally that

(i) Re ivp1 < 0,

(ii) 4v2Re(−iλw + ip0)Re(ip1)− |v(q1 + r1)− iv0|2 < 0.

It is easily seen that (2.45), together with (i), (ii), is indeed also su�cient for admissibility.
AdmV is the set of all λ ∈ C such that (ii) holds. ΛV is the set of all λ ∈ C, such that
Re(−iλvw) < w; this is the upper or the lower halfplane, since v is real.

2.2 Now we assume that e
π
4
is is real.

For an admissible V again we obtain V12 = V21 = V23 = V32 = V33 = 0. But now we have
iV13 = V22 ∈ R, and thus

V =

v0 0 −iv
0 v 0
iv 0 0


for some v0, v ∈ R.

Again there are further requirements, analogous to (i) and (ii) above.
Now ΛV is either the left or the right complex half-plane.

If s is real on [a, b), we could achieve the required assumption of e
π
4
is being real by just

multiplying the original equation with −i and setting s̃ := e−
π
4
is. In this way we obtain the

result of two non-intersecting halfplanes for ΛV also by the previous example 2.1. Obviously
multiplying by −i just rotates the problem by this factor (because τo[y] = λwy becomes
−iτo[y] = (−iλ)wy). One might conjecture that a corresponding rotation argument holds
true also for multiplication by other factors than −i. But if we multiply with by, say, e−

π
4
i

(and set s̃ := e−
π
8
is), we obtain e

π
4
iV13 = V22 ∈ R as a necessary condition for admissibility,

and �nally that ΛV is one of two halfplanes, which do intersect (their relative rotation is π
2
).
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3. In most generality, we study the even-order case for m = 1. To simplify the formulas,
we set p := p1, q := q1, and r := r1. Thus the scalar equation reads

(2.46) p0v − (pv′)′ + qv′ + (rv)′ = λwv.

The modeling leads to the Hamiltonian System J1Y
′ = (λA1 +B1)Y with

J1 =

(
−1

1

)
, A1 =

(
w

0

)
, B1 =

1

p

(
−qr − pp0 −q

r 1

)
.

As we have already realized, the existence of some λ ∈ C such that −ReλV J1A1 < A1,
implies that V has some zero-entries since the rank of A is one. In this two-dimensional case
we obtain V22 = 0. Thus any admissible matrix is of the shape

(2.47) V =

(
v0 v
v 0

)
for some real v0 and some non-zero v ∈ C.

Therefore, V has a negative determinant. Hence we obtain n+ = n−= 1, and furthermore

(2.48) Cλ,V = −Re(V J1(λA1 +B1)) =
1

2

(
2Re(v0r

p
+ v( qr

p
+ p0)− λvw) v0

p
+ v( q

p
+ r

p
)

v0

p
+ v( q

p
+ r

p
) 2Re v

p

)
.

The requirement Cλ,V < 0 is equivalent to

(2.49)

Re(
v0r

p
+ v(

qr

p
+ p0)− λvw) < 0,

Re
v

p
< 0, and

4Re
v

p
Re
(v0r

p
+ v(

qr

p
+ p0)− λvw

)
≥
∣∣v0

p
+ v(

q

p
+
r

p
)
∣∣2 a.e. on [a, b).

AdmV is the set of all λ ∈ C for which these inequalities hold. ΛV is the halfplane
{λ ∈ C : Reλv < 0}. Hence V is admissible if and only if AdmV is not empty.

In [5], the scalar equation (2.46) was considered with q = r = 0 and modeled in the same
way to achieve a Hamiltonian system. The choice U2n = diag(−u, u) in [5], corresponds to
V = U2nJ1 = codiag(u, u). This is of the form (2.47) with v0 = 0 and v = u. With all these
choices, (2.49) reads

Re
u

p
< 0, and Re

(
u(p0 − λw)

)
< 0.

An equivalent condition is given in [5, page 425].
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Chapter 3

The adjoint problem

In this chapter we introduce the adjoint problem.
In the previous chapter most de�nitions and conclusions were mainly transferred from [5] to
a more general situation. However in this chapter, using some linear algebraic theory, we are
able to omit any further assumptions on the corresponding functions in the adjoint setting
(like they were posed in [5]).

3.1 Some linear algebraic statements

The theory in this section provides us with some general knowledge on matrices. There is
no direct statement on operator theory. But the statements in this section are very useful
for the following theory.

Lemma 3.1.1. Let U ∈ Cn,n with

(3.1) U∗AU < A.

Then also

(3.2) A < U∗AU.

The proof of this Lemma is essentially due to Stefan Kühnlein.

Proof. Let δ > 0 such that U∗A(x)U ≥ δA(x) for a.e. x ∈ [a, b). W.l.o.g. this inequality
holds for all x ∈ [a, b) and furthermore δ ≤ 1.
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First we assume that A(x) > 0 for all x ∈ [a, b). Then (3.1) implies that U is regular.

Now we set

ε :=
δn−1

|detU |2
> 0,

and
N := A−1/2U∗AUA−1/2.

N is selfadjoint with | detN | = |detU |2. Let λ1 ≤ λ2 ≤ · · · ≤ λn denote the eigenvalues of
N . On [a, b) holds:

(3.3)

U∗AU − δA ≥ 0 ⇒ N − δIn ≥ 0

⇒ λ1 ≥ δ

⇒ detN = λ1 · . . . · λn ≥ δn−1λn

⇒ λn ≤
|detU |2

δn−1
=

1

ε
⇒ In − εN ≥ 0

⇒ A− εU∗AU ≥ 0.

Before examining the more general cases, we consider some simple implications.

For x ∈ [a, b) with (3.1) we know that kerU∗AU ⊆ kerA. On the other hand the �nite
dimension of the null-space of U∗AU is not smaller than the dimension of the null-space of
A. So we can conclude

(3.4) kerU∗AU = kerA.

Thus for ξ ∈ kerA we have

0 = ξ∗U∗AUξ = (A1/2Uξ)∗(A1/2Uξ),

and hence

(3.5) U(kerA) ⊆ kerA1/2 = kerA.

Now we only assume that U is regular.
Let x ∈ [a, b). Since A(x) is self-adjoint, there exists a unitary matrix W such that

W ∗A(x)W =

(
Ã 0
0 0

)
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with Ã regular. From the inclusion (3.5) we see that

W ∗UW =

(
Ũ 0
∗ X

)
,

with regular matrices Ũ and X, where Ũ and Ã are of the same size.
Assumption (3.1) implies

Ũ∗ÃŨ ≥ δÃ.

Since Ã is regular and δ ≤ 1, we obtain

(3.6) Ã ≥ δn−1

| det Ũ |2
Ũ∗ÃŨ ,

which implies

(3.7) W ∗A(x)W ≥ δn−1

| det Ũ |2
W ∗U∗A(x)UW,

and thus

(3.8) A(x) ≥ δn−1

| det Ũ |2
U∗A(x)U.

Since Ũ may depend on x, we consider characteristic polynomials. For those holds:

CP(U) = CP(Ũ) CP(X).

Thus, CP(X) is a normalized divisor of CP(U), of which there are only �nitely many.
Since further detX =

(
CP(X)

)
(0), the de�nition

(3.9) ε :=
δn−1

|detU |2
min{|det Ξ|2 : Ξ ∈ Cn,n ,CP(Ξ)|CP(U)} > 0

makes sense. This de�nition is independent of the actual choice of x ∈ [a, b).
As detU = detX det Ũ , it holds

ε ≤ δn−1

| det Ũ |2
.

So with (3.8), we have for all x ∈ [a, b),

A(x) ≥ εU∗A(x)U.
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The last case to consider is where U is singular, which we treat for completeness although
it does not occur later. We assume w.l.o.g.

U =

(
Ũ 0
∗ 0

)
,

with Ũ regular. (Otherwise this structure of U can be achieved by a unitary basis transfor-
mation.)

From equations (3.4) and since A is self-adjoint we see that

A =

(
Ã 0
0 0

)
.

(3.1) implies
Ũ∗ÃŨ < Ã.

Let ε as in the case where U is regular, with Ũ instead of U . So we have

Ã ≥ εŨ∗ÃŨ ,

which yields

A(x) ≥ εU∗A(x)U

for every x ∈ [a, b).

Lemma 3.1.2. Let U ∈ Cn,n be such that

Re(AU) < A.

Then,
U∗AU < A.

Proof. Let δ > 0 such that Re(A(x)U) ≥ δA(x) for a.e. x ∈ [a, b). For these x we can
estimate

U∗A(x)U = (U − δI + δI)∗A(x)(U − δI + δI)

= (U − δI)∗A(x)(U − δI) + δU∗A(x) + δA(x)U − δ2A(x)− δ2A(x) + δ2A(x)

= (U − δI)∗A(x)(U − δI) + 2δRe(A(x)U)− δ2A(x)

≥ 0 + 2δ2A(x)− δ2A(x) = δ2A(x).

Thus U∗A(x)U ≥ δ2A(x) for a.e. x ∈ [a, b).
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The following Theorem is signi�cant for many simpli�cations in the subsequent analysis.

Theorem 3.1.3. Let U ∈ Cn,n regular and λ ∈ C. For the statements

(i) Re(λUA) < UAU∗,

(ii) Re(λ̄U−1A) < A,

(iii) Re(λUA) < A,

(iv) A � UAU∗,

(v) ∀µ ∈ C : A < Re(µUA),

we have
(i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇒ (v),

where F � G :⇔ (F < G and G < F ) for functions F,G : [a, b) → Cn,n .

Proof. First of all we remark that, for F,G : [a, b) → Cn,n and H ∈ Cn,n ,

(3.10) F < G⇒ HFH∗ < HGH∗.

For λ = 0, each of the statements (i), (ii), or (iii) implies A(x) = 0 for a.e. x ∈ [a, b),
whence the Theorem is trivial. So we can assume that λ 6= 0.

With (3.10) we obtain statement (ii) from (i) by multiplication with U−1 and (U∗)−1 from
left and right, respectively. The other direction follows in the same way, multiplying by U
and U∗. Thus, we have (i) ⇔ (ii).

Now let (i) and (ii) hold. Since Re(λ̄U−1A) = Re(A(λ̄U−1)∗), (ii) together with Lemma
3.1.2 yields

|λ|2U−1A(U−1)∗ < A.

Using Lemma 3.1.1 we obtain
A < U−1A(U−1)∗.

Multiplication of U and U∗ from left and right, respectively, gives

(3.11) UAU∗ < A.

Again Lemma 3.1.1 yields
A < UAU∗.
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These two equations are statement (iv). So we have shown (i) ⇒ (iv).

Statement (i) and (3.11) imply statement (iii). Thus, (i) ⇒ (iii).

Now let (iii) hold. With Lemma 3.1.2 we know that UAU∗ < A, whence Lemma 3.1.1
yields A < UAU∗. Statement (iii) together with this relation implies (i). Thus, (iii) ⇒ (i).

Finally let (iv) hold, and let µ ∈ C. W.l.o.g. we can assume |µ| = 1 since A < 0. From

(3.12)

0 4 (µU − I)A(µU − I)∗

= A+ UAU∗ − µUA− A(µU)∗

= A+ UAU∗ − 2Re(µUA)

we can conclude

Re(µUA) 4
1

2
A+

1

2
UAU∗ � 1

2
A+

1

2
A = A,

which is statement (v).

We �nally need one more technical

Lemma 3.1.4. Let F ∈ Cm,m self-adjoint and regular with exactly p positive eigenvalues.
Further let H be a p-dimensional subspace of Cm with x∗Fx ≥ 0 for all x ∈ H. Then it
holds

∀y ∈ H⊥ : y∗F−1y ≤ 0.

Proof. We assume there exists y ∈ H⊥ with y∗F−1y > 0 and lead this to a contradiction.
For z := F−1y holds

(3.13) z∗Fz = y∗F−1y > 0.

For x ∈ H we have

(3.14) x∗Fz = x∗y = 0.

Together with (3.13), this shows that z ∈ Cm \H. Thus, H+span(z) is (p+1)-dimensional.
The min-max principle therefore yields the existence of some

w = x+ κz ∈ H + span(z),

with x ∈ H and κ ∈ C, such that
w∗Fw < 0.

Moreover with (3.13) and (3.14) we obtain

w∗Fw = (x+ κz)∗F (x+ κz) = x∗Fx+ |κ|2 z∗Fz ≥ 0,

a contradiction. Thus, the Lemma follows.

36



3.2 A suitable pair (V̂ , Ê) for the adjoint Problem

To achieve a suitable initial condition for the adjoint fundamental system we use the matrix
J0 de�ned in (3.18) below. It is remarkable that, in the setting of [5], J0 = J .

Recall that we have already �xed a suitable pair (V,E) whose existence we have assumed.

For the formal adjoint problem

(3.15) Jz′λ(x) = (λ̄A(x) +B∗(x))zλ(x),

we de�ne

(3.16) V̂ := JV −1J = −JV −1J∗

and

(3.17) Ê := −J(E∗)−1J0,

with the unitary matrix

(3.18) J0 :=

(
0 −In−
In+ 0

)
.

We will see that (V̂ , Ê) is suitable for (3.15). First we observe from (3.16) that V̂ is
selfadjoint with n− positive and n+ negative eigenvalues since −V −1 is. This means that in
the adjoint problem, n+ and n− have exchanged their roles.

Note that the adjoint problem for (3.15) is the original problem, V = JV̂ −1J and E =

J(Ê∗)−1J∗0 , where −J∗0 is of the form (3.18) with exchanged roles of n+ and n−.

Let Zλ the fundamental matrix for (3.15) with Z(a) = Ê, and let

(3.19) (ηλ|χλ) := Zλ

with ηλ : [a, b) → Cn,n+
and χλ : [a, b) → Cn,n−.

Lemma 3.2.1.∗1

(3.20) Z = −J(Y −1)∗J0.

Proof. The right-hand side of (3.20) ful�lls the initial condition. Furthermore,

(3.21)

0 = ((JY )∗J(Y −1)∗)′

= (JY ′)∗J(Y −1)∗ + (JY )∗(J(Y −1)∗)′

= ((λA+B)Y )∗J(Y −1)∗ + Y ∗J∗(J(Y −1)∗)′

= Y ∗(λ̄A+B∗)J(Y −1)∗ − Y ∗J(J(Y −1)∗)′,
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thus J(J(Y −1)∗)′ = (λ̄A + B∗)J(Y −1)∗. This shows that the right-hand side of (3.20) also
ful�lls the di�erential equation. With the assumed regularity, the initial value problem is
uniquely solvable, whence the statement holds.

Equivalent to this Lemma is

(3.22) Y ∗JZ = J0.

Taking the adjoint on both sides, and multiplying with −JY J0 from the left and with (JY )−1

from the right we obtain

(3.23) JY J0Z
∗ = −In .

We will need these equations later on.

Now we want to proof admissibility of V̂ , which means there exist λ, k ∈ C such that

(3.24) Ĉk := −Re
(
V̂ J(k̄A+B∗)

)
< 0

and

(3.25) −Re(λ̄V̂ JA) < A.

We show even more:

Theorem 3.2.2.∗4 Equations (3.24) and (3.25) are equivalent to (2.3) and (2.4), respec-
tively, the corresponding equations for V .

Proof. Since Re(F ) = Re(F ∗) and Re(G∗FG) = G∗Re(F )G for any matrices F and G, it
holds

(3.26)

Ĉk = −Re
(
(kA+B)J∗V̂

)
= −Re

(
(kA+B)V −1J

)
= −Re

(
(V −1J)∗V J(kA+B)V −1J

)
= (V −1J)∗Ck(V

−1J).

(V −1J) is regular and so Ĉk < 0 if and only if Ck < 0.

The second equivalence follows from Theorem 3.1.3 (ii) ⇔ (iii) with U := −V J (and
hence U−1 = −V̂ J).

An immediate consequence of this Theorem is
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Corollary 3.2.3. V̂ is admissible for the adjoint Problem and

(3.27) ÂdmbV := {k ∈ C : Ĉk(x) < 0} = AdmV ,

(3.28) Λ̂bV := {λ ∈ C : −Re(λ̄V̂ JA) < A} = ΛV .

We de�ne, in analogy to (2.18),

(3.29)

(
Ŝλ T̂λ

T̂λ

∗
P̂λ

)
:=

1

2
Z∗λV̂ Zλ,

with P̂λ ∈ Cn−,n−, Ŝλ ∈ Cn+,n+
and T̂λ ∈ Cn+,n−.

Then,

P̂λ =
1

2
χ∗λV̂ χλ,

which corresponds to (2.8).

Lemma 3.2.4.
P̂λ(a) ≥ 0.

Proof. Pλ(a) ≥ 0 and the de�nition of Pλ yield

∀x ∈ span{en−+1, . . . , en} : x∗E∗V Ex ≥ 0,

with ej := (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0)T . Since E∗V E has exactly n+ = n − n− positive eigenvalues,

Lemma 3.1.4 implies

(3.30) ∀y ∈ span{e1, . . . , en−} : y∗(E∗V E)−1y ≤ 0.

Furthermore, by de�nition,

(3.31)

2

(
Ŝλ T̂λ

T̂λ

∗
P̂λ

)
(a) = Ê∗V̂ Ê

= (J(E∗)−1J0)
∗JV −1JJ(E∗)−1J0

= −J0
∗E−1V −1(E∗)−1J0

= −J0
∗(E∗V E)−1J0.

By the form of J0, for x ∈ span{en++1, . . . , en} we have J0x ∈ span{e1, . . . , en−}. Thus (3.30)
yields

∀x ∈ span{en++1, . . . , en} : −x∗J0
∗(E∗V E)−1J0x ≥ 0,

which means P̂λ(a) ≥ 0 by (3.31).
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The last statement to prove for (V̂ , Ê) to be suitable for the adjoint problem is

(3.32)
(
P̂λ(a)ζ = 0 and (Ĉλχλ)(x)ζ = 0 for a.e. x ∈ [a, b)

)
⇒ ζ = 0,

for all ζ ∈ Cn− and λ ∈ AdmV + ΛV .

Theorem 3.2.5.∗2 For λ ∈ C, (2.10) and (3.32) are equivalent.

Proof. By symmetry it su�ces to show that (3.32) implies (2.10). So let (3.32) hold and let
ζ ∈ Cn+

satisfy the left-hand side of (2.10).

By assumption, a.e. on [a, b),

0 = 2CλΦλζ = −2Re(V J(λA+B))Φλζ = (λ̄A+B∗)JV Φλζ − V J(λA+B)Φλζ,

and hence

J(JV Φλζ)
′ = −V Φ′

λζ = V J(JΦ′
λ)ζ = V J(λA+B)Φλζ = (λ̄A+B∗)JV Φλζ.

This shows that JV Φλζ solves the adjoint problem (3.15). Thus there exist ξ1 ∈ Cn+
, ξ2 ∈ Cn−

such that

(3.33) JV Φλζ = Zλ

(
ξ1
ξ2

)
.

Using (2.18) and (3.22) we have (on [a, b))

(3.34) 2

(
Tλ

Pλ

)
ζ = Y ∗

λ V Φλζ = −Y ∗
λ JJV Φλζ = −Y ∗

λ JZλ

(
ξ1
ξ2

)
= −J0

(
ξ1
ξ2

)
=

(
ξ2
−ξ1

)
.

Pλ(a)ζ = 0 yields ξ1 = 0, and thus (3.33) reads

(3.35) JV Φλζ = χλξ2.

Since CλΦλζ = 0 for a.e. x ∈ [a, b), we obtain with (3.26)

(3.36) Ĉλχλξ2 = 0 for a.e. x ∈ [a, b).

Equation (3.20) implies ZλJ
∗
0 = −J(Y −1

λ )∗ and thus

JZλJ
∗
0Y

∗
λ = In .
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Furthermore (3.16) gives
V̂ JV J = In .

With the equations above and (3.22) we obtain

(3.37)

J∗0 = Z∗λJ
∗Yλ

= Z∗λ(V̂ J(JZλJ
∗
0Y

∗
λ )V J)J∗Yλ

= −(Z∗λV̂ Zλ)J
∗
0 (Y ∗

λ V Yλ)

= −4

(
Ŝλ T̂λ

T̂λ

∗
P̂λ

)
J∗0

(
Sλ Tλ

T ∗λ Pλ

)
.

Let N̂+ ∈ Cn+,n+
and N̂− ∈ Cn−,n+

(cp. Lemma 2.2.6) such that

(3.38)

(
Ŝλ T̂λ

T̂λ

∗
P̂λ

)(
N̂+

N̂−

)
=

(
In+

0

)
.

This yields

(3.39) P̂λN̂
− = −T̂λ

∗
N̂+.

With (3.37) we obtain

(3.40)

(
N̂−

−N̂+

)
= −J0

(
N̂+

N̂−

)

= 4

(
Sλ Tλ

T ∗λ Pλ

)
J0

(
Ŝλ T̂λ

T̂λ

∗
P̂λ

)(
N̂+

N̂−

)

= 4

(
Sλ Tλ

T ∗λ Pλ

)
J0

(
In+

0

)
= 4

(
Sλ Tλ

T ∗λ Pλ

)(
0
In+

)
= 4

(
Tλ

Pλ

)

Using (3.39) we obtain

(3.41) P̂λTλ = T̂λ

∗
Pλ.

Thus (3.34) yields

(3.42) P̂λ(a)ξ2 = 2P̂λ(a)Tλ(a)ζ = 2T̂λ(a)
∗Pλ(a)ζ = 0.

(3.36) and (3.42) is the premise of (3.32) for ξ2, whence ξ2 = 0 by assumption. Consequently
JV Φλζ = 0 by (3.35), implying ζ = 0 since JV Φλ has rank n+.
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Now, all required estimates are proven for

Corollary 3.2.6. (V̂ , Ê) is suitable for the adjoint problem.

3.3 Weyl-Sims circles in the adjoint setting

We de�ne for λ ∈ AdmV + ΛV , in analogy to section 2.2,

(3.43) D̂λ(x) := {l ∈ Cn−,n+

: [(ηλ + χλl)
∗V̂ (ηλ + χλl)](x) ≤ 0},

and for x large enough

(3.44) Ĉλ := −P̂λ

−1
T̂λ

∗
,

(3.45) R̂λ := T̂λP̂λ

−1
T̂λ

∗
− Ŝλ.

By symmetry all statements of section 2.2 hold correspondingly.

We can assume w.l.o.g. that for λ ∈ AdmV + ΛV and x ≥ c0(λ) also P̂λ(x)>0.

Let λ ∈ AdmV + ΛV . Using (3.41) and (2.30), we obtain, on [c0(λ), b),

(3.46) Ĉλ = −P̂λ

−1
T̂λ

∗
= −P̂λ

−1
T̂λ

∗
PλP

−1
λ = −TλP

−1
λ = C∗λ,

(3.47) Rλ =
1

4
P̂λ

−1
,

and by symmetry

(3.48) R̂λ =
1

4
P−1

λ .

Therewith we can determine the connection between the Weyl-Sims sets of the original
problem and those of the adjoint problem.

Lemma 3.3.1.∗2 For λ ∈ AdmV + ΛV and x ≥ c0(λ) it holds

D̂λ(x) = D∗
λ(x).
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Proof. We use the notation (2.27) for Dλ(x). The corresponding "adjoint" statement reads

(3.49) D̂λ(x) = Ĉλ(x) + {P̂λ

−1/2
(x)NR̂λ

1/2
(x) : N ∈ Cn−,n+

with N∗N ≤ In+}.

Let Cλ(x) + P
−1/2
λ (x)NR1/2

λ (x) ∈ Dλ(x) with N ∈ Cn+,n−, N∗N ≤ In−.

The last property means that the norm of N as an operator (Cn−, || · ||2) → (Cn+
, || · ||2)

is not bigger than 1. This is equivalent to the corresponding statement for N∗. Thus, by
(3.49),

Ĉλ(x) + P̂λ

−1/2
(x)N∗R̂λ

1/2
(x) ∈ D̂λ(x).

Since Pλ(x) and Rλ(x) are self-adjoint, (3.47) and (3.48) yield

P
−1/2
λ (x)NR1/2

λ (x) = R̂λ

1/2
(x)NP̂λ

−1/2
(x) =

(
P̂λ

−1/2
(x)N∗R̂λ

1/2
(x)
)∗
.

With equation (3.46), and symmetry, the assertion follows.

3.4 Smoothness of λ 7→ Yλ

We will show pointwise (in x) analyticity of Yλ with respect to λ, furthermore continuity
thereof within L2

A. The author presumes that this is a statement known already, but could
not �nd a suitable direct reference. We will use it further below, to show some spectral
estimates.

First we need the following

Lemma 3.4.1.∗3 For λ0, λ ∈ C, c ∈ [a, b), the problem

(3.50) Jy′ = (λA+B)y

is equivalent to the following problem:

There exists some ξ ∈ Cn such that, for all x ∈ [a, b),

(3.51) y(x) = Yλ0(x)ξ − (λ− λ0)Yλ0(x)J0

∫ x

c

Z∗λ0
(t)A(t)y(t)dt.
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Proof. Since the solution-space of (3.50) has dimension n, it su�ces to show that any solution
of (3.51) solves (3.50).
So let y a solution of (3.51). From (3.23) we see that y solves

y(x) = Yλ0(x)ξ − (λ− λ0)Yλ0(x)

∫ x

c

Y −1
λ0

(t)JA(t)y(t)dt.

Pre-multiplication with J , di�erentiation, and use of JJ = −In shows that y solves

Jy′ = (λ0A+B)y + (λ− λ0)Ay = (λA+B)y.

Now we are able to prove

Theorem 3.4.2. (i) For �xed x ∈ [a, b), the function λ 7→ Yλ(x) is (componentwise)
analytic.

(ii) If all solutions of (2.1) and all solutions of (3.15) are in L2
A for all λ ∈ C, then the

mapping
C → R, λ 7→ ||(Yλ)j||L2

A

is continuous for any j ≤ n, where (Yλ)j denotes the j-th column of Yλ.

(For the proper de�nition of L2
A see section 4.1 below.)

Proof. The main idea of the proof of (i) is due to Michael Plum.

Let λ0 ∈ C and c := a in view of Lemma 3.4.1. For every λ ∈ C, equation (3.51) implies

Yλ(x) = Yλ0(x)Ξ− (λ− λ0)Yλ0(x)J0

∫ x

a

Z∗λ0
(s)A(s)Yλ(s)ds.

Evaluation at a yields Ξ = In . Now we pick an arbitrary column of Yλ, which we call yλ. Let
yλ0 the corresponding column of Yλ0 . For statement (i) it su�ces to show analyticity of yλ.
We already know

(3.52) yλ(x) = yλ0(x)− (λ− λ0)Yλ0(x)J0

∫ x

a

Z∗λ0
(s)A(s)yλ(s)ds.

Let d ∈ (a, b). We de�ne the operator

(3.53)
F : L2

A(a, d) → L2
A(a, d),

(Fz)(x) := Yλ0(x)J0

∫ x

a

Z∗λ0
(s)A(s)z(s)ds.
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Now we show that F is well-de�ned and bounded:
Therefor we use the abbreviations Ω := Yλ0J0, || · ||x := || · ||A,(a,x), and ξj for the j-th row of
Z∗λ0

. For z ∈ L2
A(a, d) we can estimate

||Fz||2d =

∫ d

a

∫ x

a

z∗(s)A(s)Zλ0(s)ds Ω∗(x) A Ω(x)

∫ x

a

Z∗λ0
(s)A(s)z(s)ds dx

≤
∫ d

a

∣∣ ∫ x

a

z∗(s)A(s)Zλ0(s)ds
∣∣
2

∣∣Ω∗(x)AΩ(x)
∣∣
2

∣∣ ∫ x

a

Z∗λ0
(s)A(s)z(s)ds

∣∣
2
dx

=

∫ d

a

∣∣Ω∗(x)AΩ(x)
∣∣
2

∣∣ ∫ x

a

Z∗λ0
(s)A(s)z(s)ds

∣∣2
2
dx

=
n∑

j=1

∫ d

a

∣∣Ω∗(x)AΩ(x)
∣∣
2

(

∫ x

a

ξj(s)A(s)z(s)ds)2 dx

(3.54)

≤
n∑

j=1

∫ d

a

∣∣Ω∗(x)AΩ(x)
∣∣
2
||ξj||2x||z||2xdx

≤
n∑

j=1

∫ d

a

∣∣Ω∗(x)AΩ(x)
∣∣
2
||ξj||2d||z||2ddx ≤ ||z||2d

( n∑
j=1

||ξj||2d
∫ d

a

∣∣Ω∗(x)AΩ(x)
∣∣
2
dx
)
.

Using (3.52) we know that yλ satis�es

yλ = yλ0 − (λ− λ0)Fyλ.

This is equivalent to

(3.55) (In − (λ0 − λ)F )yλ = yλ0 .

Let δ := 1
2||F || . For λ ∈ C with |λ0 − λ| ≤ δ there exists exactly one function in L2

A(a, d)

solving (3.55). So this equation uniquely characterizes yλ, which is given by the Neumann
series:

(3.56) yλ =
∞∑

j=0

(λ0 − λ)jF jyλ0 .

The series converges in L2
A(a, d). But it also converges uniformly, i.e. in (C[a, d]n , || · ||∞):

For j ∈ N we have

(3.57) ||(λ0 − λ)jF jyλ0||L2
A(a,d) ≤ 2−j||yλ0 ||L2

A(a,d),

by assumption on δ. By de�nition of F , the Cauchy-Schwarz inequality yields

||Fz||∞,[a,d] ≤ K||z||A,(a,d) for all z ∈ L2
A(a, d),

45



with a constant K, only depending on Yλ0 and ||Zλ0||L2
A(a,d). Thus, (3.57) gives

||(λ− λ0)
j+1F j+1yλ0||∞,[a,d] ≤ K̃2−j,

proving the desired || · ||∞-convergence of the series (3.56).
Since || · ||∞-convergence implies convergence in L2

A(a, d), the limit coincides with yλ.

With ||F || = 1
2δ
, the Neumann series shows that, for each �xed x, λ 7→ yλ(x) is analytic

on {λ ∈ C : |λ− λ0| < δ} and therefore analytic on C, since λ0 is arbitrary.

For proving (ii) we choose again some λ0 ∈ C. If we set yλ := (Yλ)j, we obtain (3.52)
again.
With the stronger assumption made now we can choose d := b to de�ne the operator F :
L2

A → L2
A via (3.53). The estimation (3.54) still holds, implying that F is bounded with

||F ||L2
A
< Q for some constant Q depending on λ0 but not on λ.

For all λ ∈ C with |λ0 − λ| < 1
2Q
, equation (3.56) yields

||yλ − yλ0 ||L2
A
≤

∞∑
j=1

||(λ0 − λ)jF jyλ0||L2
A
≤

∞∑
j=1

|λ0 − λ|jQj ||yλ0||L2
A
.

The right-hand side tends to 0 as λ tends to λ0. Hence statement (ii) follows.
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Chapter 4

A di�erential operator

In this chapter we de�ne an M -function, operators Rλ and R̂λ, and, with one further as-
sumption, di�erential operators (L for the original problem and L̂ for the adjoint problem).
It turns out that L∗ = L̂ and Rλ = (L− λ)−1 for λ ∈ AdmV + ΛV .
Finally, we de�ne the maximal operator for (2.1) and examine the de�ciency indices.

4.1 Hilbert spaces

De�nition 4.1.1. Let ã, b̃ ∈ [a, b) ∪ {b} with ã < b̃. For F : [ã, b̃) → Cn,n such that F (x)
is self-adjoint and F (x) ≥ 0 for a.e. x ∈ [ã, b̃), let L2

F (ã, b̃) denote the Hilbert space of
(equivalence classes of) measurable functions f : [ã, b̃) → Cn such that

||f ||2F :=

∫ b̃

ã

f ∗Ffdx <∞,

where functions f , g are regarded as equivalent if their di�erence lies in the null-space of F
almost everywhere, which means ||f − g||F = 0.
We further use the abbreviation L2

F for L2
F (a, b).

Thus for such F and G we have

(4.1) F < G⇒ L2
F ⊆ L2

G,

and

(4.2) F < G⇒ ||f ||F ≥ δ||f ||G,

for some δ > 0 and all f ∈ L2
F .
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Besides L2
A, also L

2
Cλ

and L2cCλ
occur in the following theory. In this section we give some

estimates showing relations between these spaces.

For U = −V J statement (iii) in Theorem 3.1.3 is equivalent to λ ∈ ΛV . With (3.16) we
obtain

Corollary 4.1.2. For ν ∈ ΛV and µ ∈ C,

(i) −Re(νV JA) < V JAJ∗V,

(ii) −Re(ν̄V̂ JA) < A,

(iii) −Re(νV JA) < A,

(iv) A � V JAJ∗V,

(v) A < Re(µV JA).

This Corollary is essential for many conclusions in the further examination.

Corollary 2.2.1 states Cλ < A for λ ∈ AdmV + ΛV . We can extend this statement to

Lemma 4.1.3. For λ ∈ AdmV + ΛV holds Cλ < A, in particular L2
Cλ
⊆ L2

A.
There is even a function δ : AdmV + ΛV → R+ with Cλ − δ(λ)A < 0 such that λ 7→ 1

δ(λ)
is

locally bounded.

Proof. Let k ∈ AdmV and ν ∈ ΛV with λ = k + ν. With Ck < 0 and −Re(νV JA) < A we
can estimate

(4.3) Cλ = Ck −Re(νV JA) < −Re(νV JA) < A.

A ⊀ 0 and (4.3) ensure that for λ ∈ AdmV + ΛV we can choose some δ(λ) > 0 such that
Cλ − δ(λ)A < 0 and Cλ − 2δ(λ)A � 0.

Let δ(λ) be chosen like this for every λ ∈ AdmV + ΛV .

Corollary 4.1.2 (v) ensures that there exists some ε > 0 such that

A± εReV JA < 0 and A± εReiV JA < 0.

Let µ ∈ AdmV + ΛV .
For every λ ∈ AdmV + ΛV with |λ− µ| ≤ 1

4
δ(µ)ε and a.e. x ∈ [a, b) we can calculate:

(4.4)

Cλ(x) = Cµ(x)−Re
(
(λ− µ)V JA(x)

)
= Cµ(x)−Re(λ− µ)Re(V JA(x))− Im(λ− µ)Re(iV JA(x))

≥ δ(µ)A(x)− |Re(λ− µ)|1
ε
A(x)− | Im(λ− µ)|1

ε
A(x) ≥ 1

2
δ(µ)A(x).
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Thus δ(λ) ≥ 1
4
δ(µ), which yields the assertion.

From now on we use the already mentioned shorter notation WV = AdmV + ΛV .

Lemma 4.1.4. Let λ, µ ∈ WV . Then Cλ � Cµ. In particular, L2
Cλ

and L2
Cµ

contain the
same functions and have equivalent norms.

Proof. Using Corollary 4.1.2 (v) and Lemma 4.1.3, we can estimate

Cλ = Cµ + Re((µ− λ)V JA) 4 Cµ + A 4 Cµ + Cµ 4 Cµ.

By symmetry, the statement follows.

Lemma 4.1.5. Let λ1, λ2, λ3, λ4 ∈ WV . Then

Cλ1 � A⇐⇒ Ĉλ2 � A =⇒ Cλ3 � Ĉλ4 .

Proof. With Lemma 4.1.4, the corresponding statement for the adjoint problem, and the
transitivity of �, it su�ces to show the assertion for λ1 = λ2 = λ3 = λ4 =: λ.

Let Ĉλ � A. Using (3.26), Corollary 4.1.2 (iv) and (3.10), we obtain

Cλ = V JĈλJ
∗V � V JAJ∗V � A � Ĉλ .

With the symmetric argument, the whole assertion follows.

Finally we have

Lemma 4.1.6. If B is self-adjoint and V = ±iJ , then A � Cλ for λ ∈ WV .

Proof. For λ ∈ WV we know Cλ < A. The statement follows by the calculation

Cλ = −ReV J(λA+B) = ±Re i(λA+B) = ±Re(iλ)A 4 A.

So in all our self-adjoint examples with the canonical choice of V we have A � Cλ .
In particular in Example 1.3 on page 28 with J = J2 we obtain

A2 � Cλ,Vc,2 = Cλ,Vc,2,J2

for λ in the lower halfplane. But also for the original choice, J = J1 (see (2.34)), as in
equation (2.43), we can calculate

Cλ,Vc,2 = Cλ,Vc,2,J1 = −Re(Vc,2J1(kA1+B1)) = −Re(Vc,2J2(kA2+B2)) = Cλ,Vc,2,J2 � A2 = A1.
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Again, the actual choice of J has no in�uence on this matter.

In Example 3 on page 30 we have the even order problem with m = 1. We know A1 =

diag(w, 0). Furthermore any suitable matrix is of the shape V =

(
v0 v
v 0

)
. For such a

suitable V with Re v > 0, (2.48) shows A 6� Cλ .

4.2 The M-function

In this section we want to construct an analyticM -function with M(λ) ∈ Dλ(b) (with Dλ(b)
de�ned in Theorem 2.2.7) for λ ∈ WV .

For λ ∈ WV and l ∈ Dλ(b), we de�ne

(4.5)
Ψλ,l := Θλ + Φλl,

ζλ,l := ηλ + χλl
∗.

By de�nition, l ∈ Dλ(c) for every c ∈ [a, b), and so (2.16) yields∫ c

a

Ψ∗
λ,lCλΨλ,ldx ≤ Aλ(l).

Thus, for every ξ ∈ Cn−, we obtain

(4.6) Ψλ,lξ ∈ L2
Cλ
,

and furthermore, using Lemma 4.1.3,

(4.7) Ψλ,lξ ∈ L2
A.

Since D̂λ(b) = Dλ(b)
∗ by Lemma 3.3.1, with the same argument we obtain, for ξ ∈ Cn+

,

(4.8) ζλ,lξ ∈ L2cCλ
⊆ L2

A.

For arbitrary nf , ng ∈ N0 and functions f : [a, b) → Cn,nf , g : [a, b) → Cn,ng , we use the
notations

(4.9) [f, g](x) := g∗(x)Jf(x)
(
x ∈ [a, b)

)
,
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and

(4.10) [f, g](b) := lim
x→b

[f, g](x) if the limit exists.

Using equation (3.22), we obtain

Corollary 4.2.1.

(4.11)

(
0 −In+

In− 0

)
= −J∗0 = Z∗λJYλ = [Yλ, Zλ] =

(
[Θλ, ηλ] [Φλ, ηλ]
[Θλ, χλ] [Φλ, χλ]

)
.

We need one more technical

Lemma 4.2.2.∗2 Let λ, µ ∈ WV and l ∈ Dµ(b). For c ∈ [c0(λ), b), the regular boundary
value problem

(4.12)

Jy′ = (λA+B)y on (a, c)

[y, χµ](a) = 0,

[y, ζµ,l](c) = 0

has only the trivial solution.

Proof. Let y be a solution of (4.12). Since (Θλ|Φλ) is a fundamental matrix for the di�erential
equation, there exists ξ1 ∈ Cn−, ξ2 ∈ Cn+

such that y = Θλξ1 + Φλξ2.

Since χλ(a) = χµ(a), (4.11) and the boundary condition at a imply

0 = [y, χλ](a) = [Θλ, χλ](a)ξ1 + [Φλ, χλ](a)ξ2 = ξ1.

Using (4.11) again (with λ replaced by µ), we can conclude

(4.13) [Ψµ,l, ζµ,l](c) = (In+, l)[Yµ, Zµ](c)

(
In−
l

)
= (In+, l)

(
0 −In+

In− 0

)(
In−
l

)
= 0.

Since Ψµ,l and ζµ,l have full ranks n−and n+, respectively, the boundary condition at c implies
y = Ψµ,lξ for some ξ ∈ Cn−.

Thus, since l ∈ Dµ(b) ⊆ Dµ(c), equation (2.11) yields

y∗(c)V y(c) ≤ 0.

If ξ2 were not zero, Lemma 2.2.4 (iii) would imply

y∗(c)V y(c) = ξ∗2Φ
∗
λ(c)V Φλ(c)ξ2 = 2ξ∗2P (c)ξ2 > 0,

a contradiction. Hence ξ2 = 0 and thus y = 0.
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Now we can state the existence of an M -function in

Theorem 4.2.3.∗2 For any µ ∈ WV and M0 ∈ Dµ(b), there exists a function

M : WV −→ Cn+,n−

such that

(i) M(µ) = M0,

and, for every λ ∈ WV ,

(ii) M(λ) ∈ Dλ(b),

(iii)
M(λ)−M0 = (λ− µ)

∫ b

a

ζ∗µ,M0
AΨλ,M(λ)dx

= (λ− µ)

∫ b

a

ζ∗λ,M(λ)AΨµ,M0dx.

Proof. We �rst show that, for λ ∈ WV and c ∈ [c0(λ), b), the matrix [Φλ, ζµ,M0 ](c) =
ζµ,M0(c)

∗JΦλ(c) is invertible:
Let ξ ∈ Cn+

be in its null-space. The function Φλξ solves the boundary value problem (4.12),
since Φλ solves the di�erential equation; (4.11) yields the boundary condition at a; note that
χλ(a) = χµ(a). Thus Φλξ = 0 by Lemma 4.2.2, which yields ξ = 0 because Φλ has rank n+.

Therefore we can de�ne, on [c0(λ), b),

(4.14) lλ,c := −
(
[Φλ, ζµ,M0 ](c)

)−1
[Θλ, ζµ,M0 ](c).

By this de�nition we obtain, for c ∈ [c0(λ), b),

(4.15) [Ψλ,lλ,c
, ζµ,M0 ](c) = [Θλ, ζµ,M0 ](c) + [Φλ, ζµ,M0 ](c)lλ,c = 0,

whereas (4.13) gives

(4.16) [Ψµ,M0 , ζµ,M0 ](c) = 0.

(4.15) and (4.16) yield that the ranges of both Ψµ,M0(c) and Ψλ,lλ,c
(c) are in the null-space

of ζ∗µ,M0
(c)J , which has dimension n− because ζµ,M0 has rank n

+. Furthermore Ψµ,M0(c) and
Ψλ,lλ,c

(c) both have rank n−, hence their ranges coincide. Thus we obtain

(4.17) ∀λ ∈ WV , c ∈ [c0(λ), b) : range(Ψλ,lλ,c
(c)) = range(Ψµ,M0(c)).
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Consequently, there exists Ξλ ∈ Cn−,n− such that

Ψλ,lλ,c
(c) = Ψµ,M0(c)Ξλ.

Since M0 ∈ Dµ(c), De�nition (2.11) yields

Ψ∗
λ,lλ,c

(c)VΨλ,lλ,c
(c) = Ξ∗λΨ

∗
µ,M0

(c)VΨµ,M0(c)Ξλ ≤ 0,

so, again by (2.11),

(4.18) lλ,c ∈ Dλ(c).

With corresponding arguments for the adjoint problem (including an adjoint version of
Lemma 4.2.2) we conclude that for all λ ∈ WV the ranges of ζλ,lλ,c

(c) and of ζµ,M0(c) coincide.
Therewith, equations (4.17) and (4.16) imply

(4.19) ∀ ν, λ ∈ WV , c ∈ [c0(λ), b) ∩ [c0(ν), b) : [Ψλ,lλ,c
, ζν,lν,c ](c) = 0.

For ν, λ ∈ WV and c ∈ [c0(λ), b) ∩ [c0(ν), b), we obtain by (2.1), (3.15), and J∗ = −J that

(4.20) [Ψλ,lλ,c
, ζν,lν,c ]

′ = (ζ∗ν,lν,c
JΨλ,lλ,c

)′ = (λ− ν)ζ∗ν,lν,c
AΨλ,lλ,c

.

Integrating from a to c and use of (4.19), (4.11) and Zν(a) = Ê = Zλ(a) yields

(4.21)

(λ− ν)

∫ c

a

ζ∗ν,lν,c
AΨλ,lλ,c

dx = −[Ψλ,lλ,c
, ζν,lν,c ](a)

= −(In+, lν,c)[Yλ, Zλ](a)

(
In−
lλ,c

)
= (In+, lν,c)

(
0 In+

−In− 0

)(
In−
lλ,c

)
= lλ,c − lν,c.

The same calculation with (4.15) and (µ,M0) instead of (4.19) and (ν, lν,c) yields

(4.22) lλ,c −M0 = (λ− µ)

∫ c

a

ζ∗µ,M0
AΨλ,lλ,c

dx.

With λ = µ, this implies lµ,c = M0.

So (4.21), with changed roles of ν and λ, and then ν put equal to µ, reads

(4.23) lλ,c −M0 = (λ− µ)

∫ c

a

ζ∗λ,lλ,c
AΨµ,M0dx.

We �x some λ ∈ WV for the rest of the proof.
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Using Lemma 4.1.3 and (2.12), we conclude that there exists a constant k such that, for
c ∈ [c0(λ), b),

(4.24) 0 ≤
∫ c

a

Ψ∗
λ,lλ,c

AΨλ,lλ,c
dx ≤ k

∫ c

a

Ψ∗
λ,lλ,c

CλΨλ,lλ,c
dx =

1

2
kΨ∗

λ,lλ,c
VΨλ,lλ,c

∣∣c
a
.

The boundary term at c is non-positive by (2.11) and (4.18). The term at a is bounded
with respect to c ∈ [c0(λ), b) by (4.5), since lλ,c ∈ Dλ(c) ⊆ Dλ(c0(λ)) and the latter set is
bounded by Theorem 2.2.7.

If we set Ψ̃c := 1[a,c]Ψλ,lλ,c
the estimation above yields boundedness, and thus weak con-

vergence of Ψ̃c in L2
A to some F ∈ L2

A at least along a sequence (cm) tending to b.

Since (lλ,cm) is bounded we can assume w.l.o.g. that

(4.25) lλ,cm →M(λ) as m→∞,

for some M(λ) ∈ Cn+,n−.
Using Corollary 2.2.3, Theorem 2.2.7 and (4.18), we obtain

(4.26) M(λ) ∈ Dλ(b).

Thus, by (4.7) and (4.8), we know that all columns of Ψλ,M(λ) and ζλ,M(λ) are in L2
A.

By de�nition of Ψ̃c, (4.25) yields locally uniform convergence of Ψ̃c to Ψλ,M(λ).
The compactly supported test-functions are dense in L2

A, thus F = Ψλ,M(λ) in L2
A.

Because ζµ,M0 ∈ L2
A, the weak convergence Ψ̃cm ⇀ Ψλ,M(λ) shows in particular that

(4.27)
∫ b

a

ζ∗µ,M0
AΨ̃cmdx→

∫ b

a

ζ∗µ,M0
AΨλ,M(λ)dx as m→∞.

Using (4.22) and (4.25), we obtain

(4.28)

M(λ)−M0 = lim
m→∞

lλ,cm −M0

= lim
m→∞

(λ− µ)

∫ cm

a

ζ∗µ,M0
AΨλ,lλ,cm

dx

= lim
m→∞

(λ− µ)

∫ b

a

ζ∗µ,M0
AΨ̃cmdx = (λ− µ)

∫ b

a

ζ∗µ,M0
AΨλ,M(λ)dx.

The second equation of statement (iii) can be shown analogously, with exchanged roles
of ζ and Ψ and use of (4.23). W.l.o.g. we can assume that the limit M(λ) is the same as
before.
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4.3 The resolvent operator

In this section we de�ne (at least on WV ) the λ-dependent functions Rλ via a kernel Gλ. It
will turn out that Rλ is the resolvent of the di�erential operator we are looking for.

For the following we �x some µ ∈ WV , M0 ∈ Dµ(b), and a correspondingM -function given
by Theorem 4.2.3.

For λ ∈ WV , let

(4.29)
Ψλ := Ψλ,M(λ) = Θλ + ΦλM(λ),

ζλ := ζλ,M(λ) = ηλ + χλM(λ)∗.

Lemma 4.3.1.∗2 For λ ∈ WV ,

(4.30) [Ψλ, ζµ](b) = 0,

(4.31) [Ψµ, ζλ](b) = 0.

Proof. Using Zλ(a) = Ê = Zµ(a), we obtain from (4.11), by multiplication with

(
In−
M(λ)

)
from the right and with (In+|M(µ)) from the left,

(4.32) [Ψλ, ζµ](a) = (In+|M(µ))

(
0 −In+

In− 0

)(
In−
M(λ)

)
= M(µ)−M(λ).

Since Ψλ and ζµ solve (2.1) and (3.15), respectively, and J∗ = −J ,

[Ψλ, ζµ]′ = (ζ∗µJΨλ)
′ = (λ− µ)ζ∗µAΨλ.

Integration provides, for all c ∈ [a, b),

(4.33)
[Ψλ, ζµ](c) = [Ψλ, ζµ](a) + (λ− µ)

∫ c

a

ζ∗µAΨλdx

= M(µ)−M(λ) + (λ− µ)

∫ c

a

ζ∗µAΨλdx.

The right-hand side converges to zero by Theorem 4.2.3 (iii), as c→ b, which proves (4.30).

Equation (4.31) can be proven correspondingly, using the second equation of Theorem
4.2.3 (iii).
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We further de�ne

(4.34)

Gλ(x, y) :=

{
Φλ(x)ζ

∗
λ(y) if a ≤ x ≤ y < b,

Ψλ(x)χ
∗
λ(y) if a ≤ y < x < b,

Ĝλ(x, y) :=

{
χλ(x)Ψ

∗
λ(y) if a ≤ x < y < b,

ζλ(x)Φ
∗
λ(y) if a ≤ y ≤ x < b

= G∗
λ(y, x),

and for f ∈ L2
A

(4.35)
Rλf(x) :=

∫ b

a

Gλ(x, y)A(y)f(y)dy,

R̂λf(x) :=

∫ b

a

Ĝλ(x, y)A(y)f(y)dy.

By de�nition,

(4.36) Rλf(x) = Yλ(x)

∫ b

a

(
0 1(a,x)In−

1(x,b)In+ M(λ)

)
(y)Z∗λ(y)A(y)f(y)dy.

With (3.23), this yields

Corollary 4.3.2.∗1 Rλf ∈ ACloc[a, b) with

(4.37) J(Rλf)′ = (λA+B)(Rλf)− JYλJ0Z
∗
λAf = (λA+B)(Rλf) + Af.

Using (4.36), (4.11), and (4.8), we obtain∗1

[Rλf, χλ](a) = 0,

[Rλf, ζλ](b) = lim
x→b

(In+|M(λ))[Yλ, Zλ](x)

∫ b

a

(
0 1(a,x)In−

1(x,b)In+ M(λ)

)
(y)Z∗λ(y)A(y)f(y)dy

= lim
x→b

(In+|M(λ))

(
0 −In+

In− 0

)∫ b

a

(
0 1(a,x)In−

1(x,b)In+ M(λ)

)
(y)Z∗λ(y)A(y)f(y)dy(4.38)

= lim
x→b

∫ b

a

(−1(x,b)In+|1(a,x)M(λ)−M(λ))(y)Z∗λ(y)A(y)f(y)dy

= − lim
x→b

∫ b

x

ζ∗λ(y)A(y)f(y)dy = 0.
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Analogous calculations for the adjoint problem yield∗1

(4.39)

J(R̂λf)′ = (λ̄A+B∗)(R̂λf) + Af,

[R̂λf,Φλ](a) = 0,

[R̂λf,Ψλ](b) = 0.

Theorem 4.3.3.∗3 For each λ ∈ WV , Rλ is a bounded operator L2
A → L2

A, L
2
Cλ
→ L2

Cλ
, and

L2
A → L2

Cλ
.

Furthermore, λ 7→ ||Rλ||A and λ 7→ ||Rλ||Cλ
are locally bounded.

Proof. By Corollary 4.1.2 (iv) there exists ε > 0 with A− εV JAJ∗V < 0.
Lemma 4.1.3 yields a function δ : WV → R+ with Cλ − δ(λ)A < 0 on WV , such that 1

δ
is

locally bounded on WV . Thus,

(4.40) Cλ − εδ(λ)V JAJ∗V < 0.

We will show that ||Rλ||A, ||Rλ||Cλ
≤ 1√

εδ(λ)
, which proves the desired locally boundedness.

Let λ ∈ WV and let f ∈ L2
A. For c ∈ [a, b) we set fc := 1[a,c]f and Υ := Rλfc.

Using (4.37) and the chain rule, we obtain

(4.41)

2

∫ c

a

Υ∗CλΥdx =

∫ c

a

−(Rλfc)
∗2Re

(
V J(λA+B)

)
(Rλfc)dx

= −2Re

∫ c

a

(Rλfc)
∗V J(λA+B)(Rλfc)dx

= −2Re

∫ c

a

(Rλfc)
∗V J

(
J(Rλfc)

′ − Afc

)
dx

= 2Re

∫ c

a

Υ∗VΥ′ + Υ∗V JAfcdx

=

∫ c

a

Υ∗VΥ′ + (Υ∗)′VΥ + 2Re(Υ∗V JAfc)dx

= Υ∗VΥ
∣∣c
a
+ 2Re

∫ c

a

Υ∗V JAfcdx.

Moreover, since supp(fc) ⊆ [a, c], (4.36) implies

(4.42) Υ(c) = Yλ(c)

(
In−
M(λ)

)
F,

for F :=
∫ c

a
χ∗λAfc dx. Thus,

(4.43) (Υ∗VΥ)(c) = F ∗(Θλ + ΦλM(λ)
)∗
V
(
Θλ + ΦλM(λ)

)
F ≤ 0,
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by (2.11), since M(λ) ∈ Dλ(c).

Using Yλ(a) = E and (4.36) again, we obtain

(4.44) Υ(a) = E

(
0 0
In+ M(λ)

)
G,

for G :=
∫ c

a
Z∗λAfc dx. Thus, by (2.18) and (2.9)

(4.45) (Υ∗VΥ)(a) = 2G∗
(

In+

M(λ)∗

)
Pλ(a)

(
In+|M(λ)

)
G ≥ 0.

Using (4.41), (4.43), (4.45) and (4.40), together with the Cauchy-Schwarz inequality in
L2

A(a, c), we can estimate

(4.46)

∫ c

a

Υ∗CλΥdx ≤ |
∫ c

a

Υ∗V JAfc dx|

≤
(∫ c

a

f ∗cAfc dx

)1/2(∫ c

a

Υ∗V JAJ∗VΥdx

)1/2

≤ 1

2εδ(λ)
||f ||2A +

1

2
εδ(λ)||Υ||2V JAJ∗V,[a,c]

≤ 1

2εδ(λ)
||f ||2A +

1

2
||Υ||2Cλ ,[a,c]

=
1

2εδ(λ)
||f ||2A +

1

2

∫ c

a

Υ∗CλΥdx

Thus we have, for d ∈ [a, b) and c ∈ [d, b),

(4.47)
∫ d

a

(Rλfc)
∗CλRλfc =

∫ d

a

Υ∗CλΥdx ≤
∫ c

a

Υ∗CλΥdx ≤ 1

εδ(λ)
||f ||2A.

If we de�ne

k(c) :=

∫ b

c

ζ∗λ(y)A(y)f(y)dy,

then k(c) → 0 for c → b, since ζλ, f ∈ L2
A. By (4.34) and (4.35), we obtain Rλ(f − fc) =

Φλk(c) on [a, d], for d < c.

Therefore, on [a, d],

(4.48)

(Rλf)∗CλRλf − (Rλfc)
∗CλRλfc

= (Rλ(f − fc))
∗CλRλ(f) + (Rλf)∗CλRλ(f − fc)− (Rλ(f − fc))

∗CλRλ(f − fc)

= k∗(c)Φ∗
λCλRλ(f) + (Rλf)∗CλΦλk(c)− k∗(c)Φ∗

λCλΦλk(c).
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The integral over [a, d] of this term tends to zero as c tends to b. Thus (4.47) yields∫ d

a

(Rλf)∗CλRλfdx ≤
1

εδ(λ)
||f ||2A

for arbitrary d ∈ [a, b). This shows Rλf ∈ L2
Cλ
, and

||Rλf ||2Cλ
≤ 1

εδ(λ)
||f ||2A.

Thus Rλ is even a bounded operator L2
A → L2

Cλ
. Using Cλ < A, we see that Rλ is a

bounded operator L2
A → L2

A and L2
Cλ
→ L2

Cλ
. More precisely, we can estimate

||Rλf ||2A ≤
1

δ(λ)
||Rλf ||2Cλ

≤ 1

εδ2(λ)
||f ||2A

and, for f ∈ L2
Cλ
⊆ L2

A,

||Rλf ||2Cλ
≤ 1

εδ(λ)
||f ||2A ≤

1

εδ2(λ)
||f ||2Cλ

.

Hence the assertions follows.

Theorem 4.3.3 and Ĝλ(x, y) = G∗
λ(y, x) imply

Corollary 4.3.4.∗1 R̂λ is the L2
A-adjoint of Rλ and vice versa.

4.4 De�nition and properties of the di�erential operator

To de�ne an operator for the formal problems (2.1) and (3.15), respectively, we need one
more

Assumption 2. The operators Rµ, R̂µ : L2
A → L2

A are one-to-one.

Theorem 4.4.8 below shows that under this assumption, for every λ ∈ WV , the operators
Rλ and R̂λ are one-to-one from L2

A into itself.

The following remark is slightly technical but sometimes well applicable.
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Remark 4.4.1. If the sets Nm, given by

(4.49)
N1 := ker(A)

Nm+1 := Nm ∩B−1
(
JNm + rangeA

)
,

are constant on [a, b) for all m ∈ {1, . . . n}, and Nn = {0}, then Rµ is one-to-one for any
µ ∈ WV . The corresponding statement holds for R̂µ with B∗ in place of B.

Proof. Let f ∈ L2
A with Rµf = 0 in L2

A.

We set Υ := Rµf . Thus Υ is continuous and AΥ = 0 a.e. on [a, b). Since kerA is constant,
we obtain AΥ(c) = 0 for every c ∈ [a, b).

We show Υ(c) ∈ Nm for every c ∈ [a, b) and m ∈ N by induction. The case m = 1 holds
by de�nition. Now let the assertion hold for m ∈ N, and let c ∈ [a, b).

For Υ(c) to be in Nm+1, we need to show

(4.50) Υ(c) ∈ B−1
(
JNm + rangeA

)
.

Since Nm is constant, Υ′(c) ∈ Nm.

Using (4.37), we obtain JΥ′ = (µA+B)Υ + Af = BΥ + Af .

Thus BΥ(c) = JΥ′(c)− Af ∈ JNm + rangeA, which yields (4.50).

So in particular Υ(c) ∈ Nn = {0}, and hence Υ(c) = Υ′(c) = 0 for every c ∈ [a, b). Thus,
Af = JΥ′ −BΥ = 0 on [a, b).

Another su�cient condition for Assumption 2 is given by

Remark 4.4.2. If, for almost every x ∈ [a, b), either A(x) = 0 or A(x) > 0, then Assump-
tion 2 is ful�lled.

Proof. It su�ces to show injectivity of Rµ : L2
A → L2

A, by symmetry.

We assume the existence of some f ∈ L2
A, Af 6= 0 on a set of positive measure, with

Rµf = 0 in L2
A, i.e. ARµf = 0 a.e..

Let a ≤ c0 < c1 < b such that Af = 0 a.e. on [a, c0] and

(4.51)
∫ c

c0

Af dx 6= 0 for all c ∈ (c0, c1).
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We set D := {c ∈ (c0, c1) : A(c) > 0}. For a.e. c ∈ D we have A(c)Rµf(c) = 0 and thus,
by (4.36),

0 = Rµf(c) = Yµ(c)

∫ b

a

(
0 1(a,c)In−

1(c,b)In+ M(µ)

)
(x)Z∗µ(x)A(x)f(x)dx.

Since Yµ(c) is regular we even obtain

0 =

∫ b

a

(
0 1(a,c)In−

1(c,b)In+ M(µ)

)
(x)Z∗µ(x)A(x)f(x)dx.

Thus, for a.e. c, c̃ ∈ D,

0 =

∫ b

a

(
0 1(a,c̃)In−

1(c̃,b)In+ M(µ)

)
(x)Z∗µ(x)A(x)f(x)dx−

∫ b

a

(
0 1(a,c)In−

1(c,b)In+ M(µ)

)
(x)Z∗µ(x)A(x)f(x)dx

=

∫ c̃

c

(
0 In−

−In+ 0

)
Z∗µ(x)A(x)f(x) dx

=

(
0 In−

−In+ 0

)∫ c̃

c

Z∗µ(x)A(x)f(x) dx

and hence 0 =
∫ c̃

c
Z∗µ(x)A(x)f(x) dx. By (4.51) and the assumption on A of this Remark, we

can chose c > c0 arbitrarily close to c0, whence we obtain

0 =

∫ c̃

c0

Z∗µ(x)A(x)f(x) dx

for a.e. c̃ ∈ D and therewith for all c̃ ∈ (c0, c1). (Otherwise, by continuity of the integral
term with respect to c̃, there is an interval (c̃0, c̃1) ⊆ (c0, c1) such that the integral term is
zero for c̃ = c̃0, but is not zero for all c̃ ∈ (c̃0, c̃1). But the integrand is zero a.e. in (c̃0, c̃1),
because for x ∈ (c0, c1) \ D holds A(x) = 0.)
This implies, for a.e. x ∈ (c0, c1), Z∗µ(x)A(x)f(x) = 0, and thus A(x)f(x) = 0 by the
regularity of Zµ. This causes a contradiction to (4.51).

We are going to de�ne the di�erential operator. Since L2
A consists of equivalent classes,

we have to take care of well-de�nedness. For this purpose, we will use

Lemma 4.4.3.∗2 Let y1, y2 : [a, b) → Cn , with

(i) y1, y2 ∈ L2
A, y1 = y2 in L2

A,

(ii) y1, y2 ∈ ACloc[a, b),

(iii) [yj, χµ](a) = [yj, ζµ](b) = 0 for j ∈ {1, 2}.
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Then, for f1, f2 ∈ L2
A with Jy′j −Byj = Afj a.e. on [a, b) (for j ∈ {1, 2}),

f1 = f2 in L2
A.

Proof. If we set y := y1 − y2, we obtain Ay = 0 a.e. on [a, b).
Further we de�ne f := f1 − f2. Therewith,

Jy′ = By + Af = (µA+B)y + Af a.e. on [a, b),

whence y = Rµf + Θµξ1 + Φµξ2 by (4.37), for some ξ1 ∈ Cn− and ξ2 ∈ Cn+
.

Using (4.11) and (4.38), the boundary condition [y, χµ](a) yields ξ1 = 0, and so the bound-
ary condition [y, ζµ](b) implies ξ2 = 0 since ζµ = ηµ + χµM

∗(µ).

Thus we know y = Rµf . Since y = 0 in L2
A, Assumption 2 yields f = 0 in L2

A and hence
f1 = f2 in L2

A.

Now we can de�ne

(4.52)

D(L) := {y ∈ L2
A ∩ ACloc[a, b) : [y, χµ](a) = 0, [y, ζµ](b) = 0,

and there exists f ∈ L2
A : Jy′ −By = Af a.e.},

Ly := f for y ∈ D(L), f ∈ L2
A with Jy′ −By = Af.

(4.53)

D(L̂) := {z ∈ L2
A ∩ ACloc[a, b) : [z,Φµ](a) = 0, [z,Ψµ](b) = 0,

and there exists f ∈ L2
A : Jz′ −B∗z = Af a.e.},

L̂z := f for z ∈ D(L), f ∈ L2
A with Jz′ −B∗z = Af.

More precisely D(L) and D̂(L) consist of all equivalence classes in L2
A such that at least

one representative of the class satis�es the conditions after the colons. Lemma 4.4.3 and an
analogous statement for the adjoint problem ensure that L and L̂ are well-de�ned.

Note that the boundary conditions at a are independent of µ, because so are χµ(a) and
Φµ(a).

Lemma 4.4.4.∗1 For λ ∈ WV and f ∈ L2
A holds Rλf ∈ D(L) and (L− λ)Rλf = f .

Proof. Theorem 4.3.3 implies Rλf ∈ L2
A.

Corollary 4.3.2 yields Rλf ∈ ACloc and

(4.54) J(Rλf)′ = BRλf + A(λRλf + f).
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Since χλ(a) = χµ(a), equation (4.38) shows that Rλf satis�es the boundary condition at a
required in D(L).

For the second boundary condition we �rst assume f has compact support.

Let c large enough, such that supp(f) ⊂ [a, c]. On [c, b), equations (4.34) and (4.35) yield

Rλf = Ψλξ,

for some ξ ∈ Cn−. Thus, by (4.30),

(4.55) [Rλf, ζµ](b) = [Ψλ, ζµ](b)ξ = 0.

To obtain the boundary condition in the general case, we �rst calculate, for arbitrary
g ∈ L2

A,

(4.56)

[Rλg, ζµ]′ = ζ∗µJ(Rλg)
′ − (Jζ ′µ)∗Rλg

= ζ∗µ
(
(λA+B)Rλg + Ag

)
−
(
(µ̄A+B∗)ζµ

)∗
Rλg

= (λ− µ)ζ∗µARλg + ζ∗µAg.

Now let f ∈ L2
A and let (fm) a sequence of compact support functions converging to f in

L2
A. Using (4.55) and (4.56), we obtain

(4.57)

[Rλf, ζµ](b) = [Rλ(f − fm), ζµ](b)

= [Rλ(f − fm), ζµ](a) +

∫ b

a

(
(λ− µ)ζ∗µARλ(f − fm) + ζ∗µA(f − fm)

)
dx

= ζ∗µ(a)JΦλ(a)

∫ b

a

ζ∗λA(f − fm)dx+

(λ− µ)

∫ b

a

ζ∗µARλ(f − fm)dx+

∫ b

a

ζ∗µA(f − fm)dx.

Since Rλ is bounded, f − fm →L2
A

0 implies Rλ(f − fm) →L2
A

0 for m→∞. Since ζµ ∈ L2
A,

the right-hand side of (4.57) tends to zero for m→∞. Hence [Rλf, ζµ](b) = 0.

In view of (4.54), we have shown Rλf ∈ D(L), and LRλf = f + λRλf , and thus (L −
λ)Rλf = f .

Lemma 4.4.5.∗2 D(L) and D(L̂) are dense in L2
A.

Proof. Let f ∈ L2
A be orthogonal to D(L). For all g ∈ L2

A,

< g, R̂µf >=< Rµg, f >= 0
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by Corollary 4.3.4 and Lemma 4.4.4. This shows R̂µf = 0 and hence f = 0 by Assumption
2.

With a corresponding argument, the denseness of D(L̂) follows.

We denote the resolvent set of of an operator by ρ(·).
We will see that WV ⊆ ρ(L), with Rλ = (L− λ)−1 for λ ∈ WV . We �rst show this assertion
for λ = µ:

Lemma 4.4.6.∗2 µ ∈ ρ(L) with (L− µ)−1 = Rµ, and µ̄ ∈ ρ(L̂) with (L̂− µ̄)−1 = R̂µ.

Proof. For y ∈ D(L) with (L − µ)y = 0 holds Ly = µy and thus Jy′ = (µA + B)y. This
yields y = Θµξ1 + Φµξ2 for some ξ1 ∈ Cn− and ξ2 ∈ Cn+

.

The boundary condition for y at a, together with (4.11), implies ξ1 = 0.
Using ζµ = ηµ + χµM

∗
0 , the boundary condition at b and (4.11) yield ξ2 = 0, thus y = 0.

Hence L− µ is one-to-one.

Let f ∈ L2
A and y ∈ D(L). Lemma 4.4.4 yields Rµf ∈ D(L), (L− µ)Rµf = f , and

(L− µ)Rµ(L− µ)y = (L− µ)y,

which implies Rµ(L− µ)y = y.

Together we conclude: (L − µ) : D(L) → L2
A is bijective and Rµ is its inverse, which is

bounded by Theorem 4.3.3.

With a corresponding argument, the statement for L̂ and R̂µ follows.

Lemma 4.4.6 and Corollary 4.3.4 yield (L̂− µ̄)−1 = ((L− µ)−1)∗, and thus

Corollary 4.4.7.∗1 L is the L2
A-adjoint of L̂ and vice versa.

Now we are able to show

Theorem 4.4.8.∗1 WV ⊆ ρ(L), and Rλ = (L− λ)−1 for λ ∈ WV .
Analogously for the adjoint problem {λ̄ : λ ∈ WV } ⊆ ρ(L̂), and R̂λ = (L̂− λ̄)−1 for λ ∈ WV .

Proof. Let λ ∈ WV .
For f ∈ L2

A, the adjoint analog of Lemma 4.4.4 yields R̂λf ∈ D(L̂) and (L̂ − λ̄)R̂λf = f ,
whence in particular the range of L̂− λ̄ is L2

A.

Corollary 4.4.7 implies (L− λ)∗ = L̂− λ̄. Hence L− λ is one-to-one.
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The rest of the proof is exactly the same as the second part of the proof of Lemma 4.4.6
with λ instead of µ.

Because their resolvent sets are not empty, we conclude

Corollary 4.4.9.∗1 L and L̂ are closed.

Now we take a look at the scalar examples on pages 23 to 30.

From now on we assume for all scalar examples that w > 0 on [a, b).

We use Remark 4.4.1 to show that Assumption 2 is satis�ed for all scalar examples.
Remark 4.4.1 poses assumptions only on J , A, and B, whence we need not distinguish
di�erent choices of V and E.

We study the odd case with m = 1 in detail. We have A = A1 = diag(w, 0, 0), J = J1 =
codiag(i, i, i) and

B = B1 =
1

s

−p0 iq 0
ir −p1

s
−1

0 −1 0

 .

This leads to

N1 = ker(A) = span{e2, e3},
N2 = N1 ∩B−1(JN1 + range(A)) = N1 ∩B−1(span{e1, e2}) = N1 ∩ span{e1, e3} = span{e3},
N3 = N2 ∩B−1(JN2 + range(A)) = span{e3} ∩B−1(span{e1}) = {0}.

The same calculation holds for B∗ in place of B. All requirements of Remark 4.4.1 are
ful�lled, hence Assumption 2 holds.

In the same way, for arbitrary m and both cases (even and odd) and in the even case for
both choices of J (J1 or J2), with n = 2m, or n = 2m+ 1, respectively, we obtain

Nj = span{ej+1, . . . en}

for j < n and Nn = {0}. Hence Assumption 2 holds for all of our scalar examples by Remark
4.4.1.

Now we give some thoughts to the question in which cases the constructed operator L
is self-adjoint. Certainly, we cannot expect L to be self-adjoint in the non-self-adjoint case
B 6= B∗. But even in the self-adjoint case B = B∗, with the canonical choice of V , the
resulting operator L need not be self-adjoint.
Indeed, in this case, Ly = L̂y = L∗y for y ∈ D(L) ∩ D(L̂). But the number of boundary
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conditions at a for L and L̂ may not coincide; in the odd case it is even impossible for them
to coincide.
Furthermore, in the even case, also if n+ = n−, the boundary conditions at a need not
be the same. Straightforward calculations show that they are the same if and only if

E∗JE

(
0
In+

)
=

(
Ξ
0

)
for some Ξ ∈ Cn−,n−. By regularity of J and E, this is equivalent

to (0|In+)E∗JE

(
0
In+

)
= 0. For the canonical choice V = ±iJ this is �nally equivalent to

Pλ(a) =
1

2
Φ∗

λ(a)V Φλ(a) = 0.

In our examples for the even case this does not hold for the suitable pairs (Vc, Ec) and
(Vc,2, Ec,2), but it does hold for (Vc, Es).
The same boundary condition at a still does not imply L = L̂. We will return to this subject
at the end of this chapter.

Now we examine the set WV , knowing that this is a subset of the resolvent set of the
corresponding operator L.
In the self-adjoint setting with the canonical choice V = ±iJ , we already know that WV is
the lower, respectively the upper halfplane.

In all our scalar examples we have A = diag(w, 0, . . . , 0). The condition −Re(λV JA) < A
for some λ ∈ C requires that the �rst column of −V J is of the form (ν, 0, . . . , 0)T for some
ν ∈ C \ {0}. (Otherwise −Re(λV JA) would be inde�nite or zero.) Thus,

−Re(λV JA) = Re
(
λ diag(νw, 0, . . . , 0)

)
= diag(Re(λν)w, 0, . . . , 0) = Re(λν)A,

and therewith

(4.58) ΛV = {λ ∈ C : Re(λν) > 0},

which is a halfplane.

WV = AdmV +ΛV is a (possibly) shifted halfplane. This holds, because ΛV is a halfplane,
and therewith

WV =
⋃

λ∈AdmV

(λ+ ΛV )

is a halfplane or the whole complex plane.

We exclude WV = C as follows: Let ν again the �rst entry of −V J , we assume w.l.o.g
|ν| = 1.
Since ν ∈ ΛV , there exists some large k > 0 such that C0,V + kRe(vV JA) 6< 0.
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Let λ ∈ C with Re(λν) ≤ −k. We set λ1 := Re(λv)v and λ2 := λ− λ1.
Therefore, −Re(λ2V JA) = Re(λ2v)A = 0.

Using Re(λv) ≤ −k and −Re(vV JA) < 0, we can calculate

(4.59)

Cλ,V = C0,V −Re(λV JA)

= C0,V −Re(λ1V JA)−Re(λ2V JA)

= C0,V −Re(λν)Re(vV JA)− 0

4 C0,V + kRe(vV JA) 6< 0.

Accordingly, λ 6∈ AdmV , whence λ /∈ WV by (4.58).

4.5 The maximal operator and de�ciency indices

This section mainly bases on Don Hinton's idea that the geometric shape of Dλ(b) (in
particular the quantity r de�ned on page 75 below) is related to the de�ciency indices of the
maximal operator (see [17, �14-18]).

In this section we are going to de�ne the maximal operator for (2.1). The relation of its
domain of de�nition to D(L) provides a better understanding of the boundary conditions
posed in D(L).

We set

(4.60)
D(Lmax) := {y ∈ L2

A ∩ ACloc[a, b) : there exists f ∈ L2
A : Jy′ −By = Af a.e.},

D(L̂max) := {z ∈ L2
A ∩ ACloc[a, b) : there exists f ∈ L2

A : Jz′ −B∗z = Af a.e.}

and

(4.61)
D1 := {y ∈ D(Lmax) : [y, χµ](a) = 0},
D̂1 := {z ∈ D(L̂max) : [z,Φµ](a) = 0}.

As in the de�nition ofD(L) andD(L̂), these sets are meant as subsets of L2
A. I.e. y ∈ L2

A is in
one of these sets if and only if one representative of its class ful�lls the required assumptions.

To de�ne the maximal operator for (2.1) and for (3.15), we need one more

Assumption 3. For every y ∈ ACloc([a, b),Cn) and f ∈ L2
A, such that y = 0 in L2

A and y
solves one of the equations Jy′ −By = Af or Jy′ −B∗y = Af a.e. on [a, b), holds f = 0 in
L2

A.
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This assumption is equivalent to uniqueness of a corresponding function f ∈ L2
A for ev-

ery y ∈ D(Lmax) and every z ∈ D(Lmax). Assumption 2 demands the same, but only for
functions y, that ful�ll the boundary conditions in D(L), respectively in D(L̂). Hence As-
sumption 3 is stronger than Assumption 2.
Fortunately, the proofs of Remarks 4.4.1 and 4.4.2 (which give criteria that assure Assump-
tion 2 to hold), only use, that Rλf ful�lls J(Rλf)′ −BRλf = Af for some f ∈ L2

A, to show
Rλf = 0 in L2

A ⇒ f = 0 in L2
A. It does not require the boundary conditions, that Rλf

ful�lls. Whence the same proofs, with y ∈ D(Lmax) in place of Rµf , yield that the premises
of these Remarks even imply Assumption 3. So we obtain

Corollary 4.5.1. If the premises of Remark 4.4.1 together with corresponding premises
for the adjoint problem are ful�lled, or if the premises of Remark 4.4.2 are ful�lled, then
Assumption 3 holds true.

For the rest of this section we assume that Assumption 3 holds true.

Lemma 4.5.2.∗3

D1 = D(L) u {Φµξ : ξ ∈ Cn+

and Φµξ ∈ L2
A},(4.62)

D(Lmax) = D1 + {Ψµξ : ξ ∈ Cn−}(4.63)

= D(L) u {Ψµξ1 + Φµξ2 : ξ1 ∈ Cn−, ξ2 ∈ Cn+

, and Φµξ2 ∈ L2
A},(4.64)

D̂1 = D(L̂) u {χµξ : ξ ∈ Cn− and χµξ ∈ L2
A},(4.65)

D(L̂max) = D1 + {ζµξ : ξ ∈ Cn+}(4.66)

= D(L) u {ζµξ1 + χµξ2 : ξ1 ∈ Cn+

, ξ2 ∈ Cn−, and χµξ2 ∈ L2
A},(4.67)

Proof. We only show (4.62), (4.63), and (4.64). The other equations can be proven analo-
gously.

We �rst show (4.63). Therefor let y ∈ D1 with corresponding f ∈ L2
A such that Jy′−By =

Af a.e. on [a, b), and let ỹ := y + Ψµξ for some ξ ∈ Cn−. Since Ψµ solves (2.1) and
every column of Ψµ is in L2

A by (4.7), we conclude that ỹ is in Dmax, with corresponding
f̃ := f + µΨµξ ∈ L2

A.

On the other hand, for arbitrary y ∈ D(Lmax), we set ξ := [y, χµ](a). Using Ψµ =
Θµ + ΦµM0 (and hence [Ψµξ, χµ](a) = ξ by (4.11)) and the above knowledge again, we real-
ize that y −Ψµξ is in D1. This proves (4.63)
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Now we show (4.62), except that the sum is direct. This statement follows by (4.64).
Therefor let ỹ = y + Φµξ ∈ L2

A with y ∈ D(L).

D1 is obviously a superset of D(L), thus it contains y.

By (4.11), [Φµξ, χµ](a) = 0 and for f := µΦµξ ∈ L2
A holds

JΦ′
µξ = Af +BΦµξ.

So D1 contains Φµξ, too, and thus also ỹ.

Now let ỹ ∈ D1, i.e. ỹ ∈ L2
A ∩ ACloc[a, b) with [ỹ, χµ](a) = 0, and f ∈ L2

A such that
Jỹ′ −Bỹ = Af .

Lemma 4.4.4 yields y := Rµ(f − µỹ) ∈ D(L).

It su�ces to show that ϕ := y − ỹ = Φµξ for some ξ ∈ Cn+
. Equation (4.37) yields

Jϕ′ = (µA+B)y + A(f − µỹ)−Bỹ − Af = (µA+B)ϕ.

Thus ϕ = Θµξ1 + Φµξ2 for some ξ1 ∈ Cn−, ξ2 ∈ Cn+
. Using y ∈ D(L), we obtain

[ϕ, χµ](a) = [y, χµ](a)− [ỹ, χµ](a) = 0,

which implies ξ1 = 0 by (4.11). Hence ϕ ∈ {Φµξ : ξ ∈ Cn+
and Φµξ ∈ L2

A}.

It remains to show that the sum in (4.64) is direct.
So let y := (Ψµ|Φµ)ξ ∈ D(L) for some ξ ∈ Cn (in particular y ∈ L2

A). We have to show that
y = 0 in L2

A.

We know, that y solves Jy′ − By = µAy. Furthermore there exist some ỹ ∈ L2
A that

vanishes in L2
A, such that y+ ỹ ful�lls the premises in the de�nition of D(L). Whence there

is some f = Ly with
J(y + ỹ)′ −B(y + ỹ) = Af.

Thus, for f̃ := f − µy, we obtain
Jỹ′ −Bỹ = Af̃.

Assumption 3 yields f̃ = 0 in L2
A, whence f = µy in L2

A. So we obtain Ly = f = µy. We
know that µ is in the resolvent set of L. Thus we conclude y = 0 in L2

A.

Lemma 4.5.2 shows, in particular, that, if there is no L2
A-function Φµξ for some non-trivial

ξ ∈ Cn+
, then there are no boundary conditions in D(L) at b (i.e., [y, ζµ](b) = 0 follows

automatically from the other conditions posed in D(L)). Later we will call this the strict
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limit-point case.

We want to de�ne the maximal operator for (2.1). With Assumption 3, the following
operator is well-de�ned:

(4.68) Lmax :

{
D(Lmax) → L2

A

y 7→ f with Jy′ −By = Af a.e. on [a, b).

We call Lmax the maximal operator for (2.1). Furthermore, for λ ∈ C, let

(4.69) Nλ := ker(Lmax − λ)

denote the de�ciency space, and its dimension dλ the de�ciency index of Lmax.

For ξ1 ∈ Cn− and ξ2 ∈ Cn+
such that Φµξ2 ∈ L2

A, we have Lmax(Ψµξ1 + Φµξ2) = µ(Ψµξ1 +
Φµξ2). Since µ is in the resolvent set of L, (4.64) yields

Corollary 4.5.3.

Nµ = {Ψµξ : ξ ∈ Cn−}+ {Φµξ : ξ ∈ Cn+

and Φµξ ∈ L2
A} ⊆ L2

A.

If only the trivial solution of (2.1) (with λ = µ) vanishes in L2
A, then, since (Ψµ|Φµ) has full

rank,
dµ = n−+ dim{Φµξ : ξ ∈ Cn+

and Φµξ ∈ L2
A}.

µ ∈ WV was chosen arbitrarily, furthermore the maximal operator and the de�ciency
indices do not depend on this choice. Thus we can conclude

Corollary 4.5.4. For every λ ∈ WV ,

Nλ = {Ψλξ : ξ ∈ Cn−}+ {Φλξ : ξ ∈ Cn+

and Φλξ ∈ L2
A} ⊆ L2

A.

If only the trivial solution of (2.1) vanishes in L2
A, then

dλ = n−+ dim{Φλξ : ξ ∈ Cn+

and Φλξ ∈ L2
A}.

Now we consider the scalar examples. For the di�erential expressions τe[v] and τo[v] in L2
w

on page 23, with arbitrary coe�cient functions in L1
loc, we de�ne the maximal operators by

D(Lmax
e ) := {v ∈ L2

w(a, b) : v[j] ∈ ACloc[a, b) for 0 ≤ j ≤ 2m− 1
and τe[v] = wf for some f ∈ L2

w(a, b)},
Lmax

e v := f ∈ L2
w such that τe[v] = wf,

D(Lmax
o ) := {v ∈ L2

w(a, b) : v[j] ∈ ACloc[a, b) for 0 ≤ j ≤ 2m
and τo[v] = wf for some f ∈ L2

w(a, b)},
Lmax

o v := f ∈ L2
w such that τo[v] = wf.
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Since w > 0 on [a, b), and wf = wf̃ implies w(f− f̃) = 0, we see that the maximal operators
are well-de�ned.
We like to compare these maximal operators with the maximal operator for (2.1) with corre-
sponding functions. If we choose for example J = J1, we obtain A = A1 = diag(w, 0, . . . , 0)
and B = B1 (see pages 24 to 25 for the even and pages 25 to 26 for the odd case. Again, as
we will see, the actual choice of J has no in�uence in the following.)
We have shown that Assumption 2 holds true by showing the premises of Remark 4.4.1.
Hence Corollary 4.5.1 yields, that also Assumption 3 holds true.
Furthermore, since w > 0 on [a, b), the following shows that only the trivial solution of (2.1)
vanishes in L2

A: Let Y = (v1, . . . , vn)T a solution of JY ′ = (λA1 + B1) with A1Y = 0 a.e.
on [a, b). Then v1 is a solution of one of the scalar equations (2.31), respectively (2.32).
Furthermore wv1 = 0 a.e. on [a, b) (whence, by continuity, v1 = 0) and vj = v

[j−1]
1 = 0 for

j ≤ n. Thus follows Y = 0.

For simplicity, now we only consider the even case. The following results hold correspond-
ingly for the odd case with analog proofs.

Let Lmax the maximal operator for J1Y
′ = (λA1 +B1)Y .

For functions f, g ∈ L2
A let f1, g1 denote the �rst components. We have

< f, g >L2
A
=

∫ b

a

g∗Afdx =

∫ b

a

g1wf1dx =< f1, g1 >L2
w
.

This shows that Π : L2
A → L2

w, f 7→ f1 is well-de�ned and isometric. Obviously Π is also
surjective and therewith bijective.

Lemma 4.5.5. Π maps Lmax to Lmax
e , i.e. ΠLmaxΠ

−1 = Lmax
e .

(The corresponding statement for the odd case can be shown analogously.)

Proof. For y ∈ D(Lmax) let f := Lmaxy. By de�nition, we know that y and f are in L2
A,

hence v := y1 = Πy and f1 = Πf are in L2
w. Furthermore each component of y is in

ACloc[a, b) and it holds J1y
′ = B1y + A1f . By multiplication with −J1 we obtain

(4.70) y′ = M e
By +M e

Af = M e
By + (0 · · · 0− wf1)

T .

By construction of M e
B and M e

A on pages 23 to 25, (4.70) is equivalent to yj = y
[j−1]
1 = v[j−1]

for 2 ≤ j ≤ 2m and τe[y1] = wf1.
Hence all quasi-derivatives of v are in ACloc, and τe[v] = τe[y1] = wf1. Thus we conclude
that Πy = v ∈ D(Lmax

e ) and

Lmax
e (Πy) = Lmax

e v = f1 = Πf = ΠLmaxy.
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Since Π is injective, it remains to show that Π maps D(Lmax) onto D(Lmax
e ).

For v ∈ D(Lmax
e ), we set y := (v[j−1])1≤j≤2m and f := (Lmax

e v, 0, . . . , 0)T . Using (4.70) again,
we see that y ∈ D(Lmax), furthermore Πy = v[0] = v. Thus

Π
(
D(Lmax)

)
= D(Lmax

e ).

We conclude that the de�ciency index of Lmax is equal to that of Lmax
e .

Now we consider again the self-adjoint even order Example 1.2 on page 27, with the
suitable pair (Vc, Es). This is the self-adjoint example with canonical choice of V = Vc,
n+ = n−, and E = Es is chosen such that the corresponding operators L and L̂ have the same
boundary condition at a (since Pλ(a) = 0). Thus we have D1 = D̂1.
If we furthermore assume that Φµξ1, χµξ2 ∈ L2

A for some ξ1 ∈ Cn+
, ξ2 ∈ Cn− implies Φµξ1 =

χµξ2 = 0 in L2
A, then (4.62) and (4.65) yield D(L) = D1 = D̂1 = D(L̂). This would mean

L = L̂ = L∗.
In particular dµ = dµ = n− implies L = L∗. (Since B is self-adjoint in this example, dµ is the
de�ciency index of the maximal operator for the adjoint problems.)
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Chapter 5

Results

This chapter contains various results.
Relations between the geometrical shape of Dλ(b)−Cλ(b) and the dimensions of the solution
spaces of (2.1) within certain Hilbert spaces are examined. According to those quantities we
introduce some limit-point and limit-circle type classi�cation.
Properties of the M -function may yield further information about the spectrum of L.
With the aim to obtain yet further estimations for the spectrum of L, we restrict (2.1) to
some smaller interval [ã, b) ⊂ [a, b), furthermore we vary the choice of an admissible matrix
V .

5.1 Dimensions of the solution spaces

In this section we examine connections between the shape of Dλ(b)−Cλ(b) and the dimension
of the solution spaces of (2.1) and (3.15), respectively, intersected with L2

A or with L2
Cλ
,

respectively with L2cCλ
.

We will recover the two common cases of limit-point and limit-circle. But, since we consider
the higher order and non-self-adjoint situation, these cases require a more sophisticated
distinction.

Every statement and de�nition in this section, formulated for problem (2.1), also holds
correspondingly for the adjoint problem. Recall the exchanged roles of n+ and n− there.

For F ∈ {A,Cλ}, m ∈ N0 and any matrix-valued function Υ : [a, b) → Cn,m we use the
notation

[Υ]F := {Υξ : ξ ∈ Cm and Υξ ∈ L2
F}.
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Lemma 5.1.1.∗2 For λ ∈ WV , F ∈ {A,Cλ} let

mF := dim[Φλ]F .

There are exactly n−+mF linearly independent solution of (2.1) which lie in L2
F .

Proof. From

(5.1) Ψλ = Yλ

( In−

M(λ)

)
,

we see that Ψλ has rank n−. The columns of Ψλ are in L2
Cλ

and in L2
A by (4.6) and (4.7).

Let F ∈ {A,Cλ}. Using Φλ = Yλ

(
0

In+

)
, with (5.1) we conclude the directness of the sum

[Ψλ]F u [Φλ]F . Thus this space, consisting of functions in L2
F , has dimension n−+ mF .

Therefore, with n−+m denoting the exact number of linearly independent solutions of (2.1)
in L2

F , we have m ≥ mF .

On the other hand, n−+m independent solutions of (2.1) are of the form YλΞ with a matrix
Ξ ∈ Cn,n−+m = Cn−+n+,n−+m of full rank n−+m. W.l.o.g. let Ξ a block matrix of the shape(

Ξ1 0n−,m

Ξ2 Ξ3

)
with Ξ3 ∈ Cn+,m. This implies that every column of ΦλΞ3 lies in [Φλ]F . Thus mF ≥ m.

Lemma 5.1.2.∗2 For λ ∈ WV let m the number of eigenvalues of Pλ(c) that remain bounded
as c→ b.
There are exactly n−+m linearly independent solutions of (2.1) which lie in L2

Cλ
.

Proof. If there are n−+m linearly independent solution of (2.1) which lie in L2
Cλ
, by Lemma

5.1.1 there exists Ξ ∈ Cn,m with rank m, such that the columns of ΦλΞ are in L2
Cλ
. Using

(2.20) and (2.13), we obtain for every ξ ∈ Cm

ξ∗Ξ∗Pλ(c)Ξξ = ξ∗Ξ∗Pλ(a)Ξξ +

∫ c

a

(ΦλΞξ)
∗CλΦλΞξ dx ≤ ξ∗Ξ∗Pλ(a)Ξξ + ||ΦλΞξ||2Cλ

.

The space {Ξξ : ξ ∈ Cm} has dimension m. Hence the min-max-principle yields that the m
smallest eigenvalues of Pλ(c) remain bounded as c tends to b.

Conversely, let 0 ≤ λ1(c) ≤ λ2(c) ≤ · · · ≤ λm(c) the smallest eigenvalues of Pλ(c) with
corresponding orthonormal eigenvectors ξ1(c), . . . , ξm(c). We set Υ := (ξ1|ξ2| . . . |ξm). Since
Cn,m has a compact unit sphere, there exists some increasing sequence (cp) tending to b such
that Υ(cp) converges to some Ξ ∈ Cn,m for p→∞. The columns of Ξ are orthonormal, thus
Ξ has rank m.
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If m eigenvalues of Pλ are bounded, then λm ≤ k on [a, b) for some constant k. Using
Pλ(a) ≥ 0 and (2.20) again, this yields for any p, p̃ ∈ N with p ≥ p̃:

(
Υ(cp)

)∗ ∫ cep
a

Φ∗
λCλΦλ dx Υ(cp) ≤

(
Υ(cp)

)∗ ∫ cp

a

Φ∗
λCλΦλ dx Υ(cp)

=
(
Υ(cp)

)∗
Pλ(cp)Υ(cp)−Υ(cp)

∗Pλ(a)Υ(cp)

≤ k
(
Υ(cp)

)∗
Υ(cp) = kIm.

Convergence of Υ(cp) to Ξ yields∫ cep
a

(Φλ(x)Ξ)∗Cλ(x)Φλ(x)Ξ dx = Ξ∗
∫ cep

a

Φ∗
λCλΦλ dx Ξ ≤ kIm,

for any p̃ ∈ N. With cep → b (as p̃→∞) and Cλ < 0, we conclude ΦλΞ ∈ L2
Cλ
.

Note that Lemmata 5.1.1 and 5.1.2 do not state that the solutions are linearly independent
within L2

Cλ
or L2

A, respectively. The number of linearly independent solutions of (2.1) within
L2

Cλ
, or within L2

A, respectively, may be smaller.

For λ ∈ WV we de�ne the geometrical variables

(5.2) Lλ := Dλ(b)− Cλ(b),

(5.3) r := dim
(

span
(
{Ξξ : Ξ ∈ Lλ, ξ ∈ Cn−}

))
.

Theorem 5.1.3.∗1 Let λ ∈ WV .

(i) There are at least n−+ r linearly independent solutions of (2.1) which lie in L2
Cλ

.

(ii) If Rλ(x) 9 0 as x→ b, there are exactly n−+ r linearly independent solutions of (2.1)
which lie in L2

Cλ
.

Proof. The proof is completely analogous to the proof of [5, Theorem 4.2 and Lemma 4.3],
with the exception that n must be replaced by n−. The required corresponding assertions
are Theorem 2.2.7, Lemma 5.1.2, Corollary 2.2.3, (2.26) and (2.27).

Lemmata 5.1.1, 5.1.2 and Theorem 5.1.3 together yield
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Corollary 5.1.4. Let λ ∈ WV .
The number of linearly independent solutions of (2.1) which lie in L2

Cλ
, minus n−, is equal

to dim[Φλ]Cλ
and equal to the number of bounded eigenvalues of Pλ.

If Rλ(x) 9 0 as x→ b, then it is also equal to r.

For further conclusions we need the following topological properties of AdmV and ΛV (see
(2.5) and (2.6)).

Lemma 5.1.5. AdmV is convex, ΛV is an open wedge. Thus WV = AdmV +ΛV is open and
convex. Furthermore WV is the set of the interior points of AdmV .

Proof. Let k1, k2 ∈ AdmV and % ∈ (0, 1). De�nition (2.5) yields

−Re(kjV JA) ≥ Re(V JB) a.e. on [a, b)

for j = 1, 2. Thus for k := %k1 + (1− %)k2, we obtain

−Re(kV JA) ≥ %Re(V JB) + (1− %)Re(V JB) = Re(V JB) a.e. on [a, b),

which means k ∈ AdmV . Hence AdmV is convex.

Let λ1, λ2 ∈ ΛV with corresponding δ1, δ2 > 0 from De�nition (2.6) such that

−Re(λjV JA) ≥ δjA a.e. on [a, b)

for j = 1, 2. Furthermore let % ∈ (0, 1). For λ := %λ1 + (1 − %)λ2 and δ := min{δ1, δ2} we
obtain

−Re(λV JA) ≥ %δ1A+ (1− %)δ2A ≥ %δA+ (1− %)δA = δA.

Thus we know λ ∈ ΛV , which shows convexity of ΛV .

For % > 0 and λ ∈ ΛV ,

−Re(%λV JA) = %
(
−Re(λV JA)

)
< −Re(λV JA) < A

shows %λ ∈ ΛV .

Finally let λ ∈ ΛV with corresponding δ > 0, such that −Re(λV JA) ≥ δA a.e. on [a, b).
By Corollary 4.1.2 (v) there exists ε > 0 with

A ≥ ±εRe(V JA), A ≥ ±εRe(iV JA) a.e. on [a, b).

Thus for ν ∈ C with |ν − λ| < 1
3
δε we have

(5.4)

−Re(νV JA) ≥ −Re(νV JA)− (−Re(λV JA)− δA)

= −Re((ν − λ)V JA) + δA

= −Re(ν − λ)Re
(
V JA

)
− Im(ν − λ)Re

(
iV JA

)
+ δA

≥ −1

3
δε

1

ε
A− 1

3
δε

1

ε
A+ δA =

1

3
δA a.e. on [a, b).
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Hence ν ∈ ΛV , which shows that ΛV is open.

We have shown that AdmV is convex and ΛV is an open wedge. Thus WV = AdmV + ΛV

is open and convex.

Since WV ⊆ AdmV , by (2.14), we obtain that every element of the open set WV is an
interior point of AdmV .
On the other hand, let λ an interior point of AdmV . Let ε > 0, such that an ε-neighborhood
of λ lies in AdmV . We chosen some λ0 ∈ ΛV with |λ0| < ε. Therewith λ − λ0 ∈ AdmV ,
whence, by de�nition, λ = λ− λ0 + λ0 ∈ AdmV + ΛV = WV .

Now we can conclude

Theorem 5.1.6.∗3 Let NA(λ), NCλ
(λ) the number of linearly independent solutions of (2.1)

that are in L2
A or in L2

Cλ
, respectively. Then NA and NCλ

are constant on WV .

Proof. Let F ∈ {A,Cλ}.
By Lemma 5.1.5, the set WV is convex and open. Therewith it su�ces to show that NF is
locally constant. The assertion then follows by standard connectivity arguments.
Let λ0 ∈ WV . By Theorem 4.3.3 there exists some k, ε0 > 0, such that ||Rλ||F ≤ k for all
λ ∈ WV with |λ0 − λ| < ε0.

Let ε := min{ε0,
1
k
} > 0.

Furthermore let λ1, λ2 ∈ WV with λ1 6= λ2 and |λ0 − λj| < ε for j = 1, 2.

By symmetry it su�ces to show NF (λ1) ≤ NF (λ2).

We set m := NF (λ1)− n−. We assume w.l.o.g. m > 0, for otherwise the assertion follows
by Lemma 5.1.1.
The same Lemma yields some matrix Ξ ∈ Cn−,m with rank m such that the columns of Φλ1Ξ
are in L2

F . With

J(Φλ1Ξ)′ = (λ2A+B)Φλ1Ξ + (λ1 − λ2)AΦλ1Ξ

and (4.37), we obtain

(5.5) Φλ1Ξ = (λ1 − λ2)Rλ2(Φλ1Ξ) + Θλ2Ω1 + Φλ2Ω2,

for some matrices Ω1 ∈ Cn−,m, Ω2 ∈ Cn+,m. Multiplication with χ∗λ1
J from the left and

evaluation at a shows Ω1 = 0 by (4.11), (4.38), and χλ1(a) = χλ2(a).
Hence the columns of Φλ2Ω2 are in L2

F , because so are the columns of all other terms in (5.5)
by assumption on Ξ and Theorem 4.3.3.
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If Ω2 would have rank less than m, some nontrivial ξ ∈ Cm would exist with Ω2ξ = 0.
Whereas Ξξ 6= 0 since Ξ has rank m. With (5.5) we could calculate

Rλ2(Φλ1Ξξ) = Rλ2(Φλ1Ξ)ξ =
1

λ1 − λ2

Φλ1Ξξ.

This would imply ||Rλ2||F ≥ (λ1 − λ2)
−1 > k, a contradiction.

Thus Ω2 has full rank. This shows that dim[Φλ2 ]F ≥ m. Hence Lemma 5.1.1 yields
NF (λ2) ≥ n−+m = NF (λ1).

Since the number of linearly independent solutions of (2.1) that are in L2
A does not depend

on the choice of a suitable pair, we obtain

Corollary 5.1.7.∗2 The number of linearly independent solutions of (2.1) that are in L2
A is

constant on every connected component of the open set⋃
eV admissible

WeV .

Now we want to classify the problem. Therefor let λ ∈ WV .

In view of Theorem 5.1.6, Theorem 5.1.10, Lemma 5.1.12, and Theorem 5.1.14 below, in
the following classi�cations there is no dependence on the actual choice of this λ inWV . Thus
we do not note any dependences on λ. Yet it should be remarked, that the classi�cation
may depend on V .

We say, that problem (2.1) is in the limit-point case, if Lλ = {0}. That is equivalent to
Dλ(b) consisting of exactly one point, respectively to r being zero.

The occurrence of an intermediate case, neither limit-point nor limit-circle is well known
(e.g. see [16]). This naturally arises in higher order systems. Lλ 6= {0} does not imply that
Lλ is an open set in Cn+,n− (as long as n+n−> 1).
Therefore we say that problem (2.1) is in the non-limit-point case, if it is not in the limit-
point case. To emphasis the geometrical role of r (which is at least 1 in the non-limit-point
case), we also call it the r-non-limit-point case.

For the n+-non-limit-point case we use the notation limit-circle case. Theorem 5.1.10
below shows that (2.1) is in the limit-circle case, if and only if all solutions of (2.1) are in
L2

Cλ
.

An even stronger geometric assumption on Dλ(b) is to have interior points within Cn+,n−

and n+n−> 0. We name this the full limit-circle case.
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If r < n+, then there may exist more than n−+r linearly independent solution of (2.1) that
are in L2

A. There are three reasons for this.
First of all L2

A may be larger than L2
Cλ
, while the behavior of Dλ(x), and therewith the value

of r, depends on Cλ rather than on A. Already 1957, Sims observed this phenomenon in the
two-dimensional case in [19].

The second reason is the freedom in n+ and n−. For example if n−= 0, only the limit-point
case can occur because Dλ(b) ⊂ Cn+,n−, where Cn+,n− is a vector space of dimension zero. Yet
there may exist solutions of (2.1) in L2

A (for an example see section 6.4 below). Thus, also
if A � Cλ (e.g. in the self-adjoint case with canonical choice of V ), there could exist more
than n− linearly independent solution of (2.1) that are in L2

A.

The third reason is the following: As it will turn out, if Rλ tends to 0, then r = 0. But the
amount of linearly independent solutions of (2.1) that are in L2

A depends on the behavior of
Pλ and may be larger than n+ (cp. Theorem 5.1.3 (ii)).

To distinguish further characteristics of the problem (which are mainly of importance if
A 6� Cλ), we also use the following classi�cations:

If there are exactly n− independent solutions of (2.1) that are in L2
A, we say that problem

(2.1) is in the strict limit-point case.

We say that problem (2.1) is in the weak limit-circle case, if all solutions of (2.1) are
in L2

A.

Since Cλ < A, the limit-circle case implies the weak limit-circle case, and, by de�nition,
the non-limit-point case.

If A � Cλ and n+n−> 0, then the weak limit-circle case is equivalent to the limit-circle case.

In the following, we use the notation n+(·) for the number of positive eigenvalues of a
self-adjoint matrix counted in their algebraic multiplicity.

Theorem 5.1.6 yields

Corollary 5.1.8. If (2.1) is in the weak limit-circle case, then this holds for every suitable
pair (Ṽ , Ẽ) with WV ∩WeV 6= ∅.

If (2.1) is in the strict limit-point case, then this holds for every suitable pair (Ṽ , Ẽ) with
WV ∩WeV 6= ∅ and n−(Ṽ ) = n−.

Furthermore holds

Lemma 5.1.9.∗3 If Rλ(x) → 0 as x→ b, then (2.1) is in the limit-point case.

Proof. Let l ∈ Dλ(b)− Cλ(b). We show that l = 0 ∈ Cn+,n−, which gives Lλ = {0}.
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Theorem 2.2.7 (iv) yields l ∈ Dλ(c) − Cλ(c) for each c ∈ [c0(λ), b). By (2.26) this means
l∗Pλ(c)l ≤ Rλ(c).

Using Lemma 2.2.4 we obtain

l∗Pλ(c0(λ))l ≤ l∗Pλ(x)l ≤ Rλ(x)

for every x ∈ [c0(λ), b). Since the right-hand side tends to zero, and Pλ(c0(λ)) > 0, we obtain
l = 0.

Theorem 5.1.3 and Lemma 5.1.9 yield

Theorem 5.1.10.∗2 In the r-non-limit-point case there are exactly n−+ r independent solu-
tions of (2.1) in L2

Cλ
.

In the non-limit-point case, r equals to the number of eigenvalues of Pλ that are bounded,
by Corollary 5.1.4. Since Pλ is increasing, we can conclude

Corollary 5.1.11. In the non-limit-point case, equation (2.1) is in the limit-circle case if
and only if Pλ(x) converges as x tends to b.

This helps us to show

Lemma 5.1.12. Equation (2.1) is in the full limit-circle case if and only if both (2.1) and
(3.15) are in the limit-circle case.

Proof. If Dλ(b) has interior points, then also Dλ(b) − Cλ(b) and D̂λ(b) − Ĉλ(b) = (Dλ(b) −
Cλ(b))

∗ have interior points. Hence the ranges of Dλ(b) − Cλ(b) and of D̂λ(b) − Ĉλ(b) are
the whole Cn+

, respectively the whole Cn−.

On the other hand, if (2.1) is in the limit-circle case, then the previous Corollary shows
that Pλ converges to some Pλ,b. If (3.15) is in the limit-circle case, we obtain the same result
for P̂λ. Therewith (3.47) shows that Rλ converges to some Rλ(b) > 0. Since P−1

λ and Rλ

are decreasing, any element of

D := P
−1/2
λ,b {N ∈ Cn+,n− : N∗N ≤ In−}Rλ(b)

1/2

is in Dλ(x)−Cλ(x) by (2.27) for every x ∈ [a, b) and therewith in Dλ(b)−Cλ(b) by Theorem
2.2.7.
D has interior points because P−1/2

λ,b > εIn+ and Rλ(b)
1/2 > εIn− for some ε > 0. Thus also

Dλ(b) has interior points.
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It should be mentioned that r and the analogous value r̂ for the adjoint case need not
coincide. Yet there is an important connection: r = 0 is equivalent to Dλ(b) consisting of
one point. Thus, by Lemma 3.3.1, D̂λ(b) also consists of one point, which means r̂ = 0. We
obtain

Corollary 5.1.13. (2.1) is in the limit-point case if and only if (3.15) is in the limit-point
case.

Furthermore holds

Theorem 5.1.14. (2.1) is in the limit-point case if and only if at least one of the following
assertions holds:

(i) There are exactly n− independent solutions of (2.1) that are in L2
Cλ

.

(ii) There are exactly n+ independent solutions of (3.15) that are in L2cCλ
.

Proof. If Rλ(x) → 0 as x→ b, then Lemma 5.1.9 states that (2.1) is in the limit-point case,
furthermore (3.47) implies that no eigenvalue of P̂λ(x) is bounded as x tends to b. Thus the
corresponding assertion of Lemma 5.1.2 for the adjoint case yields that there are exactly n+

independent solutions of (3.15) which are in L2cCλ
.

If Rλ(x) 9 0, then (3.47) implies that at least one eigenvalue of P̂λ(x) is bounded as x
tends to b, hence there are more than n+ independent solutions of (3.15) that are in L2cCλ

. So

statement (ii) is false.
Theorem 5.1.3 yields: There are exactly n− independent solutions of (2.1) that are in L2

Cλ
if

and only if r = 0, which means (2.1) being in the limit-point case.

The statement in Theorem 5.1.14 about the number of linearly independent solutions that
lie in L2

Cλ
in the limit-point case, is weaker than the corresponding statement in Theorem

5.1.10 for the non-limit-point case. In section 6.3 below, using an augmentation method, we
will obtain a nearly comparable assertion for the limit-point case in Lemma 6.3.3.

Since Cλ < A, Theorem 5.1.14 yields

Corollary 5.1.15. If (2.1) or (3.15) is in the strict limit-point case, then (2.1) is in the
limit-point case.

Furthermore Theorem 5.1.14 and Lemma 4.1.5 imply

Corollary 5.1.16. If A � Cλ, then (2.1) is in the limit-point case if and only if (2.1) or
(3.15) is in the strict limit-point case.
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We transfer the proof of [7, Chapter 9, Theorem 2.1] to show

Lemma 5.1.17.∗2 If (2.1) and (3.15) are both in the weak limit-circle case, then all solutions
of (2.1) are in L2

A for all λ ∈ C and therewith Rλ is a compact operator.

Proof. Let λ ∈ C and let y a solution of (2.1).
We choose λ0 ∈ WV (so that all columns of Yλ0 and of Zλ0 are in L2

A) and c ∈ [a, b), such
that for

K :=
(
max

{∣∣ ∫ b

c

ξ∗Y ∗
λ0
AYλ0ξdx

∣∣, ∣∣∣∣ ∫ b

c

Y ∗
λ0
AYλ0dx

∣∣∣∣
∞,
∣∣∣∣ ∫ b

c

J0Z
∗
λ0
AZλ0J

∗
0dx
∣∣∣∣
∞

} )1/2

holds K2 < 1
2n|λ−λ0| , where || · ||∞ means the maximum norm in Cn,n , and ξ ∈ Cn is as in

Lemma 3.4.1 for the chosen function y.

For any d ∈ [c, b), x ∈ [c, d], and Ψ1,Ψ2 ∈ L2
A(c, d), we de�ne

〈
ψ1, ψ2

〉
x

:=

∫ x

c

ψ∗2(s)A(s)ψ1(s)ds

and correspondingly ||·||x.
In the following we use the notation (·)j for the jth column. The Schwarz inequality in
L2

A(c, x) yields

(5.6)
∣∣〈y, (Zλ0J

∗
0 )j

〉
x

∣∣ ≤ ||y||x ||(Zλ0J
∗
0 )j||x ≤ K||y||x ≤ K||y||d,

for j ≤ n. Correspondingly we obtain

(5.7)
∣∣〈Yλ0ξ, y

〉
d

∣∣ ≤ K||y||d.

Using (3.51), (5.7) and (5.6), we can estimate
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(5.8)

||y||2d =
〈
x 7→ Yλ0(x)ξ − (λ− λ0)Yλ0(x)J0

∫ x

c

Z∗λ0
(s)A(s)y(s)ds , y

〉
d

≤ K||y||d + |λ− λ0|
∣∣∣〈x 7→ Yλ0(x)J0

∫ x

c

Z∗λ0
(s)A(s)y(s)ds , y

〉
d

∣∣∣
= K||y||d + |λ− λ0|

∣∣∣ ∫ d

c

(
y∗(x)A(x)Yλ0(x)

)( ∫ x

c

(Zλ0J
∗
0 )∗(s)A(s)y(s)ds

)
dx
∣∣∣

= K||y||d + |λ− λ0|
∣∣∣ n∑

j=1

∫ d

c

(
y∗(x)A(x)Yλ0(x)

)
j

〈
y, (Zλ0J

∗
0 )j

〉
x
dx
∣∣∣

≤ K||y||d +K||y||d |λ− λ0|
n∑

j=1

∫ d

c

∣∣y∗(x)A(x)
(
Yλ0(x)

)
j

∣∣dx
≤ K||y||d +K||y||d |λ− λ0|

n∑
j=1

||y||d ||(Yλ0)j||d

≤ K||y||d + nK2|λ− λ0| ||y||2d ≤ K||y||d +
1

2
||y||2d.

Thus, ||y||d ≤ 2K for every d ∈ [c, b) and hence y ∈ L2
A[c, b). The result follows, since any

solution of (2.1) lies in L2
A[a, c].

If all solutions of (2.1) are in L2
A, then Gλ, de�ned in (4.34), is a Hilbert-Schmidt kernel.

Thus Rλ is compact.

5.2 Connection between the limit sets and the de�ciency
index of the maximal operator

For this section we assume that Assumption 3 holds true, furthermore that for λ ∈ WV only
the trivial solution of (2.1) vanishes in L2

A.

We consider again the de�ciency index dλ of the maximal operator for (2.1).

Corollary 4.5.4 states dλ = n−+ dim[Φλ]A for λ ∈ WV . Therewith, Lemma 5.1.1 and
Theorem 5.1.6 show that λ 7→ dλ is constant on WV .

Now we assume A � Cλ (which, for example, holds true in the self-adjoint setting with
the canonical choice of V ).
Therewith L2

A equals L2
Cλ

as a set of classes of functions. Thus, dλ = n−+ dim[Φλ]Cλ
.
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Using Corollary 5.1.4, we obtain that dλ is equal to n− plus the number of bounded eigen-
values of Pλ and equal to the number of linearly independent solutions of (2.1), which lie in
L2

Cλ
.

If Rλ(x) 9 0 as x→ b, then it is also equal to n−+r.

If r > 0 then (2.1) is in the non-limit-point case, whence Rλ(x) 9 0. Thus we obtain

(5.9) r > 0 =⇒ dλ = n−+ r.

The latter equation shows a connection between the geometrical shape of the limit sets and
the de�ciency index of the maximal operator in the case A � Cλ .

Now we withdraw the assumption A � Cλ .
We still have Cλ < A, whence any function Φλξ ∈ L2

Cλ
(for some ξ ∈ Cn+

) also lies in L2
A.

Hence dλ = n−+ dim[Φλ]A ≥ n−+ dim[Φλ]Cλ
. As above, we obtain correspondingly

r > 0 =⇒ dλ ≥ n−+ r.

With n−≤ dλ ≤ n−+ n+ we conclude

(5.10) n−+ r ≤ dλ ≤ n−+ n+.

This again shows a connection between the geometrical shape of the limit sets and the de�-
ciency index of the maximal operator in the general case.

5.3 Properties of the M-function

As usual in the Titchmarsh-Weyl theory we have

Theorem 5.3.1.∗1 M is analytic on WV .

Proof. For λ ∈ WV , we �rst want to show the relation

(5.11) Ψλ = Ψµ + (λ− µ)RλΨµ.

Since Ψµ solves JΨ′
µ = (µA+B)Ψµ, we obtain

JΨ′
µ = (λA+B)Ψµ + (µ− λ)AΨµ.

Equation (4.37) implies

(5.12) Ψµ = (µ− λ)RλΨµ + ΨλΞ1 + ΦλΞ2,
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for some matrices Ξ1 ∈ Cn−,n−, Ξ2 ∈ Cn+,n−, because (Ψλ|Φλ) is a fundamental matrix for
(2.1). We pre-multiply with (In−|0)E−1 and evaluate (5.12) at a. Using Ψλ = Θλ + ΦλM(λ),
furthermore Y (a) = E, and (4.36), we obtain Ξ1 = In−.

Moreover pre-multiplication with ζ∗λJ and use of (4.11) gives

(5.13)

[Ψµ, ζλ]− [Ψλ, ζλ]− (µ− λ)[RλΨµ, ζλ] = [Φλ, ζλ]Ξ2

=
(
[Φλ, ηλ] +M(λ)[Φλ, χλ]

)
Ξ2

= −Ξ2.

With (4.11), again, we obtain

(5.14) [Ψλ, ζλ] =
(
In−|M(λ)

)
[Yλ, Zλ]

(
In−
M(λ)

)
=
(
In−|M(λ)

)( 0 −In+

In− 0

)(
In−
M(λ)

)
= 0.

Using furthermore (4.31) and (4.38), we see that every column of the left-hand-side of (5.13)
tends to zero as x tends to b. Thus Ξ2 = 0. This proves equation (5.11).

Therewith, using Theorem 4.2.3, we obtain:

(5.15)
M(λ) = M0 + (λ− µ)

∫ b

a

ζ∗µAΨλdx

= M0 + (λ− µ)

∫ b

a

ζ∗µAΨµdx+ (λ− µ)2
〈
RλΨµ, ζµ

〉
L2

A
.

By Theorem 4.4.8, Rλ is the resolvent of L at λ, thus λ 7→ Rλ is analytic on ρ(L) ⊃ WV (cf.
[15, III, Theorem 6.7]). Hence (5.15) shows that λ→M(λ) is analytic on WV .

We can use the information of the proof of Theorem 5.3.1 to extend the M -function
analytically on ρ(L):

Corollary 5.3.2.∗1 By (5.15), the de�nition

(5.16) M(λ) := M0 + (λ− µ)

∫ b

a

ζ∗µAΨµdx+ (λ− µ)2
〈
(L− λ)−1Ψµ, ζµ

〉
L2

A

is an analytic extension of M to ρ(L).

Theorem 5.3.3.∗3 If (2.1) is in the weak limit-circle case, then (5.16) de�nes a meromorphic
extension of M to the whole of C. The poles of M are eigenvalues of L.
If also (3.15) is in the weak limit-circle case, then every eigenvalue of L is a pole of M .

Proof. In the weak limit-circle case, for λ = µ all solutions of (2.1) are in L2
A.

Therewith, equations (4.34) and (4.35) imply that (L− µ)−1 = Rµ is a Hilbert-Schmidt op-
erator and thus compact. Hence the spectrum of L consists only of isolated eigenvalues with
�nite algebraic multiplicity and (L− λ)−1 is compact for all λ ∈ C except these eigenvalues.
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Meromorphicity of λ 7→ (L − λ)−1 with poles only at the eigenvalues of L, follows, for
example, from [15, III, �5].

Equation (5.16) shows that any pole of M is a pole of λ 7→ (L − λ)−1, and thus in the
spectrum of L.

If also (3.15) is in the weak limit-circle case, Lemma 5.1.17 and a corresponding statement
for the adjoint problem yield that for every λ ∈ C, all solutions of (2.1) and of (3.15) are
in L2

A. M has no poles in the resolvent set of L. Thus, (4.36) de�nes an extension of Rλ to
ρ(L).
Rλ is a bounded operator L2

A → L2
A. With the same argumentation as for λ ∈ WV , we obtain

Rλ = (L− λ)−1.

Let ν ∈ C such that M has no pole in ν. Thus M is bounded on a neighborhood N of ν.
Theorem 3.4.2 (ii) and a corresponding statement for Zλ yield that λ 7→ ||(Yλ)j||L2

A
and

λ 7→ ||(Zλ)j||A are locally bounded for any j ≤ n. So the same holds for λ 7→ ||(Φλ)j||A,
λ 7→ ||(Ψλ)j||A, λ 7→ ||(ζλ)j||A, and λ 7→ ||(χλ)j||A, where Ψλ = Θλ + ΦλM(λ) and ζλ =
ηλ + χλM(λ)∗. We assume w.l.o.g. that these functions are bounded on N .

We want to show that λ 7→ ||Rλ||L2
A→L2

A
is bounded on N . Therefor let f ∈ L2

A with
||f ||A = 1. We set

gλ(x) := Ψλ(x)

∫ x

a

χ∗λ(y)A(y)f(y)dy

and

hλ(x) := Φλ(x)

∫ b

x

ζ∗λ(y)A(y)f(y)dy.

Thus we have Rλf = gλ +hλ by (4.34) and (4.35). It su�ces to show λ 7→ (||gλ||A, ||hλ||A) is
bounded on N with an upper bound independent of f . We show this assertion for hλ. The
proof for gλ is analogous.

||hλ||2A =

∫ b

a

(∫ b

x

f̄(y)A(y)ζλ(y)dy Φ∗
λ(x)A(x)Φλ(x)

∫ b

x

ζ∗λ(y)A(y)f(y)dy

)
dx

=
n−∑

j,k=1

∫ b

a

((∫ b

x

f̄(y)A(y)ζλ(y)dy
)

j

(
Φ∗

λ(x)A(x)Φλ(x)
)

j,k

(∫ b

x

ζ∗λ(y)A(y)f(y)dy
)

k

)
dx

=
n−∑

j,k=1

∫ b

a

((
Φ∗

λ(x)A(x)Φλ(x)
)

j,k

〈
(ζλ)j, f

〉
L2

A(x,b)

〈
f, (ζλ)k

〉
L2

A(x,b)

)
dx

≤
n−∑

j,k=1

∫ b

a

(∣∣∣(Φ∗
λ(x)A(x)Φλ(x)

)
j,k

∣∣∣ ||(ζλ)j||L2
A(x,b) ||(ζλ)k||L2

A(x,b)

)
dx

≤
n−∑

j,k=1

||(ζλ)j||A ||(ζλ)k||A ||(Φλ)j||A ||(Φλ)k||A.
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The righthand side is bounded on N as a function of λ. Thus we know, that

λ 7→ ||Rλ||L2
A→L2

A
= ||(L− λ)−1||L2

A→L2
A

is bounded on a punctured neighborhood of ν. This shows that ν is no eigenvalue of L.

For the cases n+ = 0 or n− = 0, Theorem 5.3.1 and Corollary 5.3.2 bear no information,
because M = 0n+,n− has no entries. But Theorem 5.3.3 with the stronger assumption yields
ρ(L) = C.

5.4 Further spectral estimates

This section consists of two parts.

In the �rst part (2.1) is examined on [ã, b) for some ã > a. This may yield better spectral
estimates (cp. [6, Theorem 4.5]).

The second part assumes the strict limit-point case. By variation of the admissible matrix
V , we also obtain further spectral estimates (cp. [5, Theorem 6.4]).

5.4.1 Restriction of the problem to [ã, b) ⊆ [a, b)

To consider (2.1) on [ã, b), we need one constraint such that Assumption 2 (see page 59)
remains true. Therefor we set

(5.17)

b̂ := sup{ã ∈ [a, b) : For all f ∈ L2
A with supp f ⊂ [ã, b), ess suppARµf ⊆ [a, ã]

and [Rµf, χµ](ã) = 0 holds f = 0 in L2
A.

Furthermore for all g ∈ L2
A with supp g ⊂ [ã, b), ess suppAR̂µg ⊆ [a, ã]

and [R̂µg,Φµ](ã) = 0 holds g = 0 in L2
A.},

where the essential support of a function f is de�ned by

ess supp(f) :=
⋂{

{x ∈ D(f) \N0 : f(x) 6= 0}
D(f)

: N0 has measure 0
}
.

As we will see ã < b̂ is necessary and su�cient for Assumption 2 to hold, when restricting
the problem to [ã, b). But, unless we can choose ã ≥ c0(µ), another problem occurs with
(2.10), the condition that provides eventually de�niteness of Pλ for all λ in WV .
Fortunately Corollary 5.4.3 below yields two criteria, which imply b̂ = b. Furthermore if
Pλ(a) > 0 then we could set c0(µ) = a.
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Theorem 5.4.1. Let ã ∈ [a, b̂). If we consider (2.1) on [ã, b) and name W̃V = W̃ ã
V the set

which corresponds to WV , we have the following result:

(i) W̃V ⊇ WV , W̃V = W̃ ã
V is increasing as a function of ã.

(ii) If b̂ > c0(µ), then W̃V \ ρ(L) consists at most of isolated points.

(iii) If furthermore, for λ ∈ W̃V \ ρ(L), only the trivial solution of (2.1) vanishes in L2
A,

then λ lies in σp(L), the point spectrum of L.

In [6, Theorem 4.7] a corresponding result is shown in the limit-point case for second order
Sturm-Liouville problems.

Proof. For the proof we also name all further corresponding quantities for the problem on
[ã, b) with a tilde.

If we recall WV = AdmV + ΛV , De�nitions (2.5) and (2.6) yield statement (i).

Now we assume b̂ > c0(µ).
With (i), we can furthermore assume w.l.o.g. ã > c0(µ) and that ã ful�lls the premise in the
braces of (5.17).

If A = 0 a.e. on [ã, b), then both, (2.1) and (3.15) are in the weak limit-circle case, because
any column of Yλ or of Zλ is continuous and A ∈ L1

loc[a, b). Lemma 5.1.17 yields that the
whole spectrum of L consists of isolated points in σp(L).
So we can furthermore assume w.l.o.g. A|[ã,b) 6= 0 on a set of positive measure. This is the
only fundamental requirement, which may be violated by considering the problem on [ã, b).

Let Ẽ := Yµ(ã). We �rst show that (V, Ẽ) is suitable for problem (2.1) on [ã, b) (with
ñ+ = n+, ñ−= n− ).

Admissibility of V is equivalent to W̃V not being empty, which is given by (i). Using the
de�nition of Ẽ, equation (2.8) yields

P̃V, eE(ã) =
1

2
Φ∗

µ(ã)V Φµ(ã) = P (ã) > 0,

since ã > c0(µ). Thus Remark 2.1.2 shows suitability of (V, Ẽ).

Again by (i) we know µ ∈ W̃V . Since Yµ solves (2.1) and Yµ(ã) = Ẽ, we obtain Ỹµ = Yµ|[ã,b).

Therewith, the corresponding relations hold for Θ̃µ, Φ̃µ, Z̃µ, η̃µ, and χ̃µ by (2.7), (3.20), (3.19)
and (4.34).
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Using (2.11), we can conclude D̃µ(c) = Dµ(c) for every c ∈ [ã, b). So by de�nition
D̃µ(b) = Dµ(b) and thus M0 ∈ D̃µ(b). Hence we can choose the same pair (µ,M0) for
the construction of the M -function M̃ . In particular, we obtain M̃(µ) = M0 = M(µ). With
the above knowledge we obtain Ψ̃µ = Ψµ|[ã,b), ζ̃µ = ζµ|[ã,b), and G̃λ = Gλ|[ã,b).

We still need to show that Assumption 2 is ful�lled for the problem on [ã, b).
Therefor let f̃ ∈ L2

A[ã, b) such that ỹ := R̃µf̃ is zero in L2
A(ã, b). We have to show f̃ = 0 in

L2
A[ã, b).

For the function

f : [a, b) → Cn, f :=

{
0 on (a, ã)

f̃ on [ã, b)

we know that R̃µf̃ = Rµf|[ã,b) by (4.35). With (4.38) we obtain that f ful�lls the correspond-
ing premise in the braces of (5.17). Thus, by assumption on ã, we conclude f = 0 in L2

A and
hence f̃ = 0 in L2

A[ã, b). A corresponding conclusion shows that R̂µ is one-to-one.
(As we can see, the existence of such an f 6= 0 or g 6= 0 in L2

A(ã, b), which ful�lls the cor-
responding premise in the braces of (5.17), would violate Assumption 2 for the problem on
[ã, b).)

All necessary assumptions are ful�lled for the problem, restricted on [ã, b). Hence all
results of the previous chapters hold correspondingly true. The theory in chapter 4 yields
an operator L̃ with W̃V ⊆ ρ(L̃).

We pick an arbitrary λ ∈ W̃V , and want to examine whether λ is in the resolvent set of
L or not. We recall that the property λ ∈ ρ(L) means that, for any f ∈ L2

A, there exists a
unique g ∈ D(L) such that (L− λ)g = f and the mapping f 7→ g is bounded.
So let f ∈ L2

A.

In the following, for functions ξ : [a, b) → Cm1,m2 (with m1,m2 ∈ N0), we use the notations

ξ ` := ξ|[ã,b), ξa := ξ|[a,ã].

For g2 := R̃λf
` holds g2 ∈ D(L̃) and L̃g2 = λf `, which means

(5.18) g2 ∈ L2
A(ã, b) ∩ ACloc[ã, b),

(5.19) [g2, ζµ](b) = [g2, ζ̃µ](b) = 0,

(5.20) Jg′2 = (λA+B)g2 + Af `,
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and a boundary condition at ã, which we are not interested in. For any ξ2 ∈ Cn− the function

(5.21) g2 + Ψ̃λξ2

has the same properties by (4.30), and for regularity reasons, every function with these
properties, has the form (5.21).

For x ∈ [a, ã], we de�ne g1(x) :=
∫ ã

a
Gλ(x, y)A(y)f(y) dy.

Since A ∈ L1
loc, the same calculations as for Corollary 4.3.2 and for (4.38) yield

(5.22) g1 ∈ ACloc[a, ã] ∩ L2
A(a, ã),

(5.23) [g1, χµ](a) = [g1, χλ](a) = 0,

(5.24) Jg′1 = (λA+B)g1 + Afa.

Using (4.11), we obtain that for any ξ1 ∈ Cn+
the function

(5.25) g1 + Φa
λξ1

has the same properties, and every function with these properties, has the form (5.25).

By de�nition of D(L), for any function g : [a, b) → Cn the following assertions are equiva-
lent:

(i)

(5.26) g ∈ D(L) and (L− λ)g = f.

(ii) g` ful�lls properties (5.18) to (5.20) and ga ful�lls properties (5.22) to (5.24).

So any solution of (5.26) has the form ga = g1 + Φa
λξ1, g

` = g2 + Ψ̃λξ2 for some ξ1 ∈ Cn+
,

ξ2 ∈ Cn−. And vice versa any such function solves (5.26). The crucial point is continuity in
ã. We conclude:

There is exactly one function g : [a, b) → Cn with g ∈ D(L) and (L− λ)g = f if and only if
there exists exactly one ξ =

(
ξ1
ξ2

)
∈ Cn such that

(5.27) (g1 + Φa
λξ1)(ã) = (g2 + Ψ̃λξ2)(ã).

We de�ne

(5.28) Ωλ :=
(
Φλ(ã)

∣∣− Ψ̃λ(ã)
)

=

(
Φλ(ã)

∣∣∣∣− Ẽ

(
In−

M̃(λ)

))
,
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and K := −g1(ã) + g2(ã).

Therewith (5.27) is equivalent to Ωλξ = K, which is uniquely solvable if and only if Ωλ is
regular.

The knowledge ρ(L) ⊆ WV does not yield regularity of Ωλ for λ ∈ WV , it only implies
uniqueness of a solution of (5.26) in L2

A. But for λ = µ, the above choice of Ẽ and M̃ yields

Ωµ =
(
Φµ(ã)

∣∣−Ψµ(ã)
)

= Yµ(ã)

(
0 −In−
In+ −M(µ)

)
,

where the right-hand side is a product of regular matrices. Theorems 5.3.1 and 3.4.2 (i)
show that all entries of the right-hand side of (5.28) are analytic in λ and thus this holds for
Ωλ and therewith also for its determinant. This is not zero for λ = µ.
The set W̃V , where Ω is de�ned, is open and convex by Lemma 5.1.5, so λ 7→ det(Ωλ) has
only isolated zeros in W̃V .

Now we choose some λ ∈ W̃V with det(Ωλ) 6= 0.

We have already established that for every f ∈ L2
A there exists exactly one g ∈ D(L) with

(L− λ)g = f . Finally we have to show boundedness of (L− λ)−1.

The restrictions f 7→ f ` and f 7→ fa are bounded L2
A → L2

A(ã, b) and L2
A → L2

A(a, ã),
respectively.
Since λ ∈ ρ(L̃), the mapping f ` 7→ g2 = (L̃ − λ)−1f ` is bounded, too. This also holds for
fa 7→ g1, because every column of Yλ and Zλ is in L2

A(a, ã).

The calculation
(5.29)

K = −g1(ã) + g2(ã) = −
∫ ã

a

Gλ(ã, y)A(y)f(y) dy +

∫ b

ã

G̃λ(ã, y)A(y)f(y) dy

= −Ψλ(ã)

∫ ã

a

χ∗λ(y)A(y)f(y) dy + Φ̃λ(ã)

∫ b

ã

ζ̃λ
∗
(y)A(y)f(y) dy,

shows that f 7→ K is bounded L2
A → Cn , since χ∗λ ∈ L2

A(a, ã) and ζ̃λ ∈ L2
A(ã, b). Hence

f 7→ ξ = Ω−1
λ K is bounded.

The canonical embeddings L2
A(a, ã) ↪→ L2

A and L2
A(ã, b) ↪→ L2

A are bounded.

Since Φλ ∈ L2
A(a, ã) and Ψ̃λ ∈ L2

A(ã, b), we can �nally conclude

(5.30) f 7→ (L− λ)−1f =

{
g1 + Φλξ1 on [a, ã],

g2 + Ψ̃λξ2 on [ã, b)

91



is bounded L2
A → L2

A. Thus we have λ ∈ ρ(L), which holds true for all λ ∈ W̃V with
det(Ωλ) 6= 0.

It remains to show assertion (iii) of this Theorem. So let λ ∈ W̃V \ ρ(L). We assume that
only the trivial solution of (2.1) is in the class of the null-functions of L2

A. We have to show
that λ is in the point spectrum of L.

We know that Ωλ is singular (otherwise λ ∈ ρ(L)). Hence there exists some nontrivial
ξ =

(
ξ1
ξ2

)
∈ Cn such that

0 = Ωλξ = Φλ(ã)ξ1 − Ψ̃λ(ã)ξ2.

This implies continuity of

y : [a, b) → Cn, y :=

{
Φλξ1 on [a, ã],

Ψ̃λξ2 on [ã, b),

which is a non-trivial solution of (2.1). Moreover y ∈ D(L) with Ly = λy by (4.52), (4.11),
(4.30), and ζ̃µ = ζ `µ . By assumption, y is not zero in L2

A, hence λ is in the point spectrum
of L.

Since ã was chosen arbitrarily in [a, b̂), Theorem 5.4.1 implies

Corollary 5.4.2. If b̂ > c0(µ) then⋃
ã∈[a,bb)

W̃ ã
V \ ρ(L) consists at most of isolated points,

where W̃ ã
V means W̃V as in Theorem 5.4.1 with respective choice of ã.

It should be remarked that those isolated points may accumulate on the boundary of⋃
W̃ ã

V .

The proof of Theorem 5.4.1 shows that ã ful�lls the premise in the braces of (5.17) if
and only if Assumption 2 holds for the restricted problem with the suitable pair (V, Yµ(a)).
Remarks 4.4.1 and 4.4.2 provide criteria which yield Assumption 2. If one of these criteria
holds for some ã0 ∈ [a, b), then it holds for every ã ∈ [ã0, b). Hence we can conclude

Corollary 5.4.3. If eventually the premises of Remark 4.4.2 or the premises of Remark
4.4.1 (together with the corresponding premises for R̂µ) are ful�lled, then b̂ = b.

Proof. Let ã ∈ [a, b). If A|[ã,b) > 0 on a set of positive measure, then the thoughts above
show that ã ful�lls the premise in the braces of (5.17). Otherwise any function f ∈ L2

A

with supp(f) ∈ [ã, b) is zero in L2
A, whence ã ful�lls the premise in the braces of (5.17)

anyway.
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A second criterion to estimate b̂ from below is the following

Corollary 5.4.4. If A > 0 on a set of positive measure, then

(5.31) b̂ ≥ sup{ã0 ∈ [a, b) : A|[ã0,b)(x) > 0 on a set of positive measure}.

Proof. Let ã0 ∈ [a, b) such that A|[ã0,b)(x) > 0 on a set of positive measure. We can choose
some ã ∈ [ã0, b) such that for any continuous functions f holds

Af = 0 almost everywhere on [ã, b) =⇒ f(ã) = 0.

We show that ã ful�lls the premises in the braces of (5.17) for corresponding functions f .
The statement for corresponding functions g can be shown analogously. Thus, b̂ ≥ ã ≥ ã0.

So let f ∈ L2
A with supp f ⊆ [ã, b) and ess supp(ARλf) ⊆ [a, ã]. Then, by assumption on

ã, we obtain Rλf(ã) = 0. The function y := (Rλf)|[a,ã] solves

Jy′ = (λA+B)y + f = (λA+B)y

on [a, ã] and y(ã) = 0. By regularity of this equation we conclude y = (Rλf)|[a,ã] = 0. Thus
Rλf = 0 in L2

A, hence f = 0 in L2
A.

5.4.2 Examples

We take a look at the examples on pages 23 to 30.

In the case that A has compact essential support, both (2.1) and (3.15) are in the weak
limit-circle case, thus we already know that L has only point spectrum. Theorem 5.4.1 does
not yield any better spectral estimation. Therefore, in the following consideration of the
examples, we assume that, for every ã ∈ [a, b), A|[ã,b) 6= 0 on a set of positive measure.

In the self-adjoint case with the canonical choice of V , we know that WV is the upper,
respectively the lower halfplane. This does not change when restricting the problem to [ã, b).
Hence Theorem 5.4.1 yields no further information.

Now we consider the scalar examples, i.e. those examples that model the scalar equations

τe[v] := p0v +
m∑

k=1

(−1)k
(
(pkv

(k))(k) − (qkv
(k))(k−1) − (rkv

(k−1))(k)
)

= λwv,

respectively

τo[v] : = p0v + (−1)mi(s(sv(m))′)(m) +
m∑

k=1

(−1)k
(
(pkv

(k))(k) − (qkv
(k))(k−1) − (rkv

(k−1))(k)
)

= λwv.
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With the additional assumption w > 0 an [a, b), we have shown that Assumption 2 holds
by showing the premises of Remark 4.4.1. Thus Corollary 5.4.3 yields b̂ = b. Hence Theorem
5.4.1, respectively Corollary 5.4.2 can be applied with the result that there are only isolated
points of the spectrum of L within

(5.32)
⋃

ã∈[a,b)

W̃ ã
V .

Using the assumption w > 0 an [a, b), on page 71 we have shown that, for every λ ∈ C,
only the trivial solution of (2.1) vanishes in L2

A.
By Theorem 5.4.1 (iii), the isolated points of the spectrum of L within

⋃
ã∈[a,b) W̃

ã
V are in

the point spectrum of L.

In all the scalar examples we have A = diag(w, 0, . . . , 0) and therewith ΛV = {λ ∈ C :
Re(λν) > 0} for some constant ν ∈ C \ {0} (which is the �rst entry of −V J ; for the
calculations see page 66). Restricting the problem to [ã, b) does not a�ect ΛV . Thus, we
only have to consider AdmV .

We estimate, for ã ∈ [a, b), the set ÃdmV in the three dimensional case with real leading
coe�cient function s. On page 29, we have calculated that AdmV is the set of all λ ∈ C
such that

(5.33) 4v2Re(−iλw + ip0)Re(ip1)− |v(q1 + r1)− iv0|2 ≥ 0

almost everywhere on [a, b) (where v, v0 are entries of V , furthermore p1, q1, r1, and p0 are
given functions of the scalar problem).

The same calculation on the restricted problem yields that ÃdmV is the set of all λ ∈ C
such that (5.33) holds almost everywhere on [ã, b). Thus ÃdmV may be a proper superset of
AdmV .

Correspondingly, in item 3 on page 30, which is the even order example with m = 1, we

obtain that ÃdmV is the set of all λ ∈ C such that the estimations in equation (2.49) hold
on [ã, b).

5.4.3 Variation of the admissible matrix V

For the second part of this section we assume that (2.1) or (3.15) is in the strict limit-point
case.

For another suitable pair (Ṽ , Ẽ) with n+(Ṽ ) = n+ and WeV ∩WV 6= ∅ we have the following
results: According to Corollary 5.1.8 (and a corresponding statement for the adjoint prob-
lem), (2.1), respectively (3.15), remain in the strict limit-point case. The strict limit-point
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case of (2.1) or of (3.15) implies the limit-point case and thus there is no freedom in choosing
an appropriate M-function for such a pair. Let us call it M̃ .
In the following lines, the other corresponding quantities for (Ṽ , Ẽ) are also labeled by a
tilde.

Recall

(5.34) Ψλ = Yλ

(
1n−

M(λ)

)
, ζλ = Zλ

(
1n+

M(λ)∗

)
,

which shows that Ψλ and ζλ have full rank. Using (4.7) or (4.8), respectively, we see that
there holds at least one of the statements (depending on whether (2.1) or (3.15) is in the
strict limit-point case)

(5.35)
(i) Ψ̃λ = ΨλΞ1,

(ii) ζ̃λ = ζλΞ2,

for some regular matrices Ξ1 ∈ Cn−,n− or Ξ2 ∈ Cn+,n+
, respectively.

If we furthermore assume Ẽ = E (which gives Ỹ = Y , Z̃ = Z), then (5.34) together with
any of both statements in (5.35) imply

(5.36) M̃ = M on WV ∩WeV .
Let WV the connected component of ⋃

( eV ,E)suitable

n+( eV )=n+

WeV ,

which contains WV . Since all WeV are open, with the above arguments we obtain, for all
suitable pairs (Ṽ1, E), (Ṽ2, E) with n+(Ṽ1) = n+(Ṽ2) = n+ and WeV1

∩WeV2
∩ WV 6= ∅, that

M̃eV1
(λ) = M̃eV2

(λ) for λ ∈ WeV1
∩WeV2

. Thus Theorem 5.3.1 yields

Corollary 5.4.5.∗3 If (2.1) or (3.15) is in the strict limit-point case, then the de�nition

(5.37) M(λ) := M̃(λ) for (Ṽ , E) suitable with n+(Ṽ ) = n+ and λ ∈ WeV ,
is a well-de�ned analytic extension of M to WV .

Furthermore we can conclude

Theorem 5.4.6. If (2.1) or (3.15) is in the strict limit-point case, then WV is a subset of
ρ(L).
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Proof. Let Ṽ admissible with (Ṽ , E) suitable, n+(Ṽ ) = n+, and WV ∩WeV 6= ∅.

We choose µ̃ ∈ WV ∩ WeV and M̃0 ∈ D̃b(µ̃) to construct an M -function for (Ṽ , E) and
therewith R̃eµ. The considerations above show that there is no other choice but M̃0 = M(µ̃).
Since Ỹ = Y and Z̃ = Z, equations (4.34) and (4.35) imply R̃eµ = Reµ, in particular R̃eµ :

L2
A → L2

A is one-to-one. The same holds for ˜̂Reµ, so Assumption 2 is ful�lled.
We obtain an operator L̃, while Theorem 4.4.8 yields L̃ = L.

The same Theorem implies WeV ⊆ ρ(L̃) = ρ(L).
Because all WeV are open, standard arguments yield the statement on WV .

We can use this knowledge and connect it with the theory in the �rst part of this section.

For the case that (2.1) or (3.15) is in the strict limit-point case, the proof of Theorem 5.4.6
even shows the following: For any suitable pair (Ṽ , E) with n+(V ) = n+ and WeV ⊆ WV ,
Assumption 2 is ful�lled and the resulting di�erential operator L̃ equals L.

Now we show that the quantity ˜̂b, that corresponds to b̂ for the suitable pair (Ṽ , E) with
some choice of µ̃ ∈ WeV equals b̂: We have established that ã ∈ [a, b) ful�lls the properties
in the braces of (5.17) if and only if Assumption 2 holds true for problem (2.1) restricted to
[ã, b) with the suitable pair (V, Yµ(ã)). By de�nition, b̂ is the supremum of all these ã.
The strict limit-point case of (2.1), respectively of (3.15), can not get lost by restricting
the problem to [ã, b) (for a detailed explanation of this statement see the proof of Theorem
5.4.8 below). Furthermore W̃V ⊇ WV and W̃eV ⊇ WeV , whence W̃V ∩ W̃eV 6= ∅ (and thus
W̃eV ⊆ W̃V ). The same considerations as above yield that, if Assumption 2 holds true for the
restricted problem with the suitable pair (V, Yµ(ã)), then Assumption 2 holds true for the

restricted problem with the suitable pair (Ṽ , Yµ(ã)). Thus ˜̂b ≥ b̂, and by symmetry ˜̂b = b̂.
If, furthermore, for every such suitable pair, we could assure c̃0(µ̃) < b̂ (for some choice of
µ̃ ∈ WeV ), then Corollary 5.4.2 would yield an estimation of the spectrum of L for the suitable
pair (Ṽ , E). The estimation c0(µ̃) < b̂ surely holds true if b̂ = b or if Pλ(a) > 0 (whence we
can choose c̃0 ≡ a for all Ṽ ). We conclude

Corollary 5.4.7. Let

ŴV :=
⋃
eV ∈T

⋃
ã∈[a,bb)

W̃ ãeV ,

where T consist of all admissible Ṽ , such that (Ṽ , E) is suitable, n+(V ) = n+ and WeV ⊆ WV .

If ( b̂ = b or Pλ(a) > 0) and at least one of the equations (2.1) or (3.15) is in the strict
limit-point case, then ŴV \ ρ(L) consist at most of isolated points.

In the following, we use the notation Sn× for the set of all self-adjoint, regular matrices.
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We can go one step further:

Theorem 5.4.8. For ã ∈ [a, b) let P ã
V the connected component of

⋃
{W̃ ãeV : Ṽ ∈ Sn×, n+(Ṽ ) = n+, and (0 In+)Y ∗

µ (ã)Ṽ Yµ(ã)

(
0
In+

)
> 0},

which contains W̃ ã
V .

If b̂ > c0(µ) and at least one of the equations (2.1) or (3.15) is in the strict limit-point case,
then ⋃

ã∈[c0(µ),bb)
P ã

V \ ρ(L)

consist at most of isolated points.

Proof. Let ã ∈ [a, b̂). The proof is mostly analog to the proof of Theorem 5.4.1. With the
same arguments we can assume w.l.o.g. that A|[ã,b) 6= 0 on a set of positive measure.

We need to show that P ã
V is increasing as a function of ã.

As in the proof of Theorem 5.4.1, from its de�nition we see that W ãeV is increasing as a
function of ã. It su�ces to show that

(5.38) Ṽ ∈ Sn×, W̃ ãeV 6= ∅, and (0 In+)Y ∗
µ (ã)Ṽ Yµ(ã)

(
0
In+

)
> 0

implies (0 In+)Y ∗
µ (d̃)Ṽ Yµ(d̃)

(
0
In+

)
> 0 for d̃ > ã.

(5.38) implies that (Ṽ , Yµ(ã)) is suitable for the problem restricted on [ã, b), with P̃µ(ã) > 0,
whence P̃µ is increasing by Lemma 2.2.4 . Thus we obtain

(0 In+)Y ∗
µ (d̃)Ṽ Yµ(d̃)

(
0
In+

)
= 2P̃µ(d̃) > 0.

So P ã
V is increasing as a function of ã. Therewith we can assume w.l.o.g. that ã ful�lls the

premise in the braces of (5.17) (which is necessary for Assumption 2 to hold).

With the suitable pair (V, Yµ(ã)), as in the proof of Theorem 5.4.1, we obtain an operator
L̃ with resolvent set ρ(L̃). In this proof we have used W̃ ã

V ⊆ ρ(L̃), to show that in the set
W̃ ã

V only isolated points of the spectrum of L may exist. The same proof even shows that
in the open set ρ(L̃) only isolated points of the spectrum of L may exist. (Yet for obvious
reasons, this statement could not be part of the statement of the Theorem.)
Thus it su�ces to show W̃ ãeV ⊆ ρ(L̃) for any self-adjoint matrix Ṽ with n+(V ) = n+, W̃ ãeV ⊆ P ã

V ,
and which ful�lls (5.38). (For W ãeV = ∅, the statement would be trivial.)

97



Again, (5.38) implies that (Ṽ , Yµ(ã)) is suitable for the restricted problem.

All columns of Zλ and Yλ are continuous, A ∈ L1
loc, thus all columns of Zλ and Yλ are in

L2
A(a, ã). Hence the number of linearly independent solution of (2.1), respectively of (3.15),

which are in L2
A, equals the corresponding number for the restricted problem. Thus, by

assumption and n−(Ṽ ) = n−, at least one of the corresponding equations, (̃2.1) or (̃3.15), is
in the strict limit-point case.

Theorem 5.4.6, applied to the restricted problem, yields W̃V ⊆ ρ(L̃). By de�nition of P ã
V

and of WV (on page 95), we obtain

W̃ ãeV ⊆ P ã
V ⊆ W̃V ⊆ ρ(L̃).

5.4.4 Examples

We like to apply Theorem 5.4.6, Corollary 5.4.7, and Theorem 5.4.8 to example 3 on page
30. This means

J = J1 =

(
−1

1

)
, A = A1 =

(
w

0

)
, B = B1 =

1

p

(
−qr − pp0 −q

r 1

)
.

Recall that for Y = (y0, y1)
T , equation (2.1) is equivalent to y1 = y

[1]
0 and

p0y0 − (py′0)
′ − qy′0 − (ry0)

′ = λwy0.

We already know that any admissible matrix has the form

(5.39) V =

(
v0 v
v 0

)
,

where v0 is real and v 6= 0. Such a matrix V is not de�nite, whence n+=n−=1. Thus we will
require that Φλ or χλ is not in L2

A to obtain the strict limit-point case for (2.1) or for (3.15),
respectively (which is necessary to apply the desired Theorems).

The �rst entry of −V J is −v. We conclude that (see (4.58))

(5.40) ΛV = {λ ∈ C : Re(−λv) > 0}.

1. We �rst examine the case that B is self-adjoint (thus p, p0 are real and q = −r̄).
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We �x the initial matrix E = Ec =

(
1 −i
−i 1

)
.

For the canonical choice Vc = iJ1 =

(
0 −i
i 0

)
, we already know that ΛVc is the lower

halfplane, so is WVc . This is a subset of the resolvent set of the corresponding operator Lc.

We want to construct further admissible matrices Ṽ with rotated sets WeV , for which
(Ṽ , E) is suitable. We choose Re v = 1. Because B is self-adjoint, equation (2.49), which is
equivalent to λ ∈ AdmeV , reduces to
(5.41) v0Re r + qr + pp0 −Re(λv)pw − 1

4
v2

0 < 0.

We assume pw < −qr − pp0 with a corresponding (preferably small) l0 ∈ R such that
l0pw + qr + pp0 < 0. (If qr + pp0 < 0, even l0 ≤ 0 is possible.)

The choice v0,k := 0, vk := 1 + ki provides the matrix Vk =

(
0 1− ki

1 + ki 0

)
.

(Vk, Ec) is suitable for k > 0 by straightforward calculation and Remark 2.1.2, with

λk := − l0
(1 + k2)

(1 + ki) ∈ AdmVk
,

ΛVk
= {λ ∈ C : Re(−λvk) ≥ 0} = {λ ∈ C : −k Imλ−Reλ > 0}.

We conclude
λk + ΛVk

⊆ WVk
.

By Theorem 5.4.6 the union of all these sets for k > 0 is in the resolvent set of Lc.

Our estimation of the spectrum of Lc would be even better if we could also choose v with
negative imaginary part. Therefor we additionally assume

pw < −Re(r) and pw < 1.

Let l1, l2 ∈ R such that l1pw+Re(r) < 0 and l2pw−1 < 0. (Again l1 could be non-positive.)

For k < 0 and ε > 0 we obtain an admissible matrix V ε
k by choosing v0,k,ε := ε − 2k,

vk,ε := 1 + ki.
(V ε

k , Ec) is suitable by Remark 2.1.2 with

λε
k := −(l0 + v0,k,εl1 +

1

4
v2

0,k,εl2)(1 + k2)−1vk,ε ∈ AdmV ε
k
,

ΛV ε
k

= {λ ∈ C : Re(−λvk,ε) ≥ 0} = {λ ∈ C : −k Imλ−Reλ > 0}.
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We conclude
λε

k + ΛV ε
k
⊆ WV ε

k
⊆ ρ(L).

This holds for every ε > 0. We set

λk := λ0
k = −(l0 − 2kl1 + k2l2)

(1 + k2)
(1 + ki).

By standard arguments we conclude that also the open set

λk + {λ ∈ C : −k Imλ−Reλ > 0}

is a subset of the resolvent set of L for k < 0, and therewith the union of these.

Now we assume that Φλ or χλ is not in L2
A, so we have the strict limit-point case for (2.1)

or for (3.15).
If, by restriction of the functions on [ã, b) for some ã ∈ [a, b), the constants lã0 , l

ã
1 , or l

ã
2 could

be chosen smaller, then the corresponding sets λã
k + ΛVk

are larger. Furthermore these are
subsets of ŴV . By Corollary 5.4.7, in the union of these sets are only isolated points of the
spectrum of Lc.

2. We consider the case q = r = 0. So we are in the setting of [6] and of [5, example on
page 425].

Thus B = diag(−p0,
1
p
). Again we have to consider matrices V of the form (5.39).

With q = r = 0, in view of (2.49), any choice of V with v0 6= 0 would not yield any larger
set AdmV than with v0 = 0. Hence we only consider matrices of the form V = codiag(v, v).
Multiplication of V with a positive real factor does not change the result, so it su�ces to
consider the matrices

V = Vϕ := codiag(eiϕ, e−iϕ)

for ϕ ∈ [0, 2π). Therewith, equation (2.49) reduces to

(5.42) Re
(
e−iϕ(p0 − λw)

)
< 0 and Re(e−iϕp) < 0.

AdmVϕ is the set of all λ, for which (5.42) holds. In [5] the existence of some λ with the
same properties is required.

By (5.40), ΛVϕ is the following halfplane

ΛVϕ = {λ ∈ C : Re(−λv) ≥ 0} = {λ ∈ C : Re(λe−iϕ) < 0}.
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2.1 We want to consider the following example in [6, page 1251]:

[a, b) = [1,∞), arg(p) = α on [1,∞), p0(x) = c1x
d1 + ic2x

d2 , w(x) = xω,

for real constants α, c1, c2, d1, d2, and ω with α ∈ [−π
2
, π

2
], c1 < 0, c2 ≤ 0, d2 > d1 > ω.

We exclude the cases α ∈ {−π
2
, π

2
} or c2 = 0 (for simplicity and to assure the existence of an

admissible matrix.)

The second condition in (5.42) reads ϕ ∈ [α− π
2
, α+ π

2
], (modulo 2π).

The �rst condition in (5.42) reads(
x 7→ Re(e−iϕ(c1x

d1 + ic2x
d2 − λxω)

)
< 0,

which is equivalent to

(5.43) Re(−λe−iϕ) ≥ xd1−ω(−c1 cosϕ− c2x
d2−d1 sinϕ) for all x ≥ 1.

The right-hand side tends, as x → ∞, to plus in�nity for ϕ ∈ [0, π) and to minus in�nity
for ϕ ∈ (−π, 0), while the lefthand side is constant. Thus AdmVϕ = ∅ for ϕ ∈ [0, π), but for
ϕ ∈ (−π, 0), equation (5.43) shows that AdmVϕ is a halfplane.

We conclude that Vϕ is admissible exactly for ϕ ∈ [α− π
2
, 0).

With E :=

(
1 1
0 i

)
, we obtain Pλ,ϕ(1) > 0, for ϕ ∈ (−π, 0), whence (E, Vϕ) is suitable for

ϕ ∈ [α− π
2
, 0).

We �x some ϕo ∈ (α− π
2
, 0). For the resulting di�erential operator Lϕo we know AdmVϕo

+
ΛVϕo

⊆ ρ(Lϕo).

With w > 0 on [a, b) = [1,∞), we have shown for all our scalar examples that b̂ = b.
We like to apply Corollary 5.4.2. For ã ∈ [1,∞), we have W̃ ã

Vϕo
= Ãdmã

Vϕo
+ Λ̃ã

Vϕo
, where

Λ̃ã
Vϕo

= ΛVϕ . Hence we have to calculate
⋃

ã∈[1,∞) Ãdm
ã
Vϕo

.

For ã ∈ [1,∞), by the �rst condition of (5.43), we obtain that λ ∈ Ãdmã
Vϕo

if and only if

(5.44) Re(−λe−iϕ) ≥ xd1−ω(−c1 cosϕo − c2x
d2−d1 sinϕo) for all x ≥ ã.

Since the right-hand side tends to minus in�nity, as x→∞, for every λ ∈ C, there exists an
ã ∈ [1,∞) such that λ ∈ Ãdmã

Vϕo
. Hence

⋃
ã∈[1,∞) Ãdm

ã
Vϕo

= C.
Corollary 5.4.2 yields that the spectrum of Lϕo consists of isolated points.

Now we assume that Φλ or χλ is not in L2
A, so we have the strict limit-point case for (2.1)

or for (3.15).
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Thus, Theorem 5.4.6 yields

(5.45)
⋃

ϕ∈[α−π
2
,0)

(AdmVϕ + ΛVϕ) ⊂ ρ(Lϕo).

Note, that ΛVϕ is a halfplane with rotation ϕ relative to the left halfplane.

In [6], a corresponding di�erential operator is constructed. Its spectrum is estimated, in
general, to be in a (possibly shifted and rotated) halfplane.
In the case that only one solution is square integrable (this is the strict limit-point case
in this thesis), the spectrum is estimated to be a subset of some set Q(a), which may be
"smaller" than a halfplane. For this particular example, the estimation of C \Q(a) are alike
the left-hand side of (5.45).

2.2 We consider the following example to give an application for Theorem 5.4.8:

[a, b) = [1,∞), w < |p0(·)|, p(x) = −xd1 − icxd2 , w(x) > 0 (for x ∈ [1,∞)),

for real constants c, d1, and d2, with c > 0 and d2 > d1.

Let β(x) := arg(p(x)) = π + arctan(cxd2−d1). We have β(x) ∈ (π, 3
2
π), and β converges

monotonically to 3
2
π, thus range(β) = [β(1), 3

2
π). The second condition in (5.42) becomes

(5.46) ∀x ≥ 1 : Re
(
ei(β(x)−ϕ)

)
≥ 0,

which is equivalent to ϕ ∈ [π, β(1) + π
2
] (modulo 2π).

The �rst condition in (5.42) becomes

(5.47) Re(−λe−iϕ)w ≥ Re(−p0e
−iϕ),

on [1,∞). With w < |p0|, we see that (5.47) is solvable for every ϕ.

We conclude that Vϕ = codiag(eiϕ, e−iϕ) is admissible exactly for ϕ ∈ [π, β(1) + π
2
]. (5.47)

shows that AdmVϕ is a halfplane.

With E :=

(
1 i
0 1

)
, we obtain Pλ,Vϕ,E(1) > 0, for ϕ ∈ (π, 2π), whence (E, Vϕ) is suitable

for ϕ ∈ (π, β(1) + π
2
].

For �xed ϕo ∈ (π, β(1) + π
2
] we obtain an operator Lϕo with AdmVϕo

+ ΛVϕo
⊆ ρ(Lϕo).

We want to apply Theorem 5.4.8. Therefor we assume, that Φλ or χλ is not in L2
A, so

we have the strict limit-point case for (2.1) or for (3.15). (If this was not the case, both
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problems would be in the weak limit-circle case, whence the whole spectrum of of Lϕo would
consist of isolated eigenvalues.)
Again we know that b̂ = ∞.

Theorem 5.4.8 yields that in W̃ ã
Vϕ

only isolated points of the spectrum of Lϕo exist for all
ã ∈ [c0(µ),∞), and for all matrices Vϕ that are suitable for the problem restricted to [ã, b)

such that W̃ ã
Vϕ
∩WVϕo

6= ∅ and for which holds

(5.48) (0 In+)Y ∗
µ (ã)VϕYµ(ã)

(
0
In+

)
> 0.

(This matrix is 2P̃µ,Vϕ,Yµ(ã)(ã) for the problem restricted to [ã, b)).

First we calculate the set of matrices Vϕ that are admissible for the problem on [ã, b).
Equation (5.46) becomes

(5.49) ∀x ≥ ã : Re
(
ei(β(x)−ϕ)

)
≥ 0,

which is equivalent to ϕ ∈ [π, β(ã) + π
2
] (modulo 2π). If we recall β(ã) → 3

2
π, as ã→∞, we

see that, for every ϕ ∈ [π, 3
2
π), there exists an ã > 1 such that (5.49) holds true.

For such ϕ, the set Ãdmã
Vϕ

is the set of all λ that ful�ll (5.47) on [ã,∞). As above we see

that this is a closed halfplane. Thus W̃ ã
Vϕ

is a halfplane by Lemma 5.1.5 .

Unfortunately not every admissible matrix is suitable for the restricted problem with Ẽ =
Yµ(ã). (We even require that the matrix corresponding to P (a) is de�nite.)
For ϕ1 := β(1) + π

2
, though, we know Pµ,Vϕ1 ,Yµ(1)(1) > 0 and that (Vϕ1 , E) is admissible for

the original problem, whence Pµ,Vϕ1 ,Yµ(1) is increasing. Thus, for ã > 1,

0 < 2Pµ,Vϕ1 ,Yµ(1)(ã) = (0 In+)Y ∗
µ (ã)Vϕ1Yµ(ã)

(
0
In+

)
.

By continuity reasons, we obtain

(0 In+)Y ∗
µ (ã)VϕYµ(ã)

(
0
In+

)
> 0

for all ϕ in a neighborhood of ϕ1. So the set of all matrices Vϕ that are suitable for the
restricted problem and that ful�ll (5.48), is larger than the set of all suitable matrices for
the original problem. Therewith, for ã>1, the set⋃

{W̃ ã
Vϕ

: Vϕ ∈ Sn×, n+(Vϕ) = n+, W̃ ã
Vϕ
∩WVϕo

6= ∅, and (0 In+)Y ∗
µ (ã)VϕYµ(ã)

(
0
In+

)
> 0}

is larger than the same set with ã = 1. (Note that, again, the parameter ϕ determines the
rotation of the halfplane W̃ ã

Vϕ
.) There are only isolated points of the spectrum of Lϕo in the

union of all these sets for ã ∈ [1,∞).
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Chapter 6

Final considerations

In this chapter, with some linear algebra theory, we obtain an insight into various possibilities
of choosing parameters (like V).
An augmentation method, which augments the problem to an equivalent problem of higher
order, yields further miscellaneous results.
Finally we examine the one dimensional example (i.e. n = n++ n−= 1).

Below we use the notation Sn for the set of all self-adjoint matrices in Cn,n (and again Sn×

shall name the set of all regular matrices in Sn).

6.1 On the choice of an admissible V

Assumption 1 requires the existence of an admissible matrix V . The number of positive
(respectively negative) eigenvalues of V determine the sizes of nearly every matrix in this
theory. If there are two admissible matrices V1 and V2 with n+(V2) 6= n+(V1), we obtain two
operators, for which the number of boundary conditions at a (and maybe at b) are di�erent.
So it is a natural question, if, for given A, B, and J , such admissible matrices V1 and V2 may
exist.

We will realize that, under certain conditions, for such matrices the sets AdmV1 and AdmV1

are disjoint or this may hold for ΛV1 and ΛV2 .

We �rst need some linear algebraic results.

Lemma 6.1.1. If K ∈ Cn,n is singular, then ReK is not de�nite.

Proof. Let 0 6= b ∈ Cn with Kb = 0. Then 2b∗(ReK)b = b∗Kb+ b∗K∗b = 0.
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Lemma 6.1.2. Let K ∈ Cn,n . For

K := {N ∈ Sn : Re(NK) > 0}

holds

(i) K is an open wedge within Sn , in particular K is convex.

(ii) For N1, N2 ∈ K holds n+(N1) = n+(N2).

Proof. K is open since both Re and multiplication with K, are continuous.

We note that, for t > 0 and N ∈ K, also tN ∈ K. For N1, N2 ∈ K, by linearity we obtain
N1 +N2 ∈ K. Thus assertion (i) follows.

For j ∈ {0, . . . , n} we de�ne Mj := {N ∈ Sn× : n+(N) = j}. These sets are obviously
disjoint and open in Sn . By Lemma 6.1.1 we know that K is a subset of the union of these
sets. Since K is connected within Sn , it is a subset of Mj for some j ≤ n. Thus assertion
(ii) follows.

Lemma (6.1.2) with K = λJA, and (2.6) yield

Corollary 6.1.3. If A is positive de�nite on a set of positive measure, then for any admissible
matrices V1, V2 for which there exists λ ∈ ΛV1 ∩ ΛV2 holds n+(V1) = n+(V2).

We even know

Lemma 6.1.4. If the matrix A is positive de�nite on a set of positive measure then for any
admissible V holds

n+(V ) ∈ {n+(±iJ)},

while n+(V ) = n+(iJ) holds if there is some λ ∈ ΛV with Im(λ) < 0
and n+(V ) = n+(−iJ) holds if there is some λ ∈ ΛV with Im(λ) > 0.

Proof. By Theorem 6.2.2 below any λ ∈ ΛV is non-real.

Let λ in the lower half-plane. For V1 := iJ ,

−Re(λV1JA) = −Re
(
λ(iJ)JA

)
= Re

(
(iλ)A

)
= −

(
Im(λ)

)
A < A

shows λ ∈ ΛV1 . Corollary 6.1.3 implies the assertion for any admissible V with λ ∈ ΛV .

The assertion for λ in the upper half-plane can be shown analogously with V2 := −iJ .
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We need one more linear algebraic

Lemma 6.1.5. Let K ∈ Cn,n . We de�ne

(6.1)
K := {N ∈ Sn× : Re(NK) > 0},
K0 := {N ∈ Sn : Re(NK) ≥ 0}.

(i) Either K is empty or K0 is the closure of K in Sn .

(ii) If K is not empty, then for any regular matrices N1, N2 ∈ K0 holds n+(N1) = n+(N2).

Proof. Since 0 ∈ K0, at least one of both assertions in (i) is wrong. Thus it su�ces to
show: if K is not empty, then it is dense in K0, which is obviously closed in Sn by standard
continuity arguments.

Now let N0 ∈ K0 and δ > 0. If K is not empty, since it is an open wedge by Lemma 6.1.2,
there exists some N ∈ K with ||N || ||K|| < δ (where || · || is the operator norm Cn → Cn).
By linearity Re((N +N0)K) > 0 and thus N +N0 ∈ K. Hence statement (i) follows.

For N1, N2 ∈ K, statement (ii) is shown in Lemma 6.1.2. The statement still holds for N1,
N2 ∈ K = K0 as long as no eigenvalue is zero, by continuity of the eigenvalues with respect
to every matrix-norm.

Regarding assumptions (2.3) and (2.4) for admissibility, we obtain

Lemma 6.1.6. Let

Ãdm := {k ∈ C : ∃U ∈ Sn× : −Re(UJ(kA+B)) > 0 on more than a set of measure zero}.

For admissible V1, V2 with AdmV1 ∩ AdmV2 ∩ Ãdm 6= ∅ holds n+(V1) = n+(V2).

Proof. Let k ∈ AdmV1 ∩ AdmV2 ∩ Ãdm. For x ∈ [a, b) we de�ne

(6.2)
K(x) := {U ∈ Sn× : −Re

(
UJ(kA(x) +B(x))

)
> 0},

K0(x) := {U ∈ Sn : −Re
(
UJ(kA(x) +B(x))

)
≥ 0}.

For a.e. x ∈ [a, b) we have V1, V2 ∈ K0(x). Furthermore K 6= ∅ on more than a set of
measure zero. Hence there exists some c ∈ [a, b), such that K(c) 6= ∅ and V1, V2 ∈ K0(c).
The statement follows by Lemma 6.1.5, using the regularity of V1 and V2.

If A and B have no common nulls-pace and rankA is large on a set of positive measure,
the set Ãdm may be large. So this statement is a weaker version of Lemma 6.1.4.
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The previous statements in this section provide criteria according to which the set of
admissible matrices is restricted. On the other hand, though, in the case that B is self-
adjoint on [a, b), there is always the canonical choice of an admissible matrix:

Lemma 6.1.7. If B is self-adjoint on [a, b), then V := ±iJ is admissible with 0 ∈ AdmV

and ∓i ∈ ΛV .

Proof. The formula JJ = −In and straightforward calculation gives

C0,±iJ = ±Re(iB) = 0

and
−Re(∓i(±iJJA)) = A.

A little weaker premise is required in

Lemma 6.1.8. If A < − Im(B) or A < Im(B) then V = −iJ , respectively V = iJ is
admissible.

Proof. We only show the case A < − Im(B). For k > 0 such that kA+ Im(B) < 0 we have

Cik,−iJ = −Re(−iJJ(ikA+B)) = Re(kA− iB) = kA+ Im(B) < 0

and
−Re(i(−iJ)JA) = A.

Thus ik ∈ AdmV and i ∈ ΛV , whence V = −iJ is admissible.

We like to consider the scalar examples with regard to Lemma 6.1.8. We choose the even
case where A1 and B1 are speci�ed in (2.35) and (2.36).
To achieve A1 < ± Im(B1), we can tighten the condition that B is self-adjoint to

(6.3) w < ± Im p0 and for all j ∈ {1, . . . ,m} holds rj = −qj, ± Im pj ≤ 0 a.e. on [a, b).

6.2 On the wedges ΛV and the convex sets WV

In this section we examine the set ΛV . It will turn out that two di�erent circumstances may
cause ΛV to remain within the upper or the lower half-plane.

The proof of the following linear algebraic Lemma is partially due to Ludwig Elsner.
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Lemma 6.2.1. For K,P,N ∈ Sn with N > 0, the matrix Im(KPN) is either zero or
inde�nite, in particular it is not de�nite.

Proof. We can assume w.l.o.g. that K is diagonal. Since K and P are self-adjoint, the
diagonal entries are real and therewith so are the diagonal entries of (KP ), whence those
entries of Im(KP ) are zero. The trace of Im(KP ), which is consequently zero, is the sum
of all eigenvalues. Hence the statement holds for N = In.

For arbitrary positive de�nite N ∈ Sn let Ñ := N1/2. We can calculate

Im(KPN) = Ñ Im
(
(Ñ−1KÑ−1)(ÑP Ñ)

)
Ñ .

The righthand side is congruent to Im((Ñ−1KÑ−1)(ÑP Ñ)), which is is zero or inde�nite,
as already shown. Thus so is Im(KPN).

This simple Lemma leads to

Theorem 6.2.2. If A is positive de�nite on a set of positive measure, then for arbitrary
admissible V holds

ΛV ∩ R = ∅.

Proof. Let λ ∈ R and let J ⊂ [a, b) the set, where A is de�nite. We recall that iJ is
self-adjoint. Using Lemma 6.2.1, we obtain for x ∈ J that

−ReλV JA(x) = − Im
(
iλV JA(x)

)
= − Im(λV )(iJ)A(x)

is not de�nite. (2.6) implies λ /∈ ΛV .

So if A is de�nite, any of these open wedges ΛV is only a subset of the upper or the lower
half-plane. On the other hand, in the case that B is self-adjoint on [a, b), we can achieve ΛV

and WV to be any of both half-planes for the admissible choices of V in Lemma 6.1.7:

Lemma 6.2.3. If B is self-adjoint, then for V := ±iJ holds

ΛV = WV = {λ ∈ C : Imλ ≶ 0}.

Proof. We only show the case V = −iJ . So let λ ∈ C with y := Imλ > 0 and x := Reλ.
The estimation

−Re(λV JA) = Re(iyiJJA) + Re(xiJJA) = yReA− xRe(iA) = yA � A

yields λ ∈ ΛV by (2.6).
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No λ ∈ R is in ΛV , because

−Re(λV JA) = λRe(iJJA) = λRe(−iA) = λ Im(A) = 0 6< A.

Since ΛV is connected, we obtain ΛV = {λ ∈ C : Imλ > 0}.

0 ∈ AdmV by Lemma 6.1.7, thus AdmV ⊇ ΛV . It su�ces to show that any k in the lower
half-plane is not in AdmV . For such a k holds:

Ck,V = −Re((−iJ)J(kA+B)) = Re(−i(kA+B)) = Im(kA) + ImB = Im(k)A 6< 0.

Thus k 6∈ AdmV .

We have just discussed the shape of ΛV . If A > 0 on a set of positive measure, ΛV is
contained in one of the halfplanes. Yet WV , of which we know that it is a subset of ρ(L),
may be larger. Nevertheless we have to following

Lemma 6.2.4. If A > 0 on a set of positive measure, then WV is contained in the (possibly
shifted) upper or lower halfplane.

Proof. We already know that ΛV is contained in one of the halfplanes. We assume w.l.o.g.
it is a subset of the upper halfplane. We show that WV is a subset of the upper halfplane
plus some constant, which means Im(WV ) is bounded from below. It su�ces to show that
Im(AdmV ) is bounded from below.

By assumption on the open set ΛV , we can �x some λ1, λ2 ∈ ΛV with Im(λ1) = Im(λ2) = 1
and k1 := Re(λ1) < k2 := Re(λ2).
We have −Re(λlV JA) < A for l ∈ {1, 2}, whence for a.e. x ∈ {x̃ ∈ [a, b) : A(x̃) > 0} holds
−Re(λlV JA(x)) > 0 for l ∈ {1, 2}.

Let J the subset of [a, b), where A, −Re(λ1V JA), and −Re(λ2V JA) are positive de�nite.
J has positive measure.

We �rst show that, for x ∈ J , the imaginary part of

N (x) := {λ ∈ C, Cλ(x) ≥ 0}

is bounded from below. So let x ∈ J .

For this proof, we use the abbreviation Ξ := Re(V JB(x)).

Any λ0 = si+ t with s, t ∈ R lies in N (x) if and only if Cλ0(x) ≥ 0. This is equivalent to

Ξ = Re
(
V JB(x)

)
≤ −Re

(
λ0V JA(x)

)
= −sRe

(
V (iJ)A(x)

)
− t Im

(
V (iJ)A(x)

)
.

By Lemma 6.2.1, Im(V (iJ)A(x)) is either zero or inde�nite. We distinguish these cases.
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First case: Im
(
V (iJ)A

(
x)) = 0.

We know −Re(λ1V JA(x)) is positive de�nite, so there exists some s0 < 0 such that
−s0Re(λ1V JA(x)) < Ξ. Hence for all λ = is+ t with s ≤ s0

−sRe
(
V (iJ)A(x)

)
− t Im

(
V (iJ)A(x)

)
= −sRe

(
V (iJ)A(x)

)
− sk1 Im

(
V (iJ)A(x)

)
= −sRe

(
λ1V JA(x)

)
≤ −s0Re

(
λ1V JA(x)

)
< Ξ,

thus λ0 /∈ N (x). So λ ∈ N (x) implies Im(λ) > s0.

Second case: Im
(
V (iJ)A(x)

)
is inde�nite.

Then there exist j1 < 0 < j2, such that for all j ∈ R\[j1, j2] the matrix j Im(V (iJ)A(x))−Ξ
is not positive semi de�nite.
For λ0 = si+ t with s < − j2−j1

k2−k1
we have t− sk1 < j1 or t− sk2 > j2.

For l ∈ {1, 2}, using λl = kl + i, we can estimate

(6.4)

Cλ0(x) = −Re
(
V JB(x)

)
−Re

(
V Jλ0A(x)

)
= −Ξ−Re

(
V Jλ0A(x)

)
< −Ξ−Re

(
V Jλ0A(x)

)
− (−s)Re

(
V JλlA(x)

)
= −Ξ−Re

(
V J(t− skl)A(x)

)
= −Ξ + (t− skl) Im

(
V (iJ)A(x)

)
.

At least once (t − skl) /∈ [j1, j2], whence the righthand sides is not positive semi de�nite.
Thus λ0 /∈ N (x). So λ ∈ N (x) implies Im(λ) > − j2−j1

k2−k1
.

Since the imaginary part ofN (x) is bounded from below for every x ∈ J , there is a function
f : J → R, such that for every x ∈ J and every λ with Cλ(x) ≥ 0 holds Im(λ) ≥ f(x).
Since J has positive measure, there exists some f0 ∈ R, such that f−1([f0,∞]) is not a set
of measure zero. (Otherwise J = ∪{f−1([−j,∞]) : j ∈ N} would be of measure zero.)

For any λ ∈ AdmV holds Cλ(x) ≥ 0 for almost every x ∈ [a, b), in particular for a.e.
x ∈ J . This �nally implies Im(λ) ≥ f0. Thus the Theorem follows.

6.3 An augmentation method

In this chapter we introduce a method to augment the problem to one of higher order which
remains equivalent to the original problem. Though this seems to be of no real importance,
it provides an insight into some questions of possibility.
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Let m+,m−∈ N ∪ {0}. These are the dimensions by which we will augment the problem.

We assume we have chosen some suitable (V,E) with corresponding n+ = n+(V ), n− =
n−(V ).

First we declare some abbreviations:
We set

ñ := n +m−+m+, ñ− := n−+m−, ñ+ := n++m+.

For matrices N ∈ Cn,n , P− ∈ Cm−,m−, P+ ∈ Cm+,m+
, Q− ∈ Cn−,n−, Q+ ∈ Cn+,n+

,

Θ ∈ Cn,n−, Φ ∈ Cn,n+
and T ∈ Cn−,n+

we use the notations

(6.5)

[N,P−, P+] := diag(P−, N, P+) ∈ Cen,en ,
|N | := [N, 0m−, 0m+],

(Q−, P−)− :=

(
P− 0
0 Q−

)
∈ Cen−,en−, [Θ, P−]− :=

P− 0
0 Θ
0 0

 ∈ Cen,en−,

(Q+, P+)+ :=

(
Q+ 0
0 P+

)
∈ Cen+,en+

, [Φ, P+]+ :=

0 0
Φ 0
0 P+

 ∈ Cen,en+

,

T | :=
(

0 0
T 0

)
∈ Cen−,en+

, |T ∗ :=

(
0 T ∗

0 0

)
∈ Cen+,en−.

Note that in each of these abbreviative functions each �rst argument on the left side will
be a function (or constant) of the original problem.

For matrices with adequate dimensions, the following holds:

(6.6)
[(Q− T

U Q+

)
, P−, P+

]
=

(
(Q−, P−)− T |

|U (Q+, P+)+

)
,

(6.7) [N,P−, P+]∗ = [N∗, P−∗, P+∗],

(6.8) [N,P−, P+][Ñ , P̃−, P̃+] = [NÑ, P−P̃−, P+P̃+],

(6.9) [N,P−, P+][Φ, P̃+]+ = [NΦ, P+P̃+]+, |N |[Φ, P+]+ = [NΦ, 0]+,

(6.10) (Q+, P+)+|U =
∣∣Q+U , T |(Q−, P−)− = TQ−|,
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(6.11) T | |U = (TU, 0)−, |U T | = (UT, 0)+,

(6.12) [Φ, P+]+|U = [ΦU, 0]−.

We want to pose the augmented problem. Therefor let J− ∈ Cm−,m−, J+ ∈ Cm+,m+
such

that iJ− and iJ+ are unitary and self-adjoint. We mark the corresponding matrices for the
augmented problem in this section with a tilde.

Let Ã := |A|, B̃ := |B|, J̃ := [J, J−, J+]. The formal augmented problem reads

(6.13) J̃ ỹ′λ(x) = (λÃ(x) + B̃(x))ỹλ(x)

For Ẽ := [E, Im−, Im+] and Ṽ := [V,−Im−, Im+], we obtain

Lemma 6.3.1. The pair (Ṽ , Ẽ) is suitable for the augmented problem with

(6.14) n−(Ṽ ) = ñ−, n+(Ṽ ) = ñ+,

(6.15) ÃdmV = AdmV , Λ̃V = ΛV , C̃λ = |Cλ|,

(6.16) Ỹλ = [Yλ, Im−, Im+], Θ̃λ = [Θλ, Im−]
−, Φ̃λ = [Φλ, Im+]+,

(6.17) S̃λ = (Sλ,−
1

2
Im−)

−, P̃λ = (Pλ,
1

2
Im+)+, T̃λ = Tλ|, T̃λ

∗
= |T ∗λ ,

(6.18) C̃λ = |Cλ , R̃λ = (Rλ,
1

2
Im−)

−.

Corresponding statements hold for the respective functions of the adjoint problem. It
should be mentioned that the shape of Z̃λ, η̃λ and χ̃λ is as follows:

Z̃λ = (η̃λ|χ̃λ) with η̃λ =

 0 0
ηλ 0
0 −J+

 and χ̃λ =

J− 0
0 χλ

0 0

 .
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Proof. The calculations for ñ−, ñ+, C̃λ , Ỹλ, Θ̃λ and Φ̃λ are straightforward.

Therewith obviously C̃λ,V < 0 if and only if Cλ,V < 0 and thus holds ÃdmV = AdmV .
Furthermore Ṽ J̃Ã = |V JA| by (6.8), and so (2.6) yields Λ̃V = ΛV . Since admissibility of V

is equivalent to these sets not being empty we conclude that Ṽ is admissible.
(2.18), (6.7), and (6.8) yield

2

(
S̃ T̃

T̃ ∗ P̃

)
= Ỹ ∗Ṽ Ỹ = [Y ∗V Y,−I, I] =

[
2

(
S T
T ∗ P

)
,−I, I

]
.

Hence (6.6) implies the statements for S̃, P̃ and T̃ .
Since P (a) ≥ 0, we know P̃ (a) ≥ 0. For any ξ =

(
ξ1
ξ2

) ∈ Cen+
with ξ1 ∈ Cn+

, ξ2 ∈ Cm+
, which

ful�lls the premise for the de�niteness assumption (2.10) for the augmented problem, (6.17)
yields ξ2 = 0 and ξ1 ful�lls the same premise for the original problem and therefore is zero.
It follows that (Ṽ , Ẽ) is suitable.
The statements for C̃λ and R̃λ hold by (2.24), (2.25), (6.10), and (6.11).

We �x the suitable pair (Ṽ , Ẽ). With equations (2.26), (6.10), (6.11), (6.17), and (6.18)
we obtain

D̃λ(x) ⊇ {|l : l ∈ Dλ(x)}.

The choice µ̃ = µ and M̃0 := |M0 ∈ D̃λ(b) yields M̃ = |M by straightforward (yet technical)
calculations (the crucial equations in the construction of the M -function are (4.14) and
(4.25)). This leads to

Ψ̃λ = [Ψλ, Im−]
− =

Im− 0
0 Ψλ

0 0

 and ζ̃λ =

 0 0
ζλ 0
0 −J+

 .

For f̃ ∈ L2eA[a, b) let f := (fm−+1, . . . , fm−+n)T . If f̃ was not zero in L2eA[a, b), then f is

not zero in L2
A by construction of Ã. Again by straightforward calculation, using (4.34) and

(4.35), we obtain

R̃λf̃ = ( 0, . . . , 0︸ ︷︷ ︸
m−

, Rλf, 0, . . . , 0︸ ︷︷ ︸
m+

)T and ˜̂
Rλf̃ = ( 0, . . . , 0︸ ︷︷ ︸

m−

, R̂λf, 0, . . . , 0︸ ︷︷ ︸
m+

)T ,

which shows that Assumption 2 of the augmented problem is ful�lled, as long as it is
ful�lled in the original problem.

The theory �nally yields the operator L̃. With

(6.19)
D(L̃) = {ỹ ∈ L2eA ∩ ACloc[a, b) : χ̃µ

∗(a)J̃ ỹ(a) = 0 = lim
x→b

ζ̃µ
∗
(x)J̃ ỹ(x)

and J̃ ỹ ′ − B̃ỹ = Ãf̃ , for some f̃ =: L̃ỹ ∈ L2eA}.
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Let I the projection

([a, b) → Cen) → ([a, b) → Cn), I
(
(f1, . . . , fen)T

)
:= (fm−+1, . . . , fm−+n)T .

The construction of Ã yields that I maps L2eA onto L2
A, bijectively, isometrically, and

isomorphically.
Straight calculations yields that for any ỹ ∈ D(L̃) and any y ∈ D(L) holds

I(ỹ) ∈ D(L) with LI(ỹ) = I(L̃ỹ) and I−1y ∈ D(L̃) with L̃I−1(y) = I−1(Ly). (Recall
that the assumptions on ỹ to be in D(L̃) is posed for one representative of this element ỹ,
which is a class of functions.)
Thus we obtain

Corollary 6.3.2.
L̃ = I−1LI and L = IL̃I−1

as operators in L2eA, respectively in L2
A.

By (6.15) we do not have any better approximation of the spectrum of L. Yet the aug-
mentation method shows some things:

With an appropriate choice of m−, m+, J− and J+, such that n−(iJ̃) = n+(iJ̃) and ñ−= ñ+,
and with an appropriate basis transform (such that J̃ = codiag(Im−,−Im−)), the augmented
problem ful�lls the assumptions in [5], furthermore U2n := −Ṽ J̃ is a suitable matrix for
the theory therein ful�lling all necessary assumptions. Thus the augmentation method may
transform the original problem into an even order problem (where even further assumptions
are ful�lled).

Since P̃ = (P, 1
2
Im+)+, we know that in the augmented problem, additionally m+ eigenval-

ues of P̃ (x) remain bounded as x tends to b. Thus Lemma 5.1.2 states that in the augmented
problem, m+ more linearly independent solutions of (6.13) exist that are in LfCλ

.

Yet C̃λ = |Cλ| and thus I maps L2fCλ
onto L2

Cλ
isometrically and isomorphically. For any

solution ỹ ∈ L2fCλ
of the augmented version of (2.1) we know I ỹ is a solution of (2.1). So

those m+ further linearly independent solutions are not linearly independent within L2fCλ
.

This shows that we really have to distinguish between linearly independence as functions
[a, b) → Cn and linearly independence in L2

Cλ
.

Another conclusion is the following: If both m− and m+ are not zero, (6.17) and a corre-

sponding statement for ˜̂P shows that of both, P̃ (x) and ˜̂P (x), at least one eigenvalue remains
bounded (as x tends to b). Using Lemma 5.1.2 and an analogous statement for the adjoint
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problem, Theorem 5.1.14 yields that (2.1) is in the non-limit-point case. Thus we can change
from limit-point case to non-limit-point case without changing the problem essentially (in
view of Corollary 6.3.2).

Since in the non-limit-point case we have better approximations of the number of linearly
independent solutions of (2.1) that are in L2

Cλ
, we can use the augmentation method to

obtain

Lemma 6.3.3. Let (V,E) suitable for (2.1). We augment the problem by one dimension,
choosing m+ := 0, m− := 1, J− := i.

For r̃, the value that corresponds to r (see (5.3)) for the augmented problem, holds:
There are exactly n−+ r̃ independent solutions of (2.1) that are in L2

Cλ
.

Proof. Using R̃λ = (Rλ,
1
2
)−, equation (3.47) yields that at least one eigenvalue of ˜̂P (x)

remains bounded as x tends to b. Thus there are more than ñ+ independent solutions of
the augmented version of (3.15) that are in L2fcCλ

by the dual version of Lemma 5.1.2 for the

augmented problem.

Hence, if the augmented problem is in the limit-point case, Theorem 5.1.14 implies that
there are exactly ñ− = 1 + n− solutions of the augmented version of (2.1) that are in L2fCλ

.

Furthermore holds r̃ = 0 in the limit-point case by de�nition.

If the augmented problem is in the in the non-limit-point case, Theorem 5.1.10 yields that
there are exactly ñ−+ r̃ = n−+ 1 + r̃ solutions of the augmented version of (2.1) that are in
L2fCλ

.

In both cases there are exactly n−+ 1 + r̃ solutions of the augmented version of (2.1) that
are in L2fCλ

.

The number of linearly independent solutions of (2.1) that are in L2
Cλ

is exactly one
less, than the corresponding number in the augmented problem (with the further solution
y ≡ (1, 0, . . . , 0)T , which is even zero in L2fCλ

). Hence the statement follows.

If the original problem is in the limit-point case, then the geometrical quantity r does
not yield the amount of linearly independent solutions of (2.1) (in view of Theorem 5.1.10).
After appropriate augmentation, the resulting quantity r̃ does by Lemma 6.3.3.
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6.4 The case n = 1

We �nally consider the case that n is one.
The one-dimensional problem has the advantage that we can calculate the solutions of (2.1)
explicitely. Even this rather simple case o�ers an insight into some questions of possibility.

With a := 0, b := ∞, J := −i, A ∈ L1
loc([0,∞),R+

0 ), B ∈ L1
loc([0,∞),C), problem (2.1)

reads

(6.20) −iy′ = (λA+B)y.

The alternative choice J = i would create a similar problem.

The only possible choices for V (up to an irrelevant positive constant) is ±1 so (n+, n−) ∈
{(1, 0), (0, 1)}.
Therewith

ΛV = {λ ∈ C : Re(±iλA) < A} = {λ ∈ C : ∓ Im(λA) < A} = {λ ∈ C : Im(λ) ≶ 0},

the lower, respectively the upper half-plane. Since

(6.21) Ck,V = Re
(
± i(kA+B)

)
= ∓ Im(kA+B),

we have
AdmV = {k ∈ C : ∓

(
Im(k)A+ Im(B)

)
< 0}.

Thus Assumption 1 reads

(6.22) A < Im(B) or A < − Im(B).

Assumption 2 holds always true by Remark 4.4.2.
In view of Theorem 5.4.1, we furthermore have b̂ = ∞ by Corollary 5.4.3.

We distinguish three possible cases:

(6.23)

case 1: A < − Im(B) and A 6< Im(B),

case 2: A 6< − Im(B) and A < Im(B),

case 3: A < − Im(B) and A < Im(B).

By Remark 2.1.4, the choice E = 1 does not restrict the generality of our examination;
using additionally Lemma 2.1.3, we see that for an admissible V , the pair (V,E) is suitable.

Yλ solves Y ′
λ = i(λA+B)Yλ and Yλ(0) = 1. Thus we have for all c ∈ [0,∞)
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(6.24)
Yλ(c) = exp

(
i

∫ c

0

λA+Bdx
)

= exp
(
i

∫ c

0

Re(λ)A+ Re(B)dx
)

exp
(
−
∫ c

0

Im(λ)A+ Im(B)dx
)
.

The formal adjoint problem (3.15) reads

(6.25) z′λ = i(λ̄A+ B̄)zλ.

Remark 6.4.1. Since Im(B̄) = − Im(B), for the adjoint problem, the cases 1 and 2 inter-
change. Furthermore V̂ = −V by (3.16).

For V ∈ {±1}, by (3.18) and (3.17) we obtain J0 = V and Ê = iV . Thus we have for all
c ∈ [0,∞)

Zλ(c) = iV exp
(
i

∫ c

0

Re(λ)A+ Re(B)dx
)

exp
( ∫ c

0

Im(λ)A+ Im(B)dx
)
.

First we assume A < − Im(B), so we are in case 1 or 3.

Let k−1 := inf{k ∈ R : kA+ Im(B) < 0}.

The choice V := −1 is admissible with (n+, n−) = (0, 1) and

Adm−1 = {λ ∈ C : Imλ ≥ k−1}.

So we have
W−1 = {λ ∈ C : Imλ > k−1}.

With n+ = 0 and n−= 1 we obtain Θλ = Yλ, Φλ = 01,0, ηλ = 01,0 and χλ = Zλ.

Because Pλ,−1(c) ∈ Cn+,n+
= C0,0 we have Pλ,−1 = 00,0 on [0,∞). This no eigenvalues.

Thus no eigenvalue of Pλ,−1 is bounded. By Lemma 5.1.2 there is a non-trivial solution of
(2.1) that lies in L2

Cλ
. So Yλ ∈ L2

Cλ
⊆ L2

A for λ ∈ W−1. We know the explicit shape of Yλ, so
this can already be checked in (6.24) with fundamental analysis means, using

Im(λ)A+ Im(B) = k−1A+ Im(B) + (Im(λ)− k−1)A < (Im(λ)− k−1)A < A.
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Since ∅ 6= Dλ,−1(∞) ⊆ Cn+,n− we can conclude Dλ,−1(∞) = Cn+,n− = {00,1}, so only the
limit-point case occurs with M ≡ 00,1, and hence

(6.26)
Ψλ = Θλ + ΦλM = Yλ + 0 = Yλ,

ζλ = ηλ + χλM
∗ = ηλ = 01,0.

With (4.36) and (4.35), we obtain

(6.27) Rλf(x) = Yλ(x)

∫ x

0

Zλ(y)A(y)f(y)dy,

(6.28) R̂λf(x) = Zλ(x)

∫ ∞

x

Yλ(y)A(y)f(y)dy.

The domain of de�nition of the operator L−1 is given by

(6.29) D(L−1) = {y ∈ L2
A ∩ ACloc[0,∞) : ∃f ∈ L2

A : Af = −iy′ −By a.e. and y(0) = 0}.

Before considering further results, we examine the other possible choice of V .

We now assume A < Im(B), so we are in case 2 or 3.

Let k1 := sup{k ∈ R : −kA− Im(B) < 0}.

The choice V := 1 is admissible with (n+, n−) = (1, 0) and

Adm1 = {k ∈ C : Imλ ≤ k1}.

So we obtain
W1 = {λ ∈ C : Imλ < k1}.

With these values of n+ and n−we obtain Θλ = 01,0, Φλ = Yλ, ηλ = Zλ and χλ = 01,0.

Again (2.1) is in the limit-point case, now with Dλ,1(∞) = Cn+,n− = {01,0}. HenceM ≡ 01,0

on W1 and therewith

(6.30)
Ψλ = Θλ + ΦλM = 01,0,

ζλ = ηλ + χλM
∗ = ηλ = Zλ.
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For λ ∈ W1 holds

(6.31)
Pλ,1 = Y ∗

λ V Yλ = YλYλ = exp
(
− 2

∫ c

0

Im(λ)A+ Im(B)dx
)

= exp
(
ν

∫ c

0

A dx
)

exp
(
2

∫ c

0

−k1A− Im(B)dx
)
,

with ν := −2(Im(λ)− k1) > 0.

Lemma 5.1.2 yields that Yλ ∈ L2
Cλ

if and only if Pλ,1(c) is bounded as c tends to in�nity.
Both integrands (and therewith both brackets) on the right-hand side of (6.31) are non-
negative. Therewith we obtain

Remark 6.4.2. Yλ ∈ L2
Cλ

if and only if A, Im(B) ∈ L1(0,∞).

If this is not the case, we only know that Yλ is not in L2
Cλ
. The theory does not state that

Yλ may not be in L2
A. So we can distinguish three sub-cases:

(6.32)

sub-case a: Yλ ∈ L2
Cλ
,

sub-case b: Yλ ∈ L2
A and Yλ 6∈ L2

Cλ
,

sub-case c: Yλ 6∈ L2
A,

for some λ ∈ W1. (By Theorem 5.1.6, the actual choice of this λ ∈ W1 is irrelevant.)

In case 3, using A < − ImB and (6.21), we obtain for λ ∈ W1

Cλ,1 = − Im(λ)A− Im(B) 4 A,

which shows Cλ,1 � A. Hence only sub-cases a and c are possible in case 3.

The operator L1 has the domain of de�nition
(6.33)
D(L1) = {y ∈ L2

A ∩ACloc[0,∞) : ∃f ∈ L2
A : Af = −iy′ −By a.e. and lim

x→∞
Zµ(x)y(x) = 0}.

Using (4.62), in sub-case c we obtain

(6.34) D(L1) = {y ∈ L2
A ∩ ACloc[0,∞) : ∃f ∈ L2

A : Af = −iy′ −By a.e.}.

In case 3.c (where also L−1 exists), this is a proper superset of D(L−1).
On the intersection of their domains, both operators are equal. Thus we obtain
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Corollary 6.4.3. In case 3.c, the operator L1 is a proper extension of L−1 and hence their
resolvent sets are disjoint.

We have not yet shown that all these cases are really possible. To �ll this gap, we regard
some simple concrete examples.

For case 1 we could choose A(x) := 1 and B(x) := ix.

For case 2.a, the choices A(x) := (x + 1)−3 and B(x) := −i(x + 1)−2 will do by Remark
6.4.2.

The choice A(x) := (x+ 1)−4 and B(x) := −i(x+ 1)−1 is obviously in case 2.
Remark 6.4.2 yields Yλ 6∈ L2

Cλ
, since Im(B) 6∈ L1(0,∞).

With this choice of A and B, we obtain k1 = 1. Thus we have λ = 0 ∈ W1. For this λ, we
can calculate

|Yλ(c)| = e
R c
0 − Im(B)dx = e

R c
0 (x+1)−1dx = elog(c+1)−0 = c+ 1.

This shows that Yλ ∈ L2
A, so this is case 2.b.

For case 2.c let A(x) := 1 and B(x) := −i(x + 1). Again case 2 is obvious with k1 = 1.
For λ = 0 ∈ W1, the estimation

|Yλ(c)| = e
R c
0 − Im(B)dx = e

R c
0 x+1 dx ≥ ec

shows Yλ 6∈ L2
A.

The choice B := 0 yields case 3. Remark 6.4.2 shows that both sub-cases 3.a and 3.c can
occur, depending on whether A is in L1(0,∞) or not.

These simple examples show that A 6< Cλ is possible and even the number of linearly
independent solutions of (2.1) that are in L2

A may di�er from the corresponding number for
L2

Cλ
.

Our theory yields the estimation WV ⊆ ρ(L). The following shows that even equality
may hold. For this we want Im(B)

A
to be constant, which yields case 3, furthermore we need

sub-case 3.c.
For example let A(x) := 1, B(x) := x2 on [0,∞). Because A /∈ L1, this is subcase 3.c.

We obtain k−1 = k1 = 0. Thus W−1 is the upper, W1 the lower half-plane. So the upper
half-plane is a subset of the resolvent set of L−1, the lower half-plane is a subset of the
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resolvent set of L1. Corollary 6.4.3 yields the assertion.

A weaker assumption would be that Im(B)
A

is bounded and convergent to some k̃. This also
is case 3 and, if A is not in L1(0,∞), sub-case 3.c.

Let ã > 0. We want to apply Theorem 5.4.1. For this we set

(6.35)
k̃ã
−1 := inf{k ∈ R : kA+ Im(B) ≥ 0 a.e. on [ã,∞)} and

k̃ã
1 := sup{k ∈ R : −kA− Im(B) ≥ 0 a.e. on [ã,∞)}.

As for the original problem we conclude

W̃ ã
−1 = {λ ∈ C : Im(λ) > k̃ã

−1} and W̃ ã
1 = {λ ∈ C : Im(λ) < k̃ã

1}.
The assumption on Im(B)

A
yields that k̃ã

1 and k̃ã
−1 converge to k̃ (as ã tends to in�nity).

Recall b̂ = ∞. Theorem 5.4.1 (respectively Corollary 5.4.2) yields that there are at most
isolated points of the spectrum of L−1 in {λ ∈ C : Im(λ) > k̃} and there are at most isolated
points of the spectrum of L1 in {λ ∈ C : Im(λ) < k̃}.
Using Corollary 6.4.3 again, we can conclude that k̃i plus the lower half-plane is in the
spectrum of L−1 and k̃i plus the upper half-plane is in the spectrum of L1.

We can even go further. If we examine the proof of Theorem 5.4.1, we realize that λ is an
isolated point in W̃ ã

V \ ρ(L) only if the matrix Ωλ in (5.28) is singular. This matrix however,
independent of V ∈ {±1}, equals Yλ(ã) 6= 0 and thus is regular. We conclude

Corollary 6.4.4. In case 3.c, if ImB(x)
A(x)

converges to some k̃ (as x→∞), then

(6.36)
ρ(L−1) = {λ ∈ C : Im(λ) > k̃} and

ρ(L1) = {λ ∈ C : Im(λ) < k̃}.

We can use Theorem 5.4.1 and the above considerations (that there are no isolated points
in W̃ ã

V \ ρ(L)), to conclude generally in case 1 or 3:

ρ(L−1) ⊃
⋃

ã∈[0,∞)

W̃ ã
−1

and in case 2 or 3:
ρ(L1) ⊃

⋃
ã∈[0,∞)

W̃ ã
1 .

Recall the shape of W̃ ã
−1 and the de�nition of k̃ã

−1 above (respectively of W̃ ã
1 and k̃ã

1).
Thus if A and B are such, that Im(B)

A
converges to plus or minus in�nity, the corresponding

121



operator has empty spectrum . An example would be A = 1 and B(t) = −it on [0,∞). This
is case 1. The domain of L−1 is given in (6.29) with Ly := −iy′ −By for y ∈ D(L−1).

The following consideration is independent of the case (1, 2 or 3):
If both problems ((6.20) and (6.25)) are in the weak limit-circle case, (this means Yλ and Zλ

are in L2
A for some λ ∈ W1, respectively λ ∈ W−1), then Theorem 5.3.3 and the extraordinary

M function (with no entries) yield that the spectrum of the corresponding operator (L1,
respectively L−1) is empty.
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Ŝλ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Tλ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
T̂λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Vc, Vc,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27,27
Vc,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
V̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
WV = AdmV + ΛV . . . . . . . . . . . . . . . . . . . . . . . 14
W̃ ã
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