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STRINGS OF CONGRUENT PRIMES IN SHORT INTERVALS

TRISTAN FREIBERG

Abstract. Fix ǫ > 0, and let p1 = 2, p2 = 3, . . . be the sequence of all primes. We prove

that if (q, a) = 1 then there are infinitely many pairs pr, pr+1 such that pr ≡ pr+1 ≡ a mod q

and pr+1 − pr < ǫ log pr. The proof combines the ideas of Shiu [9] and Goldston-Pintz-

Yıldırım [6].

1. Introduction

Fix any ǫ > 0. In 2005, Goldston, Pintz and Yıldırım proved [4, 6] that there are arbitrarily

large x for which there are at least two primes in the interval (x, x+ǫ log x], thus establishing

the longstanding conjecture that there are infinitely many pairs of consecutive primes pr, pr+1

with pr+1 − pr < ǫ log pr.

In [5] they extended their original argument to prove that there are arbitrarily large x for

which there are at least two primes in the interval (x, x + ǫ log x] which are both in the

arithmetic progression a mod q, provided (q, a) = 1. However one cannot deduce that these

are consecutive primes for there might be a prime in-between them that is not ≡ a mod q.

Hence one can only deduce that either there are infinitely many pairs of consecutive primes

pr ≡ pr+1 ≡ a mod q with pr+1 − pr < ǫ log pr, or that there are infinitely many triples of

consecutive primes pr, pr+1, pr+2 with pr+2 − pr < ǫ log pr. Presumably both statements are

true but one can only deduce that one of them is true, and one does not know which one,

from the result in [5].

In [9], Shiu proved an old conjecture of Chowla that there are infinitely many pairs of

consecutive primes pr, pr+1 which are both ≡ a mod q. Indeed he was even able to extend

this to k consecutive primes. In this paper we will combine the methods of Goldston-Pintz-

Yıldırım and of Shiu to establish the following hybrid of those results:

Theorem 1.1. Let q > 3 and a be integers with (q, a) = 1, and fix any ǫ > 0. There

exist infinitely many pairs of consecutive primes pr, pr+1 such that pr ≡ pr+1 ≡ a mod q and

pr+1 − pr < ǫ log pr.
1
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2. Preliminaries

In this section we will state two key technical propositions, to be proved in sections 4 and

5. The first proposition requires some preparation. We begin by quoting the Landau-Page

theorem, a proof of which can be found in [2, Chapter 14]. This theorem is used to handle

problems arising from possible irregularities in the distribution of primes, hence in Bombieri-

Vinogradov type theorems (see Lemma 4.2), caused by potential Siegel zeros.

Lemma 2.1 (Landau-Page theorem). There exists a constant c such that the following holds

for any Y > c. There is at most one integer q0 6 Y , and at most one real primitive character

χ0 mod q0, such that

L(1 − δ, χ0, q0) = 0 for some δ 6
1

3 log Y
.

If q0 exists, then q0 > (log Y )2. We call χ0 an exceptional character and q0 an exceptional

modulus.

Throughout, we fix a number ǫ > 0, we let H be a real parameter tending monotonically to

infinity, and we set N := exp(H/ǫ), that is H = ǫ logN . If there is an exceptional modulus

q0 := q0(H) 6 exp(H/ǫ(log(H/ǫ))2) = N1/(log logN)2 , let p0 := p0(H) be its greatest prime

factor; otherwise let p0 = 1.

For all sufficiently large H , either

p0 = 1 or p0 is a prime with p0 > logH . (2.1)

To see this, note that all real primitive characters are products of Legendre symbols with

different odd primes, and possibly either the unique real character mod 4 or one of the two

primitive real characters mod 8. Thus if q0 exists it is of the form 2αp1 · · · pk, where α 6 3

and the pi’s are distinct odd primes. If this is the case and p0 6 logH , then the prime

number theorem implies q0 ≪ exp((1 + o(1)) logH) ≪ logN , but Lemma 2.1 states that

q0 > (logN/(log logN)2)2.

We let Q := Q(H) be a positive integer, upon which we will impose the following conditions:

Q is composed only of primes p 6 H , (2.2)

Q is divisible by all primes p 6 logH , (2.3)

Q 6 exp
(

cH/(logH)2
)

for some constant c > 0, (2.4)

if p0(H) 6= 1 then p0(H) does not divide Q. (2.5)
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We let

H := {Qx+ h1, . . . , Qx+ hk}, h1, . . . , hk ∈ [1, H ] ∩ Z, (2.6)

denote a set of distinct linear forms, and we define

ΛR(n;H, j) :=
1

j!

∑′

d|P (n;H)
d6R

µ(d)(logR/d)j, (2.7)

where
∑′ denotes summation over indices coprime with Qp0, and

P (n;H) := (Qn+ h1) · · · (Qn + hk). (2.8)

Finally, we let

ϑ(n) :=







log n if n is prime,

0 otherwise.

Proposition 2.2. Given ǫ > 0 and sufficiently large H, let N and p0 = p0(H) be as

defined earlier, and let Q = Q(H) be a positive integer satisfying (2.2) – (2.5). Fix positive

integers k and ℓ, and let H = {Qx+ h1, . . . , Qx+ hk} be a set of distinct linear forms with

h1, . . . , hk ∈ [1, H ] ∩ Z and (Q, h1, . . . , hk) = 1. Let h ∈ [1, H ] ∩ Z and suppose (Q, h) = 1,

and let R = N1/4−ǫ′ for some ǫ′ ∈ (0, 1/4). As H → ∞, we have

1

N

(

φ(Q)

Q

)k
∑

N<n62N

ΛR(n;H, k + ℓ)2 ∼
(

2ℓ

ℓ

)

(logR)k+2ℓ

(k + 2ℓ)!
(2.9)

and

1

N

(

φ(Q)

Q

)k
∑

N<n62N

ϑ(Qn + h)ΛR(n;H, k + ℓ)2

∼



























Q

φ(Q)

(

2ℓ

ℓ

)

(logR)k+2ℓ

(k + 2ℓ)!
if Qx+ h 6∈ H,

(

2(ℓ+ 1)

ℓ+ 1

)

(logR)k+2ℓ+1

(k + 2ℓ+ 1)!
if Qx+ h ∈ H.

(2.10)

Proposition 2.3. Let q > 3 and a be integers with (q, a) = 1, and for a given H, let

p0 = p0(H) be as defined earlier. There is an infinite sequence of integers H1 < H2 < . . .

such that for any i, taking H = Hi, there exists a positive integer Q = Q(H), divisible by q

and satisfying (2.2) – (2.5), such that

|S| − |T | ≫q H

(

φ(Q)

Q

)

, (2.11)
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where

S = S(H) := {h ∈ (0, H ] : (Q, h) = 1 and h ≡ a mod q},
T = T (H) := {h ∈ (0, H ] : (Q, h) = 1 and h 6≡ a mod q}.

(2.12)

The implied constant in (2.11) depends at most on q.

3. Proof of Theorem 1.1

Fix integers q > 3 and a with (q, a) = 1. Recall that H = ǫ logN , with ǫ > 0 fixed, and p0 is

the greatest prime factor of the exceptional modulus q0 6 N1/(log logN)2 , if it exists, otherwise

p0 = 1. We choose H , Q = Q(H), S = S(H), and T = T (H) as in Proposition 2.3, so that

Q is divisible by q and satisfies (2.2) – (2.5), and

Q

φ(Q)

|S| − |T |
logN

> c(q)ǫ (3.1)

for some constant c(q) > 0, depending on q at most.

We fix positive integers k, ℓ (to be specified later), and we let H = {Qx + h1, . . . , Qx+ hk}
be a set of distinct linear forms such that, for each i, hi ∈ [1, H ] ∩ a mod q and (Q, hi) = 1.

We let R = N1/4−ǫ′ with 0 < ǫ′ < 1/4 (to be specified later), and we put

L :=

1

N

(

φ(Q)

Q

)k
∑

N<n62N

(

∑

h∈S
ϑ(Qn + h)−

∑

h∈T
ϑ(Qn + h)− log 3QN

)

ΛR(n;H, k + ℓ)2.

We now show that if L > 0 for a sequence of numbers N , tending to infinity, then Theorem

1.1 follows.

Let

An := {p ∈ (Qn,Qn+H ] : p ≡ a mod q} = {p : p = Qn + h, h ∈ S}
Bn := {p ∈ (Qn,Qn+H ] : p 6≡ a mod q} = {p : p = Qn + h, h ∈ T}.

If L > 0, then there is some n ∈ (N, 2N ] such that

|An| log(Qn +H) >
∑

h∈S
ϑ(Qn + h) >

∑

h∈T
ϑ(Qn + h) + log 3QN > |Bn| logQn + log 3QN.

Now

|An| log (1 +H/Qn) 6 |An|H/Qn 6 H2/QN < log(3/2)
4



if N is sufficiently large, and so

log(3/2) + (|An| − |Bn|) logQn > log 3QN

and hence, as n 6 2N , |An| − |Bn| > 1. But as these are integers, |An| > |Bn| + 2, and so,

by the pigeonhole principle, An contains a pair of consecutive primes pr, pr+1. These primes

satisfy pr+1 − pr < H < ǫ logQN < ǫ log pr.

Now, by our choice of H, a straightforward application of Proposition 2.2 yields

L =

(

2ℓ

ℓ

)

(logR)k+2ℓ

(k + 2ℓ)!

×
{

Q

φ(Q)

∑

h∈S
Qx+h 6∈H

1 +
2(2ℓ+ 1)

ℓ+ 1

logR

k + 2ℓ+ 1

∑

h∈S
Qx+h∈H

1− Q

φ(Q)

∑

h∈T
1− (1 + o(1)) log 3QN

}

.

We have
∑

h∈S
Qx+h∈H

1 = k,
∑

h∈S
Qx+h 6∈H

1 = |S| − k,

logR = (1/4− ǫ′) logN , and log 3QN ∼ logN by (2.4), therefore

L =

(

2ℓ

ℓ

)

(logR)k+2ℓ

(k + 2ℓ)!
logN

×
{

Q

φ(Q)

|S| − |T |
logN

+
2(2ℓ+ 1)

ℓ + 1

k

k + 2ℓ+ 1

(

1

4
− ǫ′

)

− (1 + o(1))

}

.

We have written o(1) for kQ/(φ(Q) logN), because Q/φ(Q) ≪ log logQ ≪ log logN .

By choosing ℓ = [
√
k] and k sufficiently large, the bracketed expression {· · · } above is, by

(3.1),

> c(q)ǫ+ 1− 5ǫ′ − (1 + o(1)) = c(q)ǫ− 5ǫ′ − o(1).

By choosing ǫ′ = c(q)ǫ/10 (we may assume that ǫ is small enough so that ǫ′ < 1/4), we

deduce that

L ≫k c(q)ǫ(logN)k+2ℓ+1 (3.2)

holds if N is sufficiently large. By Proposition 2.3, we may choose H , equivalently N , from

a sequence of numbers tending to infinity, and Theorem 1.1 follows.
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4. Proof of Proposition 2.2

The estimates (2.9) and (2.10) of Proposition 2.2 are essentially the same as estimates already

in the literature, so we will only outline a proof of each of them, referring to [3] and [5] for

details.

Let Q = Q(H) satisfy (2.2) and (2.3). For a set of distinct linear forms H, as in (2.6), and

positive integers d, we define

Ω(d) = Ω(d;H) := {n mod d : P (n;H) ≡ 0 mod d},

where P (n;H) is as in (2.8). A Chinese remainder theorem argument shows that n mod d ∈
Ω(d) if and only if pr || P (n;H) for every pr || d, and so |Ω(d)| defines a multiplicative

function of d. Thus, if we define

λR(d; j) :=







1
j!
µ(d)(logR/d)j if d 6 R,

0 if d > R,
(4.1)

we see from (2.7) that

ΛR(n;H, j) :=
1

j!

∑′

d|P (n;H)
d6R

µ(d)(logR/d)j =
∑′

n mod d
∈Ω(d)

λR(d; j). (4.2)

We call H admissible if |Ω(p)| < p for all p, and one can prove that this is equivalent to

S(H) 6= 0, where

S(H) :=
∏

p

(

1− |Ω(p)|
p

)(

1− 1

p

)−k

is the singular series for H.

Lemma 4.1. Let H be a real number, let Q = Q(H) be a positive integer satisfying (2.2)

and (2.3), and let H be as in (2.6), with k fixed. We have

|Ω(p)| = k for all p > H. (4.3)

For k 6 logH, H is admissible if and only if (Q, h1 · · ·hk) = 1. Moreover, as H → ∞, for

(Q, h1 · · ·hk) = 1 we have

S(H) ∼
(

Q

φ(Q)

)k

. (4.4)

Proof. For primes p that do not divide Q, we have

Ω(p) = {−h1Q
−1, . . . ,−hkQ

−1} mod p,
6



and hence 1 6 |Ω(p)| 6 min(k, p). For such p, we have |Ω(p)| = k if and only if the −hiQ
−1

are all distinct modulo p, that is if and only if p ∤ ∆, where

∆ = ∆(H) :=
∏

16i<j6k

|hi − hj | .

By (2.2), p > H implies p ∤ Q, and since 1 6 |hi − hj | 6 H for every i, j, p > H also implies

p ∤ ∆, and hence |Ω(p)| = k. We have established (4.3).

If some prime p divides (Q, h1 · · ·hk), then P (n;H) ≡ h1 · · ·hk ≡ 0 mod p for every n mod p,

hence |Ω(p)| = p, and so H is not admissible if (Q, h1 · · ·hk) 6= 1. If (Q, h1 · · ·hk) = 1,

then P (n;H) ≡ h1 · · ·hk 6≡ 0 mod p, and hence |Ω(p)| = 0, for every p dividing Q. For

every other p we have 1 6 |Ω(p)| 6 min(k, p). Then for k 6 logH and p ∤ Q, we have

1 6 |Ω(p)| 6 k 6 logH < p by (2.3), hence H is admissible.

Now assume H is large enough so that logH > 2k, and suppose (Q, h1 · · ·hk) = 1. Then for

(4.4), since |Ω(p)| = 0 if p | Q, it suffices to show that

S
′(H) :=

∏

p∤Q

(

1− |Ω(p)|
p

)(

1− 1

p

)−k

∼ 1 (4.5)

as H tends to infinity. We break S
′(H) into two products according as p | ∆ or p ∤ ∆, and

use the fact that |Ω(p)| = k for p ∤ Q∆:

S
′(H) =

∏

p∤Q

(

1− k

p

)(

1 +
k − |Ω(p)|

p− k

)(

1− 1

p

)−k

=
∏

p∤Q

(

1− k

p

)(

1− 1

p

)−k
∏

p∤Q
p|∆

(

1 +
k − |Ω(p)|

p− k

)

.
(4.6)

In this product p − k 6= 0 because, by (2.3), p ∤ Q implies p > logH > 2k. For the same

reason, the logarithm of the first product of the last line of (4.6) is

∑

p∤Q

{(

−k

p
− k2

2p2
− · · ·

)

− k

(

−1

p
− 1

2p2
− · · ·

)}

≪ k2
∑

p>logH

1

p2
≪ k2

logH log logH
.

For the second product, note that since k/ logH 6 1/2, we have

0 <
k − |Ω(p)|

p− k
6

k

p− k
6

2k

p
< 1.

Hence the logarithm of the second product is

6
∑

p|∆
p>logH

log

(

1 +
k − |Ω(p)|

p− k

)

≪
∑

p|∆
p>logH

k

p
≪ k

logH

∑

p|∆
1 ≪ k log∆

logH log log∆
≪ k3

log logH
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by the prime number theorem, because ∆ 6 H(k2). Exponentiating and letting H tend to

infinity yields (4.5). �

We now assume all of the hypotheses of Proposition 2.2. The proof of (2.9) is almost identical

to the proof of Lemma 1 of [3], the only difference being that primes p | Qp0 are excluded

from the representation of F (s1, s2; Ω), where

F (s1, s2; Ω) :=
∑′

d1,d2

µ(d1)µ(d1)
|Ω([d1, d2])|
[d1, d2]d

s1
1 ds22

=
∏

p∤Qp0

(

1− |Ω(p)|
p

(

1

ps1
+

1

ps2
− 1

ps1+s2

))

in the region of absolute convergence. Since |Ω(p)| = k for p > H by (4.3), we put

G(s1, s2; Ω) := F (s1, s2; Ω)

(

ζ(s1 + 1)ζ(s2 + 1)

ζ(s1 + s2 + 1)

)k

.

In the proof of Lemma 1 of [3], G(0, 0; Ω) = S(H), but in our situation, we have

G(0, 0; Ω) =
∏

p∤Qp0

(

1− |Ω(p)|
p

)

∏

p

(

1− 1

p

)−k

= S(H)
∏

p|p0

(

1− |Ω(p)|
p

)−1

,

because (Q, p0) = 1 and |Ω(p)| = 0 if p | Q. The last product is ∼ 1 by (2.1). Now applying

(4.4), and proceeding as in the proof of Lemma 1 of [3], (2.9) is established.

The proof of (2.10) follows that of Lemma 2 of [3] very closely: there is one important

difference concerning the error

E∗(N, q) := max
x6N

max
(a,q)=1

∣

∣

∣

∣

∣

∑

p6x
p≡a mod q

log p− x

φ(q)

∣

∣

∣

∣

∣

.

The usual Bombieri-Vinogradov theorem will not suffice here, but the next lemma, which is

Lemma 2 of [5], will.

Lemma 4.2. Let Q be an integer and Y,M be numbers such that

Q2 6 Y 6 M, exp
(

2
√

logM
)

6 Y. (4.7)

If there is an exceptional modulus q0 6 Y , suppose p0 ∤ Q for some p0 | q0; otherwise, let
p0 = 1. If

R∗ := M1/2Q−3 exp
(

−
√

logM
)

, (4.8)
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then we have, with explicitly calculable positive constants c1 and c2,

∑

D6R∗

(D,Qp0)=1

E∗(M,QD) 6 c1
M

Q
exp

(

−c2 logM

log Y

)

. (4.9)

By (2.2) – (2.5), we see that (4.7) is satisfied with

Y = exp
(

2cH/(logH)2
)

= N2cǫ(1+o(1))/(log logN)2 ,

and M = 3QN . We also have

R2 = N1/2−2ǫ′ 6 R∗ = (3QN)1/2Q−3 exp
(

−
√

log 3QN
)

,

for all sufficiently large N , and

c2 logM/ log Y = c2(1 + o(1)) logN/ log Y = c2(1 + o(1))(log logN)2/2cǫ.

Letting c3 = c2/12cǫ and putting this into (4.9), we deduce from Lemma 4.2 that
∑′

D6R2

E∗(3QN,QD) ≪ N(logN)−5c3 log logN (4.10)

for all sufficiently large N .

Now, abbreviating λR(d; k + ℓ) to λd, by (4.2) we have
∑

N<n62N

ϑ(Qn + h)ΛR(n;H, k + ℓ)2 =
∑′

d1,d2

λd1λd2

∑

N<n62N
[d1,d2]|P (n;H)

ϑ(Qn + h)

=
∑′

d1,d2

λd1λd2

∑

m mod [d1,d2]
∈Ω([d1,d2])

∑

QN+h<p62QN+h
p≡h mod Q

p≡Qm+h mod [d1,d2]

log p.
(4.11)

We may assume (Qm+ h, [d1, d2]) = (Q, [d1, d2]) = 1 in the last sum, so we define

Ω∗(d) := Ω(d) \ {m mod d : (Qm+ h, d) 6= 1}.

For d1, d2 with (Q, [d1, d2]) = 1 and m mod [d1, d2] ∈ Ω∗([d1, d2]), we let hm mod Q[d1, d2]

be the unique congruence class mod Q[d1, d2] satisfying hm ≡ h mod Q and hm ≡ Qm +

h mod [d1, d2]. Thus, the last sum in (4.11) is equal to

∑

QN+h<p62QN+h
p≡hm mod Q[d1,d2]

log p =
2QN + h

φ(Q[d1, d2])
− QN + h

φ(Q[d1, d2])
+O (E∗(3QN,Q[d1, d2])) ,

and (4.11) becomes

QN

φ(Q)
T ∗ +O(E∗), (4.12)
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with

T ∗ :=
∑′

d1,d2

λd1λd2 |Ω∗([d1, d2])|
φ([d1, d2])

, E∗ :=
∑′

d1,d2

|λd1λd2 | |Ω∗([d1, d2])|E∗(3QN,Q[d1, d2]).

Now from the definition (4.1) it is clear that |λd| 6 (logR)k+ℓ. Also, as we saw in the

beginning of the proof of Lemma 4.1, since (Q, h1 · · ·hk) = 1 we have |Ω(p)| 6 k for all p,

and so |Ω∗(d)| 6 |Ω(d)| 6 kω(d) for squarefree d. Thus

E∗ 6 (logR)2(k+ℓ)
∑′

D6R2

µ2(D)kω(D)E∗(3QN,QD)
∑

[d1,d2]=D

1

= (logR)2(k+ℓ)
∑′

D6R2

µ2(D)(3k)ω(D)E∗(3QN,QD).

By the trivial inequality

E∗(3QN,QD) ≪ QN logQN

QD
≪ N logN

D
,

and the Cauchy-Schwarz inequality, we have

∑′

D6R2

µ2(D)(3k)ω(D)E∗(3QN,QD)

≪



N logN
∑

D6R2

µ2(D)(3k)2ω(D)

D





1/2



∑′

D6R2

E∗(3QN,QD)





1/2

.

For positive integers κ, we have

∑

D6R2

µ2(D)κω(D)

D
=

∑

d···dκ6R2

µ2(d1) · · ·µ2(dκ)

d1 · · · dκ
≪ (logR2)κ ≪ (logN)κ,

so combining and applying (4.10) yields

E∗ ≪ N
(logN)2(k+ℓ)+(3k)2/2+1/2

(logN)−2c3 log logN
6 N(logN)−c3 log logN . (4.13)

We will now evaluate T ∗, assuming first that Qx + h 6∈ H. Let H+ = H ∪ {Qx + h} and

observe that for p ∤ Q,

|Ω∗(p)| = |Ω(p;H+)| − 1 := |Ω+(p)| − 1.

As with |Ω(d)|, a Chinese remainder theorem argument shows that |Ω∗(d)| defines a multi-

plicative function of d. Thus

|Ω∗([d1, d2])| =
∏

p|[d1,d2]

(

|Ω+(p)| − 1
)

,

10



provided [d1, d2] is squarefree and (Q, [d1, d2]) = 1, as is the case for d1, d2 appearing in the

sum defining T ∗.

We now proceed as in the proof of Lemma 2 of [3]: again, the only modification necessary is

to G(0, 0; Ω+). First note that

S(H+) =
∏

p

(

p− |Ω+(p)|
p

)(

p

p− 1

)(

1− 1

p

)−k

=
∏

p

(

1− |Ω+(p)| − 1

p− 1

)(

1− 1

p

)−k

.

By (4.3), |Ω+(p)| = |H+| = k + 1 for p > H , and if

G(s1, s2; Ω
+) :=

∏

p∤Qp0

(

1− |Ω+(p)| − 1

p− 1

(

1

ps1
+

1

ps1
− 1

ps1+s2

))

·
(

ζ(s1 + 1)ζ(s2 + 1)

ζ(s1 + s2 + 1)

)k

,

then

G(0, 0; Ω+) =
∏

p∤Qp0

(

1− |Ω+(p)| − 1

p− 1

)

∏

p

(

1− 1

p

)−k

= S(H+)
∏

p|Q

(

1 +
1

p− 1

)−1
∏

p|p0

(

1− |Ω+(p)| − 1

p− 1

)−1

∼
(

Q

φ(Q)

)k

,

by Lemma 4.1 and (2.1). Therefore

T ∗ ∼
(

Q

φ(Q)

)k (
2ℓ

ℓ

)

(logR)k+2ℓ

(k + 2ℓ)!
. (4.14)

We remark that since (Q, h) = (Q, h1 · · ·hk) = 1, H+ is admissible (for all sufficiently large

N) by Lemma 4.1, so we do not have to consider the other case as in the proof of Lemma 2

in [3]. Combining (4.14) with (4.13) and (4.12) yields the first case of (2.10). For the case

Qx+ h ∈ H, we observe that, similarly to (2.2) of [3], we have
∑

N<n62N

ϑ(Qn + h)ΛR(n;H, k + ℓ)2 =
∑

N<n62N

ϑ(Qn + h)ΛR(n;H \ {Qx+ h}, k + ℓ)2,

so the above evaluation applies with the translation k 7→ k − 1, ℓ 7→ ℓ+ 1 to (4.14).

5. Proof of Proposition 2.3

5.1. Auxiliary lemmas. To prove Proposition 2.3, we will use the following lemmas.
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Lemma 5.1. Fix integers q and a with (q, a) = 1. There is a constant c(q, a) > 0, depending

only on q and a, such that

∏

p6x
p≡a mod q

(

1− 1

p

)

∼ c(q, a)

(log x)1/φ(q)

as x → ∞.

Proof. This follows from the prime number theorem for arithmetic progressions. For a more

precise estimate, with the constant c(q, a) given explicitly, see [10, Theorem 1]. �

Lemma 5.2. Let S (x) denote the set of positive integers which are 6 x and composed only

of primes p ≡ 1 mod q. There is a constant c(q) > 0, depending only on q, such that

|S (x)| =
(

c(q) +O

(

1

log x

))

x

log x
(log x)1/φ(q).

Proof. See [9, Lemma 3], in which the constant c(q) is given explicitly. �

The next lemma concerns Ψ(x, y), the number of positive integers which are 6 x and free

of prime factors > y (y-smooth numbers). The ratio Ψ(x, y)/x depends essentially on u =

log x/ log y, and for u in a certain range is approximated by ρ(u), where ρ(u) is the Dickman-

de Bruijn ρ-function, defined as the continuous solution to

ρ(u) :=







1 0 6 u 6 1,

1
u

∫ u

u−1
ρ(t) dt u > 1.

(5.1)

Lemma 5.3. The estimate

Ψ(yu, y)

yu
= ρ(u)

(

1 +O

(

log(u+ 2)

log y

))

(5.2)

holds uniformly in the range

y > 3, 1 6 u 6 exp
(

(log y)3/5−δ
)

, (5.3)

where δ is any fixed positive number. The estimate

ρ(u) = exp (−u log u− u log log u+O(u)) (5.4)

holds for u > 3, and

Ψ(yu, y)

yu
= exp (−u log u− u log log u+O(u)) (5.5)

12



holds uniformly in the range

3 < u 6 y1−δ. (5.6)

Finally, as y → ∞,

Ψ(y, (log y)A)

y
=

1

y1/A+o(1)
(5.7)

holds for any fixed number A > 1.

Proof. We refer to the survey article of Granville [7]. The asymptotic (5.2) was shown to hold

for the range (5.3) by Hildebrand [8]: see [7, (1.8), (1.10)]. Hildebrand [8] also established

that the less precise estimate

Ψ(yu, y)

yu
= ρ(u) exp

(

Oδ

(

u exp
(

−(log u)3/5−δ
)))

holds, for any fixed number δ > 0, in the wider range (5.6). (See displayed formulas [7, (1.11),

(1.13)].) That (5.5) holds in the same range can be deduced from (5.4). (The estimate (5.5)

is less precise, but sufficient for our purposes.) For the estimate (5.7), see [7, (1.14)].

The value of the Dickman-de Bruijn ρ-function is discussed in [7, 3.7 – 3.9], and (5.4) was

proved by de Bruijn in [1]. �

Lemma 5.4. Let P be a subset of the primes. As y → ∞, the estimate

∏

p6y
p∈P

(

1− 1

p

)

∑

n>yu

p|n⇒p6y
p∈P

1

n
6 (1 + o(1))e−γ

∫ ∞

u

ρ(v) dv. (5.8)

holds uniformly for u satisfying

u > 1, u = exp
(

(log y)3/5−δ
)

, (5.9)

where δ is any fixed positive number.

Proof. Define

̺(x, y;P) :=
∏

p6y
p∈P

(

1− 1

p

)

∑

n6x
p|n⇒p6y

p∈P

1

n
.

If ℓ 6 y is prime, then

̺(x, y;P) =
∏

p6y
p∈P∪{ℓ}

(

1− 1

p

)

·
(

1− 1

ℓ

)−1
∑

n6x
p|n⇒p6y

p∈P

1

n
.
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Now
(

1− 1

ℓ

)−1
∑

n6x
p|n⇒p6y

p∈P

1

n
=

(

1 +
1

ℓ
+

1

ℓ2
+ · · ·

)

∑

n6x
p|n⇒p6y

p∈P

1

n
>

∑

m6x
p|m⇒p6y
p∈P∪{ℓ}

1

m
,

because every m appearing in the last sum may be written as nℓα for some α > 0 and some

n appearing in the second last sum. Hence,

̺(x, y;P) > ̺(x, y;P ∪ {ℓ}),

and applying this inequality repeatedly, we obtain

̺(x, y;P) >
∏

p6y

(

1− 1

p

)

∑

n6x
p|n⇒p6y

1

n
.

Subtracting both sides from ̺(∞, y;P) = 1 = ̺(∞, y; {p 6 y}), we deduce that

∏

p6y
p∈P

(

1− 1

p

)

∑

n>x
p|n⇒p6y

p∈P

1

n
6
∏

p6y

(

1− 1

p

)

∑

n>x
p|n⇒p6y

1

n
. (5.10)

By partial summation,

∑

n>x
p|n⇒p6y

1

n
=

∫ ∞

x

dΨ(t, y)

t
= −Ψ(x, y)

x
+

∫ ∞

x

Ψ(t, y)

t2
dt 6

∫ ∞

x

Ψ(t, y)

t2
dt. (5.11)

Now we assume x = yu, with u satisfying (5.9) and y tending to infinity. We will divide the

range of the last integral in (5.11) into three parts. First of all, fix any ǫ ∈ (0, 1) and suppose

t > exp(yǫ), that is y 6 (log t)1/ǫ. By (5.7) we have

Ψ(t, y)

t2
6

Ψ(t, (log t)1/ǫ)

t2
=

1

t1+ǫ+o(1)

as t, and hence as y, tends to infinity. Thus, we may suppose y is large enough so that

Ψ(t, y)/t2 6 1/t1+ǫ/2, say, and
∫ ∞

exp(yǫ)

Ψ(t, y)

t2
dt 6

∫ ∞

exp(yǫ)

dt

t1+ǫ/2
=

2

ǫ exp (ǫyǫ/2)
. (5.12)

For the range x 6 t 6 exp(yǫ), the substitution t = yv yields
∫ exp(yǫ)

x

Ψ(t, y)

t2
dt = log y

∫ yǫ/ log y

u

Ψ(yv, y)

yv
dv. (5.13)
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Next, we let u1 = 2 exp
(

(log y)3/5−δ
)

, and for u1 6 v 6 yǫ, we use the estimate (5.5):

Ψ(yv, y)

yv
= exp (−v log v − v log log v +O(v)) 6

1

vv
,

where the last inequality holds for all sufficiently large v, hence for all sufficiently large y.

Thus
∫ yǫ/ log y

u1

Ψ(yv, y)

yv
dv 6

∫ ∞

u1

dv

vv
≪ 1

uu1

1

(5.14)

for all sufficiently large y.

For u 6 v 6 u1, we use the estimate (5.2):
∫ u1

u

Ψ(yv, y)

yv
dv =

∫ u1

u

ρ(v)

(

1 +O

(

log(v + 2)

log y

))

dv

= (1 + o(1))

∫ ∞

u

ρ(v) dv − (1 + o(1))

∫ ∞

u1

ρ(v) dv.

(5.15)

By (5.4) we have, similarly to (5.14), the estimate
∫ ∞

u1

ρ(v) dv 6

∫ ∞

u1

dv

vv
≪ 1

uu1

1

(5.16)

for all sufficiently large y.

Combining (5.11) – (5.16), we see that
∫ ∞

x

Ψ(t, y)

t2
dt = (1 + o(1)) log y

∫ ∞

u

ρ(v) dv +O
(

u−u1

1 log y
)

(5.17)

for all sufficiently large y. Now by definition (5.1),
∫ ∞

u

ρ(v) dv >

∫ u+1

u

ρ(v) dv = (u+ 1)ρ(u+ 1),

and by (5.4), u−u1

1 = o((u+1)ρ(u+1)) as u1 > 2u, and u1 tends to infinity with y. Therefore,

combining (5.17) with (5.11) in fact gives

∑

n>yu

p|n⇒p6y

1

n
6 (1 + o(1)) log y

∫ ∞

u

ρ(v) dv (5.18)

as y → ∞, for u in the range (5.9). Finally, combining (5.18) with (5.10) and applying

Mertens’ theorem, we obtain (5.8). �

5.2. The proof of Proposition 2.3. We are now ready to define Q explicitly. The con-

struction is modelled on that of Shiu’s [9]. For the rest of this section we let q > 3 and a be
15



integers with (q, a) = 1. If a ≡ 1 mod q, let

P(H) := {p 6 logH : p ≡ 1 mod q} ∪ {p 6 H/(logH)2 : p 6≡ 1 mod q},

otherwise let

P(H) := {p 6 logH : p ≡ 1 mod q} ∪ {p 6 H/(logH)2 : p 6≡ 1, a mod q}
∪ {t(H) 6 p 6 H/(logH)2 : p ≡ 1 mod q} ∪ {p 6 H/t(H) : p ≡ a mod q},

with

t(H) := exp

(

logH log log logH

2 log logH

)

,

and put

Q̃(H) := q
∏

p∈P(H)

p, Q = Q(H) := q
∏

p∈P(H)
p 6=p0

p. (5.19)

We check that (2.2) – (2.5) are indeed satisfied by Q: only (2.4) is not immediate, but it

follows from the prime number theorem.

Analogously to (2.12), we define

S̃(H) := {h ∈ (0, H ] : (Q̃(H), h) = 1 and h ≡ a mod q},
T̃ (H) := {h ∈ (0, H ] : (Q̃(H), h) = 1 and h 6≡ a mod q}.

(5.20)

Proposition 2.3 will follow from the next lemma.

Lemma 5.5. Let H be a real parameter tending to infinity, and let Q̃(H) be as in (5.19).

We have

|T̃ (H)| ≪ H

logH
. (5.21)

Moreover, there is a constant A = A(q), depending on q at most, such that for all sufficiently

large X, there is some H satisfying

X

(logX)A
6 H 6 X, (5.22)

such that

|S̃(H)| ≫q H
φ(Q̃(H))

Q̃(H)
. (5.23)

The implied constant in (5.21) is absolute, and that in (5.23) depends on q at most.
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Proof of Proposition 2.3. Let S(H) and T (H) be as in (2.12). If p0 6= 1 then by (2.1) there

are at most H/p0 < H/ logH multiples of p0 in T (H), so

|T (H)| ≪ H

logH

by (5.21). We also have |S(H)| > |S̃(H)|. An application of Lemma 5.1 reveals that

φ(Q̃(H))

Q̃(H)
=

∏

p∈P(H)

(

1− 1

p

)

≫q











1
logH

(

logH
log logH

)1/φ(q)

if a ≡ 1 mod q,

1
logH

(

log t(H)
log logH

)1/φ(q)

if a 6≡ 1 mod q.

Therefore, in either case, combining (5.21) and (5.23) gives

|S(H)| − |T (H)| ≫ |S̃(H)| − |T̃ (H)| ≫q H
φ(Q̃(H))

Q̃(H)
≫ H

φ(Q(H))

Q(H)
.

Proposition 2.3 now follows from Lemma 5.5. �

Proof of Lemma 5.5. We assume a 6≡ 1 mod q as the case a ≡ 1 mod q is similar and simpler.

There are ≪ H/ logH primes in T̃ (H), so let us count the composites h ∈ T̃ (H). If

h = pm for some prime p > H/(logH)2, with m > 1, then m < (logH)2 is com-

posed only of primes > logH and ≡ 1 mod q, by the construction of P(H). Thus, m

must be prime itself, and p 6 H/ logH . We partition (H/(logH)2, H/ logH ] into sub-

intervals Il = (el−1H/(logH)2, elH/(logH)2], and (logH, (logH)2] into sub-intervals Jl =

(logH, (logH)2/el], 1 6 l 6 log logH , and using the prime number theorem, we deduce that

the contribution from elements with a large prime factor is at most

∑

16l6log logH

∑

p∈Il
p 6≡1 mod q

∑

p′∈Jl
p≡1 mod q

1 ≪
∑

16l6log logH

elH

(logH)3
(logH)2

el log logH
≪ H

logH
.

If h = pm with p ≡ a mod q, then p > H/t(H), and m < t(H) must be composed only of

primes ≡ 1 mod q, a contradiction as h 6≡ a mod q. The only elements left uncounted must

be composed only of primes p ≡ 1 mod q with logH < p < t(H). By (5.5), the number of

such elements is at most

Ψ(H, t(H)) = H exp (−u log u− u log log u+O(u)) ,

where

u =
logH

log t(H)
=

2 log logH

log log logH
.

Thus

u logu+ u log log u+O(u) ∼ u logu ∼ 2 log logH,
17



and so

Ψ(H, t(H)) ≪ H

logH
.

Combining these estimates yields (5.21).

Now suppose H is in the range (5.22). To bound the size of S̃(H) from below we will first

do the same for

S ′(X) := {h ∈ (0, X ] : (Q′(X), h) = 1 and h ≡ a mod q},

where

Q′(X) := q
∏

p∈P′(X)

p, P
′(X) := P(X) \ {p 6 logX : p ≡ 1 mod q}.

Now pm ∈ S ′(X) if X/t(X) < p ≡ a mod q and m ∈ S (X/p). We partition (X/t(X), X ]

into sub-intervals Il = (el−1X/t(X), elX/t(X)], 1 6 l 6 log t(X), and deduce, using the

prime number theorem for arithmetic progressions and Lemma 5.2, that

|S ′(X)| >
∑

16l6log t(X)

∑

p∈Il
p≡a mod q

∑

m∈S (t(X)/el)

1

≫q

∑

16l6 1

2
log t(X)

elX

t(X) logX
· t(X)

el log t(X)
(log t(X))1/φ(q)

≫ X

logX
(log t(X))1/φ(q).

(5.24)

Now, we may write any h ∈ S ′(X) uniquely as h = dm, where d is composed only of primes

p 6 logX with p ≡ 1 mod q, and m ∈ S̃(X). Thus, by (5.24), there is a constant c1(q) > 0,

depending on q at most, such that for all sufficiently large X ,

c1(q)
X

logX
(log t(X))1/φ(q) 6 |S ′(X)| =

∑

d6X
p|d⇒p6logX
p≡1 mod q

∑

m6X/d

m∈S̃(X)

1 6
∑

d6X
p|d⇒p6logX
p≡1 mod q

|S̃(X/d)|. (5.25)

The inequality on the right is not immediate: in fact if Z 6 X , then S̃(X) ∩ (0, Z] ⊆ S̃(Z).

To see this, first note that as all of the functions used to define P(X) are monotonically

increasing with X ,

P(Z) ⊆ P(X) ∪ {t(Z) 6 p 6 t(X) : p ≡ 1 mod q}.

Suppose m ∈ S̃(X)∩ (0, Z], but m 6∈ S̃(Z). Then p ∈ P(Z) for some p | m, but p 6∈ P(X),

so t(Z) 6 p 6 t(X) and p ≡ 1 mod q. Since m ≡ a 6≡ 1 mod q, there must be some p′ | m
with p′ 6≡ 1 mod q and p′ 6 m/p 6 Z/t(Z) 6 X/t(X). Then p′ ∈ P(X), a contradiction.
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Suppose for a contradiction that for some constant c2(q) > 0, depending on q at most, we

have

|S̃(H)| 6 c1(q)

3c2(q)

H

logX

(

log t(X)

log logX

)1/φ(q)

(5.26)

for all H in the range (5.22). Then

∑

d6(logX)A

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)| 6 c1(q)

3c2(q)

X

logX

(

log t(X)

log logX

)1/φ(q)
∑

d6(logX)A

p|d⇒p6logX
p≡1 mod q

1

d

6
c1(q)

3c2(q)

X

logX

(

log t(X)

log logX

)1/φ(q)
∏

p6logX
p≡1 mod q

(

1− 1

p

)−1

6
c1(q)

3

X

logX
(log t(X))1/φ(q) ,

(5.27)

provided X is sufficiently large, and for a suitable choice of c2(q) (given by Lemma 5.1).

Now, by the fundamental lemma of Brun’s sieve, we have

|S̃(X/d)| ≪ X

d

∏

p∈P(X/d)

(

1− 1

p

)

(5.28)

for any d. If (logX)A < d 6
√
X , then log(X/d) ≍ logX , and applying Lemma 5.1 to the

sieve upper bound (5.28), we see that

∑

(logX)A<d6
√
X

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)| 6 c3(q)
X

logX

(

log t(X)

log logX

)1/φ(q)
∑

(logX)A<d6
√
X

p|d⇒p6logX
p≡1 mod q

1

d (5.29)

for some constant c3(q) > 0. By lemmas 5.4 and 5.1 respectively, we have

∑

(logX)A<d6
√
X

p|d⇒p6logX
p≡1 mod q

1

d
6

∏

p6logX
p≡1 mod q

(

1− 1

p

)−1

(1 + o(1))e−γ

∫ ∞

A

ρ(v) dv

6 c4(q)(log logX)1/φ(q)
∫ ∞

A

ρ(v) dv

(5.30)

for some constant c4(q) > 0. Now by (5.4),
∫ ∞

A

ρ(v) dv → 0 as A → ∞,
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so we may choose A = A(c1(q), c3(q), c4(q)) = A(q) so that
∫ ∞

A

ρ(v) dv 6
c1(q)

4c3(q)c4(q)
.

For any such A, combining (5.29) and (5.30) yields

∑

(logX)A<d6
√
X

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)| 6 c1(q)

4

X

logX
(log t(X))1/φ(q). (5.31)

Finally, using Rankin’s trick, we see that

∑

√
X<d6X

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)| 6
∑

√
X<d6X

p|d⇒p6logX

X

d

(

d√
X

)1/3

6 X5/6
∏

p6logX

(

1− 1

p2/3

)−1

6 X5/6 exp

(

∑

p6logX

3

p2/3

)

6 X5/6 exp
(

9(logX)1/3
)

= X5/6+o(1)

(5.32)

by the prime number theorem.

Combining (5.25), (5.27), (5.31), and (5.32), we obtain c1(q) 6 2c1(q)/3, which is absurd.

We conclude that for all sufficiently large X , there is some H in the range (5.22) for which

|S̃(H)| ≫q
H

logX

(

log t(X)

log logX

)1/φ(q)

≫ H

logH

(

log t(H)

log logH

)1/φ(q)

.

A final application of Lemma 5.1 shows that this is ≫q Hφ(Q̃(H))/Q̃(H). �

6. A lower bound

In this section we will show how to obtain a quantitative version of Theorem 1.1. We will

use the assumptions and notation of sections 3 – 5, and show that

|{pr+1 6 Y : pr+1 ≡ pr ≡ a mod q and pr+1 − pr < ǫ log pr}| > Y 1/3(log log Y )A (6.1)

for all sufficiently large Y . Here A = A(q) is the constant given in Lemma 5.5. This lower

bound could be improved by a sharpening of the range (5.22) for H .

We will first prove that the estimate
∑

N<n62N

Λ(n;H, k + ℓ)4 ≪ N(logN)19k+4ℓ (6.2)
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holds, with an absolute implied constant. For by (4.1) and (4.2),
∑

N<n62N

Λ(n;H, k + ℓ)4 =
∑′

d1,...,d4

λd1 · · ·λd4

∑

N<n62N
[d1,...,d4]|P (n;H)

1

=
∑′

d1,...,d4

λd1 · · ·λd4

∑

m mod [d1,...,d4]
∈Ω([d1,...,d4])

∑

N<n62N
n≡m mod [d1,...,d4]

1

6
∑

d1,...,d4
squarefree

|λd1 · · ·λd4 |
∑

m mod [d1,...,d4]
∈Ω([d1,...,d4])

(

N

[d1, . . . , d4]
+O(1)

)

≪ N(logR)4(k+ℓ)
∑

d1,...,d46R
squarefree

|Ω([d1, . . . , d4])|
[d1, . . . , d4]

.

(6.3)

To see the last inequality, note that [d1, ..., d4] 6 R4 = N1−4ǫ′ = o(N), and so N/[d1, ..., d4]+

O(1) ≪ N/[d1, ..., d4].

As observed in Section 4, |Ω(d)| 6 kω(d) for squarefree d, so

∑

d1,...,d46R
squarefree

|Ω([d1, . . . , d4])|
[d1, . . . , d4]

6
∑

D6R4

µ2(D)kω(D)

D

∑

d1,...,d4
[d1,...,d4]=D

1

=
∑

D6R4

µ2(D)(15k)ω(D)

D
6
∏

p6R4

(

1 +
15k

p

)

≪ (logR4)15k.

(6.4)

Since R4 < N , combining (6.3) and (6.4) yields (6.2).

Now choose N so that (3.2) holds. If we restrict the outer sum in the definition of L to

those n for which (Qn,Qn+H ] contains a prime string pr+1 ≡ pr ≡ a mod q, we remove no

positive terms. Thus, if
∑∗ denotes this restricted sum, then

L 6

1

N

(

φ(Q)

Q

)k
∑∗

N<n62N

(

∑

h∈S
ϑ(Qn + h)−

∑

h∈T
ϑ(Qn + h)− log 3QN

)

ΛR(n;H, k + ℓ)2.
(6.5)

For each n ∈ (N, 2N ],
∑

h∈S
ϑ(Qn + h)−

∑

h∈T
ϑ(Qn + h)− log 3QN 6 H log 3QN, (6.6)
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and by the Cauchy-Schwartz inequality,

∑∗

N<n62N

ΛR(n;H, k + ℓ)2 6

(

∑∗

N<n62N

1

)1/2(
∑

N<n62N

ΛR(n;H, k + ℓ)4

)1/2

. (6.7)

Combining (6.5) – (6.7) yields

∑∗

N<n62N

1 > N2(Q/φ(Q))2kL 2(H log 3QN)−2

(

∑

N<n62N

ΛR(n;H, k + ℓ)4

)−1

.

Using H = ǫ logN , log 3QN = (1 + o(1)) logN , and Q/φ(Q) > 1, then applying (3.2) and

(6.2), we see that the right-hand side is ≫k,q N/(logN)17k+2. Since k depends on ǫ, we may

write
∑∗

N<n62N

1 ≫ǫ,q
N

(logN)B(ǫ)
, (6.8)

where B(ǫ) is a constant depending on ǫ.

Now fix a large number Y , and let

X := ǫ

(

1 +
2cǫ

(log log Y )2

)−1

log Y,

with c > 0 fixed. By Lemma 5.5, we may choose H in the range

X/(logX)A 6 H 6 X

so that (3.2), hence (6.1), holds with N = exp(H/ǫ). By (2.4),

3Q(H)N 6 exp

(

H

ǫ
+

cH

(logH)2

)

6 Y,

because

H

ǫ
+

cH

(logH)2
=

H

ǫ

(

1 +
cǫ

(logH)2

)

6
X

ǫ

(

1 +
2cǫ

(log log Y )2

)

= log Y.

Here we have used logH = (1 + o(1)) logX = (1 + o(1)) log log Y . Also,

logN = H/ǫ > X/ǫ(logX)A > log Y/2(log log Y )A.

Therefore, using (6.8) as a lower bound for the number of prime strings up to Y , we deduce

(6.1). (At best, we may have H = X , in which case we could deduce a lower bound of

Y 1−c′/(log log Y )2 , for some constant c′ > 0.)
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7. Concluding remarks

Proposition 2.2 is similar to a special case of Propositions 1 and 2 of [5], which are used to

prove that

lim inf
r→∞

p′r+ν − p′r
φ(q) log p′r

6 e−γ(
√
ν − 1)2,

where p′j denotes the jth smallest prime in the arithmetic progression a mod q, (q, a) = 1.

By considering Hν = (ν − 1 + ǫ) logN instead of H , Q = Q(Hν) instead of Q(H), and

Lν :=

1

N

(

φ(Q)

Q

)k
∑

N<n62N

(

∑

h∈S
ϑ(Qn + h)− ν

∑

h∈T
ϑ(Qn + h)− ν log 3QN

)

ΛR(n;H, k + ℓ)2

instead of L , it is possible to prove that the interval (Qn,Qn + Hν ] contains a string of

ν + 1 consecutive primes ≡ a mod q, for some n ∈ (N, 2N ] and a sequence N → ∞. It may

be feasible to prove a similar result with Hν = (e−γ(
√
ν − 1)2 + ǫ) logN .
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