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FILLING THE GAP BETWEEN TURÁN’S THEOREM

AND PÓSA’S CONJECTURE

PETER ALLEN*, JULIA BÖTTCHER†, AND JAN HLADKÝ‡

Abstract. Much of extremal graph theory has concentrated ei-
ther on finding very small subgraphs of a large graph (Turán-
type results) or on finding spanning subgraphs (Dirac-type results).
In this paper we are interested in finding intermediate-sized sub-
graphs. We investigate minimum degree conditions under which
a graph G contains squared paths and squared cycles of arbitrary
specified lengths. We determine precise thresholds, assuming that
the order of G is large. This extends results of Fan and Kier-
stead [J. Combin. Theory Ser. B 63 (1995), 55–64] and of Komlós,
Sarközy, and Szemerédi [Random Structures Algorithms 9 (1996),
193–211] concerning the containment of a spanning squared path
and a spanning squared cycle, respectively. Our results show that
such minimum degree conditions constitute not merely an interpo-
lation between the corresponding Turán-type and Dirac-type re-
sults, but exhibit other interesting phenomena.

1. Introduction

One of the main programmes of extremal graph theory is the study of
conditions on the vertex degrees of a host graph G under which a target
graph H appears as a subgraph of G (which we denote by H ⊆ G).
Turán’s theorem [21] is a prominent example for results of this type.
It asserts that an average degree d(G) > r−2

r−1
n forces the copy of a

complete graph Kr in G (and that this is best possible), where here
and throughout n is the number of vertices in the host graph G. More
generally, the celebrated theorem of Erdős and Stone [5] implies that
for a fixed graph H the chromatic number χ(H) of H determines the
average degree that is necessary to guarantee a copy of H : If H has
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chromatic number χ(H) = r and d(G) ≥ ( r−2
r−1

+ o(1))n, then H is a
subgraph of G. This settles the problem for fixed target graphs (with
chromatic number at least 3), that is, graphs that are ‘small’ compared
to the host graph.

Dirac’s theorem [4], another classical result from the area, considers
target graphs that are of the same order as the host graph, i.e., so-
called spanning target graphs. Clearly, any average degree condition
on the host graph that enforces a connected spanning subgraph must
be trivial, and hence the average degree needs a suitable replacement
in this setting. Here, the minimum degree is a natural candidate, and
indeed, Dirac’s theorem asserts that every graph G with minimum
degree δ(G) > 1

2
n has a Hamilton cycle. This implies in particular

that G has a matching covering 2⌊n/2⌋ vertices.
A 3-chromatic version of this matching result follows from a theo-

rem by Corrádi and Hajnal [3]: the minimum degree condition δ(G) ≥
2⌊n/3⌋ implies the existence of a so-called spanning triangle factor inG,
that is, a collection of ⌊n/3⌋ vertex disjoint triangles. A well-known
conjecture of Pósa (see, e.g., [6]) asserts that roughly the same min-
imum degree actually guarantees the existence of a connected super-
graph of a spanning triangle factor. It states that any graph G with
δ(G) ≥ 2

3
n contains a spanning squared cycle C2

n, where the square of
a graph, F 2, is obtained from F by adding edges between all pairs of
vertices with distance 2 in F . This can be seen as a 3-chromatic ana-
logue of Dirac’s theorem, which turned out to be much more difficult
than its 2-chromatic cousin.

Fan and Kierstead [7] proved an approximate version of Pósa’s con-
jecture for large n. In addition they determined a sufficient and best
possible minimum degree condition for the case that the squared cycle
in Pósa’s conjecture is replaced by a squared path P 2

n , i.e., the square
of a spanning path Pn.

Theorem 1 (Fan & Kierstead [8]). If G is a graph on n vertices with
minimum degree δ(G) ≥ (2n−1)/3, then G contains a spanning squared
path P 2

n .

The Pósa Conjecture was verified for large values of n by Komlós,
Sarközy, and Szemerédi [10]. The proof in [10] actually asserts the
following stronger result, which guarantees not only spanning squared
cycles but additionally squared cycles of all lengths between 3 and n
that are divisible by 3.

Theorem 2 (Komlós, Sárközy & Szemerédi [10]). There exists an in-
teger n0 such that for all integers n > n0 any graph G of order n and
minimum degree δ(G) ≥ 2

3
n contains all squared cycles C2

3ℓ ⊆ G with
3 ≤ 3ℓ ≤ n. If furthermore K4 ⊆ G, then C2

ℓ ⊆ G for any 3 ≤ ℓ ≤ n
with ℓ 6= 5.
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For squared cycles C2
ℓ with ℓ not divisible by 3 the additional con-

dition K4 ⊆ G is necessary because these target graphs are not 3-
colourable and hence a complete 3-partite graph shows that one cannot
hope to force C2

ℓ unless δ(G) ≥ (2n+1)/3. If δ(G) ≥ (2n+1)/3, on the
other hand, then Turán’s Theorem asserts that G contains a copy ofK4

and hence Theorem 2 implies C2
ℓ ⊆ G for any 3 ≤ ℓ ≤ n with l 6= 5.

The case ℓ = 5 has to be excluded because C2
5 is the 5-chromatic K5.

In this paper we address the question of what happens between these
two extrema of target graphs with constant order and order n. We are
interested in essentially best possible minimum degree conditions that
enforce subgraphs covering a certain percentage of the host graph.

Let us start with a simple example. It is easy to see that every
graph G with minimum degree δ(G) ≥ δ for 0 ≤ δ ≤ 1

2
n has a matching

covering at least 2δ vertices (see Proposition 12(a )). This gives a linear
dependence between the forced size of a matching in the host graph and
its minimum degree. A more general form of the result of Corrádi and
Hajnal [3] mentioned earlier is a variant of this linear dependence for
triangle factors.

Theorem 3 (Corrádi & Hajnal [3]). Let G be a graph on n vertices
with minimum degree δ(G) = δ ∈ [1

2
n, 2

3
n]. Then G contains 2δ − n

vertex disjoint triangles.

The main theorem of this paper is a corresponding result mediating
between Turán’s theorem and Pósa’s conjecture. More precisely, our
aim is to provide exact minimum degree thresholds for the appearance
of a squared path P 2

ℓ and a squared cycle C2
ℓ .

There are at least two reasonable guesses one might make as to what
minimum degree δ(G) = δ will guarantee which length ℓ = ℓ(n, δ) of
squared path (or longest squared cycle). On the one hand, the degree
threshold for a spanning squared path or cycle and for a spanning
triangle factor are approximately the same. So perhaps this remains
true for smaller ℓ: in light of Theorem 3 one could expect that ℓ(n, δ)
were roughly 3(2δ(G)− n). This turns out to be far too optimistic.

On the other hand, proofs of preceding results dealing with spanning
subgraphs essentially combine greedy techniques with local changes.
They simply start to construct the desired subgraph in (almost) any
location, and in the event of getting stuck change only a few of the
vertices embedded so far; at no time do they scrap an entire half-
constructed object and start anew. It would not be unreasonable to
believe that this technique also leads to best possible minimum de-
gree conditions for large but not spanning subgraphs. Clearly, in the
case of (unsquared) paths such a greedy strategy provides a path of
length δ(G)+1. As G might be disconnected, however, it cannot guar-
antee longer paths if δ(G) < n/2. For squared paths the following
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construction shows that with an arbitrary starting location one can-
not hope for squared paths on more than 3

2
(2δ(G)− n) vertices: If G

contains disjoint cliques C and C ′ of orders 2δ − n and n− δ, and an
independent set I of order n − δ such that all vertices of C and C ′

are connected to all vertices of I but not to other vertices of G, then
it is not difficult to see that the longest squared path in G starting
in an edge of C has length 3

2
(2δ(G)− n). This could lead to the idea

that ℓ(n, δ) were approximately 3
2
(2δ(G) − n). It is true that there

are squared paths of this length in G—but this lower bound is almost
always excessively pessimistic. In other words, it turns out that one
has to carefully choose the ‘region’ of G to look for the desired squared
path. Since spanning squared paths use all vertices of G this problem
does not occur for these subgraphs.

For fixed n both guesses propose a linear dependence between δ and
the length ℓ(n, δ) of a forced squared path (or cycle). As we will see
below ℓ(n, δ) as a function of δ behaves very differently: it is piece-
wise linear but jumps at certain points. (These jumps can be viewed
as phase transitions for the appearance of squared paths or cycles.)
To make this precise we introduce the following functions. Given two
positive integers n and δ with δ ∈ (1

2
n, n− 1], we define rp(n, δ) to be

the largest integer r such that n− δ + ⌊δ/r⌋ > δ and rc(n, δ) to be the
largest integer r such that n− δ + ⌈δ/r⌉ > δ. We then define

sp(n, δ) := min
{⌈

3
2
⌈δ/rp(n, δ)⌉+ 1

2

⌉

, n
}

, and

sc(n, δ) := min
{⌊

3
2
⌈δ/rc(n, δ)⌉

⌋

, n
}

.
(1)

Observe that sc(n, δ) ≤ sp(n, δ) and that for almost every α ∈ (0, 1)
we have limn→∞ sc(n, αn)/n = limn→∞ sp(n, αn)/n. The dependence
between sp(n, δ) and δ is illustrated in Figure 1.

Our main theorem now states states that sp(n, δ) and sc(n, δ) are
the maximal lengths of squared paths and cycles, respectively, forced
in an n-vertex graph G with minimum degree δ. More generally, and in
accordance with Theorem 2, we show that G also contains any shorter
squared cycle with length divisible by 3 (see (i ) of Theorem 4). We
shall show below that these results are tight by explicitly constructing
extremal graphs Gp(n, δ) and Gc(n, δ) for squared paths and cycles.
While the extremal graphs of all previously discussed results are Turán
graphs (complete r-partite graphs, where r = 3 in the case of squared
paths and cycles) the graphs Gp(n, δ) and Gc(n, δ) have a rather dif-
ferent structure. In fact they do contain squared cycles C2

ℓ for all
3 ≤ ℓ ≤ sc(n, δ) with ℓ 6= 5. If any one of these ‘extra’ squared cycles
with chromatic number 4 is not present in the host graph G, then (ii )
of Theorem 4 guarantees even much longer squared cycles C2

ℓ in G,
where ℓ is a multiple of 3.
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PSfrag replacements

δ

3
2
(2δ − n)
4δ − 2n
6δ − 3n
sp(n, δ)

n

4n
5

3n
5
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5

n
5

0
n
2

6n
11

5n
9

4n
7

2n
3

Figure 1. The behaviour of sp(n, δ).

Theorem 4. For any ν > 0 there exists an integer n0 such that for
all integers n > n0 and δ ∈ [(1

2
+ ν)n, 2

3
n] the following holds for all

n-vertex graphs G with minimum degree δ(G) ≥ δ.

(i ) P 2
sp(n,δ) ⊆ G and C2

ℓ ⊆ G for every ℓ ∈ N with 3 ≤ ℓ ≤ sc(n, δ)
such that 3 divides ℓ.

(ii ) Either C2
ℓ ⊆ G for every ℓ ∈ N with 3 ≤ ℓ ≤ sc(n, δ) and ℓ 6= 5,

or C2
ℓ ⊆ G for every ℓ ∈ N with 3 ≤ ℓ ≤ 6δ−3n−νn such that 3

divides ℓ.

The proof of this result relies on Szemerédi’s Regularity Lemma1 and
is presented together with the main lemmas in Section 2. Theorem 4
cannot be extended to all values of δ(G) with δ(G)− 1

2
n = o(n) because

for infinitely many values ofm there are C4-free graphs F on m vertices
with δ(F ) ≥ 1

2

√
m (see [18]). Then, letting G be the n-vertex graph

obtained from F by adding an independent set I onm−⌊1
2

√
m⌋ vertices

and inserting all edges between F and I, it is easy to see that δ(G) >
1
2
n+ 1

5

√
n but G does not contain a copy of C2

6 .
The following extremal graphs show that the bounds in (i ) and (ii )

of Theorem 4 are tight (see also Figure 2). For (ii ) consider the
complete tripartite graph Kn−δ,n−δ,2δ−n. Clearly, this graph has min-
imum degree δ and does not contain C2

ℓ for any ℓ ≥ 3 not divisi-
ble by 3 or ℓ ≥ 3(2δ − n). For the first part of (i ), let Gp(n, δ)

1We refer to [14] for a survey on applications of the Regularity Lemma on graph
embedding problems.
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be the n-vertex graph obtained from the disjoint union of an inde-
pendent set Y on n − δ vertices and r := rp(n, δ) cliques X1, . . . , Xr

with |X1| ≤ · · · ≤ |Xr| ≤ |X1|+ 1 on a total of δ vertices, by inserting
all edges between Y and Xi for each i ∈ [r]. It is easy to check that
δ(Gp(n, δ)) = δ. Moreover any squared path P 2

m ⊆ Gp(n, δ) contains
vertices from at most one clique Xi. As Y is independent and P 2

m

has independence number ⌈m/3⌉ we have ⌊2m/3⌋ ≤ ⌈δ/rp(n, δ)⌉ and
thus m ≤ ⌊1

2
(3⌈δ/rp(n, δ)⌉ + 1)⌋ = sp(n, δ). For the second part

of (i ), we construct the graph G′
c(n, δ) in the same way as Gp(n, δ)

but with r := rc(n, δ) and with |Xi| = ⌈δ/r⌉ for all i ∈ [r]. To obtain
an n-vertex graph Gc(n, δ) from G′

c(n, δ) choose vi in Xi arbitrarily for
each i ∈ [r] and identify all vi with i ≤ r⌈δ/r⌉ − δ. Again Gc(n, δ) has
minimum degree δ, any squared cycle C2

m in Gc(n, δ) touches only one
of the Xi, and hence m ≤ sc(n, δ).

PSfrag replacements n− δ n− δ

n− δ

n− δ

Gp(n, δ) Gc(n, δ)

2δ − n

Kn−δ,n−δ,2δ−n

Figure 2. The extremal graphs, for the case rp(n, δ) =
rc(n, δ) = 4.

Before closing this introduction let us remark that similar phenom-
ena to those described in Theorem 4 are observed with simple paths
and cycles. Every graph with minimum degree δ contains a path of
length ⌈n/⌊n/(δ + 1)⌋⌉, and the extremal graph is a vertex disjoint
union of cliques. This follows from an easy adjustment of the proof
of Dirac’s theorem. Improving on results of Nikiforov and Schelp [17]
the first author proved the following theorem in [1]. The methods used
for obtaining this result are quite different from those applied in this
paper. In particular they do not rely on the Regularity Lemma.

Theorem 5 (Allen [1]). Given an integer k ≥ 2 there is n0 such that
whenever n ≥ n0 and G is an n-vertex graph with minimum degree
δ ≥ n/k, the following are true.

(i ) G contains Ct for every even 4 ≤ t ≤ ⌈n/(k − 1)⌉,
(ii ) if G does not contain a cycle of every length from ⌊2n/δ⌋ − 1

to ⌈n/(k − 1)⌉ inclusive then G does contain Ct for every even
4 ≤ t ≤ 2δ.
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2. Main lemmas and proof of Theorem 4

Our proof of Theorem 4 combines the Stability Method pioneered
by Simonovits [19], the Regularity Method which pivots around the
joint application of Szemerédi’s celebrated Regularity Lemma [20], and
the so-called Blow-up Lemma by Komlós, Sárközy and Szemerédi [11].
The combination of these three methods has proved useful for a va-
riety of exact embedding results and was applied for example in [10].
However, this well-established technique provides only a rather loose
framework for proofs of this kind. For our application we will embel-
lish this framework with a new concept, which we call the connected
triangle components of a graph.

In this section we explain how we use connected triangle components,
the Regularity Method, and the Stability Method. We first provide the
necessary definitions, formulate our main lemmas (whose proofs are
provided in the remaining sections of this paper), and sketch how they
work together in the proof of Theorem 4. The details of this proof are
then presented at the end of this section.

Notation. For a graph G we write V (G) and E(G) to denote its vertex
set and edge set, respectively, and set v(G) = |V (G)|, e(G) = |E(G)|
and e(X, Y ) = |{xy ∈ E(G) : x ∈ X, y ∈ Y }| for sets X, Y ⊆ V (G).
The graph G[X ] is the subgraph of G induced by X . The neighbour-
hood of a vertex v in G is denoted by Γ(v) and Γ(u, v) is the common
neighbourhood of u, v ∈ V (G). For an edge uv = e ∈ E(G) we also
write Γ(e) = Γ(u, v). The minimum degree of G is denoted by δ(G)
and for two sets X, Y ⊆ V (G) we define δY (X) = minx∈X |Γ(x) ∩ Y |
and δG(X) = δV (G)(X).

When we say that a statement S(ǫ, ǫ′) holds for positive real numbers
ε ≫ ε′, then we mean that, given an arbitrary ε > 0, we can find an
ǫ′′ > 0 such that S(ǫ, ǫ′) holds for all ǫ′ ∈ (0, ǫ′′].

Connected triangle components and triangle factors. Connected
triangle components and connected triangle factors are the main pro-
tagonists in the proof of Theorem 4. Roughly speaking, in a connected
triangle component we can start in an arbitrary triangle and reach each
other triangle by “walking” through a sequence of triangles, and a con-
nected triangle factor is a collection of vertex disjoint triangles each
pair of which is connected in this way.

To make this precise, let G = (V,E) be a graph. A triangle walk
in G is a sequence of edges e1, . . . , ep in G such that ei and ei+1 share
a triangle of G for all i ∈ [p − 1]. We say that e1 and ep are triangle
connected in G. A triangle component of G is a maximal set of edges
C ⊆ E such that every pair of edges in C is triangle connected. Observe
that this induces an equivalence relation on the edges of G, but a
vertex may be part of many triangle components. In addition a triangle
component does not need to form an induced subgraph of G in general.
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The vertices of a triangle component Ci are all vertices v such that some
edge uv of G is contained in Ci. We define the size |C| of a triangle
component C to be the number of vertices of C.

A triangle factor T in a graph G is a collection of vertex disjoint
triangles in G. T is a connected triangle factor if all edges of T are in
the same triangle component of G. We define the size of T to be the
number of vertices covered by T . We let CTF(G) denote the maximum
size of a connected triangle factor in G. It is not difficult to check for
example that any connected triangle factor in Gp(n, δ) contains only
vertices of at most one of the cliques Xi (cf. the definition of Gp(n, δ)
below Theorem 4) and of the independent set Y . Hence

(2) CTF
(

Gp(n, δ)
)

= 3

⌊

sp(n, δ)

3

⌋

.

Suppose that a graph G contains a square-path of length ℓ. Then
obviously, CTF(G) ≥ 3⌊ℓ/3⌋. Thus, (2) together with Theorem 4(i )
says that Gp(n, δ) minimises CTF among all graphs of order n and
minimum degree δ.

We will usually find that the number of vertices in a triangle com-
ponent and the size of a maximum connected triangle factor in that
component are quite different. As we will explain next, for the pur-
poses of embedding squared paths and squared cycles, it is the size of
a connected triangle factor that is important.

The Regularity Method. The Regularity Lemma provides a parti-
tion of a dense graph that is suitable for an application of the Blow-up
Lemma, which is an embedding result for large host graphs. In order
to formulate the versions of these two lemmas that we will use, we first
introduce some terminology.

Let G = (V,E) be a graph and ε, d ∈ (0, 1]. For disjoint nonempty
U,W ⊆ V the density of the pair (U,W ) is d(U,W ) = e(U,W )/|U ||W |.
A pair (U,W ) is ε-regular if |d(U ′,W ′) − d(U,W )| ≤ ε for all U ′ ⊆ U
and W ′ ⊆ W with |U ′| ≥ ε|U | and |W ′| ≥ ε|W |. An ε-regular partition
of G is a partition V0∪̇V1∪̇ . . . ∪̇Vk of V with |V0| ≤ ε|V |, |Vi| = |Vj| for
all i, j ∈ [k], and such that for all but at most εk2 pairs (i, j) ∈ [k]2,
the pair (Vi, Vj) is ε-regular.

Given some 0 < d < 1 and a pair of disjoint vertex sets (Vi, Vj) in a
graph G, we say that (Vi, Vj) is (ε, d)-regular if it is ε-regular and has
density at least d. We say that an ε-regular partition V0∪̇V1∪̇ . . . ∪̇Vk
of a graph G is an (ε, d)-regular partition if the following is true. For
every 1 ≤ i ≤ k, and every vertex v ∈ Vi, there are at most (ε + d)n
edges incident to v which are not contained in (ε, d)-regular pairs of
the partition.

Given an (ε, d)-regular partition V0∪̇V1∪̇ . . . ∪̇Vk of a graph G, we
define a graph R, called the reduced graph of the partition of G, where
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R = (V (R), E(R)) has V (R) = {V1, . . . , Vk} and ViVj ∈ E(R) when-
ever (Vi, Vj) is an (ε, d)-regular pair. We will usually omit the partition,
and simply say that G has (ε, d)-reduced graph R. We call the partition
classes Vi with i ∈ [k] clusters of G. Observe that our definition of the
reduced graph R implies that for T ⊆ V (R) we can for example refer
to the set

⋃

T , which is a subset of V (G).
The celebrated Szemerédi Regularity Lemma [20] states that every

large graph has an ε-regular partition with a bounded number of parts.
Here we state the so-called degree form of this lemma (see, e.g., [13,
Theorem 1.10]).

Lemma 6 (Regularity Lemma, degree form). For every ε > 0 and
every integer m0, there is m1 such that for every d ∈ [0, 1] every graph
G = (V,E) on n ≥ k1 vertices has an (ε, d)-reduced graph R on m
vertices with m0 ≤ m ≤ m1.

For our purpose it is convenient to work with even a different version
of the regularity lemma, which takes into account that we are dealing
with graphs of high minimum degree. This lemma is an easy corollary
of Lemma 6. A proof can be found, e.g., in [16, Proposition 9].

Lemma 7 (Regularity Lemma, minimum degree form). For all ε, d,
γ with 0 < ε < d < γ < 1 and for every m0, there is m1 such that
every graph G on n > m1 vertices with δ(G) ≥ γn has an (ε, d)-reduced
graph R on m vertices with m0 ≤ m ≤ m1 and δ(R) ≥ (γ − d− ε)m.

This lemma asserts that the reduced graph R of G “inherits” the high
minimum degree of G. We shall use this property in order to reduce
the original problem of finding a squared path (or cycle) in an n-vertex
graph with minimum degree γn to the problem of finding an arbitrary
connected triangle factor of a certain size in an m-vertex graph R with
minimum degree (γ−d−ε)m. The new problem is much less particular
about the required subgraph than the original one and hence easier to
attack (see Lemma 9).

This kind of reduction is made possible by the Blow-up Lemma.
Roughly, this lemma asserts that a bounded degree graph H can be
embedded into a graph G with reduced graph R if there is a homo-
morphism from H to a subgraph S of R which does not “overfill” any
of the clusters in S. In our setting we apply this lemma with S = K3

and conclude that for each triangle t of a connected triangle factor T
in R we find a squared path in G that almost fills the clusters of G
corresponding to t. By using the fact that T is triangle connected it
is then possible to connect these squared paths into squared paths or
cycles of the desired overall length. In addition, the Blow-up Lemma
allows for some control about the start- and end-vertices of the path
that is constructed in this way (cf. Lemma 8(iii )).
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The following lemma summarises this embedding technique, which
is also implicit, e.g., in [10]. For completeness we provide a proof of
this lemma in the appendix.

Lemma 8 (Embedding Lemma). For all d > 0 there exists εel > 0
with the following property. Given 0 < ε < εel, for every mel ∈ N

there exists nel ∈ N such that the following hold for any graph G on
n ≥ nel vertices with (ε, d)-reduced graph R′ on m ≤ mel vertices.

(i ) C2
3ℓ ⊆ G for every ℓ ∈ N with 3ℓ ≤ (1− d) CTF(R′) n

m
.

(ii ) If K4 ⊆ C for each triangle component C of R′, then C2
ℓ ⊆ G

for every ℓ ∈ N \ {5} with 3 ≤ ℓ ≤ (1− d) CTF(R′) n
m
.

Furthermore, let T be a connected triangle factor in a triangle compo-
nent C of R with K4 ⊆ C, let u1v1, u2v2 ∈ E(G) be disjoint edges, and
suppose that there are (not necessarily disjoint) edges X1Y1, X2Y2 ∈ C
such that the edge uivi has at least 2d n

m
common neighbours in each

cluster Xi and Yi for i = 1, 2. Then

(iii ) P 2
ℓ ⊆ G for every ℓ ∈ N with 6(m+ 2)3 < ℓ < (1− d)|T | n

m
, such

that P 2
ℓ starts in u1, v1 and ends in u2, v2 (in those orders) and

at most (ε+ d)n vertices of P 2
ℓ are not in

⋃

T .

The copies of K4 that are required in this lemma play a crucial rôle
when embedding squared cycles which are not 3-chromatic.

The Stability Method. The strategy we just described leaves us with
the task of finding a big connected triangle factor T in the reduced
graph R of G. However, there is one problem with this approach: The
proportion τ of R covered by T is roughly equal to the proportion
of G covered by the squared path P that we obtain from the Embed-
ding Lemma (Lemma 8). However, as explained above, the relative
minimum degree γR = δ(R)/|V (R)| of R is in general slightly smaller
than γG = δ(G)/|V (G)|, but the extremal graphs for squared paths
and connected triangle factors are the same. It follows that we cannot
expect that τ is larger than the proportion a maximum squared path
covers in a graph with relative minimum degree γR, and hence smaller
than the proportion we would like to cover for relative minimum de-
gree γG.

Consequently we need to be more ambitious and shoot for a bigger
connected triangle factor in R than we can expect for this minimum
degree (cf. Lemma 9 (S1) and (S2)). This will of course not always be
possible, but it will only fail if R (and hence G) is ‘very close’ to the
extremal graph Gp(|V (R)|, δ(R)) (and hence also to Gc(|V (R)|, δ(R)))
in which case we will say that R is near-extremal (cf. Lemma 9 (S3)).

This approach is called the Stability Method and the following lemma
states that it is feasible for our purposes. This lemma additionally
guarantees copies of K4 as required by the Embedding Lemma. We
formulate this lemma for graphs G, but use it on the reduced graph R
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later. Its proof does not rely on the Regularity Lemma and is given in
Section 3.

Lemma 9 (Stability Lemma). Given µ > 0, for any sufficiently small
η > 0 there exists n0 such that if G has n > n0 vertices and δ(G) =
δ ∈ ((1

2
+ µ)n, 2n−1

3
), then either

(S1) CTF(G) ≥ 3(2δ − n), or

(S2) CTF(G) ≥ min(sp(n, δ + ηn), 11n
20

), or

(S3) G has an independent set of size at least n−δ−11ηn whose removal
disconnects G into components, each of size at most 19

10
(2δ − n).

Moreover, in cases (S2) and (S3) each triangle component of G contains
a K4.

By the discussion above, it remains to handle the graphs with near-
extremal reduced graph. For these graphs we have a lot of structural
information which enables us to show directly that they contain the
squared paths and squared cycles we desire, as the following lemma
documents. The proof of this lemma is provided in Section 4. In this
proof we shall again make use of the embedding lemma, Lemma 8.
Accordingly Lemma 10 inherits the upper bound mel on the number
of clusters from Lemma 8.

Lemma 10 (Extremal Lemma). For every ν > 0, given 0 < η, d <
10−8ν4 there exists ε0 > 0 such that for every 0 < ε < ε0 and every
mel, there exists N such that the following holds. Suppose that

(i ) G is an n-vertex graph with n > N and δ(G) = δ > n
2
+ νn,

(ii ) R is an (ε, d)-reduced graph of G of order m ≤ mel,

(iii ) each triangle component of R contains a copy of K4.
(iv ) V (R) = I∪̇B1∪̇B2∪̇ · · · ∪̇Bk with k ≥ 2,

(v ) I is an independent set with |I| ≥ (n− δ − 11ηn)m/n,

(vi ) for each i ∈ [k] we have 0 < |Bi| ≤ 19m(2δ − n)/(10n), and for
every j ∈ [k] \ {i} there are no edges between Bi and Bj in R.

Then G contains P 2
sp(n,δ) and C

2
ℓ for each ℓ ∈ [3, sc(n, δ)] \ {5}.

It is interesting to notice that, although the two functions sp(n, δ)
and sc(n, δ) are different—their jumps as δ increases occur at slightly
different values—they are similar enough that the Stability Lemma
covers them both. We will only need to distinguish between squared
paths and squared cycles when we examine the near-extremal graphs.

Proof of Theorem 4. With this we have all the ingredients for the
proof of our main theorem, which uses the Regularity Lemma (in form
of Lemma 7) to construct a regular partition with reduced graph R of
the host graph G, the Stability Lemma (Lemma 9) to conclude that R
either contains a big connected triangle factor or is near-extremal, the
Embedding Lemma (Lemma 8) to find long squared paths and cycles
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in G in the first case, and the Extremal Lemma (Lemma 10) in the
second case.

Proof of Theorem 4. We require our constants to satisfy

ν ≫ µ ≫ η ≫ d≫ ε > 0 ,

which we choose, given ν, as follows. First, we choose µ := ν/2. We
then choose η > 0 to be small enough for both Lemma 9 and Lemma 10.
Now we set d > 0 to be small enough for Lemma 10 and such that d ≤
ν/10 and d ≤ η/10. For this d Lemma 8 then produces a constant εel.
We choose ε > 0 to be smaller than min{εel, ν/10} and sufficiently
small for Lemma 10. We choose m0 to be sufficiently large to apply
Lemma 9 to any graph with at least m0 vertices. We then choose
mel such that Lemma 7 guarantees the existence of an (ε, d)-regular
partition with at least m0 and at most mel parts. Finally we choose
n0 > nel to be sufficiently large for both Lemma 8 and Lemma 10.

Let n > n0 and δ ∈ (n/2 + νn, n− 1]. Let G be any n-vertex graph
with δ(G) ≥ δ. Observe that it suffices to show that P 2

sp(n,δ) ⊆ G

and that (ii ) of Theorem 4 holds. We first apply Lemma 7 to G to
obtain an (ε, d)-reduced graph R on m0 ≤ m ≤ mel vertices. Let
δ′ = δ(R) ≥ (δ/n − d − ε)m > m/2 + µm. Then we apply Lemma 9
to R. There are three possibilities.

First, we could find that CTF(R) ≥ 3(2δ′ − m). In this case by
Lemma 8 we are guaranteed that for every integer ℓ′ with 3ℓ′ < (1 −
d) CTF(R)n/m we have C2

3ℓ′ ⊆ G. By choice of d and ε we have
(1 − d) · 3(2δ′ − m)n/m > 6δ − 3n − νn. Noting that P 2

ℓ ⊆ C2
ℓ we

conclude that P 2
sp(n,δ) ⊆ G and C2

ℓ ⊆ G for each integer ℓ ≤ 6δ−3n−νn
such that 3 divides ℓ, i.e., the second case of Theorem 4(ii ) holds.

Second, we could find that CTF(R) ≥ min(sp(m, δ′ + ηm), 11m
20

) and
that every triangle component of R contains a copy ofK4. By Lemma 8
we are guaranteed that for every ℓ ∈ [6, (1− d) CTF(R)n/m] \ {5} we
have C2

ℓ ⊆ G. By choice of η and d we have (1 − d) CTF(R)n/m >
sp(n, δ) ≥ sc(n, δ), so we have P 2

sp(n,δ) ⊆ G and for each integer ℓ ∈
[3, sc(n, δ)] \ {5} we have C2

ℓ ⊆ G, i.e., the first case of Theorem 4(ii )
holds.

Third, we could find that R is near-extremal. Then R contains an
independent set on at least m − δ′ − 11ηm vertices whose removal
disconnects R into components of size at most 19

10
(2δ′ −m), and each

triangle component of R contains a copy of K4. But now G satisfies
the conditions of Lemma 10. It follows that G contains P 2

sp(n,δ) and for

each ℓ ∈ [3, sc(n, δ)] \ {5} the graph G contains C2
ℓ , i.e., the first case

of Theorem 4(ii ) holds. �
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3. Triangle Components and the proof of Lemma 9

In this section we provide a proof of our stability result for con-
nected triangle factors, Lemma 9. Distinguishing different cases, we
analyse the sizes and the structure of the triangle components in the
graph G under study. Before we give more details about our strategy
and a sketch of the proof, we introduce some additional definitions and
provide a preparatory lemma (Lemma 11).

Let G be a graph with triangle components C1, . . . , Cr. The interior
int(G) of G is the set of vertices of G which are in more than one of the
triangle components. For a component Ci, the interior of Ci, written
int(Ci), is the set of vertices of Ci which are in int(G). The remaining
vertices of Ci are called the exterior ∂(Ci). That is, ∂(Ci) is formed
by the set of vertices of Ci which are in no other triangle component
of G. To give an example, by definition the graph Gp(n, δ) has rp(n, δ)
triangle components; its interior is the independent set Y (using the
notation of the construction of Gp(n, δ) on page 6 in Section 1), with
the component exteriors being the cliques X1, . . . , Xr.

The following lemma collects some observations about triangle com-
ponents.

Lemma 11. Let G be an n-vertex graph with δ(G) = δ > n/2. Then

(a ) each triangle component C of G satisfies |C| > δ,
(b ) for distinct triangle components C, C ′ we have e(∂(C), ∂(C ′)) = 0,

(c ) for each triangle component C, each vertex u of C, and U :=
{v : uv ∈ C}, the minimum degree in G[U ] is at least 2δ − n and
hence |G[U ]| ≥ 2δ − n+ 1.

Proof. To see (a ) letM be the vertices of a maximal clique in C (clearly
|M | ≥ 3). If u and v are inM , and x is a common neighbour of u and v,
then x is also in C. Thus vertices of G \ C are adjacent to at most 1
vertex of M and vertices of C are adjacent to at most |M | − 1 vertices
of M , by maximality of M . This gives the inequality

|M |δ ≤
∑

m∈M

d(m) ≤
∑

x∈C

(|M | − 1) +
∑

x/∈C

1

and hence |M |δ − n ≤ (|M | − 2)|C|. Since n < 2δ we have |C| > δ as
required.

Since δ > n/2, we have that Γ(u, u′) 6= ∅ for any two vertices u
and u′. Now, if u ∈ ∂(C), u′ ∈ ∂(C ′), x ∈ Γ(u, u′), and uu′ was an
edge, then uu′x would form a triangle. Then u and u′ would be together
in some triangle component C ′′, contradicting the fact that they are in
the exterior. Therefore, the assertion (b ) follows.

Moreover, for an edge uv of C we have Γ(u, v) ⊆ C as C is a triangle
component. Since |Γ(u, v)| ≥ 2δ − n we get (c ). �
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Now let us sketch the proof of Lemma 9. Lemma 11(a ) states that
triangle components cannot be too small. However, it is not solely
the size of the triangle components we are interested in: we want to
find a triangle component that contains many vertex disjoint triangles.
At this point, Lemma 11(c ) comes into play. It asserts that certain
spots in a triangle component induce a graph with minimum degree
2δ− n. In the proof of Lemma 9 we shall usually (i.e., for many values
of δ) use this fact in order to find a big matching M in such spots
(Proposition 12(a ) below asserts that this is possible). Clearly all edges
in such a matching are triangle connected and hence it will remain to
extend M to a set of vertex disjoint triangles. For this purpose we will
analyse the size of the common neighbourhood Γ(u, v) of an edge uv
in M . We will usually find that Γ(u, v) is so big that a simple greedy
strategy allows us to construct the triangles. For estimating Γ(u, v)
we will often use the following technique: We find a large set X such
that neither u nor v has neighbours in X . This implies |Γ(u, v)| ≥
2δ− (n−|X|). Observe that Lemma 11(b ) implies that ∂(C) can serve
as X if both u, v ∈ ∂(C ′) for some triangle components C and C ′.

The strategy we just described works for most values of δ below 3
5
n

(we describe the exceptions below). For δ ≥ 3
5
n however, the greedy

type argument fails, the reason being that we usually bound the com-
mon neighbourhood of an edge used in the argument above by 4δ−2n.
But for δ ≥ 3

5
n we might have sp(n, δ) > 4δ − 2n (see Figure 1). We

solve this problem by using a different strategy in this range of δ. We
will still start with a big connected matching M as before, but use a
Hall-type argument to extendM to a triangle factor T . More precisely,
we find M in the exterior of some triangle component and then con-
sider for each edge uv of M all common neighbours of uv in int(G).
The Hall-type argument then permits us to find distinct extensions for
the edges of M . To make this argument work we use the fact that in
this range of δ the set int(G) is an independent set.

We indicated earlier that there are some exceptional values of δ that
require special treatment: namely δ close to 3

5
n and 4

7
n. Observe that

in both ranges the number of triangle components of Gp(n, δ) changes
(from 2 to 3 for 3

5
n, and from 3 to 4 for 4

7
n) and thus the value sp(n, δ) as

a function in δ jumps (see Figure 1). Roughly speaking, the reason that
these two ranges need to be treated separately is that again sp(n, δ) is
not substantially smaller than 4δ − 2n here, but we also do not know
now that int(G) is an independent set. For dealing with these values
of δ we will use a somewhat technical case analysis which we provide
at the end of this section (as proof of Fact 17).

As explained above, we will apply the following simple observations
about matchings in graphs of given minimum degree.
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Proposition 12.

(a ) Let G = (X,E) be a graph with minimum degree δ. Then G has
a matching covering 2min(δ, ⌊|X|/2⌋) vertices.

(b ) Let G = (A∪̇B,E) be a bipartite graph with parts A and B, such
that every vertex in A has degree at least a and every vertex in B
has degree at least b. Then G has a matching covering 2min(a +
b, |A|, |B|) vertices.

Proof. We first prove (a ). Let M be a maximum matching in G, and
assume that M contains less than min(δ, ⌊|X|/2⌋) edges. In particu-
lar, there are two vertices x, y ∈ X not covered by M . Clearly, all
neighbours of x and y are covered by M .

We claim that there is an edge uv in M with xu, yv ∈ E. Indeed,
suppose that this is not the case. Then |e ∩ Γ(x)| + |e ∩ Γ(y)| ≤ 2 for
each e ∈M . We therefore have

δ + δ ≤ |Γ(x)|+ |Γ(y)| =
∑

e∈M

(|e ∩ Γ(x)|+ |e ∩ Γ(y)|) ≤ 2|M | ,

contradicting the fact that δ > |M |.
Now, let uv ∈M be an edge as in the claim above. Since xu, yu ∈ E

we get that x, u, v, y is an M-augmenting path, a contradiction.
Next we prove (b ). Let M be a maximum matching in G. We are

done unless there are vertices u ∈ A and v ∈ B not contained in M .
There cannot be an edge xy ∈ M such that uy and xv are edges of G
by maximality of M , since then u, y, x, v was an M-augmenting path.
But u has at least a neighbours in V (M)∩B, and v at least b neighours
in V (M) ∩ A, so there must be at least a + b edges in M . �

Before turning to the proof of Lemma 9 let us quickly collect some
analytical data about sp(n, δ) and rp(n, δ) =: r. It is not difficult to
check that

(r + 1)n− r

2(r + 1)− 1
≤ δ <

rn− r + 1

2r − 1
and

n− δ

2δ − n+ 1
≤ r <

δ + 1

2δ − n+ 1
.

(3)

For the proof of Lemma 9 it will be useful to note in addition that
given µ > 0, for every 0 < η < η0 = η0(µ), there is n1 = n1(η) such
that the following holds for all n ≥ n1. For all δ, δ

′ > n
2
+ µn, where δ

is such that sp(n, δ + ηn) ≤ 11
20
n, and where δ′ is such that we have

rp(n, δ
′) ≥ 3 and either rp(n, δ

′) ≥ 5 or rp(n, δ
′) = rp(n, δ

′ + ηn), we
have

(4) sp(n, δ+ ηn) ≤ 3

2
min

( δ

rp(n, δ + ηn)− 1
− 2,

δ + 3ηn

rp(n, δ + ηn)
− 2

)

,

sp(n, δ + ηn) ≤ 19
20

· 3(2δ − n)− 2 ≤ 6δ − 3n− 100ηn, and

sp(n, δ′ + ηn) ≤ 4δ′ − 2n,
(5)
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which follows immediately from the definition of sp(n, δ) in (1) (see
also Figure 1).

Proof of Lemma 9. Given µ and any 0 < η < min( 1
1000

, η0(µ), 2µ
2/3),

where η0(µ) is as above (4), let n0 := max(n1(η), 2/η) with n1(η) as
above (4). Let n ≥ n0. This in particular means that we may assume
the inequalities (4) and (5) in what follows. Define γ := δ/n, and
r := rp(n, δ) and r

′ := rp(n, δ + ηn).
If G has only one triangle component then Theorem 3 guarantees

that CTF(G) ≥ 6δ − 3n and so we are in Case (S1). Thus we may
assume in the following that G has at least two triangle components.
Then Lemma 11(a ) implies that int(C) 6= ∅ for any triangle compo-
nent C.

Suppose that C is a triangle component of G which does not contain
a copy of K4. Let u be a vertex of C, and U := {v : uv ∈ C}. By
Lemma 11(c ) we have δ(G[U ]) ≥ 2δ − n. Because C contains no
copy of K4, U contains no triangle. By Turán’s theorem we have |U | ≥
2(2δ−n), and so by Proposition 12(a ) the set U contains a matchingM
with 2δ−n edges. Finally we choose greedily for each e ∈M a distinct
vertex v ∈ V (G) such that ev is a triangle. Since U is triangle free all
these vertices must lie outside U , and since |Γ(e)| ≥ 2δ − n we cannot
fail to find distinct vertices for each edge. This yields a set T of 2δ−n
vertex-disjoint triangles which are all in C. So CTF(G) ≥ 6δ − 3n
and we are in case (S1). Henceforth we assume that every triangle
component of G contains a copy of K4.

We continue by considering the case 3n−2
5

≤ δ < 2n−1
3

. The following
observation readily implies the lemma in this range, as we will see in
Fact 14.

Fact 13. If δ(G) ≥ (3
5
− 2η)n, G has exactly 2 triangle components,

int(G) is independent, and either | int(G)| < n−δ−11ηn or the exterior
X of the triangle component with most vertices satisfies |X| ≥ 19

10
(2δ−

n), then CTF(G) ≥ min(sp(n, δ + ηn), 11
20
n).

Proof of Fact 13. First, by Lemma 11(b ) a vertex x ∈ X cannot have
neighbours in the exterior of the other triangle component, so Γ(x) ⊆
X ∪ int(G). Thus δ(G[X ]) ≥ δ− | int(G)|, which by Proposition 12(a )
means that there is a matching M in G[X ] with

(6) |M | = min(δ − | int(G)|, ⌊|X|/2⌋)
edges.

We aim to pair off edges of M with vertices of int(G) to form a
sufficiently large number of vertex-disjoint triangles. To see that a
triangle factor resulting from this process will be connected, observe
that all edges of M are in X , and since X is a triangle component
exterior, the edges ofM are triangle connected. To form triangles from
edges of M and vertices of int(G), we introduce an auxiliary bipartite
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graph H with vertex set M∪̇ int(G), where uv ∈ M is adjacent in H
to w ∈ int(G) iff uvw is a triangle of G. Every vertex of X has at
least δ−|X| neighbours in int(G), and so every edge of M has at least
a := 2(δ − |X|)− | int(G)| common neighbours in int(G). At the same
time, since int(G) is independent, every vertex of int(G) has at least
δ − (n− | int(G)| − |X|) neighbours in X , of which all but |X| − 2|M |
must be in M . So every vertex of int(G) must have at least

b := δ−(n−| int(G)|−|X|)−(|X|−2|M |)−|M | = δ−n+| int(G)|+|M |
edges of M in its neighbourhood. By Proposition 12(b ) there is a
matching in H on at least min(a+ b, |M |, | int(G)|) edges, and hence a
connected triangle factor in G with so many triangles. Observe that

a + b = 2δ − 2|X| − | int(G)|+ δ − n+ | int(G)|+ |M |
= 3δ − n− 2|X|+ |M | .(7)

Since there are two triangle components in G, there is a vertex u
in a triangle component exterior which is not X . Therefore u has no
neighbour in X , so |X| < n− δ. Since δ ≥ (3

5
− 2η)n, by (7) we have

(8) a+ b > |M | − 10ηn .

Furthermore,

(9) if |X| ≤ (2
5
− 3η)n , then a + b ≥ |M | .

By Lemma 11(a ) we have | int(G)| ≥ 2δ−n ≥ n
5
−4ηn. Since η ≤ 1

1000
we have

3| int(G)| ≥ 3n

5
− 12ηn >

11n

20
.

Thus we have CTF(G) ≥ 11n
20

if we find a matching in H covering
int(G). It remains, then, to check that we have

(10) 3min(a + b, |M |) ≥ min(sp(n, δ + ηn),
11

20
n).

We distinguish two cases.
Case 1: a+b < |M |. By (9) this forces |X| > (2

5
−3η)n. Since we have

|M | = min(δ − | int(G)|, ⌊|X|/2⌋) by (6), there are two possibilities. If
|M | = ⌊|X|/2⌋ then we have

a + b
(8)

≥
⌊ |X|

2

⌋

− 10ηn >
n

5
− 12ηn >

11n

60
,

which proves (10) in this subcase. If, on the other hand, |M | =
δ − | int(G)|, then we use that int(G) is independent, which implies
int(G) ≤ n− δ and thus

a + b
(8)

≥ |M | − 10ηn = δ − | int(G)| − 10ηn ≥ 2δ − n− 10ηn

(5)

≥ 1
3
sp(n, δ + ηn) ,

which proves (10) in this subcase.
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Case 2: a+b ≥ |M |. In this case, H contains a matching of size |M |,
so we have CTF(G) ≥ 3|M | = 3min(δ − | int(G)|, ⌊|X|/2⌋). Again
there are two possibilities, depending on |M |. If |M | = δ−| int(G)|, we
are done by (5) exactly as before. If, on the other hand, |M | = ⌊|X|/2⌋,
then (10) holds (and hence we are done) unless

(11) 3⌊ |X|
2
⌋ < min

(

sp(n, δ + ηn), 11
20
n
)

.

We now assume (11) in order to derive a contradiction, and make a
final subcase distinction.

First assume that sp(n, δ + ηn) < 11
20
n. Then r′ ≥ 2 and hence (11)

and (1) imply

|X| < 1
2
(δ + ηn) + 3 < 51

100
δ < 19

10
(2δ − n) ,

because δ ≥ (3
5
− 2η)n and η ≤ 1

1000
. Furthermore, since G has two

triangle components whose exterior is of size at most X by assumption
we have | int(G)| > n − 2|X| = n− δ − ηn− 6, a contradiction to the
the conditions of Fact 13.

Now assume that sp(n, δ + ηn) ≥ 11
20
n. Then we have δ > (2

3
− 2η)n.

By Lemma 11(a ) we have |X| ≤ n−δ < (1
3
+2η)n and so |X| < 19

10
(2δ−

n). Further | int(G)| ≥ n− 2|X| ≥ 2δ − n > n
3
− 4ηn > n− δ − 11ηn,

which again contradicts the conditions of Fact 13. �

Fact 14. Lemma 9 is true for 3n−2
5

≤ δ < 2n−1
3

.

Proof of Fact 14. Observe that in this range r = 2. Assume G has an
edge uv in int(G), let x be a common neighbour of u and v and C
be the triangle component containing ux and vx. Since uv ∈ int(G)
there are edges uy and vz of G outside C. The sets Γ(u, y), Γ(v, z) and
{u, v, x, y, z} are pairwise disjoint, and x is not adjacent to Γ(u, y) ∪
Γ(v, z) ∪ {y, z}. So δ ≤ d(x) ≤ (n − 1) − 2(2δ − n) − 2 which is
only possible when δ ≤ (3n − 3)/5, a contradiction. Thus int(G)
is an independent set, which implies | int(G)| ≤ n − δ. Hence, by
Lemma 11(a ), G cannot have more than two triangle components. In
particular, all vertices in int(G) lie in both triangle components of G.
So if | int(G)| ≥ n− δ− 11ηn then int(G) is the desired large indepen-
dent set for Case (S3). If moreover all triangle component exteriors
are of size 19

10
(2δ − n) at most we are in Case (S3). Otherwise (if

int(G) is small or a triangle component exterior is large) Fact 13 gives
CTF(G) ≥ min(sp(n, δ + ηn), 11

20
n) which is Case (S2). �

For the remainder of the proof, we suppose δ < 3n−2
5

and accordingly
r ≥ 3 and r′ ≥ 2. For dealing with this case we first establish two
auxiliary facts. The first one captures the greedy technique for finding
a large connected triangle factor that we sketched in the beginning of
this section. We will use this technique throughout the rest of the
proof.
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Fact 15. If there are two sets U1, U2 ⊆ V (G) such that no vertex in
U1 has a neighbour in U2, all edges in G[U1] are triangle connected and
δ(G[U1]) ≥ δ1 then CTF(G) ≥ min(3⌊|U1|/2⌋, 3δ1, 2δ − n+ |U2|).
Proof of Fact 15. By Proposition 12(a ) we can find a matching M ′

in U1 covering

min(2⌊|U1|/2⌋, 2δ1)
vertices. Let M be a subset of M ′ covering min(2⌊|U1|/2⌋, 2δ1, (4δ −
2n + 2|U2|)/3) vertices. For each edge e ∈ M in turn we pick greedily
a common neighbour of e outside both M and the previously chosen
common neighbours to obtain a set T of disjoint triangles. For any
x, y ∈ U1 we have |Γ(x, y)| ≥ 2δ − (n − |U2|). We claim that this
implies that T can be constructed, covering all of M . Indeed, in each
step of the greedy procedure we have strictly more than 2δ−(n−|U2|)−
3|M | ≥ 0 common neighbours of e ∈ M available. Hence T covers at
least min(3⌊|U1|/2⌋, 3δ1, 2δ − n + |U2|) vertices. Note further that T
is a connected triangle factor because all edges in G[U1] are triangle
connected. �

Below, our goal will be to show that int(G) is an independent set.
The following fact prepares us for this step.

Fact 16. Let uv be an edge in int(G). Unless r′ = 2 at least one vertex,
u or v, is contained in at most r′ − 1 triangle components.

Proof of Fact 16. Let C1 be the triangle component containing uv ∈
int(G) along with the (non-empty) common neighbourhood Γ(u, v)
(and perhaps some other neighbours of u or v separately). Suppose
that C 6= C1, and u is a vertex of C. Then by Lemma 11(c ), there are
at least 2δ−n+1 neighbours x of u such that the edge ux is in C. Now
suppose that u lies in at least r′−1 triangle components other than C1.
It follows that there is a set Uu ⊆ Γ(u) of vertices x such that ux is not
in C1, with |Uu| ≥ (r′−1)(2δ−n+1), since no edge lies in two distinct
triangle components. Suppose furthermore that v too lies in at least
r′ − 1 triangle components other than C1. Then there exists an analo-
gously defined set Uv. Since all vertices of Γ(u, v) form triangles of C1

with u and v, the three sets Γ(u, v), Uu and Uv are pairwise disjoint,
and thus |Uu ∪Uv| ≥ (2r′ − 2)(2δ− n+1). Now given any x ∈ Γ(u, v),
since ux and vx are both in C1, x cannot be adjacent to any vertex
of Uu ∪ Uv. But then δ ≤ d(x) < n − (2r′ − 2)(2δ − n + 1) which is
equivalent to 2r′−2 < (n− δ)/(2δ−n+1). By (3) the right-hand side
is at most r and thus we get 2r′ − 2 < r. Since r ≤ r′ + 1 however this
is a contradiction unless r′ ≤ 2. �

We assume from now on, that

(12) CTF(G) < sp(n, δ + ηn) ,
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that is, we are not in Cases (S1) or (S2). Our aim is to conclude
that then (∗) int(G) is an independent set and that its vertices are
contained in at least r′ triangle components. It turns out, however,
that we need to consider the cases r = r′ + 1 = 3 and r = r′ + 1 = 4
(i.e., the cases when the minimum degree δ is just a little bit below 3

5
n

and 4
7
n, respectively) separately. Unfortunately these two cases, which

are treated by Fact 17, require a somewhat technical case analysis,
which we prefer to defer to the end of the section.

Fact 17. If r = r′ + 1 = 3 or r = r′ + 1 = 4 then int(G) is an
independent set all of whose vertices are contained in at least r′ triangle
components.

Assuming this fact is true we can deduce (∗) for all values r ≥ 3 as
follows.

Fact 18. The set int(G) is an independent set (and hence of size at
most n − δ) all of whose vertices are contained in at least r′ triangle
components.

Proof of Fact 18. Recall that we have r ≥ 3 at this point of the proof.
Moreover, the cases r = r′ + 1 = 3 and r = r′ + 1 = 4 are handled by
Fact 17. So we assume we are not in these cases; in particular, r′ ≥ 3.
We will show that then each vertex of int(G) is contained in at least r′

triangle components. Once we establish this, Fact 16 implies that there
are no edges in int(G) and so int(G) is an independent set as desired.

To prove that each vertex of int(G) is contained in at least r′ triangle
components we assume the contrary and show that then CTF(G) ≥
sp(n, δ + ηn), a contradiction to (12). Indeed, let w ∈ int(G) and sup-
pose that there are k > 1 triangle components C1, . . . , Ck containing w.
For i ∈ [k] let Ui be the set of neighbours u of w such that uw ∈ Ci.
By Lemma 11(c ) we have δ(G[Ui]) ≥ 2δ − n and |Ui| ≥ 2δ − n + 1.
Suppose that U1 is the largest of the Ui. No vertex in U1 has a
neighbour in U2, since the components are distinct. In addition, all
edges in G[U1] are triangle connected, because U1 ⊆ Γ(w). Therefore
Fact 15 implies that there is a connected triangle factor T in G covering
min(3⌊|U1|/2⌋, 3(2δ− n), 2δ − n+ |U2|) ≥ min(3⌊|U1|/2⌋, 4δ− 2n) ver-
tices. If w lies only in r′−1 triangle components then |U1| ≥ δ/(r′−1)
and therefore T covers at least min(3⌊δ/(2r′ − 2)⌋, 4δ − 2n) vertices.
Now since (4) holds, we have 3

2
δ/(r′ − 1) − 2 ≥ sp(n, δ + ηn). Since

r ≥ r′ ≥ 3 and we have excluded the case r = r′+1 = 4, by (5) we have
4δ − 2n ≥ sp(n, δ + ηn). It follows that T covers at least sp(n, δ + ηn)
vertices, in contradiction to (12). �

Fact 19. We are in Case (S3).

Proof of Fact 19. Fact 18 tells us that int(G) is an independent set. By
Lemma 11(a ) and the fact that δ > n− δ we have that every triangle
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component in G has an exterior, and by Lemma 11(b ) that there are
no edges between any triangle component exteriors. Hence, to show
that we are in Case (S3), it is enough to prove that

(13) | int(G)| := α ≥ n− δ − 11ηn and |X1| ≤
19

10
(2δ − n)

for the biggest triangle component exterior X1 in G. Suppose for a
contradiction that this is not the case. We first claim that this forces
G to have exactly r′ triangle components.

Indeed, assume G has k ≥ r′+1 triangle components. Each of these
components C has vertices in its exterior ∂(C), and so by Lemma 11(b )
the minimum degree of G implies |∂(C)| ≥ δ−α+1 ≥ 2δ−n+1. We let
these triangle component exteriors be X1, . . . , Xk, with X1 being the
biggest. Since n = |X1∪̇ . . . ∪̇Xk∪̇ int(G)|, we have (r′+1)(δ−α)+α <
n. We distinguish two cases.

Case 1: (13) fails because α < n− δ − 11ηn. Then we obtain

(r′ + 1)δ < n+ r′α < n + r′(n− δ − 11ηn)

= (r′ + 1)n− (9r′ − 1)ηn− r′δ − (2r′ + 1)ηn .

Straightforward manipulation gives

δ + ηn <
(r′ + 1)n− (9r′ − 1)ηn

2(r′ + 1)− 1
.

Since (9r′ − 1)ηn ≥ 9r′ − 1 ≥ r′ this contradicts (3) applied to r′ =
rp(n, δ + ηn).

Case 2: (13) fails because |X1| > 19
10
(2δ − n). Let x be any ver-

tex in X2. Since x has at least δ neighbours, none of which are in
X1∪̇X3∪̇ . . . ∪̇Xk, we have

1 + δ +
19

10
(2δ − n) + (k − 2)(2δ − n + 1) ≤ n , hence

19

10
(2δ − n) + (r′ − 1)(2δ − n) < n− δ .

By (3) we have r′ ≥ (n− δ − ηn)/(2δ + 2ηn− n + 1). Combined with
the last inequality, this gives

9

10
(2δ − n) +

n− δ − ηn

2δ − n+ 1 + 2ηn
(2δ − n) < n− δ

Now provided that η < 2µ2/3, and since 2δ − n ≥ 2µn, we have

(2δ − n+ 2ηn+ 1)(1− µ) < 2δ − n+ 3ηn− µ(2δ − n)

≤ 2δ − n + 3ηn− 2µ2n < 2δ − n ,

and we obtain 9
5
µn+(1−µ)(n−δ−ηn) < n−δ which is a contradiction

since n− δ < n/2 and η < µ.
Hence, if (13) fails, thenG has indeed exactly r′ triangle components.

Now we use this fact in order to derive a contradiction to (12). Ob-
serve that, if r′ = 2, and accordingly δ ≥ (3

5
− 2η)n, then Fact 13
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implies that (13) holds, because according to (12) we have CTF(G) <
sp(n, δ + ηn). In the remainder we assume r′ ≥ 3.

Since every vertex in X1 has neighbours only in X1 and int(G), and
| int(G)| ≤ n − δ, we have δ(G[X1]) ≥ 2δ − n. Furthermore, since
no vertex in X1 has neighbours in either X2 or X3, and |X2∪̇X3| ≥
2(2δ − n+ 1), we can apply Fact 15 to obtain

CTF(G) ≥ min
(

3⌊|X1|/2⌋, 3(2δ − n), 2δ − n+ 2(2δ − n+ 1)
)

= min
(

3⌊|X1|/2⌋, 3(2δ − n)
)

.

Now by (5), CTF(G) ≥ 3(2δ − n) is a contradiction to (12), so to
complete our proof it remains to show that if (13) fails, then CTF(G) ≥
3⌊|X1|/2⌋ is also a contradiction to (12). Again, we distinguish two
cases.

Case 1: (13) fails because α < n− δ − 11ηn. Since X1 is the largest
exterior, we have |X1| ≥ (δ + 11ηn)/r′. But we have by (4) that

sp(n, δ + ηn) ≤ 3

2

δ + 3ηn

r′
− 2 < 3

⌊δ + 11ηn

2r′

⌋

,

so that CTF(G) ≥ 3⌊|X1|/2⌋ is indeed a contradiction to (12).
Case 2: (13) fails because |X1| > 19

10
(2δ − n). Then CTF(G) ≥

3⌊|X1|/2⌋ ≥ 57
20
(2δ − n)− 2, which by (5) is a contradiction to (12), as

desired. �

This completes, modulo the proof of Fact 17, the proof of Lemma 9.
�

It remains to show Fact 17. Note that we can use all facts from the
proof of Lemma 9 that precede Fact 17. We will further assume that
all constants and variables are set up as in this proof.

Proof of Fact 17. Recall that we assumed (12), i.e., CTF(G) < sp(n, δ+
ηn), in this part of the proof of Lemma 9. We distinguish two cases.

Case 1: r = 3 and r′ = 2. In this case δ(G) ∈ [(3
5
− 2η)n, (3

5
+ η)n].

Trivially each vertex of int(G) is contained in at least r′ = 2 triangle
components. Suppose for a contradiction that there is an edge uv in
int(G). Let x be a common neighbour of u and v, and C be the triangle
component containing the triangle uvx. Let U1 := {y : uy ∈ C} and
V1 := {y : vy ∈ C} and let U2 := Γ(u)\U1 and V2 := Γ(v)\V1. Observe
that U2 ∩ V2 = ∅.

By definition x is not in, and has no neighbour in, U2∪̇V2. It follows
that |U2∪̇V2| < n−δ ≤ (2

5
+2η)n. On the other hand, by Lemma 11(c ),

we have |U2|, |V2| > 2δ − n ≥ 1
5
n− 4ηn, and thus

|U2|, |V2| ∈
[

(1
5
− 4η)n, (1

5
+ 6η)n

]

.

Since d(u) ≥ δ ≥ (3
5
− 2η)n, we have |U1| ≥ δ − |U2| ≥ (2

5
− 8η)n. But

no vertex in U2 is adjacent to any vertex in U1. This implies that every
vertex in U2 is adjacent to all but at most n− δ− |U1| ≤ 10ηn vertices
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outside U1. Since η <
1

1000
we have |U2| > 20ηn, so δ(G[U2]) > |U2|/2,

and by Proposition 12(a ), U2 contains a matching Mu with ⌊|U2|/2⌋
edges. Since each vertex of U2 has at most 10ηn non-neighbours out-
side U1, each pair of vertices has common neighbourhood covering all
but at most 20ηn vertices of V (G) \ U1. In particular, the common
neighbourhood of each edge of Mu covers all but at most 20ηn ver-
tices of V (G) \U1. Similarly, V2 contains a matching Mv with ⌊|V2|/2⌋
edges, and the common neighbourhood of each edge covers all but at
most 20ηn vertices of V (G) \ V1.

Since 20ηn < |U2|/4 and U2 ∩ V1 = ∅, the common neighbourhood
of each edge of Mv contains more than half of the edges of Mu. By
symmetry, the reverse is also true. Thus all edges in Mu∪̇Mv are in
the same triangle component of G. Finally, each edge of Mu∪̇Mv has
at least δ − 10ηn − |U2∪̇V2| ≥ (1

5
− 24η)n common neighbours out-

side U2∪̇V2. Choosing greedily for each edge of Mu∪̇Mv in succession
distinct common neighbours outside U2∪̇V2, we obtain a connected tri-
angle factor with min(⌊|U2|/2⌋ + ⌊|V2|/2⌋, (15 − 24η)n) = (1

5
− 24η)n

triangles. But then CTF(G) ≥ (3
5
− 72η)n > n/2 > sp(n, δ + ηn),

a contradiction to (12). This proves Fact 17 for the case r = 3 and
r′ = 2.

Case 2: r = 4 and r′ = 3. This implies that (4
7
− 2η)n ≤ δ(G) ≤

(4
7
+ η)n, and consequently sp(n, δ + ηn) < (2

7
+ 2η)n. We first prove

two statements about the structure of G which are forced by (12).

(Ψ) If a vertex u has sets of neighbours U , U ′ on edges in exactly two
different triangle components with |U | ≥ |U ′| then (1

7
− 4η)n <

|U ′| < (1
7
+ 6η)n and (3

7
− 8η)n < |U | < (3

7
+ 2η)n.

Proof of (Ψ). For the lower bound on |U ′|, observe that by (c ) of
Lemma 11 we have δ(G[U ′]) ≥ 2δ − n ≥ (1

7
− 4η)n. To obtain the

upper bound, again by Lemma 11(c ) we have δ(G[U ]) ≥ 2δ − n, and
since the sets U and U ′ are neighbours of u in different triangle compo-
nents C and C ′, there are no edges from U to U ′. Furthermore, since
any edge in G[U ] forms a triangle with u using an edge from u to U ,
all edges in G[U ] are in C. Now by Fact 15 we have

CTF(G) ≥ min(3⌊|U |/2⌋, 3(2δ − n), 2δ − n+ |U ′|) .
Since |U | ≥ δ/2 we have 3⌊|U |/2⌋ ≥ (3

7
− 3η)n − 2 > sp(n, δ + ηn).

By (5) we have 3(2δ − n) > sp(n, δ + ηn). Because (12) holds, we
have 2δ − n + |U ′| < sp(n, δ + ηn) < (2

7
+ 2η)n, and therefore |U ′| <

(1
7
+6η)n. Now the claimed lower and upper bounds on |U | follow from

U = Γ(u) \ U ′, and from the fact that no vertex in U ′ has a neighbour
in U , respectively. �

(Ξ) If a vertex u has sets of neighbours U1, U2, U3 on edges in exactly
three different triangle components then ( 4

21
+2η)n > |Ui| > ( 4

21
−

6η)n for i ∈ [3].
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Proof of (Ξ). Assume that U1 is the largest of the three sets. By (c )
of Lemma 11 we have δ(G[Ui]) ≥ 2δ − n ≥ (1

7
− 4η)n for each i, so

|Ui| > (1
7
− 4η)n for each i. As in the previous case, there can be no

edge from U1 to U2∪̇U3, and all edges in U1 are triangle-connected.
Thus by Fact 15 we have

CTF(G) ≥ min
(

3⌊|U1|/2⌋, 3(2δ − n), 2δ − n+ |U2∪̇U3|
)

.

Now since sp(n, δ + ηn) < (3
7
− 10η)n and (12) holds, we have

3⌊|U1|/2⌋ < sp(n, δ + ηn) ≤ (
2

7
+ 2η)n

which implies |U1| < ( 4
21

+ 2η)n. Since |U2|, |U3| ≤ |U1| this completes
the desired upper bounds. The lower bounds follow from |U1|+ |U2|+
|U3| ≥ δ ≥ (4

7
− 2η)n. �

Next we show that

(Θ) int(G) is an independent set.

Proof of (Θ). Assume for a contradiction that there is an edge uv ∈
int(G). By Fact 16 one of the vertices of this edge, say u, is in only 2
triangle components. Let its neighbours be U1 and U2 in these two
triangle components, and let the neighbours of v be partitioned into
sets V1, . . . , Vk according to the triangle component containing the edge
to v. Assume further that Γ(u, v) ⊆ U1 ∩ V1, so that U2, V2, . . . , Vk are
pairwise disjoint. Let x ∈ Γ(u, v). Since x has neighbours in neither U2

nor V2, and since by Lemma 11(c ) we have |V2| > (1
7
−4η)n, we conclude

that δ ≤ d(x) ≤ n − 1 − |U2| − |V2|. In particular, |U2| < (3
7
− 8η)n

because δ ≥ (4
7
− 2η)n, and therefore by (Ψ) we have

(
1

7
− 4η)n < |U2| < (

1

7
+ 6η)n .

Next we want to derive analogous bounds for |V2|. For this purpose we
first show that k = 2.

Indeed, if we had k = 3, then by (Ξ)

d(x) ≤ n− 1− |U2| − |V2| − |V3|
≤ n− 1− (1

7
− 4η)n− 2( 4

21
− 6η)n < (10

21
+ 16η)n < δ ,

and this contradicts δ(G) ≥ δ. Similarly, if k ≥ 4, then by Lemma 11(c )
we have |Vi| ≥ (1

7
− 4η)n for each i, and hence

d(x) ≤ n− 1− |U2| − |V2| − |V3| − |V4| < (3
7
+ 16η)n < δ ,

which too is a contradiction. It follows that k = 2 as claimed.
Hence, we can argue analogously as before (for U2) that |V2| > (3

7
−

8η) would contradict d(x) ≥ δ. Consequently, by (Ψ) we have

(
1

7
− 4η)n < |V2| < (

1

7
+ 6η)n .
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We now argue that this yields a contradiction to (12) in much the
same way as we argued in the r = r′ + 1 = 3 case. Every vertex
of U2 is adjacent to all but at most n − |U1| − δ ≤ 10ηn vertices of
V (G)\U1. Since |U2| > 20ηn, by Proposition 12(a ) there is a matching
Mu in U2 covering all but at most one vertex of U2. Each edge of
Mu has at least δ − 10ηn ≥ (4

7
− 12η)n common neighbours outside

U1. Similarly, in V2 there is a matching Mv covering all but at most
one vertex of V2, each edge of which has at least (4

7
− 12η)n common

neighbours outside V1. Since Γ(u, v) = U1 ∩ V1, we have U1 ∩ V2 = ∅.
It follows that every edge of Mv has more than half of the edges of Mu

in its common neighbourhood, and thus the edges Mu∪̇Mv are triangle
connected. Choosing greedily for each edge in Mu∪̇Mv in succession
a distinct common neighbour outside Mu∪̇Mv, we obtain a connected
triangle factor with as many triangles as there are edges in Mu∪̇Mv.
Since |U2|, |V2| > (1

7
− 4η)n, we have CTF(G) > (3

7
− 12η)n − 3 >

sp(n, δ+ ηn), contradicting (12). This completes the proof that int(G)
is an independent set. �

It remains to show that each vertex u ∈ int(G) is contained in at
least r′ = 3 triangle components. Assume for a contradiction that
this is not the case and that some vertex u is only contained in 2
triangle components, C and C ′. Let U and U ′, respectively, be the
neighbours of u on edges in C and C ′. Without loss of generality |U | ≥
|U ′|. Because int(G) is an independent set, U and U ′ are contained in
the exteriors of C and C ′. By Lemma 11(b ) there are thus no edges
between U and ∂(C ′). By Lemma 11(c ) we have δ(G[U ]) ≥ 2δ − n,
and since U ⊆ ∂(C) every edge of G[U ] is in C. It follows that we may
apply Fact 15 to obtain

CTF(G) ≥ min
(

3⌊|U |/2⌋, 3(2δ − n), 2δ − n+ |∂(C ′)|
)

.

Since |U | ≥ δ/2 we have 3⌊|U |/2⌋ ≥ (3
7
− 3η)n − 2 > sp(n, δ + ηn).

By (5) we have 3(2δ−n) > sp(n, δ+ηn). Since (12) holds, we conclude
that 2δ − n + |∂(C ′)| < sp(n, δ + ηn) < (2

7
+ 2η)n, and therefore

|∂(C ′)| < (1
7
+ 6η)n.

Now any vertex in ∂(C ′) has neighbours only in ∂(C ′)∪̇ int(G), and
therefore | int(G)| ≥ δ − |∂(C ′)| ≥ (3

7
− 8η)n. The vertex u has neigh-

bours only in U ′ ⊆ ∂(C ′) and U , and therefore

|U | ≥ δ − |U ′| ≥ δ − |∂(C ′)| ≥ (3
7
− 8η)n .

By Lemma 11(c ) we have δ(G[U ]) ≥ 2δ − n ≥ (1
7
− 4η)n, and since

|U | > (2
7
−8η)n we obtain by Proposition 12(a ) a matchingM in U with

at least (1
7
−4η)n edges. Now each vertex in int(G) is adjacent to all but

at most n− δ− | int(G)| ≤ 10ηn vertices outside int(G). In particular,
each vertex in int(G) is adjacent to all but at most 10ηn vertices ofM ,
and is therefore a common neighbour of all but at most 10ηn edges
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of M . We now match greedily vertices of int(G) with distinct edges
of M forming triangles. Since | int(G)| > |M |, we will be forced to
halt only when we come to a vertex x ∈ int(G) which is not a common
neighbour of any remaining edge of M , i.e., when we have used all but
at most 10ηn edges of M . It follows that we obtain a triangle factor T
with at least (1

7
− 14η)n triangles. Since each triangle uses an edge of

M ⊆ G[U ] ⊆ G[∂(C)], T is a connected triangle factor, and we have
CTF(G) ≥ (3

7
− 42η)n > sp(n, δ + ηn) in contradiction to (12). �

4. Near-extremal graphs

In this section we provide the proof of Lemma 10. To prepare this
proof we start with two useful lemmas. The first will be used to con-
struct squared paths and squared cycles from simple paths and cycles.

Lemma 20. Given a graph G, let T = (t1, t2, . . . , t2l) be a path in
G and W a set of vertices disjoint from T . Let Q1 = (t1, t2), Qi =
(t2i−3, t2i−2, t2i−1, t2i) for all 1 < i ≤ l, and Ql+1 = (t2l−1, t2l). If there
exists an ordering σ of [l + 1] such that for each i the vertices in Qσ(i)

have at least i common neighbours in W , then there is a squared path

(q1, t1, t2, q2, t3, t4, q3, . . . , t2ℓ, qℓ+1)

in G, with qi ∈ W for each i, using every vertex of T .
If T is a cycle on 2l vertices we let instead Q1 = (t2l−1, t2l, t1, t2),

Qi = (t2i−3, t2i−2, t2i−1, t2i) for all 1 < i ≤ l, and σ be an ordering
on [l]. Then, under the same conditions, we obtain a squared cycle C2

3l.

Proof. We need only ensure that for each i one can choose qi such that qi
is a common neighbour of Qi and the qi are distinct. This is possible by
choosing for each i in succession qσ(i) to be any so far unused common
neighbour of Qσ(i). �

The second lemma is a variant on Dirac’s theorem and permits us
to construct paths and cycles of desired lengths which keep some ‘bad’
vertices far apart.

Lemma 21. Let H be a graph on h vertices and B ⊆ V (H) be of
size at most h/100. Suppose that every vertex in B has at least 9|B|
neighbours in H, and every vertex outside B has at least h/2+9|B|+10
neighbours in H. Then for any given 3 ≤ ℓ ≤ h we can find a cycle Tℓ
of length ℓ in H on which no four consecutive vertices contain more
than one vertex of B. Furthermore, if x and y are any two vertices not
in B and 5 ≤ ℓ ≤ h, we can find an ℓ-vertex path Tℓ whose endvertices
are x and y on which no four consecutive vertices contain more than
one vertex of B ∪ {x, y}.
Proof. If we seek a path in H from x to y then we create a ‘dummy
edge’ between x and y. If we seek a cycle, let xy be any edge of H−B.
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First we construct a path P in H covering B with the desired prop-
erty. Let B = {b1, b2, . . . , b|B|}. For each 1 ≤ i ≤ |B| − 1, choose a
vertex ui ∈ H − B adjacent to bi and a vertex vi ∈ H − B adjacent
to bi+1. Because both ui and vi have h/2 + 9|B|+10 neighbours in H ,
they have at least 18|B| + 20 common neighbours. At most 3|B| of
these are either in B or amongst the chosen uj, vj , and so we can find
a so far unused vertex wi adjacent to ui and vi. Since we require only
|B| − 1 vertices w1, . . . , w|B|−1 we can pick the vertices greedily.

We let v0 be yet another vertex adjacent to b1, and u|B| adjacent
to b|B|, and choose any further vertices w0, v0, w|B|, u|B| such that

P = (x, y, u0, w0, v0, b1, u1, w1, v1, b2, . . . , v|B|−1, b|B|, u|B|, w|B|, v|B|)

is a path on 4|B|+ 5 vertices.
Now we let P ′ be a path extending P in H of maximum length. We

claim that P ′ is in fact spanning. Suppose not: let u be an end-vertex
of P ′ and v a vertex not on P ′. Since P ′ is maximal every neighbour
of u is on P ′, so v(P ′) > h/2+9|B|+10. If there existed an edge u′v′ of
P ′ − P with u′u and v′v edges of H , with v′ closer to u on P ′ than u′,
then we would have a longer path extending P in H . Counting the
edges leaving u and v yields a contradiction.

Finally we let u and v be the end-vertices of the spanning path P ′.
If uv is an edge of H , or if u′v′ is an edge of P ′ − P , with u′ nearer
to u on P ′ than v′, such that uv′ and u′v are edges of H , then we
obtain a cycle T spanning H and containing P as a subpath. Again
edge counting reveals that such an edge must exist.

To obtain a cycle Tℓ with h − |B| − 2 ≤ ℓ < h we take u to be an
end-vertex of the path T − P and v its successor on T − P . If we can
find two further vertices u′ and v′ on T −P (in that order from u along
T − P ) with h − ℓ vertices between them and with uu′ and vv′ edges
of H then we would obtain a cycle Tℓ of length ℓ. Again simple edge
counting reveals that such a pair of vertices exists. To obtain a cycle Tℓ
with 3 ≤ ℓ < h − |B| − 2 we note that H − B has minimum degree
h/2 + 8|B| + 10 > (h − |B|)/2 + 1 and thus contains a cycle of every
possible length using the edge xy.

The cycle Tℓ satisfies the condition that no four consecutive vertices
contain more than one vertex of B, since either it preserves P as a
subpath or it contains no vertices of B at all. Similarly the path from x
to y within Tℓ satisfies the required conditions. �

Before embarking upon the proof of Lemma 10 we give an outline
of the method. We recall that the Szemerédi partition supplied to the
Lemma is essentially the extremal structure. We shall show that the
underlying graph either also has an extremal structure, or possesses
features which actually lead to longer squared paths and cycles than
required for the conclusion of the Lemma. This is complicated by the
fact that the Szemerédi partition is insensitive both to mis-assignment
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of a sublinear number of vertices and to editing of a subquadratic num-
ber of edges: we must assume, for example, that although the vertex
set I in the reduced graph R is independent, the vertex set

⋃

I may
fail to contain some vertices of G with no neighbours in

⋃

I, and may
contain a small number of edges meeting every vertex. However, ob-
serve that by the definition of an (ε, d)-regular partition, there are no
vertices of

⋃

I with more than (ε+d)n neighbours in
⋃

I. Fortunately,
it is possible to apply the following strategy in this case.

We start by separating those vertices with ‘few’ neighbours in
⋃

I,
which we shall collect in a set W , and those with ‘many’. We are then
able to show (as Fact 23 below) that, if there are two vertex disjoint
edges in W , then the sets

⋃

B1 and
⋃

B2 are in the same triangle com-
ponent of G (‘unexpectedly’, since B1 and B2 are in different triangle
components in R). We shall show that in this case it is possible to con-
struct very long squared paths and cycles by making use of Lemma 8.

Hence we can assume that there are not two disjoint edges in W ,
which in turn implies that W is almost independent and will give us
rather precise control about the size of W . In addition, the minimum
degree condition will guarantee that almost every edge from W to the
remainder of G is present. We would like to then say that in V (G)\W
we can find a long path, which together with vertices from W forms
a squared path (and similarly for squared cycles). Unfortunately since
G[W,V (G) \ W ] is not necessarily a complete bipartite graph, this
statement is not obviously true: although by definition no vertex out-
side W has very few neighbours in W , it is certainly possible that two
vertices outside W could fail to have a common neighbour in W . But
the statement is true for a path possessing sufficiently nice properties—
specifically, satisfying the conditions of Lemma 20—and the purpose
of Lemma 21 is to provide paths and cycles with those nice properties.
The remainder of our proof, then, consists of setting up conditions for
the application of Lemma 21.

Proof of Lemma 10. Given ν > 0, suppose the parameters η > 0 and
d > 0 satisfy the following inequalities.

(14) η ≤ ν4

108
and d ≤ ν4

108

Given d > 0, Lemma 8 returns a constant εel > 0. We set

(15) ε0 = min
( ν4

108
, εel

)

.

Given mel and 0 < ε < ε0, Lemma 8 returns a constant nel. We set

(16) N = max
(

1000m4
el
, 100η−1ν−1, nel

)

.

Now let G, R, and the partition V (R) = I∪̇B1∪̇ . . . ∪̇Bk satisfy condi-
tions (i )–(vi ) of the lemma.
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If δ(G) = δ ≥ 2n−1
3

then we can appeal to Theorem 1 to find a
spanning squared path in G; if δ ≥ 2n

3
then we can appeal to Theorem 2

to find C2
ℓ for each ℓ ∈ [3, n] \ {5}. Therefore, the definition of sp(n, δ)

and sc(n, δ) imply that we may assume δ < 2n/3 in the following, and
that we only need to find

(17) squared paths and squared cycles of length at most 11n/20.

We now start by investigating the sizes of I and of the Bi. Define
δ′ = (δ/n− d− ε)m. Since R is an (ε, d)-reduced graph we have

(18) δ(R) ≥ δ′ = (δ/n− d− ε)m.

Observe that moreover

(19) |I| ≤ m− δ′ ≤
(

1− δ

n
+ d+ ε

)

m ,

by (v ) because clusters in I have δ′ neighbours outside I in R. For
i ∈ [k], fix a cluster C ∈ Bi. By assumption (vi ) C has neighbours
only in Bi ∪ I in R. Since

δ′ ≤ deg(C) = deg(C,Bi∪ I) ≤ deg(C,Bi)+ |I| ≤ deg(C,Bi)+m− δ′ ,
we have

|Bi| > deg(C,Bi) ≥ 2δ′ −m ≥ m

n

(

2(δ − dn− εn)− n
)

=
m

n

(

2δ − n− (d+ ε)n
)

.

Now since 2δ − n ≥ 2νn by (i ), we conclude from (14) and (15) that

(20) |Bi| ≥
2m(2δ − n)

3n
≥ 4

3
νm .

We next show that each Bi is part of exactly one triangle component
of R.

Fact 22. For each 1 ≤ i ≤ k the following holds. All edges in R[Bi]
are triangle connected in R.

Proof of Fact 22. By assumption (vi ) we have

(21) |Bi| ≤ 19m(2δ − n)/(10n) ≤ 39(2δ′ −m)/20 ,

where the second inequality comes from (14) and (15). Since we have
δR(Bi) ≥ 2δ′ − m > |Bi|/2, the graph R[Bi] is connected. It follows
that if there are two edges in R[Bi] which are not triangle-connected,
then there are two adjacent edges in R[Bi] with this property. That
is, there are vertices P , Q and Q′ of Bi such that PQ is in triangle
component C and PQ′ is in triangle component C ′ with C 6= C ′.

We now show that there are at least 2δ′−m edges leaving P in R[Bi]
which are in C. There are two possibilities. First, suppose there are no
C-edges from P to I. In this case, the common neighbourhood Γ(PQ)
must lie entirely in Bi. Every vertex of Γ(PQ) makes a C-edge with P ,
and we have |Γ(PQ)| ≥ 2δ′ − m as required. Second, suppose that
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there is a C-edge PP ′ with P ′ ∈ I. Since I is an independent set in R,
the set Γ(PP ′) lies entirely within Bi, and has size at least 2δ′ − m.
Again, every edge from P to Γ(PP ′) is a C-edge, as desired.

By the identical argument, there are at least 2δ′−m edges leaving P
in R[Bi] which are in C ′. Since no edge is in both C and C ′, there are
at least 2(2δ′−m) edges leaving P in R[Bi], so |Bi| ≥ 2(2δ′−m). This
contradicts (21). It follows that all edges of Bi are triangle connected,
as desired. �

We next define a set W of those vertices in G which have few neigh-
bours in

⋃

I. The intuition is that W consists of
⋃

I and only a few
more vertices of G. To simplify notation, we set ξ = 4

√
ε+ d+ 11η.

By (14) and (15), we have

(22) ξ ≤ ν/100 .

LetW be the vertices of G which do not have more than ξn neighbours
in

⋃

I. Since ξ > d+ ε, by the independence of I and by the definition
of an (ε, d)-regular partition, we have

⋃

I ⊆ W . By assumption (v )
we have |I| ≥ (n− δ− 11ηn)m/n. Hence every edge in W has at least

(23) 2(δ − ξn)−
(

n− |
⋃

I|
)

>
δ − (2δ − n)

16

common neighbours outside
⋃

I, where we use assumption (i ) that
2δ − n > 2νn, (14) and (22).

By this observation, the next fact implies that we are done if there
are two vertex disjoint edges in W .

Fact 23. If u1v1 and u2v2 are vertex disjoint edges of G such that for
i = 1, 2 the edge uivi has at least δ − (2δ − n)/16 common neighbours
outside

⋃

I, then G contains P 2
sp(n,δ) and C

2
ℓ for each ℓ ∈ [3, sc(n, δ)] \

{5}.
Proof of Fact 23. Let D′ be the set of clusters C ∈ V (R) \ I such
that u1v1 has at most 2dn/m common neighbours in C. By the hy-
pothesis, u1v1 has at least δ − (2δ − n)/16 common neighbours out-
side

⋃

I. Of these, at most εn are in the exceptional set V0 of the
regular partition, and at most 2dn|D′|/m are in

⋃

D′. The remaining
common neighbours must all lie in

⋃

(V (R) \ (I ∪ D′), and hence we
have the inequality

δ − 2δ − n

16
− εn− 2dn|D′|

m
≤ (m− |I| − |D′|) n

m
(v )

≤ n− (n− δ − 11ηn)− |D′| n
m
.

Simplifying this, we obtain

n− 2dn

m
|D′| ≤ 11ηn+ εn+

2δ − n

16
,
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and by (14) and (15), we get |D′| ≤ (2δ − n)m/(14n).
Now let D be the set of clusters C ∈ V (R) \ I such that either

u1v1 or u2v2 has at most 2dn/m common neighbours in C. The same
analysis holds for u2v2, so we obtain

(24) |D| ≤ (2δ − n)m

7n
.

Therefore, we conclude from (20) that B1 \D 6= ∅. Take X ∈ B1 \D
arbitrarily. We have

deg(X,B1)
(vi )

≥ deg(X)− |I| ≥ δ′ − |I|
(19)

≥ δ′ −
(

1− δ

n
+ d+ ε

)

m

(18)

≥
( δ

n
− d− ε

)

m−
(

1− δ

n
+ d+ ε

)

m

(14),(15)

≥ 1

2
(2δ − n)

m

n

(24)
> |D| .

Thus there exists a cluster Y ∈ Γ(X)∩(B1\D). Hence we have clusters
X, Y ∈ B1\D such thatXY ∈ E(R). Analogously, we can find clusters
X ′, Y ′ ∈ B2 \D such that X ′Y ′ ∈ E(R).

Since δR(B1), δR(B2) ≥ δ′ − |I| ≥ 2δ′ − m, we can find greedily a
matching M in R[B1 ∪ B2] with δ′ − |I| edges. Since every cluster
in I has at most m − |I| − δ′ non-neighbours outside I, every cluster
in I forms a triangle with at least |M | − (m − |I| − δ′) = 2δ′ − m
edges of M . In addition, by assumption (v ), (14), and since δ < 2n/3
we have |I| > (1

3
− 11η)m ≥ 1

4
m. Therefore we may choose greedily

clusters in I to obtain a set T of at least

min
{

2δ′ −m, |I|
}

≥ min
{

2δ′ −m,
1

4
m
}

vertex-disjoint triangles formed from edges of M and clusters of I.
Let T1 be the triangles of T contained in B1∪I, and T2 those contained
in B2 ∪ I.

By Fact 22, since each triangle in T1 contains an edge of B1, all
triangles in T1 are in the same triangle component as the edge XY .
Similarly all the triangles in T2 are in the same triangle component as
the edge X ′Y ′.

Noting that ε satisfies (15) and n > N satisfies (16), we can apply
Lemma 8 with X1 = X2 = X , Y1 = Y2 = Y to find a squared path
starting with u1v1 and finishing with u2v2 using the triangles T1. Sim-
ilarly, using Lemma 8 with X1 = X2 = X ′, Y1 = Y2 = Y ′ we find a
squared path (intersecting the first only at u1, v1, u2, and v2) start-
ing with u2v2 and finishing with u1v1 using the triangles T2. Choos-
ing appropriate lengths for these squared paths and concatenating
them we get a squared cycle C2

ℓ in G, for any 36(mel + 2)3 ≤ ℓ ≤
3(1−d)min{2δ′−m,m/4}n/m. Applying Lemma 8 to the copy of K4

in B1 directly we obtain C2
ℓ for each ℓ ∈ [3, 3n/m] \ {5}. By (16) we
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have 3n/m > 36(mel + 2)3, and by (5), (14), (15), and (17) we have
3(1−d)(2δ′−m)n/m > sp(n, δ) ≥ sc(n, δ) and 3(1−d)n/4 ≥ 11n/20 >
sp(n, δ) ≥ sc(n, δ). It follows that G contains both P 2

sp(n,δ) and C
2
ℓ for

each ℓ ∈ [3, sc(n, δ)] \ {5} as required. �

By (23), if there are two vertex disjoint edges in W , then we are
done by Fact 23. Thus we assume in the following that no such two
edges exist. This implies that there are two vertices in W which meet
every edge in W . Since neither of these two vertices has more than ξn
neighbours in

⋃

I ⊆ W , while |I| > (1
3
− 11η)m by (v ) and because

δ < 2n/3, there is a vertex in W adjacent to no vertex of W . We
conclude that

(25) n− δ − 11ηn ≤ |
⋃

I| ≤ |W | ≤ n− δ.

Our next goal is to extract from each set
⋃

Bi a large set Ai of
vertices which are adjacent to almost all vertices inW and are such that
G[Ai] has minimum degree somewhat above |Ai|/2. Because at least
|W |δ−2|W | edges leave W , the total number of non-edges between W
and V (G) \W is at most

|W ||V (G)\W |−|W |(δ−2) ≤ (n−δ)(δ+11ηn−δ+2)
(25)

≤ 11ηn2+2n .

In particular, by the definition of ξ, by (14) and (16),

(26)
∣

∣

∣

{

v ∈ V (G) \W : deg(v,W ) < |W | − ξ2n
}

∣

∣

∣
≤ ξ2n .

In addition, by assumption (vi ) we have |Bi| ≤ 19m(2δ − n)/(10n),
which together with δ ≤ 2n/3, (14), (15) and (22) implies

(27)
∣

∣

∣

⋃

Bi

∣

∣

∣
≤ 19

10
(2δ − n) ≤ 19

20
δ < δ − ξn− (d+ ε)n .

However, by assumption (vi ) and the definition of an (ε, d)-regular
partition, vertices in

⋃

Bi send at most (d + ε)n edges to V (G) −
⋃

Bi −
⋃

I. It follows from the definition of W that
⋃

Bi ∩W = ∅ for all i ∈ [k] .

Furthermore, (14), (15) and (22) imply that v ∈ ⋃

Bi has at least

(28) δ − |W | − (d+ ε)n
(25)

≥ 2δ − n− (d+ ε)n
(27)
> |

⋃

Bi|/2 + 32ξ2n

neighbours in
⋃

Bi.
Now, for each i ∈ [k] we let Ai be the set of vertices in

⋃

Bi which
are adjacent to at least |W |−ξ2n vertices ofW . In the rest of this para-
graph we determine some important properties of the sets Ai. By (26)
we have

(29)
∣

∣

∣

⋃

i∈[k]

(

⋃

Bi

)

\ Ai

∣

∣ ≤ ξ2n for all i ∈ [k] .
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But the vertices which are neither in W nor any of the sets Ai must be
either in the exceptional set V0 or in

⋃

Bi \ Ai for some i. Hence we
have

(30)
∣

∣

∣
V0 ∪

⋃

i∈[k]

(

⋃

Bi

)

\ Ai

∣

∣

∣
≤ εn+ ξ2n < 2ξ2n .

Accordingly (28) implies that

(31) δ(G[Ai]) ≥ |Ai|/2 + 30ξ2n ,

and since |Bi| > δ′ − |I| ≥ 2δ′ −m we have

(32) |Ai| ≥ |
⋃

Bi| − 2ξ2n ≥ (1− ε)
n

m
|Bi| − 2ξ2n ≥ 2δ − n− 3ξ2n

for each i ∈ [k], where we used the definition of ξ, (14), 15, and (18) in
the last inequality.

In the remainder of the proof we utilize the sets Ai in order to find
the desired squared path and squared cycles. We start by showing that
we obtain squared cycles on ℓ vertices for each ℓ ∈ [3, 3

2
|A1|] \ {5}. To

see this note first that by Lemma 21 (with B = ∅) we find in A1 a copy
of C2ℓ′ for each 2ℓ′ ∈

[

4,min{|A1|, 2n
4
}
]

. By the definition of A1 every
quadruple of consecutive vertices on such a cycle has at least |W |−4ξ2n
common neighbours in W , and by the definition of ξ, (14), (15), and
(25) we have |W | − 4ξ2n ≥ n/4. Hence we can apply Lemma 20 to G
and W to square this cycle. This gives us squared cycles of lengths ℓ
with

3 ≤ ℓ ≤ min
{3

2
|A1|, 3

n

4

}

(17)
=

3

2
|A1|

such that ℓ is divisible by three, but not of lengths not divisible by
three.

If we seek a squared cycle C2
3ℓ′+1 or C2

3ℓ′+2 (with 3ℓ′ + 2 6= 5) then
we need to perform a process which we will call parity correction and
which we explain in the following two paragraphs. We shall use this
parity correction process also in all remaining steps of the proof to
obtain squared cycles of lengths not divisible by 3.

For obtaining a squared cycle of length 3ℓ′ + 1 we proceed as fol-
lows. We pick (using Turán’s theorem) a triangle abc in A1 and clone
the vertex b, i.e., we insert a dummy vertex b′ into G with the same
adjacencies as b. Then we apply Lemma 21 to A1 − {b} to find a path
P = (a, p2, p3, . . . , p2ℓ′−1, c) on 2ℓ′ vertices whose end-vertices are a and
c. Finally we apply Lemma 20 to the path bP b′, taking Q1 = (b, a),
Q2 = (b, a, p2, p3) as the first quadruple and thereafter every other set of
four consecutive vertices on P , finishing with (p2ℓ′−2, p2ℓ′−1, c, b

′). This
yields a squared path (q1, b, a, . . . , c, b

′) on 3(ℓ′+1) vertices, which gives
a squared cycle (b, a, . . . , c) in G (without q1 and the clone vertex b′)
on 3ℓ′ + 1 vertices as required.
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If we seek a squared cycle of length 3ℓ′ + 2 with ℓ′ > 1 on the other
hand, then we perform a similar process, except that we identify not
one triangle in A1 but two triangles abc, xyz connected with an edge cx
(which we obtain by the Erdős-Stone theorem). We apply Lemma 21
to find a path P = (a, . . . , z) in A1 \ {b, c, y, z} on 2ℓ′ vertices. We
then apply Lemma 20 once to the path bPy and once to (b, c, x, y).
Omitting the first vertex on each of the resulting squared paths and
concatenating, we get a squared cycle C2

3ℓ′+2.
Hence we do indeed obtain squared cycles C2

ℓ for all ℓ ∈ [3, 3
2
|A1|] \

{5}. It remains to show that we can also find C2
ℓ for all ℓ with 3

2
|A1| ≤

ℓ ≤ sc(n, δ) and that we can find P 2
sp(n,δ).

For this purpose, we first re-incorporate the vertices that are neither
in W nor in any of the sets Ai by examining in which of the Ai they
have many neighbours. More precisely, for each i ∈ [k], we let Xi

be Ai together with all vertices in V (G) \W which are adjacent to at
least 30ξ2n vertices of Ai. Because every vertex in V (G) \W has at
least δ − |W | neighbours outside W , by (25) every vertex in G−W is
in Xi for at least one i. Moreover, by the definition of an (ε, d)-regular
partition, assumption (vi ) and since Aj ⊆

⋃

Bj, we have for all j ∈ [k]
with j 6= i that

(33) Aj ∩Xi = ∅ .
Hence it follows from (30) that

(34) |Xi| < |Ai|+ 2ξ2n and |X1 − A1| ≤ 2ξ2n .

We finish the proof by distinguishing three cases.

Case 1: |Xi∩Xj | ≥ 2 for some i 6= j. Let v1 and v2 be distinct vertices
of Xi ∩ Xj. Let u1 and u2 be distinct neighbours in Ai of v1 and v2
respectively, and similarly y1 and y2 in Aj . Applying Lemma 21 to Ai

we can find a path from u1 to u2 of length ℓ′ for any 4 ≤ ℓ′ ≤ |Ai| − 2.
We can find a similar path in Aj from y1 to y2. Concatenating these
paths with v1 and v2 we can find a 2ℓ′-vertex cycle T2ℓ′ in X1 ∪X2 for
any 10 ≤ 2ℓ′ ≤ |Ai|+ |Aj| − 2. There are no quadruples of consecutive
vertices on T2ℓ′ using both v1 and v2. The four quadruples that use
either v1 or v2 each have at least (ξ−3ξ2)n > 100k common neighbours
in W , where the inequality follows from (16), (22), from

(35) k ≤ ν−1 ,

and from ξ − 3ξ2 > 0. All other quadruples have at least |W | − 4ξ2n
common neighbours in W . So applying Lemma 20 we obtain a squared
cycle on 3ℓ′ vertices. Again it is possible to perform parity corrections
(prior to applying Lemma 21) so that in this case we have C2

ℓ ⊆ G for
every ℓ ∈ [3, 3

2
(|Ai| + |Aj| − 10)] \ {5}. By (32), we have sc(n, δ) ≤

sp(n, δ) < 3
2
(|Ai|+ |Aj| − 10).
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Case 2: for some i every vertex of Ai is adjacent to at least one
vertex outside Xi ∪W . Since

|Ai|
(29)

≥
∣

∣

∣

⋃

Bi

∣

∣

∣
− ξ2n

(20)

≥ 4

3
ν(1 − ε)n− ξ2n

(22)

≥ 13ξn
(22),(35)
> 31kξ2n

we can certainly find j 6= i such that there are 31ξ2n vertices in Ai

all adjacent to vertices of Xj \Xi. Since no vertex of Xj \Xi is adja-
cent to 30ξ2n vertices of Ai (by definition of Xi), we find two disjoint
edges u1v1 and u2v2 from u1, u2 ∈ Ai to v1, v2 ∈ Xj. Choosing distinct
neighbours y1 of v1 and y2 of v2 in Aj and applying the same reasoning
as in the previous case we are done.

Case 3: for each i 6= j we have |Xi ∩ Xj | ≤ 1, and for each i some
vertex in Ai is adjacent only to vertices in W ∪ Xi. Thus |Xi| ≥
δ − |W | + 1 for each i. We now first focus on finding a squared path
on sp(n, δ) vertices in G, and then turn to the squared cycles which
will complete the proof. If for some i 6= j we have |Xi ∩Xj | = 1 then
we obtain a squared path of the desired length as in Case 1. There we
required two vertices in Xi ∩Xj to obtain a squared cycle (which must
return to its start), but one vertex suffices for a squared path to cross
from Xi to Xj .

So, assume that the sets Xi are all disjoint. It follows that k ≤
(n− |W |)/(δ − |W |+ 1). Since |W | ≤ n− δ by (25), this implies

k ≤ n− (n− δ)

δ − (n− δ) + 1
=

δ

2δ − n+ 1
.

Now if k ≥ rp(n, δ) + 1 then we would have

rp(n, δ) + 1 ≤ k ≤ δ

2δ − n + 1
,

and so

rp(n, δ) ≤
n− δ − 1

2δ − n + 1
,

but by (3) we have rp(n, δ) ≥ n−δ
2δ−n+1

, so

k ≤ rp(n, δ) .

Thus the largest of the sets Xi, say X1, has at least

(36) |X1| ≥
n− |W |

k

(25)

≥ δ

k
≥ δ

rp(n, δ)

vertices.
We now want to apply Lemma 21 with H = G[X1] and ‘bad’ vertices

B = X1 − A1. Note that by (34) there are at most 2ξ2n vertices in
B = X1 −A1, and so we have

|B|
(34)

≤ 2ξ2n
(22)

≤ νδ

100

(35)

≤ δ

100k
≤ |H|

100
.
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Moreover, δ(H) = δ(G[X1]) ≥ 30ξ2n by definition of X1, and therefore
every vertex in B has at least 30ξ2n ≥ 9 ·2ξ2n ≥ 9|B| neighbours in H .
In addition, vertices v in H − B ⊆ A1 satisfy

deg(v,X1)
(31)

≥ |A1|
2

+ 30ξ2n
(34)
>

|X1|
2

+ 25ξ2n

=
|H|
2

+ 25ξ2n
(16)

≥ |H|
2

+ 9|B|+ 10 .

Hence we can indeed apply Lemma 21, to obtain a path T covering
min{X1, n/2} vertices on which every quadruple of consecutive vertices
contains at most one ‘bad’ vertex. Finally we want to apply Lemma 20
to the graph G[X1∪W ] and the cycle T with the following ordering σ of
the quadruples of consecutive vertices in T : σ is such that all quadru-
ples containing vertices from B come first, followed (by an arbitrary
ordering of) all other quadruples. There are at most 2 ·2ξ2n quadruples
containing vertices from B = X1 −A1, and by the definition of A1 and
of W , each of them has at least (ξ − 3ξ2)n ≥ ξ2n common neighbours
in W . All remaining quadruples have, by the definition of A1, by (25)
and since δ ≤ 2n/3, at least |W |−4ξ2n ≥ n

4
≥ 1

2
min{|X1|, n2} common

neighbours in W . Hence, we can indeed apply Lemma 20 to obtain a
squared path on at least 3

2
min{|X1|, n/2} ≥ sp(n, δ) vertices, where

the inequality follows from the definition of sp(n, δ), from (17), and
from (36).

At last, we show that we can find in G the desired long squared
cycles in Case 3. Assume first that there is a cycle of sets (relabelling
the indices if necessary) X1, X2, . . . , Xs for some 3 ≤ s ≤ k such that
Xi ∩ Xi+1 mod s = {vi} for each i, and the vi are all distinct, then for
each i we may choose neighbours ui ∈ Ai and yi in Ai+1 mod s of vi,
and we may insist that all these 3s vertices are distinct. Similarly as
before we can apply Lemma 21 to each G[Ai] in turn and concatenate
the resulting paths, in order to find a cycle T2ℓ′ for every 8s ≤ 2ℓ′ ≤
|A1|+|A2| on which there are no quadruples using more than one vertex
outside

⋃

iAi. Again (checking the conditions similarly as before) we
may apply Lemma 20 to T2ℓ′ to obtain a squared cycle on 3ℓ vertices.
Finally by performing parity corrections we obtain C2

ℓ for every ℓ ∈
[3, 3

2
(|A1|+ |A2|)] \ {5}.

If there exists no such cycle of sets, then
∑k

i=1 |Xi| ≤ n−|W |+k−1.
Since we have also |Xi| ≥ δ − |W | + 1 for each i and |W | ≤ n − δ, it
follows from the definition of rc(n, δ) (by establishing a relation similar
to (3)) that k ≤ rc(n, δ), and by averaging, that the largest of the
sets Xi, say X1, contains at least 2 sc(n, δ)/3 vertices. As before, we
can apply Lemma 21 to X1 to obtain a cycle T2ℓ′ for each 4 ≤ 2ℓ′ ≤ |X1|
on which the ‘bad’ vertices from B = X1−A1 are separated, and apply
Lemma 20 to it to obtain a squared cycle C2

3ℓ′ for each 6 ≤ 3ℓ′ ≤ sc(n, δ)
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as required. Again the parity correction procedure is applicable, so we
get C2

ℓ for every ℓ ∈ [3, sc(n, δ)] \ {5}. �

5. Concluding remarks

The proof of Theorem 4. Our results were most difficult to prove
for δ ≈ 4n/7. This is somewhat surprising given the experience from
the partial and perfect packing results of Komlós [9] and Kühn and
Osthus [15]. In the setting of these results it becomes steadily more
difficult to prove packing results as the minimum degree of the graph
(and hence the required size of a packing) increases, with perfect pack-
ings as the most difficult case. Yet in our setting it is relatively easy
to prove our results when the minimum degree condition is large. This
difference occurs because we have to embed triangle-connected graphs;
as the minimum degree increases the possibilities for bad behaviour
when forming triangle-connections are reduced.

This is paralleled by the behaviour of K4-free graphs: For any mini-
mum degree δ(G) > 2v(G)/3 the graph G is not K4-free. However, if
δ(G) > 5v(G)/8 then by the Andrásfai-Erdős-Sós theorem [2] the K4-
free graph G is forced to be tripartite, while for smaller values of δ(G)
there exist more possibilities.

Extremal graphs. It is straightforward to check (from our proofs)
that up to some trivial modifications the graphs Gp(n, δ) and Gc(n, δ)
are the only extremal graphs. We believe that the graph Gp(n, δ) re-
mains extremal for squared paths even when δ is not bounded away
from n/2, although as noted in Section 1 the same is not true forGc(n, δ)
and squared cycles.

However it is not the case that the only extremal graph excluding
some C2

ℓ of chromatic number four is Kn−δ,n−δ,2δ−n (cf. (ii ) of our main
theorem, Theorem 4). Let us briefly explain this. Suppose ℓ is not
divisible by three. Since C2

ℓ has no independent set on more than ⌊ℓ/3⌋
vertices, whenever we remove an independent set from C2

ℓ we must
leave some three consecutive vertices, which form a triangle. Now
suppose that we can find a graph H on δ vertices with minimum degree
2δ − n which is both triangle-free and contains no even cycle on more
than 2(2δ − n) vertices. Then the graph G obtained by adding an
independent set of size n− δ to H , all of whose vertices are adjacent to
all of H , contains no squared cycle of length indivisible by three and
no squared cycle with more than 3(2δ − n) vertices.

To mention one possible H , take δ = 6n
11

and let H be obtained
as follows. We take the disjoint union of three copies of Kn/11,n/11

and fix a bipartition. Now we add three vertex disjoint edges within
one of the two partition classes, one between each copy of Kn/11,n/11.
The resulting triangle-free graph has no even cycle leaving any copy of
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Kn/11,n/11. Hence all even cycles have at most 2n
11

vertices. However, it
has odd cycles of up to 6n

11
− 3 vertices.

Long squared cycles. Theorem 5 (ii ) states that if any of various
odd cycles are excluded from G we are guaranteed even cycles of every
length up to 2δ(G), whereas the equivalent statement in our Theorem 4
contains an error term. We believe this error term can be removed, but
at the cost of significantly more technical work, requiring both a new
version of the stability lemma and new extremal results.

Higher powers of paths and cycles. We note that Theorem 2 has
a natural generalisation to higher powers of cycles, the so called Pósa-
Seymour Conjecture. This conjecture was proved for all sufficiently
large n by Komlós, Sárközy and Szemerédi [12]. We conjecture a natu-
ral generalisation of Theorem 4 for higher powers of paths and cycles.

Given k, n and δ, we construct an n-vertex graph G
(k)
p (n, δ) by par-

titioning the vertices into an ‘interior’ set of ℓ = (k− 1)(n− δ) vertices
upon which we place a complete balanced k − 1-partite graph, and an
‘exterior’ set of n− ℓ vertices upon which we place a disjoint union of
⌊(n− ℓ)/(δ− ℓ+1)⌋ almost-equal cliques. We then join every ‘interior’

vertex to every ‘exterior’ vertex. We construct G
(k)
c (n, δ) similarly, per-

mitting the cliques in the ‘exterior’ vertices to overlap in cut-vertices
of the ‘exterior’ set if this reduces the size of the largest clique while
preserving the minimum degree δ.

Conjecture 24. Given ν > 0 and k there exists n0 such that whenever
n ≥ n0 and G is an n-vertex graph with δ(G) = δ > k−1

k
n + νn, the

following hold.

(i ) If P k
ℓ ⊆ G

(k)
p (n, δ) then P k

ℓ ⊆ G.

(ii ) If Ck
(k+1)ℓ ⊆ G

(k)
c (n, δ) for some integer ℓ, then Ck

(k+1)ℓ ⊆ G.

(iii ) If Ck
ℓ ⊆ G

(k)
c (n, δ) with χ(Ck

ℓ ) = k + 2 and Ck
ℓ 6⊆ G for some

integer ℓ, then Ck
(k+1)ℓ ⊆ G for each integer ℓ < kδ−(k−1)n−νn.

It seems likely that again the νn error term in the last statement is
not required, but again (at least for powers of cycles) it is required in
the minimum degree condition.
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cycle in dense graphs, Random Structures Algorithms 9 (1996), no. 1-2, 193–
211.

11. , Blow-up lemma, Combinatorica 17 (1997), no. 1, 109–123.
12. , Proof of the Seymour conjecture for large graphs, Annals of Combina-

torics 2 (1998), 43–60.
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Appendix A. Proof of Lemma 8

For the proof of Lemma 8 we apply the following version (which is
a special case) of the Blow-up Lemma of Komlós, Sárközy and Sze-
merédi [11].
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Lemma 25 (Blow-up Lemma [11]). Given fixed c, d > 0, there exist
ε0 > 0 and nbl such that for any 0 < ε < ε0 the following holds.
Let H be any graph on at least nbl vertices with V (H) = V1∪̇V2∪̇V3
and |Vi| ≥ 1

6
|V (H)|, in which each bipartite graph H [Vi, Vj] is (3ε, d)-

regular and furthermore δVi
(Vj) ≥ 1

2
d|Vi| for each 1 ≤ i, j ≤ 3.

Let F be any subgraph of the complete tripartite graph with parts
V1, V2 and V3 such that the maximum degree of F is at most four.
Assume further, that at most four vertices xi (i ∈ [4]) of F are endowed
with sets Cxi

⊆ Vj such that xi ∈ Vj and |Cxi
| ≥ c|Vj|

Then there is an embedding ψ : V (F ) → V (H) of F into H with
ψ(xi) ∈ Cxi

for i ∈ [4].

We also say that the xi in Lemma 25 are image restricted to Cxi
.

Proof of Lemma 8. Given d, we let c = d2/4. Now Lemma 25 gives
values ε0 > 0 and nbl. We choose εel = min(ε0, d

2/24). Given ε < εel
and mel we choose

nel = max

(

2melnbl,
6m4

ε

)

.

Let n ≥ nel, let G be an n-vertex graph, and let R′ be an (ε, d)-reduced
graph of G on m ≤ mel vertices.

Fix a set T ′ = {T ′
1, . . . , T

′
CTF(R′)/3} of vertex-disjoint triangles in a

triangle component of R′ covering CTF(R′) vertices. For each triangle
T ′
i = X ′

i,1X
′
i,2X

′
i,3 we may by regularity for each j ∈ [3] remove at

most ε|X ′
i,j| vertices from X ′

i,j to obtain a set Xi,j such that each pair
(Xi,j, Xi,k) is not only (2ε, d)-regular but also satisfies δXi,k

(Xi,j) ≥
(d − 3ε)|Xi,k|. We let R be the (2ε, d)-reduced graph corresponding
to the new vertex partition given by replacing each X ′

i,j with Xi,j;
then every edge of R′ carries over to R, and we let T be the set of
CTF(R′)/3 vertex disjoint triangles in R corresponding to T ′. We set
r = CTF(R′)/3.

Our strategy now is as follows. We shall first fix a collection of
suitable triangle walks W1, . . . ,Wr−1 and W ′ in R. Next, for each of

these triangle walksW = (E1, E2, . . .) we do the following. Let
⇀
U1V1 be

(a suitable) orientation of the first edge E1 of W . We shall construct

a sequence Q(W,
⇀
U1V1) of vertices of R whose first two vertices are U1

and V1, in that order, and which has the property that every vertex in
the sequence is adjacent to the two preceding vertices (as is the case

for a squared path). Then we use this sequence Q(W,
⇀
U1V1) to obtain

a squared path in G following W , whose first two vertices are in U1

and V1. Finally, connecting suitable paths appropriately will lead to a
proof of (i ), (ii ), and (iii ).

We first construct the triangle walksW1, . . . ,Wr−1 andW
′. For each

1 ≤ i ≤ r − 1 let Wi be a fixed triangle walk in R whose first edge
is in Ti and whose last is in Ti+1. We suppose (repeating edges in the
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triangle walk Wi if necessary) that each triangle walk Wi contains at
least ten edges, that the first edge of Wi+1 is not the same as the last
edge of Wi, and such that each walk with more than ten edges is of
minimal length. We have |Wi| ≤

(

m
2

)

for each i. Let W ′ be the triangle
walk obtained by concatenating W1, . . . ,Wr−1.

Next, we describe how to construct the sequence Q(W,
⇀
A1B1) for

any triangle walk W = (E1, E2, . . .) in R and any orientation
⇀
A1B1 of

its first edge E1. We construct Q(W,
⇀
A1B1) iteratively as follows. Let

Q1 = (A1, B1). Now for each 2 ≤ i ≤ |W | successively, we define Qi

as follows. The last two vertices Ai−1, Bi−1 of Qi−1 are an orientation
of Ei−1. If Ei = Ai−1Bi we create Qi by appending (Bi, Ai−1) to Qi−1;
if Ei = Bi−1Bi we append (Bi, Ai−1, Bi−1, Bi) to Qi−1 to create Qi. At
each step the final two vertices of Qi are an orientation of Ei. Further-
more every vertex of Qi is adjacent in R to the two vertices preceding

it in Qi. Finally, we let Q(W,
⇀
A1B1) = Q|W |.

We shall need the following observations concerning the lengths of
sequences constructed in this way. It is easy to check by induction
that for any triangle walk W with at least two edges whose first edge
is U1V1, we have

(37) |Q(W,⇀U1V1)|+ |Q(W,⇀V1U1)| ≡ 1 mod 3 .

Now consider the concatenation W ′ of the walks Wi. Let U1V1 be the

first edge of W1. If we construct Q(W ′,
⇀
U1V1) then the first edge UiVi

and the last edge U ′
iV

′
i of each Wi obtains an orientation, say

⇀
UiVi

and
⇀
U ′
iV

′
i . Clearly, there are sequences Q̃i of vertices in Ti for 1 < i < r,

such that Q(W ′,
⇀
V1U1) is the concatenation of

Q(W1,
⇀
V1U1), Q̃2, Q(W2,

⇀
V2U2), . . . , Q̃r−1, Q(Wr−1,

⇀
Vr−1Ur−1) .

Further we let Q̃1 = T1 − U1V1 and Q̃r = Tr − U ′
r−1V

′
r−1. We define

fi = |Q̃i| mod 3 for i ∈ [r]. Together with (37) we obtain

|Q(W ′,
⇀
U1V1)|+ |Q(W1,

⇀
V1U1)|+

∑

1<i<r

(

|Q(Wi,
⇀
ViUi)|+ fi

)

≡ 1 mod 3

and hence

(38) |Q(W ′,
⇀
U1V1)|+

∑

i∈[r−1]

(

|Q(Wi,
⇀
ViUi)|+ fi

)

+ fr ≡ 0 mod 3 .

This will enable us to construct cycles of lengths divisible by three
later.

In order to construct squared paths in G from short vertex sequences
in R we use the following fact.

Fact 26. Let X1, X2, X3 be vertices of R (not necessarily distinct),
and Z be any set of at most 2ε|X1| vertices of G. Suppose that X1X2
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and X1X3 are edges of R. Suppose furthermore that we have two ver-
tices u and v of G such that u and v have at least (d−2ε)2|X1| common
neighbours in X1, and v has at least (d− 2ε)|X2| neighbours in X2.

Then there is a vertex w ∈ X1 − Z adjacent to u and v such that v
and w have at least (d− 2ε)2|X2| common neighbours in X2 and w has
at least (d− 2ε)|X3| neighbours in X3.

Proof of Fact 26. Let W be the set of common neighbours of u and v
in X1. Since X1X2 ∈ E(R), at most 2ε|X1| vertices of W have fewer
than (d − 2ε)|Γ(v) ∩ X2| ≥ (d − 2ε)2|X2| common neighbours with v
in X2. Since X1X3 ∈ E(R) at most 2ε|X1| vertices of W have fewer
than (d − 2ε) neighbours in X3. Finally since 6ε|X1| < (d − 2ε)2|X1|
we can find a vertex of W \ Z satisfying the desired properties. �

With these buiding bricks at hand we can now turn to the proofs of
(i ), (ii ), and (iii ).

Proof of (i ), i.e., G contains C2
3ℓ for each 3ℓ ≤ (1− d) CTF(R)n/m:

When ℓ ≤ (1 − d)n/m we have C2
3ℓ ⊆ K(1−d)n/m,(1−d)n/m,(1−d)n/m and

thus by Lemma 25 we can find C2
3ℓ as a subgraph of G (whose vertices

are in T1, with no restrictions required). Otherwise we use the following
strategy. Let UV be the first edge of the triangle walk W1.

Our first goal will be to construct a squared path P ′ in G which
‘connects’ T1 to T2, T2 to T3, and so on. For this purpose we choose
two adjacent vertices u and v of G in U and V respectively, such that u
and v have (d− 2ε)2n/m common neighbours in both the third vertex

of T1 and the third vertex of Q(W ′,
⇀
UV ), such that v has (d− 2ε)n/m

neighbours in the fourth vertex of Q(W ′,
⇀
UV ), and such that u has

(d− 2ε)n/m neighbours in V . This is possible by the regularity of the
various pairs. (Observe that the required sizes for the neighbourhoods
and joint neighbourhoods are chosen large enough for an application
of Lemma 25 in the triangle T1.) Now we apply Fact 26 with the

vertices u and v and the third, fourth and fifth vertices of Q(W ′,
⇀
UV )

to obtain a third vertex v′ in the third vertex of Q(W ′,
⇀
UV ) such that u

and v are adjacent to v′. By repeatedly applying Fact 26 we construct a
sequence of vertices P ′ (starting with u, v, v′), where the ith vertex of P ′

is in the ith set of Q(W ′,
⇀
UV ) and is adjacent to its two predecessors,

and where the vertices are all distinct (noting that 3|W ′| < εn/m).
Thus P ′ is a squared path running from T1 to Tr−1 following all the
triangle walks Wi.

In addition we construct similarly (and without re-using vertices) for
each 1 ≤ i ≤ r − 1 a squared path Pi following the triangle walk Wi.
However, this time we use the opposite orientation for the first edge:

that is, instead of constructing P1 from Q(W1,
⇀
UV ) we use Q(W1,

⇀
V U),

and similarly for each Pi we use the opposite orientation of the first
edge of Wi to that used in P ′. Again, for each Pi we insist that the
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first two vertices have suitable neighbourhoods in Ti, and the last two
in Ti+1, for an application of Lemma 25 in these triangles. Again, this
is possible by regularity.

We note that the total number of vertices on all of these squared
paths is not more than 6m

(

m
2

)

< εn/m. Finally, we remove from T1
all vertices of P = P ′ ∪ P1 ∪ · · · ∪ Pr−1. Since at most εn/m vertices
are removed, and each cluster of T1 has size at least (1− 3ε)n/m, even
after removal all three pairs remain (3ε, d)-regular and each cluster still
has size at least (1− 4ε)n/m.

Thus the conditions of Lemma 25 are satisfied, and hence we may
embed a squared path S1 into T1, with the four restrictions that its first
vertex is a common neighbour of the first two vertices of P ′, its second
a neighbour of the first vertex of P ′, its penultimate vertex a neighbour
of the first vertex of P1 and its final vertex a common neighbour of the
first two vertices of P1 (noting that by choice of the first two vertices
of P ′ and of P1 the sets to which these vertices are restricted are indeed
of size cn/m because c = d2/4). In this way we can construct a squared
path on 3ℓ1 + f1 vertices for any integer ℓ1 ∈ [10, (1 − d)n/m] (since
3 · 4ε < d), where f1 ∈ {0, 1, 2} is as defined above (38). Similarly
we may apply Lemma 25 to each Ti (2 ≤ i ≤ r), after removing P
from Ti, to obtain squared paths Si of length 3ℓi + fi for any integer
ℓi ∈ [10, (1− d)n/m].

Finally S = P ′ ∪ S1 ∪ P1 ∪ . . . ∪ Pr−1 ∪ Sr forms a squared cycle
in G. It follows from (38) that the length of S is divisible by three.
We conclude that indeed S = C2

3k, where we may choose any integer k
with 3k ∈ [6m3, (1− d) CTF(R)n/m], as required.

Proof of (ii ): When every triangle component of R contains K4

we also want to obtain squared cycles whose lengths are not divisible
by three. Observe that if ABCD is a copy of K4 in R, then the ver-
tex sequences ABC, ABCDABC and ABCDABCDABC each start
and end with the same pair. Hence, with the help of Fact 26, these se-
quences can be used to construct squared paths in G of length 3 (which
is 0 mod 3), length 7 (1 mod 3), and length 11 (2 mod 3).

We construct C2
ℓ for ℓ ∈ [3, 20] \ {5} within a copy of K4 in R

directly (by the above methods). To obtain C2
ℓ with 21 ≤ ℓ ≤ 3(1 −

d)n/m we remove at most 2εn/m vertices from each of A, B and C
to obtain a triangle satisfying the conditions of Lemma 25, construct a
short path in A,B,C,D following the appropriate vertex sequence for
ℓ mod 3 and apply Lemma 25 to obtain C2

ℓ . Finally, to obtain longer
squared cycles we perform the same construction as above, with the
exception that W ′ is any triangle walk to and from a copy of K4, and

so Q(W ′,
⇀
UV ) may be taken (using one of the three vertex sequences

above) to have any desired number of vertices modulo three (and not
more than 2m2 in total).
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Proof of (iii ): Lastly, when we are required to construct a squared
path between two specified edges u1v1 (with 2dn/m common neigh-
bours in both X1 and Y1) and u2v2 (with 2dn/m common neighbours
in both X2 and Y2) using triangles T in R, we apply the identical strat-
egy, noting that the conditions on u1v1 and u2v2 are already suitable
for an application of Fact 26. �
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