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SHAPE THEORY AND EXTENSIONS OF C∗-ALGEBRAS

VLADIMIR MANUILOV AND KLAUS THOMSEN

Abstract. Let A, A′ be separable C∗-algebras, B a stable σ-unital C∗-algebra.

Our main result is the construction of the pairing [[A′, A]] × Ext−1/2(A,B) →
Ext−1/2(A′, B), where [[A′, A]] denotes the set of homotopy classes of asymptotic

homomorphisms from A′ to A and Ext−1/2(A,B) is the group of semi-invertible
extensions of A by B. Assume that all extensions of A by B are semi-invertible.
Then this pairing allows us to give a condition onA′ that provides semi-invertibility
of all extensions of A′ by B. This holds, in particular, if A and A′ are shape

equivalent. A similar condition implies that if Ext−1/2 coincides with E-theory
(via the Connes-Higson map) for A then the same holds for A′.

1. Introduction

The theory of extensions of C∗-algebras is presently experiencing an unprece-
dented level of activity aiming to improve our understanding of extensions of non-
nuclear C∗-algebras. One line of research was sparked by the examples of non-
invertible extensions by the reduced group C∗-algebra of a free group obtained by
Haagerup and Thorbjørnsen in [HT] and the subsequent applications of their re-
sult by Hadwin and Shen in [HS] which has resulted in a wealth of examples of
C∗-algebras with non-invertible extensions by the compact operators K. As pointed
out in [MT5] each such example gives rise to a non-invertible extension of the same
C∗-algebra by any C∗-algebra of the form B⊗K with B unital. Although it may still
be a pre-mature to conclude that the presence of non-invertible extensions is more
of a rule than an exception in the non-nuclear case, the new wealth of examples has
made it more urgent to find a way to handle non-invertible extensions.
In our previous work we have proposed an approach towards an analysis of C∗-

extensions in which many non-invertible extensions can be handled in a way anal-
ogous to how invertible extensions are dealt with and classified in the theories de-
veloped by Brown, Douglas and Fillmore, [BDF], and Kasparov, [K1]. Specifically,
in a series of papers, beginning with [MT3] and culminating in [MT5], it has been
shown that many of the non-invertible extensions are invertible in a slightly weaker
sense, called semi-invertibility. Recall that an extension of a C∗-algebra A by a
stable C∗-algebra B is invertible when there is another extension, the inverse, with
the property that the direct sum extension of the two is a split extension. Semi-
invertibility requires only that the sum is asymptotically split, in the sense that there
is an asymptotic homomorphism as defined by Connes and Higson, [CH], consisting
of right-inverses of the quotient map. What has been shown is that many classes
of (non-nuclear) C∗-algebras, including suspensions, certain full and reduced group
C∗-algebras and certain amalgamated free products, have the property that all ex-
tensions of the algebra by a stable (σ-unital) C∗-algebra are semi-invertible. For
some of these algebras it is known, thanks to the development mentioned above,
that there exist non-invertible extensions, but for many or most it is simply not
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known if all extensions are invertible or not. Intriguingly it has also been shown, in
[MT4], that non-semi-invertible extensions exist.
The main reason why semi-invertibility is easier to establish, and a good reason

why it can appear to be more natural in the homology and co-homology theories that
are based on extensions of C∗-algebras is that it is homotopy invariant, in the sense
that if the Busby invariant of two C∗-extensions are homotopic as ∗-homomorphisms
then one of the extensions is semi-invertible if and only if the other is. This is in glar-
ing contrast to invertibility; it is e.g. known that there are contractible C∗-algebras
with non-invertible extensions by K, cf. [Ki]. All but one of the methods used so
far to establish automatic semi-invertibility use the homotopy invariance property;
the exception being Theorem 3.3 of [MT5]. However, it is shown in [MT4] that
there are C∗-extensions which are not even invertible up to the more natural and
much weaker notion of homotopy usually applied in connection with C∗-extensions,
and it becomes therefore a natural problem to identify the borderline between the
C∗-algebras for which semi-invertibility of extensions is automatic, and the rather
mysterious algebras with non-semi-invertible extensions. Presently such an identifi-
cation seems out of reach, although one may be slightly more optimistic about the
possibility of finding the right separating conditions than for doing the analogous
thing concerning invertibility.
The main purpose with the present paper is to show that automatic semi-invertibility

of extensions, as a property of C∗-algebras, is not only invariant under homotopy
equivalence, but also under shape equivalence. This allows us to identify a large nat-
ural class of C∗-algebras which have this property, namely the class of C∗-algebras
whose shape is dominated by a nuclear C∗-algebra. To make this more precise recall
that shape theory of C∗-algebras was introduced by Effros and Kaminker in [EK] as
a generalisation of shape theory for topological spaces. It was developed further by
Blackadar in [B] before it was tied together with the E-theory of Connes and Higson
by Dadarlat in [D]. Roughly speaking what Dadarlat showed was that shape theory
of C∗-algebras can be described by the homotopy category of asymptotic homo-
morphisms which suitably suspended becomes the E-theory of Connes and Higson,
[CH]. In short, shape theory is unsuspended E-theory. It is in this guise that we
use shape theory here. As shown by Dadarlat a morphism in the shape category,
say from the C∗-algebra A to the C∗-algebra B, is given by an element in [[A,B]],
the homotopy classes of asymptotic homomorphism from A to B. Our main result
says that if A has the property that there is another C∗-algebra A′ and asymptotic
homomorphisms ψ : A→ A⊗K, λ : A→ A′ ⊗K and µ : A′ ⊗K → A⊗K such that

[idA] + [ψ] = [µ] • [λ]

in [[A,A⊗K]], where idA is the identity map on A, considered as a map A→ A⊗K

in the standard way and • denotes the composition product of Connes and Higson,
then all extensions of A by a stable σ-unital C∗-algebra B are semi-invertible if all
extensions of A′ by B are. When ψ can be taken to be zero the assumption means
that A is shape dominated by A′ in a sense generalising the notion of homotopy
domination introduced by Voiculescu, [V], and when A′ can be taken to be zero the
assumption is that A is homotopy symmetric in the sense defined by Dadarlat and
Loring in [DL].
We consider also the relation between the group of semi-invertible extensions and

E-theory proper. As we showed in [MT4] the Connes-Higson construction introduced
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in [CH] does not give an isomorphism between E-theory and the homotopy classes
of extensions in general, but we show that it does for C∗-algebras that are homotopy
symmetric or shape dominated by a nuclear C∗-algebra, or any other C∗-algebra for
which it does.
Acknowledgement. The main part of this work was done during a stay of both

authors at the Mathematische Forchungsinstitut in Oberwolfach in January 2010 in
the framework of the ‘Research in Pairs’ programme. We want to thank the MFO
for the perfect working conditions.

2. Pairing extensions with asymptotic homomorphisms

2.1. Asymptotic homomorphisms. Let A and B be C∗-algebras, A separable.
As in [CH] we define an asymptotic homomorphism α : A→ B to be a path of maps
αt : A→ B, t ∈ [1,∞), such that

· t 7→ αt(a) is continuous,
· limt→∞ αt(a+ λb)− αt(a)− λαt(b) = 0,
· limt→∞ αt(ab)− αt(a)αt(b) = 0, and
· limt→∞ αt(a

∗)− αt(a)
∗ = 0

for all a, b ∈ A and all λ ∈ C. It follows from these conditions that lim supt ‖αt(a)‖ ≤
‖a‖, and hence in particular that supt∈[1,∞) ‖αt(a)‖ <∞ for all a ∈ A.
We say that an asymptotic homomorphism α : A → B is equi-continuous when

αt, t ∈ [1,∞), is an equi-continuous family of maps. By a standard argument any
asymptotic homomorphism α is asymptotic to an equi-continuous asymptotic ho-
momorphism α′, i.e. α′ is equi-continuous and limt→∞ αt(a) − α′

t(a) = 0 for all
a ∈ A. Hence we may assume, as we shall, that all asymptotic homomorphisms
under consideration are equi-continuous. It will also be convenient for us, if only as
a tool, to deal with asymptotic homomorphisms α which are both equi-continuous
and uniformly continuous in the sense that t 7→ αt(a) is uniformly continuous for all
a ∈ A. We shall need the following lemma in order to fully exploit this additional
property.

Lemma 2.1. Let D be a C∗-algebra containing a σ-unital ideal D0, and let q :
D → D/D0 be the quotient map. Let ϕ = (ϕt)t∈[1,∞) : A → D/D0 be a uniformly
continuous asymptotic homomorphism. There is then a family ϕt : A → D, t ∈
[1,∞), of maps such that

i) q ◦ ϕt = ϕt for all t ∈ [1,∞),
ii) ϕt : A→ D, t ∈ [1,∞), is equi-continuous,
iii) t 7→ ϕt(a) is uniformly continuous for all a ∈ A, and
iv) supt∈[1,∞) ‖ϕt(a)‖ <∞ for all a ∈ A.

Proof. Let ψ = (ψt)t∈[1,∞) : A → D be an equi-continuous lift of ϕ such that

supt∈[1,∞) ‖ψt(a)‖ < ∞ for all a ∈ A. ψ exists by Lemma 2.1 of [MT2]. Let
F1 ⊆ F2 ⊆ F3 ⊆ . . . be a sequence of finite sets with dense union in A. Let
u1 ≤ u2 ≤ u3 ≤ . . . be an approximate unit in D0 such that

‖(1− un) (ψt(a)− ψt′(a))‖ ≤ ‖ϕt(a)− ϕt′(a)‖+
1

n

for all a ∈ Fn and all t, t′ ∈ [1, n + 1]. Such an approximate unit exists because
D0 is σ-unital. For t ∈ [n, n + 1], set vt = (t − n)un+1 + (n + 1 − t)un, and define



4 VLADIMIR MANUILOV AND KLAUS THOMSEN

ϕt : A→ M(D) such that
ϕt(a) = (1− vt)ψt(a).

It is obvious that (ϕt)t∈[1,∞) is equi-continuous since (ψt)t∈[1,∞) is and that i) and

iv) hold. To check that ϕ is uniformly continuous, let a ∈ A and ǫ > 0 be given.
By equi-continuity there is a b ∈ Fk such that 1

k
≤ ǫ and ‖ϕt(a)− ϕt(b)‖ ≤ ǫ and

‖ψt(a)− ψt(b)‖ ≤ ǫ for all t ∈ [1,∞). Let t ≥ k. If |t′ − t| ≤ 1 we find that

‖ϕt(a)− ϕt′(a)‖ ≤ ‖ϕt(b)− ϕt′(b)‖+ 2ǫ

≤ ‖(1− vt) (ψt(b)− ψt′(b))‖+ ‖ψt′(b)(vt′ − vt)‖+ 2ǫ

≤ ‖ϕt(b)− ϕt′(b)‖+
1

k
+ |t− t′| sup

s∈[1,∞)

‖ψs(b)‖ + 2ǫ

≤ ‖ϕt(a)− ϕt′(a)‖+ 5ǫ+ |t− t′| sup
s∈[1,∞)

‖ψs(a)‖+ |t− t′|ǫ.

By uniform continuity of t 7→ ϕt(a) this shows there is a δ > 0 such that

‖ϕt(a)− ϕt′(a)‖ ≤ 6ǫ+ ǫ sup
s∈[1,∞)

‖ψs(a)‖

when t ≥ k and |t− t′| ≤ δ. Since [1, k] is compact, we see that t 7→ ϕt(a) is
uniformly continuous on [1,∞). �

2.2. Folding. Let A and B be C∗-algebras, A separable, B σ-unital. Let M(B)
be the multiplier algebra of B and qB : M(B) → Q(B) the quotient map onto the
generalised Calkin algebra Q(B) =M(B)/B. As in [MT2] an asymptotic homomor-
phism ϕ : A → Q(B) will be called an asymptotic extension. In [MT2] we used a
construction called folding which produces a genuine extension out of an asymptotic
one. To introduce it here, let ϕ : A→ Q(B) be a equi-continuous asymptotic exten-
sion. A lift of ϕ is an equi-continuous family of maps ϕt : A → M(B), t ∈ [1,∞),
such that supt ‖ϕt(a)‖ < ∞ for all a ∈ A and qB ◦ ϕt = ϕt for all t. The existence
of such a lift follows from Lemma 2.1 of [MT2].
Let b be a strictly positive element in B, 0 ≤ b ≤ 1, which exists because we assume

that B is σ-unital. As in [MT2] a unit sequence is a sequence u0 ≤ u1 ≤ u2 ≤ . . . of
elements in B such that

· un = fn(b) for some fn ∈ C[0, 1], 0 ≤ fn ≤ 1, which is zero in a neighbour-
hood of 0,

· un+1un = un for all n, and
· limn→∞ unb = b.

The existence of a unit sequence, with some important additional properties that
we shall need is a consequence of the following well-known lemma.

Lemma 2.2. Let K ⊆ B and L ⊆ M(B) be compact in the norm topology, and
let δ > 0 and ǫ > 0 be arbitrary. It follows that there is a continuous function
f : [0, 1] → [0, 1] such that

i) f is zero in an open neighbourhood of 0,
ii) f(t) = 1, t ≥ δ,

and u = f(b) ∈ B has the property that

iii) ‖um−mu‖ ≤ ǫ ∀m ∈ L and
iv) ‖uk − k‖ ≤ ǫ ∀k ∈ K.

Proof. See for example Lemma 7.3.1 in [BO]. �
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Given a unit sequence {un} we set ∆0 =
√
u0 and ∆n =

√
un − un−1, n ≥ 1. Then

a1) ∆i∆j = 0 when |i− j| ≥ 2, and
a2)

∑∞
j=0∆

2
j = 1, with convergence in the strict topology.

In particular, it follows that

a3)
∑∞

j=0∆i∆
2
j =

∑i+1
l=i−1∆i∆

2
l = ∆i

for all i, including i = 0 when we set ∆−1 = 0.
A discretization (of [1,∞)) is an increasing sequence t0 ≤ t1 < t2 < . . . in [1,∞)

such that

a4) limn→∞ tn = ∞,
a5) limn→∞ tn+1 − tn = 0, and
a6) tn ≤ n for all n ≥ 1.

When ϕ : A→ Q(B) is an asymptotic extension and ϕ : A→M(B) is a lift of ϕ
a pair ({un}, {tn}), where {un} is a unit sequence and {tn} a discretization, is said
to be compatible with ϕ when

lim
n→∞

sup
t∈[1,n+2]

‖unϕt(a)− ϕt(a)un‖ , (2.1)

and

lim
t→∞

sup
t∈[tn,tn+1]

∥∥ϕt(a)− ϕtn(a)
∥∥ = 0 (2.2)

for all a ∈ A, and

lim
n→∞

sup
t∈[1,n+2]

[‖(1− un)f(t)‖ − ‖qB (f(t))‖] = 0 (2.3)

for all f ∈ Cb ([1,∞) ,M(B)) of the form

· f(t) = ϕt(a)ϕt(b)− ϕt(ab),
· f(t) = ϕt(a) + λϕt(b)− ϕt(a + λb), and
· f(t) = ϕt(a

∗)− ϕt(a)
∗

for any elements a, b ∈ A, λ ∈ C. The existence of compatible pairs ({un}, {tn}) was
established in [MT1] and [MT2]. Note that condition (2.2) is automatically fulfilled
when ϕ is uniformly continuous; it follows then from a5).
Assume that ({un}, {tn}) is a pair compatible with ϕ. The combined triple f =

(ϕ, {un}, {tn}) will be called folding data for the asymptotic extension ϕ. We can
then define ϕf : A→ M(B) such that

ϕf(a) =

∞∑

j=0

∆jϕtj (a)∆j ,

cf. Lemma 3.1 of [MT2]. By Lemmma 3.5 in [MT2],

ϕf = qB ◦ ϕf

is an extension ϕf : A→ Q(B) which we call a folding of ϕ.
A re-parametrisation is a non-decreasing continuous function r : [1,∞) → [1,∞)

such that limt→∞ r(t) = ∞. If there is a constant K such that |r(s)− r(t)| ≤ K|s−t|
for all s, t ∈ [1,∞) we say that r is Lipschitz. Note that when ϕ : A → Q(B) is
an asymptotic extension and ϕ : A → M(B) is a lift of ϕ, we can define a new
asymptotic extension ϕr with a lift ϕr such that ϕr

t = ϕr(t) and ϕr
t = ϕr(t). Both ϕ

r

and ϕr remain uniformly continuous if ϕ is uniformly continuous and r is Lipschitz.
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Lemma 2.3. Let ϕ : A→ Q(B) be an asymptotic extension and let f = (ϕ, {un}, {tn})
be folding data for ϕ. There is then a Lipschitz re-parametrisation r and a discretiza-
tion {sn} such that

i) ϕr and ϕr are both uniformly continuous, and
ii) r(sn) = tn for all n.

Furthermore, f ′ = (ϕr, {un} , {sn}) is folding data for ϕr and ϕr
f ′ = ϕf .

Proof. Let F1 ⊆ F2 ⊆ F3 ⊆ . . . be an increasing sequence of finite sets with dense
union in A. It follows from (2.2) that there is an increasing sequence 1 < m1 <
m2 < m3 < . . . in N such that

sup
t∈[tn,tn+k]

∥∥ϕt(a)− ϕtn(a)
∥∥ ≤ 1

k
(2.4)

for all a ∈ Fk and all n ≥ mk. By increasing the mk’s we can arrange that mk+1 −
mk = klk for some lk ∈ N. Set l0 = m1. Thanks to a5) we can also arrange that

tn+k − tn ≤ 1

k
(2.5)

for all n ≥ mk. Set

smk+i =

k−1∑

j=0

lj +
i

k
(2.6)

for all i ∈ {0, 1, 2, . . . , klk} and all k = 1, 2, 3, . . . . Then sn ≤ n for all n ≥ m1.
For j ∈ {0, 1, . . . , m1 − 1} we choose sj ∈ [1, m1] such that sj increases with j
and sj ≤ j for all j ∈ {1, 2, . . . , m1 − 1}. Then {sn} is a discretization. Define
r : [1,∞) → [1,∞) such that ii) holds and r is linear on [sn, sn+1] for all n. Then r
is a re-parametrisation and

r

(
k−1∑

j=0

lj + i

)
= tmk+ik,

for all i ∈ {0, 1, . . . , lk} and all k. It follows then from (2.4), by use of the equi-
continuity of ϕ, that

lim
t→∞

sup
v∈[0,1]

∥∥ϕr(t+v)(a)− ϕr(t)(a)
∥∥ = 0 (2.7)

for all a ∈ A. (2.7) implies that ϕr, and hence also ϕr are uniformly continuous, i.e.
i) also holds. It follows from (2.5) and (2.6) that

r (smk+i+1)− r (smk+i)

smk+i+1 − smk+i

≤ 1

when i ∈ {0, 1, 2, . . . , klk − 1}. It follows that there is a K > 0 such that r (sj+1)−
r (sj) ≤ K (sj+1 − sj) for all j ≥ 0, proving that r is Lipschitz. Finally, it is now
straightforward to check that f ′ = (ϕr, {un} , {sn}) is folding data for ϕr and that
ϕr
f ′ = ϕf . �

There is an alternative picture of the folding operation which we shall need.
Let l2(B) denote the standard Hilbert B-module of ’square-summable’ sequences
(b0, b1, b2, . . . ) of elements from B. The C∗-algebra of adjoint-able operators on
l2(B) can be identified with M(B⊗K) and the ’compact’ operators on l2(B) is then
identified with B⊗K, cf. [K2]. By using the standard matrix units {eij}∞i,j=0 which
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act on l2(B) in the obvious way, we can use a set of folding data f = (ϕ, {un}, {tn})
to define a map ϕf : A→ M (B ⊗K) such that

ϕf (a) =
∞∑

i=0

i+1∑

j=i−1

∆iϕti
(a)∆j ⊗ eij.

The sum converges in the strict topology because supi,j

∥∥∆iϕti
(a)∆j

∥∥ < ∞. ϕf is
continuous by equi-continuity of ϕt, t ∈ [1,∞), and a direct check, as in the proof
of Lemma 3.5 of [MT2], shows that ϕf is a ∗-homomorphism modulo B ⊗ K, i.e.
ϕf = qB⊗K ◦ ϕf is an extension of A by B ⊗K. In order to see the relation between
ϕf and ϕf , observe that

V =

∞∑

j=0

∆j ⊗ ej0

is a partial isometry in M(B ⊗K) such that

· V
(
ϕf(a)⊗ e00

)
V ∗ − ϕf(a) ∈ B ⊗K, and

· V ∗V = 1⊗ e00.

Since (1 − V V ∗)(l2(B)) ⊕ l2(B) and (1− 1⊗ e00) (l
2(B)) ⊕ l2(B) are isomorphic

Hilbert B-modules by Kasparov’s stabilisation theorem, cf. [K2], it follows that
there is a unitary dilation U of V , acting on l2(B)⊕ l2(B), such that

U

(
ϕf(a)⊗ e00 0

0 0

)
U∗ −

(
ϕf(a) 0
0 0

)
∈M2 (B ⊗K) .

In this way we obtain the following conclusion.

Lemma 2.4. Assume that B is stable, and identify B ⊗K with B.
Then ϕf ⊕ 0 is unitarily equivalent to ϕf ⊕ 0.

2.3. A key lemma. Two asymptotic extensions ϕ, ϕ′ : A → Q(B) are strongly
homotopic when they define the same element in [[A,Q(B)]]. This means that there
is an asymptotic homomorphism α : A → C[0, 1] ⊗ Q(B) such that ev0 ◦αt = ϕt

and ev1 ◦αt = ϕ′
t for all t, where evs : C[0, 1] ⊗ Q(B) → Q(B) is evaluation at

s ∈ [0, 1]. In this subsection we will relate a particular folding of ϕ to a folding of ϕ′,
assuming that the strong homotopy α connecting ϕ to ϕ′ is uniformly continuous.
By Lemma 2.1, applied with D = C[0, 1] ⊗M(B) and D0 = C[0, 1] ⊗ B, there is
an equi-continuous and uniformly continuous lift α : A→ C[0, 1]⊗M(B) of α such
that supt∈[1,∞) ‖αt(a)‖ < ∞ for all a ∈ A. Let {un} be a unit sequence in B such
that

lim
n→∞

sup
t∈[1,n+2]

[
sup
s∈[0,1]

‖(1− un) f(t)(s)‖ −
∥∥qC[0,1]⊗B (f(t))

∥∥
]
= 0 (2.8)

when f ∈ Cb ([1,∞), C[0, 1]⊗M(B)) is any of the following functions:

· f(t) = αt(a)αt(b)− αt(ab),
· f(t) = αt(a) + λαt(b)− αt(a+ λb), or
· f(t) = αt(a

∗)− αt(a)
∗

for any a, b ∈ A, λ ∈ C. Furthermore, we require also that

lim
n→∞

sup {‖unαt(a)(s)− αt(a)(s)un‖ : t ∈ [1, n+ 2], s ∈ [0, 1]} = 0 (2.9)

for all a ∈ A. That such a unit sequence exists follows from the separability of A
and the equi-continuity of α by use of Lemma 2.2.
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Let
{
t′j
}
and {tj} be discretizations. Then f0 = (ev0 ◦α, {un} , {t′n}) is folding

data for ev0 ◦α and f1 = (ev1 ◦α, {un} , {tn}) is folding data for ev1 ◦α. The key
lemma referred to in the title of this section is

Lemma 2.5. In the above setting, assume that κ : A → Q(B) is an extension
such that (ev0 ◦α)f0 ⊕ κ is asymptotically split. It follows that (ev1 ◦α)f1 ⊕ κ is
asymptotically split.

For the proof we need the following

Lemma 2.6. Let {t′n} and {tn} be two discretizations and a1 < a2 < . . . a strictly
increasing sequence in N.
There is a sequence h0 ≤ h1 ≤ h2 ≤ . . . of continuous functions hj : [1,∞) →

[1,∞) such that

i) hj(t) = t′j , j ≤ ak, t ∈ [k, k + 1],

ii) hj+1(t)− hj(t) ≤ max
{

1
k
, t′j+1 − t′j

}
∀j, t ∈ [k, k + 1],

ii) for all n ∈ N there is an Nn ∈ N such that hj(t) = tj when t ∈ [1, n], j ≥ Nn,
and

iv) hj(t) ≤ j for all j ≥ 1 and all t.

Proof. Let k ∈ N. Since limj→∞ t′j+1−t′j = 0 and limj→∞ tj+1−tj = 0 there is a bk ≥
ak such that max

{
t′j+1 − t′j , tj+1 − tj

}
≤ 1

k
for all j ≥ bk. We arrange that bk+1 > bk.

On the interval [k, k + 1] we set hj(t) = t′j when j ≤ bk. Since limj→∞ tj+1 − tj = 0
and limj→∞ tj = ∞ there is an mk > bk such that n

k
+ t′bk ≥ tn > t′bk for all n ≥ mk.

We set

hj(t) = max

{
min{ j

k
+ t′bk , tj}, t

′
bk

}

when j > bk and t ∈
[
k, k + 1

2

]
. Then hj(t) = tj when j ≥ mk. With these

choices we have defined the hj ’s on all the intervals
[
k, k + 1

2

]
, k = 1, 2, 3, . . . , but

it remains to define the hj ’s on
[
k + 1

2
, k + 1

]
when j > bk. For this note that

hj+1

(
k + 1

2

)
− hj

(
k + 1

2

)
≤ 1

k
and

hj+1 (k + 1)− hj (k + 1) ≤ max

{
1

k + 1
, t′j+1 − t′j

}
≤ 1

k

for all j ≥ bk. Hence by defining hj , j > bk, to be the linear function on
[
k + 1

2
, k + 1

]

which connects hj
(
k + 1

2

)
to hj (k + 1) we have obtained what we wanted. �

Proof of Lemma 2.5. Set αs
t = evs ◦αt, ∆0 =

√
u0 and ∆n =

√
un − un−1, n ≥ 1.

We define ψ0 : A→M(B) such that

ψ0(a) =

∞∑

j=0

∆jα
0
t′j
(a)∆j .

Note that ψ0 is continuous thanks to the equi-continuity of ev0 ◦αt, t ∈ [1,∞), cf.
Lemma 3.1 of [MT2], and that qB ◦ ψ0 = (ev0 ◦α)f0 . It follows from our assumption

that there is an equi-continuous asymptotic homomorphism µ : A → M2 (M(B))
such that

µt =

(
µ11
t µ12

t

µ21
t µ22

t

)
,
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where qB ◦ µ11
t = qB ◦ ψ0, qB ◦ µ12

t = qB ◦ µ21
t = 0 and qB ◦ µ22

t = κ for all t ∈ [1,∞).
It follows from Lemma 2.2 that we can choose a continuous path vt, t ∈ [1,∞), in
the C∗-subalgebra of B generated by the strictly positive element b such that t 7→ vt
is norm-continuous, 0 ≤ vt ≤ 1 for all t, and

a7) vt∆i = ∆i, i ≤ t,
a8) limt→∞ ‖vtµ11

t (a)− µ11
t (a)vt‖ = 0 for all a ∈ A,

a9) limt→∞ ‖(1− vt)µ
12
t (a)‖ = limt→∞ ‖(1− vt)µ

21
t (a)‖ = 0 for all a ∈ A,

a10) limt→∞ ‖vtψ0(a)− ψ0(a)vt‖ = 0 for all a ∈ A, and
a11) limt→∞ ‖(1− vt) [µ

11
t (a)− ψ0(a)]‖ = 0 for all a ∈ A.

Since limi→∞ vt∆i = 0 for all t there is an increasing function i : N → N such that

lim
k→∞

sup
j≥i(k)

sup
t∈[k,k+1]

‖vt∆j‖ = 0. (2.10)

Let F1 ⊆ F2 ⊆ F3 ⊆ . . . be a sequence of finite subsets with dense union in A. For
each n ∈ N there is an ǫn > 0 such that

∥∥∥αs
t (a)− αs′

t (a)
∥∥∥ ≤ 1

n
(2.11)

when |s− s′| ≤ ǫn, t ∈ [1, n + 2], a ∈ Fn. Choose then a sequence of continuous
non-increasing functions gk : [1,∞) → [0, 1], k = 0, 1, 2, 3, . . . , such that

a12) for each t ∈ [1,∞), gk(t) = 1 for all but finitely many k,
a13) gi(t) = 0 for all i = 1, 2, . . . , i(k), when t ≥ k,
a14) gk ≤ gk+1 for all k, and
a15) gk+1(t)− gk(t) ≤ ǫn when t ∈ [1, n+ 2], for all k, n.

Since the gk’s are non-increasing it follows from a12) that there are numbers
a1 < a2 < a3 < . . . in N such that

ak ≥ i(k) (2.12)

and

gj(t) = 1, t ∈ [k, k + 1], j ≥ ak − 1. (2.13)

We can then use Lemma 2.6 to obtain continuous functions hj : [1,∞) → [1,∞), j =
0, 1, 2, 3, . . . , such that h0 ≤ h1 ≤ h2 ≤ . . . and

a16) hj(t) = t′j , j ≤ ak, t ∈ [k, k + 1],

a17) hj+1(t)− hj(t) ≤ max
{

1
k
, t′j+1 − t′j

}
∀j, t ∈ [k, k + 1],

a18) for all n ∈ N there is an Nn ∈ N such that hj(t) = tj when t ∈ [1, n] and
j ≥ Nn, and

a19) hj(t) ≤ j for all j, t.

Now we set

ψt(a) =

∞∑

j=0

∆jα
gj(t)

hj(t)
(a)∆j .

It follows from Lemma 3.1 of [MT2] and the equi-continuity of α that ψt : A →
M(B), t ∈ [1,∞), is an equi-continuous family. Furthermore, it follows from a12)
and a18) that for each n ∈ N there is an N ′

n ∈ N such that

ψt(a) =

N ′

n∑

j=0

∆jα
gj(t)

hj(t)
(a)∆j +

∞∑

j=N ′

n+1

∆jα
1
tj
(a)∆j (2.14)
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for all t ≤ n and all a ∈ A. In particular, this shows that qB ◦ ψt = (ev1 ◦α)f1 and

that t 7→ ψt(a) is norm-continuous.
Let

λ11t (a) = vtµ
11
t (a)vt +

(
1− v2t

) 1

2 ψt(a)
(
1− v2t

) 1

2

and set λijt (a) = µij
t (a) for (i, j) 6= (1, 1). Finally, set

Λt(a) =

(
λ11t (a) λ12t (a)
λ21t (a) λ22t (a)

)
.

Then Λt : A → M2 (M(B)) , t ∈ [1,∞), is an equi-continuous family of maps and
since qB ◦ λ11t = (ev1 ◦α)f1, qB ◦ λ12t = qB ◦ λ21t = 0 and qB ◦ λ22t = κ, it suffices to

show that (Λt)t∈[1,∞) is an asymptotic homomorphism.

Each µij is asymptotically linear and µij
t (a

∗) agrees asymptotically with µji
t (a)

∗

since µ is an asymptotic homomorphism. Furthermore, it follows from a7) and

(2.8) that a 7→ (1− v2t )
1

2 ψt(a) (1− v2t )
1

2 is asymptotically linear and asymptotically
commutes with the involution as t tends to infinity. It is then clear that the same is
true for λ11 and hence for Λ.
We check that Λ is asymptotically multiplicative. For this we write A(t) ∼ B(t)

between t-dependent elements from M(B) when limt→∞ ‖A(t)− B(t)‖ = 0. Let
a, b ∈ A. It suffices to show that

λ11t (a)λ12t (b) + λ12t (a)λ22t (b) ∼ λ12t (ab) (2.15)

and
λ11t (a)λ11t (b) + λ12t (a)λ21t (b) ∼ λ11t (ab). (2.16)

To handle (2.15) observe that vtµ
11
t (a)vtµ

12
t (b) ∼ µ11

t (a)µ12
t (b) by a8) and a9), and

that (1− v2t )
1

2 ψt(a) (1− v2t )
1

2 µ12
t (b) ∼ 0 by a9). Since µ is an asymptotic homo-

morphism we have also that µ11
t (a)µ12

t (b) + µ12
t (a)µ22

t (b) ∼ µ12
t (ab) = λ12t (ab). (2.15)

follows from this.
It remains to verify (2.16). For this we prove first that

vt
(
ψt(c)− ψ0(c)

)
∼
(
ψt(c)− ψ0(c)

)
vt ∼ 0 (2.17)

for all c ∈ A. To establish (2.17) observe that the following estimate is valid when
t ≥ k:

∥∥vt
(
ψt(c)− ψ0(c)

)∥∥2 =

∥∥∥∥∥∥
vt


∑

j>i(k)

∆j

(
α
gj(t)

hj(t)
(c)− α0

t′j
(c)
)
∆j



∥∥∥∥∥∥

2

(by a13), (2.12) and a16))

=

∥∥∥∥∥∥

∑

j>i(k)

j+1∑

l=j−1

∆j

(
α
gj(t)

hj(t)
(c)− α0

t′j
(c)
)∗

∆jv
2
t∆l

(
α
gl(t)
hl(t)

(c)− α0
t′
l
(c)
)
∆l

∥∥∥∥∥∥
(using a1))

≤ 12 sup
s∈[1,∞)

‖αs(c)‖2 sup
j≥i(k)

‖∆jvt‖ (by Lemma 3.1 of [MT2]).

In this way it follows from (2.10) that vt (ψt(c)− ψ0(c)) ∼ 0. The same arguments
work to show that also (ψt(c)− ψ0(c)) vt ∼ 0, giving us (2.17).



SHAPE THEORY AND EXTENSIONS OF C
∗
-ALGEBRAS 11

Note that (2.17) combined with a10) implies that

[vt, ψt(c)] ∼ 0 (2.18)

and combined with a11) that

vt(1− vt)ψt(c) ∼ vt(1− vt)µ
11
t (c) (2.19)

for all c ∈ A. Using (2.18), (2.19) and a8) we find that

λ11t (a)λ11t (b)

∼ v4tµ
11
t (a)µ11

t (b) + 2v2t
(
1− v2t

)
µ11
t (a)µ11

t (b) +
(
1− v2t

)2
ψt(a)ψt(b)

=
(
2v2t − v4t

)
µ11
t (a)µ11

t (b) +
(
1− v2t

)2
ψt(a)ψt(b).

(2.20)

To continue we show next that

(1− vt)ψt(a)ψt(b) ∼ (1− vt)ψt(ab) (2.21)

for all a, b ∈ A. To this end let t ∈ [k, k + 1] and a, b ∈ Fk. By using Lemma 3.1
from [MT2] several times we find that

(1− vt)ψt(a)ψt(b)

= (1− vt)
∑

j>t

[
j+1∑

l=j−1

∆jα
gj(t)

hj(t)
(a)∆j∆lα

gl(t)
hl(t)

(b)∆l

]

(using a7))

= (1− vt)
∑

t<j≤ak

[
j+1∑

l=j−1

∆jα
gj(t)

hj(t)
(a)∆j∆lα

gl(t)
hl(t)

(b)∆l

]

+ (1− vt)
∑

j>ak

[
j+1∑

l=j−1

∆jα
1
hj(t)

(a)∆j∆lα
1
hl(t)

(b)∆l

]

(using (2.13))

∼ (1− vt)
∑

t<j≤ak

[
j+1∑

l=j−1

∆jα
gj(t)

hj(t)
(a)∆j∆lα

gj(t)

hl(t)
(b)∆l

]

+ (1− vt)
∑

j>ak

[
j+1∑

l=j−1

∆jα
1
hj(t)

(a)∆j∆lα
1
hl(t)

(b)∆l

]

(using (2.11), a19) and a15) )
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∼ (1− vt)
∑

t<j≤ak

[
j+1∑

l=j−1

∆jα
gj(t)

hj(t)
(a)∆j∆lα

gj(t)

hj(t)
(b)∆l

]

+ (1− vt)
∑

j>ak

j+1∑

l=j−1

∆jα
1
hj(t)

(a)∆j∆lα
1
hj(t)

(b)∆l

(using a17) and the uniform continuity of α)

∼ (1− vt)
∑

t<j≤ak

∆jα
gj(t)

hj(t)
(a)α

gj(t)

hj(t)
(b)∆j + (1− vt)

∑

j>ak

∆jα
1
hj(t)

(a)α1
hj(t)

(b)∆j

(using (2.9), a19) and a3))

∼ (1− vt)
∑

t<j≤ak

∆jα
gj(t)

hj(t)
(ab)∆j + (1− vt)

∑

j>ak

∆jα
1
hj(t)

(ab)∆j (using a7))

= (1− vt)ψt(ab) (using (2.3)),

giving us (2.21). Inserting (2.21) into (2.20) we find that

λ11t (a)λ11t (b) ∼
(
2v2t − v4t

)
µ11
t (a)µ11

t (b) +
(
1− v2t

)2
ψt(ab)

∼
(
2v2t − v4t

) (
µ11
t (ab)− µ12

t (a)µ21
t (b)

)
+
(
1− v2t

)2
ψt(ab)

(since µ is an asymptotic homomorphism)

∼
(
2v2t − v4t

)
µ11
t (ab)− µ12

t (a)µ21
t (b) +

(
1− v2t

)2
ψt(ab)

(using a9))

= v2tµ
11
t (ab) +

(
v2t − v4t

)
µ11
t (ab)− µ12

t (a)µ21
t (b) +

(
1− v2t

)2
ψt(ab)

∼ v2tµ
11
t (ab) +

(
v2t − v4t

)
ψt(ab)− µ12

t (a)µ21
t (b) +

(
1− v2t

)2
ψt(ab)

(using (2.19))

= v2tµ
11
t (ab) +

(
1− v2t

)
ψt(ab)− µ12

t (a)µ21
t (b)

∼ vtµ
11
t (ab)vt +

(
1− v2t

) 1

2 ψt(ab)
(
1− v2t

) 1

2 − µ12
t (a)µ21

t (b)

(using a8) and (2.18)),

which gives us (2.16).
�

2.4. On the dependence of the folding on the folding data. We can now
show that if a folding ϕf of ϕ is semi-invertible then the same is true for any other
folding of ϕ and that the unitary equivalence class of ϕf , modulo asymptotically
split extensions does not depend on the folding data. The main step is the following
lemma.

Lemma 2.7. Let A and B be C∗-algebras, A separable, B stable and σ-unital.
Let ϕ : A → Q(B) be an asymptotic extension, and f = (ϕ, {un} , {tn}), f ′ =
(ϕ̂, {u′n} , {t′n}) two sets of folding data for ϕ. Assume that ψ : A → Q(B) is an
extension such that ϕf ⊕ ψ ⊕ 0 is asymptotically split.
It follows that ϕf ′ ⊕ ψ ⊕ 0 is asymptotically split.

Proof. Thanks to Lemma 2.3 we may assume that ϕ, ϕ and ϕ̂ are all uniformly
continuous. Since limn→∞ tn = limn→∞ t′n = ∞ we can use Lemma 2.2 recursively
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to obtain a unit sequence {u′′n} and increasing functions m,m′ : N → N such that
m(0) = m′(0) = 0,

a20) tm(n) ≥ n,
a21) u′′num(n) = um(n),
a22) um(n)u

′′
n−1 = u′′n−1 for all n ≥ 1, and

a23) tn − tn−1 ≤ tm(n) − tm(n−1), n ≥ 1,

and also

a24) t′m′(n) ≥ n,

a25) u′′nu
′
m′(n) = u′m′(n),

a26) u′m′(n)u
′′
n−1 = u′′n−1, n ≥ 1, and

a27) t′n − t′n−1 ≤ t′m′(n) − t′m′(n−1), n ≥ 1.

In addition we arrange that g = (ϕ, {u′′n} , {tn}) is folding data for ϕ and that

lim
n→∞

sup
1≤t≤n+3

‖(1− u′′n) (ϕt(a)− ϕ̂t(a))‖ = 0 (2.22)

for all a ∈ A. Then also g′ = (ϕ, {u′′n} , {t′n}) is folding data for ϕ. We claim that
there are Lipschitz re-parametrisations r, r′ : [1,∞) → [1,∞) such that

a28) r(n) ≤ n for all n ∈ N and
a29) ϕg ⊕ 0 is unitarily equivalent to ϕh ⊕ 0, where h = (ϕ, {un}, {r (tn)}),

and

a30) r′(n) ≤ n for all n ∈ N and
a31) ϕg′ ⊕ 0 is unitarily equivalent to ϕh′ ⊕ 0, where h′ = (ϕ̂, {u′n} , {r′ (t′n)}).

The construction of r and r′ are almost identical, but slightly more demanding for
r′ since we pass from ϕ to ϕ̂. We describe therefore only the construction of r′.
Define r′ : [1,∞) → [1,∞) to be the continuous function such that r′ is linear on[
t′m(n−1), t

′
m(n)

]
, r′
(
t′m(n−1)

)
= t′n−1 and r′

(
t′m(n)

)
= t′n. Then r

′ is Lipschitz thanks

to a27) and limt→∞ r′(t) = ∞ since limn→∞ t′n = ∞. Using a24) we find that

r′−1 ([1, n]) ⊇ r′−1 ([1, t′n]) ⊇
[
1, t′m(n)

]
⊇ [1, n].

It follows that r′(n) ≤ n for all n. Furthermore, it is straightforward to combine
(2.22) with the fact that g is folding data for ϕ to verify that the same is true for g′.
(Recall that ϕ̂ is uniformly continuous.) It remains now only to show that ϕg′ ⊕ 0
is unitarily equivalent to ϕh′ ⊕ 0. For this purpose note first that by Lemma 2.4 we
may as well show that ϕg′ ⊕ 0 is unitarily equivalent to ϕh′ ⊕ 0. This is done as
follows.
Set ∆′

0 =
√
u′0, ∆′

n =
√
u′n − u′n−1, n ≥ 1, ∆′′

0 =
√
u′′0, ∆′′

n =
√
u′′n − u′′n−1. It

follows from a25) and a26) that

m′(n− 1) < k ≤ m′(n) ⇒ ∆′
k∆

′′
j = 0, j /∈ {n− 1, n}. (2.23)
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Set V =
∑

i,j ∆
′′
i∆

′
j ⊗ eij which is a partial isometry in M(B ⊗K). By using (2.23)

and Lemma 3.1 of [MT2] we find that

V ϕ̂h′

(a)V ∗ =
∑

i,j

∞∑

k=0

k+1∑

l=k−1

∆′′
i∆

′
k
2
ϕ̂r′(t′k)

(a)∆′
l
2
∆′′

j ⊗ eij

=

∞∑

i=0

i+3∑

j=i−3

∞∑

k=0

k+1∑

l=k−1

∆′′
i∆

′
k
2
ϕ̂r′(t′k)

(a)∆′
l
2
∆′′

j ⊗ eij

=

∞∑

i=0

i+3∑

j=i−3

∞∑

k=0

k+1∑

l=k−1

∆′′
i∆

′
k
2
ϕ̂t′i

(a)∆′
l
2
∆′′

j ⊗ eij modulo B ⊗K.

It follows from (2.22) that

∞∑

i=0

i+3∑

j=i−3

∞∑

k=0

k+1∑

l=k−1

∆′′
i∆

′
k
2
ϕ̂t′i

(a)∆′
l
2
∆′′

j ⊗ eij

=

∞∑

i=0

i+3∑

j=i−3

∞∑

k=0

k+1∑

l=k−1

∆′′
i∆

′
k
2
ϕt′i

(a)∆′
l
2
∆′′

j ⊗ eij modulo B ⊗K.

Note that
∞∑

k=0

k+1∑

l=k−1

∆′′
i∆

′
k
2
ϕt′

i
(a)∆′

l
2
=

∑

k≥m′(i−1)

k+1∑

l=k−1

∆′′
i∆

′
k
2
ϕt′

i
(a)∆′

l
2
,

thanks to (2.23). Since
∥∥∥∥∥∥

∞∑

k≥m′(i−1)

k+1∑

l=k−1

∆′
k
2
[
ϕt′i

(a),∆′
l
2
]
∥∥∥∥∥∥

≤

∥∥∥∥∥∥

∑

k≥m′(i−1)

∆′
k
2

∥∥∥∥∥∥

1

2

∥∥∥∥∥∥

∑

k≥m′(i−1)

∆′
k

[
ϕt′i

(a),

k+1∑

l=k−1

∆′
l
2

][
ϕt′i

(a),

k+1∑

l=k−1

∆′
l
2

]∗
∆′

k

∥∥∥∥∥∥

1

2

≤

∥∥∥∥∥∥

∑

k≥m′(i−1)

∆′
k

[
ϕt′i

(a),

k+1∑

l=k−1

∆′
l
2

][
ϕt′i

(a),

k+1∑

l=k−1

∆′
l
2

]∗
∆′

k,

∥∥∥∥∥∥

1

2

it follows from the compatibility of ({u′n}, {t′n}) with ϕ and Lemma 3.1 of [MT2]
that

∞∑

i=0

i+3∑

j=i−3

∞∑

k=0

k+1∑

l=k−1

∆′′
i∆

′
k
2
ϕt′

i
(a)∆′

l
2
∆′′

j ⊗ eij

=
∞∑

i=0

i+3∑

j=i−2

∞∑

k=0

k+1∑

l=k−1

∆′′
i∆

′
k
2
∆′

l
2
ϕt′i

(a)∆′′
j ⊗ eij modulo B ⊗K

=
∞∑

i=0

i+3∑

j=i−2

∆′′
iϕt′i

(a)∆′′
j ⊗ eij (using a1) - a3) for {u′n})

= ϕg′(a).
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Since V ∗V ϕ̂h′

(a) = ϕ̂h′

(a)V ∗V = ϕ̂h′

(a) modulo B ⊗K it follows that V ∗ϕg′(a)V =
ϕ̂h′

(a) modulo B ⊗ K. Thus an application of Kasparov’s stabilisation theorem as
in the proof of Lemma 2.4 shows that V can be dilated to give a unitary equivalence
between ϕg′ ⊕ 0 and ϕh′ ⊕ 0. Hence a31) follows from Lemma 2.4.
Using a28) - a31) we can now complete the proof as follows: By assumption ϕf ⊕

ψ⊕0 is asymptotically split. Since f and h only differ in the discretization sequences,
it follows from Lemma 2.5 that ϕh⊕ψ⊕0 is asymptotically split. Then (2.4) implies
that so is ϕg⊕ψ⊕0. g and g′ differ also only in the discretization sequence so another
application of Lemma 2.5 shows that also ϕg′ ⊕ψ⊕ 0 is asymptotically split. Hence
a31) shows that ϕh′ ⊕ψ⊕0 is asymptotically split and a final application of Lemma
2.5 implies then that the same is true for ϕf ′ ⊕ ψ ⊕ 0. �

We can now combine Lemma 2.7 with Lemma 2.5 to obtain the following:

Proposition 2.8. Let A and B be C∗-algebras, A separable, B stable and σ-unital.
Let ϕ, ϕ′ : A→ Q(B) be asymptotic extensions which are strongly homotopic. Let f
and f ′ be any folding data for ϕ and ϕ′, respectively. Assume that ψ : A→ Q(B) is
an extension such that ϕf ⊕ ψ ⊕ 0 is asymptotically split.
It follows that ϕ′

f ′ ⊕ ψ ⊕ 0 is asymptotically split.

Proof. Let f = (ϕ, {un} , {tn}) be folding data for ϕ and f ′ =
(
ϕ′, {u′n} , {t′n}

)
for

ϕ′. It follows from Lemma 2.3 that we can assume that ϕ and ϕ′ are uniformly
continuous. Let α : A → C[0, 1] ⊗ Q(B) be a strong homotopy connecting ϕ
and ϕ′. By Lemma 4.3 of [MT2] (or Lemma 2.3 above) there is a Lipschitz re-
parametrisation r : [1,∞) → [1,∞) such that αr is uniformly continuous. Since r is
Lipschitz there are strong homotopies consisting of uniformly continuous asymptotic
homomorphisms A→ C[0, 1]⊗Q(B) connecting ϕ to ϕr and ϕ′ to ϕ′r. Concatenation
with αr gives us a strong homotopy which connects ϕ to ϕ′ and consists of a uniformly
continuous asymptotic homomorphism A→ C[0, 1]⊗Q(B). The desired conclusion
follows then by combining Lemma 2.7 with Lemma 2.5. �

2.5. The pairing. To obtain the desired pairing between extensions and asymptotic
homomorphisms we must review the composition product of asymptotic homomor-
phisms, as defined by Connes and Higson in [CH], in a form suitable for the present
purpose.

Lemma 2.9. Let A,A′ and D be C∗-algebras, A,A′ separable. Let ϕ : A → D
and λ : A′ → A be equi-continuous asymptotic homomorphisms. Let X ⊆ A′ be a
σ-compact subset with dense span in A′.
There is a re-parametrisation s : [1,∞) → [1,∞) and an equi-continuous family

of maps κt,x : A′ → D, t, x ∈ [1,∞), t ≥ x, such that

i) limx→∞ supt≥x

∥∥ϕt ◦ λs(x)(a)− κt,x(a)
∥∥ = 0 for all a ∈ X, and

ii) limx→∞ supt≥x ‖κt,x(a)κt,x(b)− κt,x(ab)‖ = 0,
iii) limx→∞ supt≥x ‖κt,x(a) + zκt,x(b)− κt,x(a + zb)‖ = 0,
iv) limx→∞ supt≥x ‖κt,x(a∗)− κt,x(a)

∗‖ = 0
v) supt,x ‖κt,x(a)‖ <∞

for all a, b ∈ A′ and all z ∈ C.

Proof. By the method used to define the composition product of ϕ and λ in [CH]
we get a re-parametrisation r : [1,∞) → [1,∞) such that r(1) = 1 and
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a32) lim supt→∞ supy≥r(t) ‖ϕy ◦ λt(a)− ϕy ◦ λt(b)‖ ≤ ‖a− b‖,
a33) limt→∞ supy≥r(t) ‖ϕy ◦ λt(a)ϕy ◦ λt(b)− ϕy ◦ λt(ab)‖ = 0,
a34) limt→∞ supy≥r(t) ‖ϕy ◦ λt(a) + zϕy ◦ λt(b)− ϕy ◦ λt(a+ zb)‖ = 0,
a35) limt→∞ supy≥r(t) ‖ϕy ◦ λt(a∗)− ϕy ◦ λt(a)∗‖ = 0

for all a, b ∈ X and all z ∈ C. Then s = r−1 : [1,∞) → [1,∞) is a re-parametrisation
such that

a36) lim supx→∞ supt≥x

∥∥ϕt ◦ λs(x)(a)− ϕt ◦ λs(x)(b)
∥∥ ≤ ‖a− b‖,

a37) limx→∞ supt≥x

∥∥ϕt ◦ λs(x)(a)ϕt ◦ λs(x)(b)− ϕt ◦ λs(x)(ab)
∥∥ = 0,

a38) limx→∞ supt≥x

∥∥ϕt ◦ λs(x)(a) + zϕt ◦ λs(x)(b)− ϕt ◦ λs(x)(a+ zb)
∥∥ = 0,

a39) limx→∞ supt≥x

∥∥ϕt ◦ λs(x)(a∗)− ϕt ◦ λs(x)(a)∗
∥∥ = 0

for all a, b ∈ X and all z ∈ C. Set Z = {(t, x) ∈ [1,∞)2 : t ≥ x}, A = Cb (Z,D)
and

J =

{
f ∈ A : lim

x→∞
sup
t≥x

‖f(t, x)‖ = 0

}
.

Then J is an ideal inA and we let q : A → A/J be the quotient map. It follows from
a36)-a39) that there is a ∗-homomorphism Φ : A′ → A/J such that Φ(a) = q(fa)
for each a ∈ X , where fa ∈ A is defined such that fa(t, x) = ϕt ◦ λs(x)(a). By the
Bartle-Graves selection theorem there is a continuous right-inverse S : A/J → A
for q. Set κt,x(a) = S ◦ Φ(a)(t, x). Then i)-iv) hold. �

With the re-parametrisation s from Lemma 2.9 at hand we can now introduce the
composition product • : [[A,D]]× [[A′, A]] → [[A′, D]] of Connes and Higson, [CH],
such that

[ϕ] • [λ] = [Φ],

where Φ : A′ → D is any equi-continuous asymptotic homomorphism with the
property that

lim
t→∞

Φt(a)− κt,s′(t)(a) = 0

for all a ∈ X and s′ is any re-parametrisation for which s′ ≤ s.

Lemma 2.10. Let A,A′ be separable C∗-algebra, B stable and σ-unital. Let ϕ : A→
Q(B) be a semi-invertible extension and λ : A′ → A an asymptotic homomorphism.
It follows that any folding (ϕ ◦ λ)f of the asymptotic extension ϕ ◦ λ is semi-

invertible.

Proof. Let ϕ′ : A→ Q(B) be an extension such that ϕ⊕ ϕ′ is asymptotically split.
By considering the composition product between λ and an asymptotic lift of ϕ⊕ϕ′

it follows that there is a re-parametrisation s such that (ϕ ◦ λs) ⊕ (ϕ′ ◦ λs) is an
asymptotic extension which is asymptotically split in the sense of [MT2]. It follows
therefore from Lemma 4.4 of [MT2] that (ϕ ◦ λs)f is semi-invertible for any folding

(ϕ ◦ λs)f of ϕ ◦ λs. Since ϕ ◦ λs is strongly homotopic to ϕ ◦ λ, it follows from
Proposition 2.8 that the same is true for any folding of ϕ ◦ λ. �

As in [MT3],[MT4] and [MT5] we denote Ext−
1

2 (A,B) the group of semi-invertible
extensions of A by B modulo unitary equivalence and addition by asymptotically
split extensions. By combining Proposition 2.8 and Lemma 2.9 with Lemma 4.5 of
[MT2] we get the desired pairing:
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Theorem 2.11. Let A,A′ be separable C∗-algebra, B stable and σ-unital. There is
map a

⋆ : Ext−
1

2 (A,B)× [[A′, A]] → Ext−
1

2 (A′, B)

such that [ϕ]⋆[λ] =
[
(ϕ ◦ λ)f

]
where (ϕ ◦ λ)f is an arbitrary folding of the asymptotic

extension ϕ ◦ λ.
In the construction of the pairing ⋆ we have fixed the strictly positive element

b ∈ B which we used to define the unit sequences. It follows from Lemma 4.4 of
[MT2] that ⋆ is independent of the choice of b. The freedom in the choice of strictly
positive element makes it easy to show that

([ϕ] + [ψ]) ⋆ [λ] = ([ϕ] ⋆ [λ]) + ([ψ] ⋆ [λ]) . (2.24)

As should be expected it is somewhat more tricky to establish the natural asso-
ciativity involving ⋆ and the composition product • for asymptotic homomorphisms.

Lemma 2.12. Let A′, A, B be C∗-algebras, A′, A separable and B stable and σ-
unital. Let ϕ : A → Q(B) be an asymptotic extension and λ : A′ → A an asymp-
totic homomorphism. There is a folding ϕf of ϕ, a re-parametrisation s, a folding
(ϕf ◦ λs)f ′ of ϕf ◦ λs and an asymptotic extension µ : A′ → Q(B) such that

i) [µ] = [ϕ] • [λ] in [[A′, Q(B)]] where • denotes the composition product • :
[[A′, A]]× [[A,Q(B)]] → [[A′, Q(B)]], and

ii) µf ′′ = (ϕf ◦ λs)f ′ for some folding µf ′′ of µ.

Proof. Let F1 ⊆ F2 ⊆ F3 ⊆ . . . be a sequence of finite subsets with dense union in A′

and setX =
⋃

n Fn. By construction of the composition product there is a parametri-
sation s and an equi-continuous family of maps κt,x : A→ Q(B), t, x ∈ [1,∞), t ≥ x,
such that i)-v) of Lemma 2.9 hold. The composition product [ϕ] • [λ] is then rep-
resented by any asymptotic extension µ with the property that limt→∞ µt(a)− ϕt ◦
λs(r(t))(a) = 0 for all a ∈ X , where r can be any re-parametrisation such that r(t) ≤ t
for all t.
From the Bartle-Graves selection theorem we get an equi-continuous family of

maps κt,x : A→M(B), t, x ∈ [1,∞), t ≥ x, such that qB ◦κt,x = κt,x for all t, x. Let
f = (ϕ, {un}, {tn}) be folding data for ϕ which have a series of additional properties
which we now describe. For each k ∈ N there is a δk > 0 such that

max{|s− s′|, |t− t′|} ≤ δk ⇒ ‖κt,s(a)− κt′,s′(a)‖ ≤ 1

k
(2.25)

when s, s′, t, t′ ∈ [1, k + 2] and a ∈ Fk. We shall require of the discretization {tn}
that

|ti − ti+1| ≤ δk (2.26)

when ti ≤ k. Concerning the unit sequence {un} we will require that

lim
n→∞

sup
t,x∈[1,n+2]

[‖(1− un)f(t, x)‖ − ‖qB (f(t, x))‖] = 0 (2.27)

when f is any of the M(B)-valued functions

· f(t, x) = κt,x(a)κt,x(b)− κt,x(ab),
· f(t, x) = κt,x(a

∗)− κt,x(a)
∗,

· f(t, x) = κt,x(a+ λb)− κt,x(a)− λκt,x(b)

for any a, b ∈ A′, λ ∈ C, or
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· f(t, x) = ϕt ◦ λs(x)(a)− κt,x(a)

for any a ∈ X , and also that

lim
n→∞

sup
t,x∈[1,n+2]

‖unκt,x(a)− κt,x(a)un‖ = 0 (2.28)

for all a ∈ A′.
We choose next a discretization {t′n} of [1,∞) such that

lim
n→∞

sup
v∈[1,∞)

sup
t∈[t′n,t′n+1]

∥∥ϕv ◦ λs(t)(a)− ϕv ◦ λs(t′n)(a)
∥∥ = 0 (2.29)

for all a ∈ X . This is done as follows: Let n ≥ 2. By compactness of

{
λs(t)(a) : t ∈ [1, n+ 2], a ∈ Fn

}

and equi-continuity of ϕ there is a δ > 0 such that supv∈[1,∞) ‖ϕv(y)− ϕv(z)‖ ≤ 1
n

when z, y ∈
{
λs(t)(a) : t ∈ [1, n+ 2], a ∈ Fn

}
and ‖y − z‖ ≤ δ. Choose then a

δ′ ∈]0, 1] such that
∥∥λs(t)(a)− λs(t′)(a)

∥∥ ≤ δ when t, t′ ∈ [1, n + 1], a ∈ Fn and

|t− t′| ≤ δ′. Arrange that
∣∣t′i+1 − t′i

∣∣ ≤ δ′ when ti ∈ [n, n+ 1]. Then (2.29) holds.

Subsequently we choose folding data f ′ =
(
ψ, {u′n}, {t′n}

)
for ϕf ◦ λs with the

additional properties that

lim
n→∞

sup
t∈[1,n+2]

∥∥∥∥∥∆
′
n+j

[
∞∑

k=0

∆kϕtk
◦ λs(t)(a)∆k − ψt(a)

]∥∥∥∥∥ = 0 (2.30)

and

∞∑

n=1

sup
t∈[1,n+2]

∥∥∥∥∥∆
′
n+j

[
∞∑

k=0

∆kϕtk
◦ λs(t)(a)∆k

]
−
[

∞∑

k=0

∆kϕtk
◦ λs(t)(a)∆k

]
∆′

n+j

∥∥∥∥∥ <∞

(2.31)
for all j ∈ {−1, 0, 1}, a ∈ X . It follows from (2.30) and (2.31) that

(ϕf ◦ λ)f ′ (a) = qB

(
∞∑

n=0

[
∞∑

j=0

∆jϕtj
◦ λs(t′n)(a)∆j

]
∆′

n
2

)
. (2.32)

for all a ∈ X . As in the proof of Lemma 2.7 we can also require of {u′n} that there
is a strictly increasing function m : N → N such that m(0) = 0 and

a40) tm(n) ≥ t′n+1, n ≥ 1,
a41) u′num(n) = um(n),
a42) um(n)u

′
n−1 = u′n−1, n ≥ 1, and

a43) t′n − t′n−1 ≤ tm(n) − tm(n−1), n ≥ 1.

Define r : [1,∞) → [1,∞) such that r is linear on
[
tm(n−1), tm(n)

]
, r
(
tm(n−1)

)
= t′n−1

and r
(
tm(n)

)
= t′n for all n. It follows from a40) that r(t) ≤ t for all t and from a43)

that

|r(t)− r(t′)| ≤ |t− t′| (2.33)
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for all t, t′ ∈ [1,∞). From a41) and a42) we deduce that

∞∑

n=0

[
∞∑

j=0

∆jϕtj
◦ λs(t′n)(a)∆j

]
∆′

n
2
=

∞∑

n=1

∑

m(n−1)≤k<m(n)

∑

j∈{−1,0}

∆kϕtk
◦ λs(t′n+j)

(a)∆k∆
′
n+j

2
.

Now we combine (2.29) and Lemma 3.1 of [MT2] to conclude that

(ϕf ◦ λ)f ′ (a) = qB




∞∑

n=1

∑

m(n−1)≤k<m(n)

∑

j∈{−1,0}

∆k ϕtk
◦ λs(r(tk))(a)∆k∆

′
n+j

2




= qB

([
∞∑

k=0

∆kϕtk
◦ λs(r(tk))(a)∆k

]
∞∑

n=0

∆′
n
2

)

= qB

(
∞∑

k=0

∆kϕtk
◦ λs(r(tk))(a)∆k

)

for all a ∈ X . It follows from (2.27) that

(ϕf ◦ λ)f ′ (a) = qB

(
∞∑

k=0

∆kκtk ,r(tk)(a)∆k

)
(2.34)

for all a ∈ X . Now note that it follows from (2.25), (2.26) and (2.33) that

lim
k→∞

sup
t∈[tk ,tk+1]

∥∥κtk,r(tk)(a)− κt,r(t)(a)
∥∥ = 0

for all a ∈ A′. Combining this with (2.27) and (2.28) we can conclude that f ′′ =(
κt,r(t), {un}, {tn}

)
is folding data for the asymptotic extension

{
κt,r(t)

}
t∈[1,∞)

. Since

(2.34) implies that (ϕf ◦ λ)f ′ = µf ′′, where µt = qB ◦ κt,r(t), this completes the
proof. �

Theorem 2.13. Let A′′, A′, A be a separable C∗-algebras and B a stable σ-unital
C∗-algebra. Let ν : A′′ → A′ and λ : A′ → A asymptotic homomorphisms and
ϕ : A→ Q(B) a semi-invertible extension. Then

([ϕ] ⋆ [λ]) ⋆ [ν] = [ϕ] ⋆ ([λ] • [ν])

in Ext−
1

2 (A′′, B).

Proof. Apply Lemma 2.12 with ϕ ◦ λ in the role of ϕ and ν in the role of λ. �

3. Semi-invertibility

Lemma 3.1. Let A′, A, B be C∗-algebras, A′, A separable and B stable and σ-unital.
Let ϕ : A → Q(B) be an asymptotic extension and λ : A′ → A an asymptotic
homomorphism. Let ν : A′ → Q(B) be an asymptotic extension such that [ν] =
[ϕ] • [λ] in [[A′, Q(B)]]. Assume that ϕg is semi-invertible for some folding ϕg of ϕ.
Then νg′ is semi-invertible for every folding νg′ of ν.
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Proof. Let ϕf , s, µ and f ′′ be as in Lemma 2.12. By assumption ϕg is semi-invertible
for some folding ϕg of ϕ and it follows then from Proposition 2.8 that also ϕf is semi-
invertible. Thus µf ′′ is semi-invertible by Lemma 2.12. Since µ is strongly homotopic
to ν it follows from Proposition 2.8 that νg′ is semi-invertible for any folding of ν. �

With the following definition we try to cover the most general result about au-
tomatic semi-invertibility which can be obtained from the pairing of Ext−1/2 with
asymptotic homomorphisms. It is inspired by three sources. One is the paper by
Dadarlat and Loring on unsuspended E-theory, [DL], where homotopy symmetric
C∗-algebras are introduced. Another is the paper [V] of Voiculescu where the notion
of homotopy domination is introduced and the third is the work of Dadarlat [D]
where it is shown that shape-equivalence of separable C∗-algebras is the same thing
as equivalence in the asymptotic homotopy category of Connes and Higson.

Definition 3.2. Let A and A′ be C∗-algebras. Following the notation of [DL]
we denote by [idA] the element of [[A,A⊗K]] represented by the ∗-homomorphism
s(a) = a⊗e for some minimal non-zero projection e in K. We say that A is homotopy
symmetric relative to A′ when there are asymptotic homomorphisms λ : A → A′,
µ : A′ → A⊗K and ψ : A→ A⊗K such that

[idA] + [ψ] = [µ] • [λ]
in [[A,A⊗K]]. When ψ can be taken to be zero, we say that A is shape dominated
by A′.

Thus A is homotopy symmetric in the sense of Dadarlat and Loring if and only if
it is homotopy symmetric relative to 0, and shape domination generalises homotopy
domination in the sense of Voiculescu.

Theorem 3.3. Let A′, A, B be C∗-algebras, A′, A separable and B stable and σ-
unital. Assume that A is homotopy symmetric relative to A′ and that all extensions
of A′ by B are semi-invertible.
It follows that all extensions of A by B are semi-invertible.

Proof. By Lemma 4.3 of [MT5] it suffices to show that all extensions of A ⊗ K by
B are semi-invertible, i.e. we may assume that A is stable. Then our assumptions
imply that there are asymptotic homomorphisms λ : A → A′ ⊗K, µ : A′ ⊗ K → A
and ψ : A→ A such that [ϕ⊕ (ϕ ◦ ψ)] = [ϕ◦µ]• [λ] in [[A,Q(B)]] for any extension
ϕ : A → Q(B). By assumption any folding of ϕ ◦ µ is semi-invertible and hence
Lemma 3.1 implies that ϕ ⊕ (ϕ ◦ µ)f is semi-invertible for any folding (ϕ ◦ µ)f of
ϕ ◦ µ. It follows that ϕ is semi-invertible. �

4. Relation to E-theory

Recall that the E-theory of Connes and Higson, [CH], depends on a fundamental
construction, the Connes-Higson construction, which produces asymptotic homo-
morphisms out of extensions. Since the asymptotic homomorphism obtained from
an asymptotically split extension is homotopic to 0, the Connes-Higson construction
gives rise to a group homomorphism

CH : Ext−
1

2 (A,B) → [[SA,B]]. (4.1)

As shown in [DL] the group [[SA,B]] is isomorphic to the E-theory group E(A, SB).

Thus CH gives a direct relation between Ext−1/2 and E-theory. It is unknown if



SHAPE THEORY AND EXTENSIONS OF C
∗
-ALGEBRAS 21

CH is always an isomorphism, but we can now show that it is when A is shape
dominated by another C∗-algebra A′, for example a nuclear C∗-algebra, for which
CH : Ext−1/2(A′, B) → [[SA′, B]] is an isomorphism.

Theorem 4.1. Let A′, A, B be separable C∗-algebras, B stable. Let ϕ : A → Q(B)
be a semi-invertible extension and λ : A′ → A an asymptotic homomorphism. It
follows that

CH ([ϕ] ⋆ [λ]) = CH [ϕ] • [Sλ]
in [[SA′, B]], where Sλ : SA′ → SA is the suspension of λ.

Proof. We refer to [CH] for the description of the Connes-Higson construction we
shall use here. Let ψ be a lift of ϕ ◦ λ. Applying the same re-parametrisation to
both ψ and λ we can arrange that ψ is uniformly continuous, and still have that
qB ◦ ψt = ϕ ◦ λt for all t, cf. Lemma 2.3. Let f = (ψ, {un}, {tn}) be folding data
defining the folding (ϕ ◦ λ)f , and let ϕ : A → M(B) be a continuous lift of ϕ. Let

R be a countable dense subset of C0(0, 1) and X a countable dense subset of A′.
Define ut ∈ B, t ∈ [n, n+ 1], such that ut = (t− n)un+1 + (n+ 1− t)un. Let r be a
re-parametrisation of [1,∞) such that

a44) r(t) ≤ t for all t,
a45) limn→∞ r(n+ 1)− r(n) = 0,
a46) limt→∞(1− ut)

(
ψr(t)(a)− ϕ ◦ λr(t)(a)

)
= 0 for all a ∈ X , and

a47) [CH(ϕ) • (Sλ)] is represented in [[SA′, B]] by an asymptotic homomorphism
Φ : SA′ → B such that limt→∞ g(ut)ϕ

(
λr(t)(a)

)
−Φt(g⊗a) = 0 for all g ∈ R

and all a ∈ X .

It follows from a44) and a45) that f ′ = (ψ, {un}, {r(n)}) is folding data for ϕ ◦ λ
since (ψ, {un}, {tn}) is. If we let A(t) ∼ B(t) mean that limt→∞A(t)−B(t) = 0, we
have for any g ∈ R and a ∈ X that

g(ut)

(
∞∑

n=0

∆nψr(n)(a)∆n

)
=

n+4∑

j=n−4

g(ut)∆jψr(j)(a)∆j where t ∈ [n, n+ 1]

(by a1) and the definition of {ut})

∼
n+4∑

j=n−4

g(ut)∆jψr(t)(a)∆j

(using a45) and the uniform continuity of ψ)

∼
n+4∑

j=n−4

g(ut)∆
2
jψr(t)(a) = g(ut)ψr(t)(a)

(thanks to a44) and the properties of folding data)

∼ g(ut)ϕ
(
λr(t)(a)

)

(thanks to a46))

∼ Φt(g ⊗ a)

(thanks to a47)).

It follows that CH ([ϕ] ⋆ [λ]) is represented by an asymptotic homomorphism which
asymptotically agrees with Φ. �
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Corollary 4.2. Let A′, A, B be C∗-algebras, A′, A separable and B stable and σ-

unital. Assume that CH : Ext−
1

2 (A′, B) → [[SA′, B]] is an isomorphism, and assume

that A is shape dominated by A′. It follows that CH : Ext−
1

2 (A,B) → [[SA,B]] is
an isomorphism.

Proof. This follows from a simple diagram chase in the commuting diagram

Ext−
1

2 (A,B)
CH

µ∗

[[SA,B]]

(Sµ)∗

Ext−
1

2 (A′, B)

λ∗

CH
[[SA′, B]]

(Sλ)∗

�

Corollary 4.3. Let A be a separable C∗-algebra which is shape dominated by a

separable nuclear C∗-algebra. It follows that CH : Ext−
1

2 (A,B) → [[SA,B]] is an
isomorphism for every stable σ-unital C∗-algebra B.

Corollary 4.4. Let A be a separable C∗-algebra and B a stable σ-unital C∗-algebra.
Assume that A is homotopy symmetric in the sense of Dadarlat and Loring, [DL]. It

follows that all extensions of A by B are semi-invertible and that CH : Ext−
1

2 (A,B) →
[[SA,B]] is an isomorphism.

Proof. The first assertion follows from Theorem 3.3. To establish the second we
assume without loss of generality that A is stable. It follows from [DL] that because
A is homotopy symmetric the E-theory inverse of the canonical asymptotic homo-
morphism S2A → A (arising from the Toeplitz extension) has an inverse A → S2A
giving us a shape equivalence between A and S2A. Since CH : Ext−1/2(S2A,B) →
[[S3A,B]] is an isomorphism for every stable σ-unital B by [MT3], it follows from

Corollary 4.2 that also CH : Ext−
1

2 (A,B) → [[SA,B]] is an isomorphism. �

It remains an open question if (4.1) is always an isomorphism.
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