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Abstract

A result of Gilbert shows that every completely bounded multiplier f of the Fourier algebra A(G) arises from
a pair of bounded continuous maps α, β : G → K, where K is a Hilbert space, and f(s−1t) = (β(t)|α(s)) for all
s, t ∈ G. We recast this in terms of adjointable operators acting between certain Hilbert C∗-modules, and show
that an analogous construction works for completely bounded left multipliers of a locally compact quantum group.
We find various ways to deal with right multipliers: one of these involves looking at the opposite quantum group,
and this leads to a proof that the (unbounded) antipode acts on the space of completely bounded multipliers, in
a way which interacts naturally with our representation result. The dual of the universal quantum group (in the
sense of Kustermans) can be identified with a subalgebra of the completely bounded multipliers, and we show
how this fits into our framework. Finally, this motivates a certain way to deal with two-sided multipliers.

(2010) Subject classification: 43A22, 46L08, 46L89 (Primary); 22D15, 22D25, 22D35, 43A30 (Secondary).
Keywords: Locally compact quantum group, multiplier, Hilbert C∗-module, Fourier algebra

1 Introduction

Let G be a locally compact group G, and let A(G) be the Fourier algebra of G, the subalgebra of
C0(G) given by coefficient functionals of the left regular representation λ of G on L2(G), see [9]. A
multiplier of A(G) is a continuous function f ∈ Cb(G) such that fa ∈ A(G) for each a ∈ A(G). A
multiplier f induces an automatically bounded map A(G) → A(G). As A(G) is the predual of the
group von Neumann algebra V N(G), it carries a natural operator space structure, and so we can
ask when the map induced by f is completely bounded. The collection of such f is the algebra of
completely bounded multipliers of A(G), written McbA(G). A result of Gilbert (see [3], the short
proof in [11], the introduction of [4], or the survey [23]) shows that f ∈ McbA(G) if and only if
there is a Hilbert space K and bounded continuous functions α, β : G → K with

f(s−1t) =
(

β(t)
∣

∣α(s)
)

(s, t ∈ G),

where (·|·) denotes the inner-product on K. (This formula has s−1t instead of t−1s as considered
by Jolissaint in [11]; see Section 2.1 below for an explanation).

In this paper, we shall propose variations of this result for the convolution algebra L1(G) of
a locally compact quantum group G (see below for definitions). Clearly the space of continuous
functions G → K will be important, and we start with a short discussion of this. Indeed, consider
the C∗-algebra A = C0(G). Let A ⊗ K be the standard Hilbert C∗-module (see [19]) which in
this case can be identified with C0(G,K). Then the “multiplier space” of A ⊗ K is identified
with Cb(G,K); abstractly, this is the space L(A,A ⊗ K) of adjointable maps from A to A ⊗ K.
To induce a member of McbA(G), we need that the pair (α, β) is “invariant” in the sense that
(β(t−1)|α(t−1s−1)) = f(s) for all s, t ∈ G.

In the quantum setting, we replace C0(G) be a possibly non-commutative C∗-algebra, denoted
C0(G). The dual quantum group to C0(G) is C∗

r (G), and the Fourier algebra is the predual of
the V N(G) = C∗

r (G)′′. Thus, by analogy, we will study completely bounded multipliers of the
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convolution algebra of the dual quantum group, denoted L1(Ĝ). Indeed, we work firstly by looking

at completely bounded left multipliers of L1(Ĝ). We restrict attention to those multipliers which

are “represented” by some x ∈ Cb(G) (so that under the regular representation λ̂ : L1(Ĝ) → C0(G),
left multiplication by x induces our left multiplier). This is automatic for the left part of two-sided
multipliers, see [6, Section 8.2]. In this setting, we get a complete analogy of Gilbert’s result.
To study right multipliers, we can either use the unitary antipode, or study the opposite algebra
L1(Ĝ)op. These turn out not to be totally equivalent, and the study of L1(Ĝ)op leads us to study
how the (unbounded, in general) antipode of G acts on the space of multipliers. A corollary is
that two-sided multipliers are invariant under the action of the antipode. Furthermore, this now
puts us in a position to use the representation result of Junge, Neufang and Ruan proved in [12],
which implies that in fact every completely bounded left multiplier is represented in our sense. By
taking a different perspective on the space L(A,A⊗K), we are lead to consider ideas very close
to those studied by Vaes and Van Daele in [28].

In the final part of the paper, we look at the universal quantum group (in the sense of Kuster-

mans, [15]) of Ĝ. This always induces completely bounded multipliers of L1(Ĝ), and we show how
this fits into our framework. Motivated by this construction, we end by giving one, reasonably
symmetric, way to deal with two-sided multipliers.

We follow [19] for the theory of Hilbert C∗-modules. In particular, all our inner-products will
be linear in the second variable, and we consider right (Hilbert C∗-)modules. We similarly often
let scalars act on the right of a vector space.

Acknowledgements: We thank Martin Lindsay for suggesting the idea of viewing L(A,A⊗K)
as a “corner” or “slice” of L(A ⊗ K); this both simplifies proofs in Section 3 and also provides
motivation for our treatment of two-sided multipliers. While visiting Leeds on the EPSRC grant
EP/I002316/1, Zhong-Jin Ruan and Matthias Neufang pointed the author in the direction of [12],
and Nico Spronk suggested the comment about wap(G) in Section 5.2. Finally, the anonymous
referee provided many helpful comments which have substantially improved the paper.

2 Locally compact quantum groups and multipliers

In this section, we sketch (rather briefly) the theory of locally compact quantum groups; our main
aim is to fix notation. For details on the von Neumann algebraic side of the theory, see [17], and
for the C∗-algebraic side, see [18] and [20]. The survey [14], and Vaes’s PhD thesis [26], are gentle,
well-motivated introductions.

A locally compact quantum group is a von Neumann algebra M together with a coproduct
∆ : M → M⊗M . This is a unital normal ∗-homomorphism with (∆⊗ι)∆ = (ι⊗∆)∆. Furthermore,
we assume the existence of left and right invariant weights on M . The coproduct ∆ turns the
predual M∗ into a completely contractive Banach algebra.

Associated to (M,∆) is a reduced C∗-algebraic quantum group (A,∆). Here A is a C∗-subalgebra
of M , and ∆ : A → M(A ⊗ A), the multiplier algebra of A ⊗ A, the minimal C∗-algebra tensor
product (which is the only tensor product of C∗-algebras which we shall consider). Here we identify
M(A ⊗ A) with a subalgebra of M⊗M . The dual space A∗ becomes a completely contractive
Banach algebra which contains M∗ as a closed ideal.

We use the left invariant weight to build a Hilbert space H ; then M is in standard position
on H . There is a privileged unitary operator W on H ⊗ H (the Hilbert space tensor product of
H with itself) with ∆(x) = W ∗(1 ⊗ x)W for x ∈ M . Then W is a multiplicative unitary, and
W ∈ M(A ⊗ B0(H)), where B0(H) is the algebra of compact operators on H . Define λ : M∗ →
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B(H) by λ(ω) = (ω ⊗ ι)(W ). Let the closure of λ(M∗) be Â, which is a C∗-algebra. Let M̂ be

the σ-weak closure, which is a von Neumann algebra. We may define a coproduct ∆̂ on M̂ by
∆̂(x) = Ŵ ∗(1 ⊗ x)Ŵ , where Ŵ = σW ∗σ, where σ is the flip map on H ⊗ H . It is possible to

construct left and right invariant weights on M̂ , turning this into a locally compact quantum group,

whose C∗-algebraic counterpart is Â. We have the biduality theorem, that
ˆ̂
M = M canonically.

As is becoming common, we write G for an abstract object, to be thought of as a locally
compact quantum group, and we write L1(G), L∞(G), C0(G), Cb(G) and M(G) for, respectively,

M∗,M,A,M(A) and A∗. We shall then write Ĝ for the abstract object corresponding to the dual

quantum group, so that M̂ is denoted by L∞(Ĝ), and so forth. We shall use the hat notation to

signify that an object should be thought of as corresponding to Ĝ. For example, for ξ, η ∈ L2(G),
we have the vector functional ωξ,η : B(L

2(G)) → C; x 7→ (ξ|xη), and then the restriction of this to

L∞(Ĝ) is denoted by ω̂ξ,η ∈ L1(Ĝ).
Locally compact quantum groups generalise Kac algebras (see [8] and [27, Page 7]). However,

unlike for a Kac algebra, L1(G) need not be ∗-algebra, as the antipode S is in general unbounded.
However, L1(G) contains a dense ∗-subalgebra L1

♯ (G). This is the space of functionals ω ∈ L1(G)

such that there exists σ ∈ L1(G) with 〈x, σ〉 = 〈S(x), ω∗〉 for x ∈ D(S), the domain of S. Here ω∗

is the functional given by 〈y, ω∗〉 = 〈y∗, ω〉 for y ∈ L∞(G). We write σ = ω♯ in this case, and then
λ(ω♯) = λ(ω)∗. See [15, Section 3] or [17, Section 2] for further details.

As we are working with right multipliers, to avoid a notational clash, we shall write κ (and not
R) for the unitary antipode on L∞(G). This is a normal anti-∗-homomorphism with (κ⊗ κ)σ∆ =
∆κ. Thus the pre-adjoint κ∗ is an anti-homomorphism of L1(G). Furthermore, κ is spatially

implemented, as κ(x) = Ĵx∗Ĵ for x ∈ L∞(G), where Ĵ is the modular conjugation for (the left

weight of) Ĝ. The unitary antipodes interact well with duality, in that κλ̂ = λ̂κ̂∗.
There is a one-parameter group of automorphisms (τt) of C0(G) which links S and κ, by S =

Rτ−i/2. Then R commutes with (τt), so also S = τ−i/2R, and we see that D(S) = D(τ−i/2). The
group (τt) extends to a group of automorphisms, continuous for the σ-strong∗ topology, of L∞(G).

As we are looking at the left regular representation, it is natural that things work best for us
when looking at left multipliers. We shall later deal with right multipliers: these can be converted
to left multipliers by looking at the opposite algebra. At the quantum group level, we define Ĝop

to be the opposite quantum group to Ĝ, see [17, Section 4]. That is, L∞(Ĝop) = L∞(Ĝ), but

the multiplication in L1(Ĝop) is reversed from that in L1(Ĝ). This is equivalent to defining the

comultiplication on L∞(Ĝop) to be σ∆̂.

Then we have that L∞((Ĝop)̂) = L∞(G)′, the commutant of L∞(G) in B(L2(G)). Let the
resulting locally compact quantum group be denoted by G′. The natural coproduct ∆′ is defined
as follows, where J is the modular conjugation on L∞(G),

∆′(x) = (J ⊗ J)∆(JxJ)(J ⊗ J) (x ∈ L∞(G′) = L∞(G)′),

The associated multiplicative unitary is W ′ = (J⊗J)W (J⊗J). Then C0(G
′) is the norm closure of

{(ι⊗ω)(W ′) : ω ∈ B(L2(G))∗}, which is easily seen to be JC0(G)J . Consider the unitary map ĴJ ,

and for x ∈ C0(G
′) define Φ(x) = ĴJxJĴ = κ(JxJ)∗ ∈ C0(G), so that Φ is a C∗-isomorphism of

C0(G
′) to C0(G). We then get the right regular representation ρ̂ : L1(Ĝ) → C0(G

′); ω̂ 7→ Φ(λ̂(ω̂)).

2.1 Multipliers and duality

For a Banach algebra A, a (two-sided) multiplier (also called a (double) centraliser) is a pair of
maps L,R : A → A such that aL(b) = R(a)b. We write (L,R) ∈ M(A), and then M(A) becomes
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an algebra for the product (L,R)(L′, R′) = (LL′, R′R). We shall always suppose that A is faithful,
that is, if bac = 0 for all b, c ∈ A, then a = 0. In this case, we can show that L(ab) = L(a)b
and R(ab) = aR(b). A closed graph argument will show that L and R are automatically bounded.
There is a natural map (injective, as A is faithful) of A into M(A) given by a 7→ (La, Ra) where
La(b) = ab and Ra(b) = ba for b ∈ A. For further details, see [5], [22, Section 1.2] or [6].

When A is a completely contractive Banach algebra, we can restrict attention to those (L,R) ∈
M(A) such that L and R are completely bounded. We write Mcb(A) for the algebra of completely
bounded multipliers. If A has a bounded approximate identity, then M(A) = Mcb(A) with equiva-
lent norms, see [13, Proposition 3.1] or [6, Theorem 6.2]. Otherwise, there appears to be no general
relationship between M(A) and Mcb(A).

We shall also work with left multipliers, that is, bounded maps L : A → A with L(ab) = L(a)b
for a, b ∈ A. We write L ∈ M l(A). Similarly, we define the right multipliers M r(A), and the
analogous completely bounded versions, M l

cb(A) and M r
cb(A).

Definition 2.1. Let G be a locally compact quantum group. A multiplier L ∈ M l(L1(Ĝ)) is

represented if there exists a ∈ Cb(G) such that λ̂(L(ω̂)) = aλ̂(ω̂) for each ω̂ ∈ L1(Ĝ). Similarly,

R ∈ M r(L1(Ĝ)) is represented if there exists a ∈ Cb(G) such that λ̂(R(ω̂)) = λ̂(ω̂)a for each

ω̂ ∈ L1(Ĝ).

Building on work of Kraus and Ruan in [13], we showed in [6, Theorem 8.9] that a two-sided

multiplier (L,R) ∈ Mcb(L
1(Ĝ)) is represented by some a ∈ Cb(G); that is, aλ̂(ω) = λ̂(L(ω)) and

λ̂(ω)a = λ̂(R(ω)) for each ω̂ ∈ L1(Ĝ) (compare with Proposition 2.4 below). The resulting map

Λ̂ : Mcb(L
1(Ĝ)) → Cb(G) is a completely contractive algebra homomorphism. We remark that we

don’t know if Λ̂ can be extended (even just as an algebra homomorphism) to M(L1(Ĝ)).
To illustrate this, let G be a locally compact group, and form the commutative quantum group

L∞(G). Here the coproduct is given by ∆(F )(s, t) = F (st) for F ∈ L∞(G) and s, t ∈ G. The
left and right invariant weights are given by integrating against the left and right Haar measures,
respectively. Then the dual quantum group is V N(G), which has predual A(G), the Fourier algebra.
The associated Hilbert space is simply L2(G), and as V N(G) is in standard position, every normal
functional ω ∈ A(G) is of the form ωξ,η, where 〈x, ωξ,η〉 = (ξ|x(η)) for x ∈ V N(G) and ξ, η ∈ L2(G).
The multiplicative unitary is given by Wξ(s, t) = ξ(s, s−1t) for ξ ∈ L2(G × G), s, t ∈ G. Let
λ : G → B(L2(G)) be the left regular representation, where

λ(s) : ξ 7→ η, η(t) = ξ(s−1t) (ξ ∈ L2(G), s, t ∈ G).

This does integrate to give the expected map λ : L1(G) → B(L2(G)). Then λ̂ : A(G) → C0(G),
and we can check that

λ̂(ω)(s) = 〈λ(s−1), ω〉 (s ∈ G, ω ∈ A(G)).

Thus λ̂ gives the map considered by Takesaki in [25, Chapter VII, Section 3], and not the map
considered by Eymard in [9] (where s−1 is replaced by s). This also explains why our formulas

in the introduction were different to those considered Jolissaint in [11], as the embedding Λ̂ :
McbA(G) → Cb(G) is consequently also different to that usually considered.

A representation result for completely bounded multipliers was shown by Junge, Neufang and
Ruan in [12]. The principle result of that paper is [12, Theorem 4.5], which shows a completely

isometric identification between M r
cb(L

1(Ĝ)) and CB
σ,L∞(Ĝ)
L∞(G) (B(L2(G))). This latter space is the

algebra of weak∗-continuous, completely bounded maps B(L2(G)) → B(L2(G)) which are L∞(G)-

bimodule maps, and which map L∞(Ĝ) into itself. This space can be also be studied by using the
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(extended) Haagerup tensor product, and it is possible to view our constructions using a viewpoint
similar to the Haagerup tensor product– this is explored in Section 5.2 below; in some sense, our
results are C∗-algebraic counterparts to the von Neumann algebra approach of [12]. Indeed, [12]
was preceded by work of Neufang, Ruan and Spronk in [21] where the L1(G) and A(G) cases are
worked out. Links with the Haagerup tensor product, and Gilbert’s theorem, are explicitly used
in [21, Section 4].

For us, the importance of [12] is the following result (recall the discussion in the previous section
about the right regular representation ρ̂).

Theorem 2.2 ([12, Corollary 4.4]). Let R ∈ M r
cb(L

1(Ĝ)). There exists x ∈ L∞(G′) such that

ρ̂(ω̂)x = ρ̂(R(ω̂)) for all ω̂ ∈ L1(Ĝ).

Actually, the full power of the representation result of [12] is not needed to show this– see
Section 5.2 below where a very brief sketch of the proof is given. However, undoubtedly the proof
of this result is more ingenuous than the two-sided multiplier case.

Using the unitary antipode, it’s easy to transfer this result to completely bounded left multipliers.
Notice that we only get x ∈ L∞(G′), not Cb(G′), which is slightly weaker than the requirement
for R to be represented in our sense. However, we are able to boot-strap this result and show that
actually x is in Cb(G′) (see Theorem 4.2 and Proposition 5.3 below).

The following results extract a little bit more information than we found in [6]; they are also
similar to, for example, [12, Theorem 4.10].

Proposition 2.3. Let R be a normal completely bounded map L∞(Ĝ) → B(L2(G)), and let a ∈

B(L2(G)) be such that (R⊗ ι)(Ŵ ) = Ŵ (1⊗ a). Then R maps into L∞(Ĝ), and the pre-adjoint R∗

is a right multiplier of L1(Ĝ) with λ̂(R∗(ω̂)) = λ̂(ω̂)a for ω̂ ∈ L1(G). Furthermore, a ∈ L∞(G).

Proof. Let T (L2(G)) be the trace-class operators on L2(G), and let q : T (L2(G)) → L1(Ĝ) be
the natural quotient map, which is actually a complete quotient map, see [7, Section 4.2]. Let
ξ0, η0, ξ, η ∈ L2(G), so that

(

ξ
∣

∣λ̂(ωξ0,η0)aη
)

=
(

ξ
∣

∣(ωξ0,η0 ⊗ ι)(Ŵ )aη
)

=
(

ξ0 ⊗ ξ
∣

∣Ŵ (η0 ⊗ aη)
)

=
(

ξ0 ⊗ ξ
∣

∣(R⊗ ι)(Ŵ )(η0 ⊗ η)
)

= 〈Ŵ , R∗(ωξ0,η0)⊗ ωξ,η〉 =
(

ξ
∣

∣λ̂(R∗(ωξ0,η0))η
)

Thus λ̂(q(ω))a = λ̂(R∗(ω)) for ω ∈ T (L2(G)).

In particular, λ̂(ω̂)a ∈ λ̂(L1(Ĝ)) for each ω̂ ∈ L1(Ĝ). As λ̂ is injective, there exists some

function r : L1(Ĝ) → L1(Ĝ) with λ̂(ω̂)a = λ̂(r(ω̂)) for ω̂ ∈ L1(Ĝ). Using again that λ̂ is an
injective homomorphism, it is easy to check that r is linear and a right multiplier (but maybe not
bounded). However, we then see that

λ̂
(

q(ω)
)

a = λ̂
(

r(q(ω))
)

= λ̂
(

R∗(ω)
)

(ω ∈ T (L2(G))).

So R∗ = rq and hence R∗ drops to a completely bounded map L1(Ĝ) → L1(Ĝ), and then r = R∗,
as required.

Finally, let x ∈ L∞(G)′, so for ω̂ ∈ L1(Ĝ), we have that λ̂(ω̂)ax = λ̂(R∗(ω̂))x = xλ̂(R∗(ω̂)) =

xλ̂(ω̂)a = λ̂(ω̂)xa. This is enough to imply that ax = xa (compare with the proof of [6, Proposi-
tion 8.8]) and so a ∈ L∞(G)′′ = L∞(G).

It is easily checked that, similarly, when L ∈ CB(L∞(Ĝ),B(L2(G))) is normal with there existing

a ∈ B(L2(G)) with (L⊗ ι)(Ŵ ) = (1⊗ a)Ŵ , then L ∈ CB(L∞(Ĝ)), and the pre-adjoint L∗ is a left

multiplier of L1(G) with λ̂(L∗(ω̂)) = aλ̂(ω̂) for ω̂ ∈ L1(G).
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Similarly, if (L,R) is a pair of maps, both associated to the same a ∈ B(L2(G)), then the

pre-adjoints form a multiplier (L∗, R∗) ∈ Mcb(L
1(Ĝ)). As λ̂(L1(Ĝ)) is dense in C0(G), it follows

that automatically a ∈ Cb(G). We shall later prove that this is true for one-sided multipliers as
well, see Theorem 4.2 and Proposition 5.3 below.

Proposition 2.4. Let L∗ ∈ M l
cb(L

1(Ĝ)) and a ∈ L∞(G) be such that aλ̂(ω̂) = λ̂(L∗(ω̂)) for

ω̂ ∈ L1(Ĝ). Setting L = L∗
∗, we have that (L ⊗ ι)(Ŵ ) = (1 ⊗ a)Ŵ . Similarly, if R is the adjoint

of a completely bounded right multiplier associated to a, then (R ⊗ ι)(Ŵ ) = Ŵ (1 ⊗ a). If L∗ and

R∗ are both associated to the same a ∈ L∞(G), then (L∗, R∗) ∈ Mcb(L
1(Ĝ)) and a ∈ Cb(G).

Proof. We simply reverse some previous calculations, where, for variety, we work with left multi-
pliers. For ξ0, η0, ξ, η ∈ L2(G), we have

(

ξ
∣

∣aλ̂(ω̂ξ0,η0)η
)

=
(

ξ
∣

∣λ̂(L∗(ω̂ξ0,η0))η
)

= 〈Ŵ , L∗(ω̂ξ0,η0)⊗ ωξ,η〉 = 〈(L⊗ ι)(Ŵ ), ω̂ξ0,η0 ⊗ ωξ,η〉

=
(

a∗ξ
∣

∣(ω̂ξ0,η0 ⊗ ι)(Ŵ )η
)

= 〈Ŵ , ω̂ξ0,η0 ⊗ ωa∗ξ,η〉 = 〈(1⊗ a)Ŵ , ω̂ξ0,η0 ⊗ ωξ,η〉.

Thus (L⊗ ι)(Ŵ ) = (1⊗ a)Ŵ . A similar calculation holds for right multipliers.
If L∗ and R∗ are associated to the same a, then for ω̂, σ̂ ∈ L1(G),

λ̂
(

ω̂L∗(σ̂)
)

= λ̂(ω̂)aλ̂(σ̂) = λ̂
(

R∗(ω̂)σ̂
)

,

using that λ̂ is a homomorphism. As λ̂ injects, it follows that (L∗, R∗) is a multiplier, which is
completely bounded by assumption. That now a ∈ Cb(G) follows from the comment above.

3 Hilbert C∗-modules

We shall use the basic theory of Hilbert C∗-modules, following [19], for example. Let us develop a
little of this theory. Given a C∗-algebra A and a Hilbert space K, we let A⊙K be the algebraic
tensor product of A with K, turned into a right A-module in the obvious way, and given the
A-valued inner-product (a⊗ ξ|b⊗ η) = a∗b(ξ|η). Let A⊗K be the completion.

Let E and F be Hilbert C∗-modules over A. We write K(E, F ) for the “compact” operators from
E to F , the closure of the linear span of maps θx,y. Here x ∈ F, y ∈ E and we have θx,y(z) = x(y|z)
for z ∈ E. Let L(E, F ) be the space of all adjointable operators from E to F . Recall that the unit
ball of K(E, F ) is strictly dense in the unit ball of L(E, F ). When E = F , we can identify L(E)
with the multiplier algebra M(K(E)). Indeed, K(E) is an essential ideal in L(E), so we have an
inclusion L(E) → M(K(E)), which is actually surjective. When E = F = A, we have K(A) = A

and L(A) is identified with the multiplier algebra M(A).
We identify K(A ⊗ K) with A ⊗ B0(K). The isomorphism sends θa⊗ξ,b⊗η to ab∗ ⊗ θξ,η. Here

θξ,η ∈ B0(K) is the finite-rank map φ 7→ ξ(η|φ). That this extends by continuity is a little subtle;
see [19]. Notice that if P ∈ B(K), then ι⊗ P ∈ L(A⊗K).

More generally, let E and F be Hilbert C∗-modules over A and B, respectively. We let E ⊗ F

be the exterior tensor product, which is a Hilbert C∗-module over A⊗B, with the inner-product

(x⊗ y|w ⊗ z) = (x|w)⊗ (y|z).

We then have an embedding L(E) ⊗ L(F ) → L(E ⊗ F ), and more generally, an embedding of
L(E1, E2)⊗ L(F1, F2) into L(E1 ⊗ F1, E2 ⊗ F2).
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As mentioned in the introduction, for a locally compact space G, we may identify C0(G)⊗K

with C0(G,K), the continuous functions fromG toK which vanish at infinity. Given α ∈ Cb(G,K),
a bounded continuous function from G to K, we define T ∈ L(C0(G), C0(G)⊗K) by

T (a) =
(

a(s)α(s)
)

s∈G
(a ∈ C0(G)).

A calculation shows that T is indeed adjointable: if x ∈ C0(G,K) then T ∗(x)(s) = (α(s)|x(s)) for
s ∈ G. Conversely, it is not too hard to show that any member of L(C0(G), C0(G)⊗K) arises in
this way.

This hence motivates the study of L(A,A⊗K) for an arbitrary C∗-algebra A. Fix a unit vector
ξ0 ∈ K, and regard K as the “row space” L(K,C), where K is a module over C. So ξ0 is identified
with the map η 7→ (ξ0|η). This is adjointable, with adjoint ξ∗0 : C → K; t 7→ tξ0. Let ι : A → A be
the identity, so, as above, we can form the tensor product ι⊗ξ0 ∈ L(A⊗K,A⊗C) = L(A⊗K,A).
This is simply the map a ⊗ η 7→ a(ξ0|η), and the adjoint is (ι ⊗ ξ0)

∗ = ι ⊗ ξ∗0 : a 7→ a ⊗ ξ0. It is
actually not particularly hard to show by direct calculation that these maps are contractive and
are mutual adjoints.

Then we have an embedding and a quotient map, both of which are adjointable, and hence
A-module maps:

L(A,A⊗K) → L(A⊗K) ∼= M(A⊗ B0(K)); α 7→ α(ι⊗ ξ0),

L(A⊗K) → L(A,A⊗K); T 7→ T (ι⊗ ξ0)
∗.

Hence we can identify L(A,A⊗K) as a complemented submodule of L(A⊗K). This follows, as
(ι⊗ ξ0)(ι⊗ ξ0)

∗ is the identity on A, and so the map T 7→ T (ι⊗ ξ0)
∗(ι⊗ ξ0) is a projection from

L(A⊗K) onto the image of L(A,A⊗K).
We shall use the notation that T ∈ L(A⊗K) is identified with T ∈ M(A ⊗ B0(K)). Suppose

that A is faithfully and non-degenerately represented on H . Then we can identify M(A⊗ B0(K))
with a subalgebra of B(H ⊗ K), and we shall continue to write T for the resulting operator in
B(H ⊗K). Similarly, we identify M(A) with {T ∈ B(H) : Ta, aT ∈ A (a ∈ A)}.

It will be useful to define some auxiliary maps. For ξ ∈ H , define eξ : A ⊗ K → H ⊗ K by
eξ(a ⊗ η) = a(ξ)⊗ η, and linearity and continuity. This makes sense, as given τ =

∑

n an ⊗ ηn ∈
A⊗K, we have that

‖eξ(τ)‖
2 =

∑

n,m

(an(ξ)|am(ξ))(ηn|ηm) =
(

ξ
∣

∣

∣

∑

n,m

a∗nam(ηn|ηm)ξ
)

=
(

ξ
∣

∣(τ |τ)ξ
)

≤ ‖ξ‖2‖τ‖2.

Thus eξ is bounded, with ‖eξ‖ ≤ ‖ξ‖. Notice that this calculation also shows that
(

eξ(τ)
∣

∣eη(σ)
)

=
(

ξ
∣

∣(τ |σ)η
)

(τ, σ ∈ A⊗K, ξ, η ∈ H),

where here (τ |σ) ∈ A ⊆ B(H).
The next two propositions show a tight connection between these ideas. In the following, we

could have defined α̃ using (iii). Notice that as A has a bounded approximate identity and is
non-degenerately represented on H , it follows that H = {a(ξ) : a ∈ A, ξ ∈ H}; this uses the Cohen
Factorisation Theorem (compare [5, Corollary 2.9.25] or [20, Theorem A.1]). However, we would
still have to prove that α̃ were well-defined.

Proposition 3.1. Let A be a C∗-algebra faithfully and non-degenerately represented on H, and
let K be a Hilbert space. Let α ∈ L(A,A⊗K) and T ∈ L(A ⊗K) be related by α = T (ι ⊗ ξ0)

∗,
where ξ0 ∈ K is a unit vector. (For example, if given α, we could define T = α(ι ⊗ ξ0)). Let
α̃ : H → H ⊗K be the operator given by α̃(ξ) = T (ξ ⊗ ξ0) for ξ ∈ H. Then:
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1. ‖α̃‖ = ‖α‖;

2. α̃∗α̃ = α∗α ∈ L(A) ∼= M(A), where we identify M(A) as a subalgebra of B(H).

3. α̃(a(ξ)) = eξα(a) for a ∈ A and ξ ∈ H; so α̃ depends only on α (and not ξ0 or T ).

Proof. Let Γ : K(A ⊗ K) → A ⊗ B0(K) ⊆ B(H ⊗ K) be the isomorphism, which satisfies
Γ(θa⊗ξ,b⊗η) = ab∗ ⊗ θξ,η for a, b ∈ A and ξ, η ∈ K. Thus, for c ∈ A, φ ∈ H and γ ∈ K,

Γ(θa⊗ξ,b⊗η)(c(φ)⊗ γ) = ab∗c(φ)⊗ ξ(η|γ).

Also, eφ(θa⊗ξ,b⊗η(c⊗γ)) = ab∗c(φ)⊗ ξ(η|γ). Let θ ∈ K(A⊗K), τ ∈ A⊗K and φ ∈ H . So we have
shown that eφ(θ(τ)) = Γ(θ)(eφ(τ)). By definition, we have that Γ(T θ) = TΓ(θ), and so

eφ
(

T θ(τ)
)

= Γ(T θ)
(

eφ(τ)
)

= TΓ(θ)
(

eφ(τ)
)

= Teφ
(

θ(τ)
)

.

By density, it follows that

eφ
(

T (τ)
)

= Teφ(τ) (τ ∈ A⊗K, φ ∈ H).

So immediately we see that for a ∈ A and ξ ∈ H ,

α̃
(

a(ξ)
)

= T (a(ξ)⊗ ξ0) = Teξ(a⊗ ξ0) = eξ
(

T (a⊗ ξ0)
)

= eξα(a),

as claimed. Then, for a, b ∈ A and ξ, η ∈ H ,
(

α̃(a(ξ))
∣

∣α̃(b(η))
)

=
(

eξα(a)
∣

∣eηα(b)
)

=
(

ξ
∣

∣(α(a)|α(b))η
)

=
(

ξ
∣

∣a∗α∗αbη
)

=
(

a(ξ)
∣

∣α∗αb(η)
)

.

It follows that α̃∗α̃ agrees with α∗α as operators on H . Then ‖α‖2 = ‖α∗α‖ = ‖α̃∗α̃‖ = ‖α̃‖2,
finishing the proof.

Proposition 3.2. Let B be a C∗-algebra and let φ : A → M(B) be a non-degenerate ∗-homomorphism.
Let α ∈ L(A,A ⊗ K) and T ∈ L(A ⊗ K) be related by α = T (ι ⊗ ξ0)

∗, where ξ0 ∈ K is a unit
vector. Let S = (φ ⊗ ι)T ∈ M(B ⊗ B0(K)), use this to induce S ∈ L(B ⊗ K), and then define
φ ∗ α = S(ι ⊗ ξ0)

∗ ∈ L(B,B ⊗K). Then:

1. (ι⊗ ξ)(φ ∗ α) = φ((ι⊗ ξ)α) for each ξ ∈ K;

2. φ ∗ α depends only upon α;

Proof. As before, let Γ : K(A ⊗ K) → A ⊗ B0(K) be the isomorphism, with strict extension Γ̃;
we use the same notation for the isomorphism K(B ⊗K) → B ⊗ B0(K). Let φ0 be the following
composition

K(A⊗K)
Γ

// A⊗ B0(K)
φ⊗ι

// M(B)⊗ B0(K) �

�

// M(B ⊗ B0(K))
Γ̃−1

// L(B ⊗K),

and let φ̃0 : L(A⊗K) → L(B ⊗K) be the strict extension. Thus S = φ̃0(T ). For ξ ∈ K, let

y = (ι⊗ ξ)φ̃0(T )(ι⊗ ξ0)
∗ ∈ M(B), x = (ι⊗ ξ)T (ι⊗ ξ0)

∗ ∈ M(A).

To show (i), we are required to show that φ(x) = y. As φ is non-degenerate, this is equivalent to
φ(xa)b = yφ(a)b for a ∈ A, b ∈ B, that is,

φ
(

(ι⊗ ξ)T (a⊗ ξ0)
)

b = (ι⊗ ξ)φ̃0(T )(φ(a)b⊗ ξ0) (a ∈ A, b ∈ B).
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Now, for a, c ∈ A, b ∈ B and η, γ ∈ K,

φ̃0

(

θa⊗ξ0,c⊗η

)

(b⊗ γ) = Γ−1
(

(φ⊗ ι)
(

ac∗ ⊗ θξ0,η
)

)

(b⊗ γ) = φ(ac∗)b⊗ ξ0(η|γ).

So also

φ̃0(T )
(

φ(ac∗)b⊗ ξ0
)

(η|γ) = φ̃0(T )φ̃0

(

θa⊗ξ0,c⊗η

)

(b⊗ γ) = φ̃0

(

θT (a⊗ξ0),c⊗η

)

(b⊗ γ).

It seems easier to use an approximation argument now. For ǫ > 0, we can find τ ∈ A⊙K with

τ =
∑

k

ak ⊗ ξk,
∥

∥T (a⊗ ξ0)− τ
∥

∥ ≤ ǫ.

Then ‖θT (a⊗ξ0),c⊗η − θτ,c⊗η‖ ≤ ǫ‖c‖‖η‖. Thus the previous paragraph shows that
∥

∥

∥
φ̃0(T )

(

φ(ac∗)b⊗ ξ0
)

(η|γ)−
∑

k

φ(akc
∗)b⊗ ξk(η|γ)

∥

∥

∥
≤ ǫ‖c‖‖η‖‖b‖‖γ‖,

Letting c run through an approximate identity for A, and choosing η = γ to be a unit vector shows
that ∥

∥

∥
φ̃0(T )

(

φ(a)b⊗ ξ0
)

−
∑

k

φ(ak)b⊗ ξk

∥

∥

∥
≤ ǫ‖b‖.

Thus also ∥

∥

∥
(ι⊗ ξ)φ̃0(T )

(

φ(a)b⊗ ξ0
)

−
∑

k

φ(ak)b⊗ (ξ|ξk)
∥

∥

∥
≤ ǫ‖b‖‖ξ‖.

However, similarly
∥

∥

∥
φ
(

(ι⊗ ξ)T (a⊗ ξ0)
)

b−
∑

k

φ(ak)b⊗ (ξ|ξk)
∥

∥

∥
≤ ǫ‖b‖‖ξ‖.

As ǫ > 0 was arbitrary, this completes the proof of (i). It is immediate that (i) implies (ii).

Proposition 3.3. With the notation of the previous proposition, suppose that B is non-degenerately
represented on H ⊗ H, and that for some V ∈ B(H ⊗ H), we have that φ(a) = V ∗(1 ⊗ a)V for
a ∈ A. Then (φ ∗ α)̃ = V ∗

12(1⊗ α̃)V .

Proof. Combining the two previous propositions, we see that (φ ∗α)̃ (ξ) = S(ξ⊗ ξ0) for ξ ∈ H⊗H .
Now, clearly S = V ∗

12T23V12 ∈ B(H ⊗H ⊗K), and so

(φ ∗ α)̃ (ξ) = V ∗
12T23

(

V (ξ)⊗ ξ0
)

= V ∗
12(1⊗ α̃)V (ξ) (ξ ∈ H ⊗H),

as required.

4 Left-multipliers

Let G be a locally compact quantum group. In this section, we prove a complete analogy of
Gilbert’s result, for represented, completely bounded left multipliers of L1(Ĝ).

Let K be a Hilbert space, and consider the Hilbert C∗-module C0(G)⊗K. We shall say that a
pair (α, β) of maps in L(C0(G), C0(G)⊗K) is invariant if

(1⊗ β)∗(∆ ∗ α) ∈ L(C0(G)⊗ C0(G)) = M(C0(G)⊗ C0(G))

9



is really in Cb(G) ⊗ 1. Here ∆ : C0(G) → M(C0(G) ⊗ C0(G)) is non-degenerate, and so we can
apply Proposition 3.2 to form ∆ ∗ α ∈ L(C0(G)⊗ C0(G), C0(G)⊗ C0(G)⊗K).

When G = G a locally compact group, then α, β ∈ Cb(G,K), and ∆ ∗ α ∈ Cb(G×G,K). For
ξ ∈ K and s, t ∈ G, we have

(

ξ
∣

∣(∆ ∗ α)(s, t)
)

= (ι⊗ ξ)(∆ ∗ α)(s, t) = ∆
(

(ι⊗ ξ)α
)

(s, t) =
(

(ι⊗ ξ)α
)

(st) =
(

ξ
∣

∣α(st)
)

.

So (∆∗α)(s, t) = α(st), as we might hope. Then (α, β) is an invariant pair if there exists f ∈ Cb(G)
with

(

β(t)
∣

∣α(st)
)

= f(s) (s, t ∈ G),

or equivalently, if f(st−1) = (β(t)|α(s)) for s, t ∈ G. This is clearly equivalent, though not identical,
to Gilbert’s condition, as outlined in the introduction. Proposition 4.1 below shows that it is no
surprise that the f ∈ Cb(G) appearing from (1⊗β)∗(∆∗α) = f ⊗1 should be the multiplier given
by the pair (α, β).

By Proposition 3.3, we see that, equivalently, (α, β) is invariant if

(1⊗ β̃)∗W ∗
12(1⊗ α̃)W ∈ Cb(G)⊗ 1,

as operators on B(L2(G)⊗ L2(G)). Here we use that (1⊗ β )̃ = 1⊗ β̃.

Proposition 4.1. Let α, β ∈ L(C0(G), C0(G)⊗K), and for x ∈ L∞(Ĝ), define L(x) = β̃∗(x⊗1)α̃.
Let a ∈ Cb(G). The following are equivalent:

1. L is the adjoint a completely bounded left multiplier on L1(Ĝ) represented by a;

2. the pair (α, β) is invariant, with (1⊗ β)∗(∆ ∗ α) = a⊗ 1.

Proof. Clearly L is a normal completely bounded map L∞(Ĝ) → B(L2(G)). As Ŵ = σW ∗σ, we
see that

(L⊗ ι)(Ŵ ) = (β̃∗ ⊗ 1)Ŵ13(α̃⊗ 1) = (β̃∗ ⊗ 1)σ13W
∗
13σ13(α̃⊗ 1)

= σ(1⊗ β̃∗σ)W ∗
13(1⊗ σα̃)σ = σ(1⊗ β̃∗)W ∗

12(1⊗ α̃)σ.

So, if (2) holds, then

(L⊗ ι)(Ŵ ) = σ(a⊗ 1)W ∗σ = (1⊗ a)Ŵ .

By the (left) version of Proposition 2.3, it follows that (1) holds.

Conversely, if (1) holds, then by Proposition 2.4, we have that (L⊗ ι)(Ŵ ) = (1 ⊗ a)Ŵ , which
shows that (2) holds.

Notice that we here assume that a ∈ Cb(G), while in Section 2.1 we could only ensure that
a ∈ L∞(G). The next result clarifies this.

Theorem 4.2. Let L∗ ∈ CB(L1(Ĝ)) and a ∈ L∞(G) be such that aλ̂(ω̂) = λ̂(L∗(ω̂)) for ω̂ ∈ L1(Ĝ).
There exists a Hilbert space K and an invariant pair (α, β) of maps in L(C0(G), C0(G)⊗K) such
that (α, β) induces L = (L∗)

∗ as in Proposition 4.1, and with ‖α‖‖β‖ = ‖L‖cb. Furthermore,
automatically a ∈ Cb(G), so L∗ is represented.

Proof. Let L = L∗
∗ ∈ CB(L∞(Ĝ)). As L is normal, we can find a Hilbert space K, a normal

∗-representation π : L∞(Ĝ) → B(K) and maps P,Q : L2(G) → K with ‖P‖‖Q‖ = ‖L‖cb, and
with

L(x) = Q∗π(x)P (x ∈ L∞(Ĝ)).
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This is, of course, the usual representation result for completely bounded maps, but as L is normal,
we can assume that π is normal: the details of this change are worked out in the proof of [10,
Theorem 2.4], for example.

Kustermans showed in [15, Corollary 4.3] that if B is a C∗-algebra and φ : L1
♯ (G) → M(B) is a

non-degenerate ∗-homomorphism (in the sense that {φ(ω)b : ω ∈ L1
♯ (G), b ∈ B} is linearly dense

in B), then there is a unitary U ∈ M(C0(G)⊗B) such that

φ(ω) = (ω ⊗ ι)(U) (ω ∈ L1
♯ (G)) (∆⊗ ι)(U) = U13U23.

The philosophy here is that φ extends to a ∗-homomorphism from the enveloping C∗-algebra
of L1

♯ (G), and so φ can be thought of as a representation of the (universal) quantum group Ĝ,
whereas U is a corepresentation of G; Kustermans’s result is that there is a correspondence between
representations of Ĝ and corepresentations of G.

As we may assume that π : L∞(Ĝ) → B(K) is unital, and L1
♯ (G) is dense in L1(G), it follows

that πλ : L1
♯ (G) → B(K) = M(B0(K)) is non-degenerate, and so we can find a representing unitary

U ∈ M(C0(G) ⊗ B0(K)). Notice that C0(G) ⊗ B0(K) acts non-degenerately on L2(G) ⊗K, and
so we may identify U with an operator in the von Neumann algebra L∞(G)⊗B(K).

Let ω ∈ L1
♯ (G) and let γ, δ ∈ K. Then

〈U, ω ⊗ ωγ,δ〉 =
(

γ
∣

∣(ω ⊗ ι)(U)δ
)

=
(

γ
∣

∣π(λ(ω))δ
)

= 〈λ(ω), π∗(ωγ,δ)〉

= 〈(ω ⊗ ι)(W ), π∗(ωγ,δ)〉 = 〈π((ω ⊗ ι)(W )), ωγ,δ〉

= 〈(ω ⊗ ι)(ι⊗ π)(W ), ωγ,δ〉 = 〈(ι⊗ π)(W ), ω ⊗ ωγ,δ〉.

Here π∗ : B(K)∗ → L1(Ĝ) is the pre-adjoint, which exists as π is normal. By density of L1
♯ (G) in

L1(G), we conclude that U = (ι ⊗ π)(W ) ∈ L∞(G)⊗B(K). Indeed, if we wished, we could define
U this way, and avoid using [15].

Also, we identify M(C0(G)⊗B0(K)) with L(C0(G)⊗K) and so U induces U ∈ L(C0(G)⊗K).
Similarly, W ∈ M(C0(G)⊗B0(L

2(G))) is associated to W ∈ L(C0(G)⊗L2(G)). Fix a unit vector
ξ0 ∈ L2(G) and define

α = U∗(1⊗ P )W(ι⊗ ξ0)
∗ ∈ L(C0(G), C0(G)⊗K),

β = U∗(1⊗Q)W(ι ⊗ ξ0)
∗ ∈ L(C0(G), C0(G)⊗K).

Notice that ‖α‖‖β‖ ≤ ‖P‖‖Q‖ = ‖L‖cb. By Proposition 3.1, α induces α̃ ∈ B(L2(G), L2(G)⊗K),

and similarly β induces β̃, and in fact, we have that

α̃(ξ) = U∗(1⊗ P )W (ξ ⊗ ξ0), β̃(ξ) = U∗(1⊗Q)W (ξ ⊗ ξ0) (ξ ∈ L2(G)).

We next show that (α, β) is invariant, for which we need to consider (1⊗ β̃)∗W ∗
12(1⊗ α̃)W . Let

ξ, η ∈ L2(G)⊗ L2(G), and we calculate that

(

(1⊗ β̃)ξ
∣

∣W ∗
12(1⊗ α̃)Wη

)

=
(

U∗
23(1⊗ 1⊗Q)W23(ξ ⊗ ξ0)

∣

∣W ∗
12U

∗
23(1⊗ 1⊗ P )W23W12(η ⊗ ξ0)

)

=
(

U∗
23(1⊗ 1⊗Q)W23(ξ ⊗ ξ0)

∣

∣W ∗
12U

∗
23W12(1⊗ 1⊗ P )W13W23(η ⊗ ξ0)

)

Here we used the Pentagonal relation W12W13W23 = W23W12. Now, if X ∈ L∞(G)⊗B(K), then
W ∗

12X23W12 = (∆ ⊗ ι)X , so we find that W ∗
12U

∗
23W12 = (∆ ⊗ ι)(U∗) = U∗

23U
∗
13 as ∆ is a ∗-
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homomorphism. Thus we get
(

(1⊗ β̃)ξ
∣

∣W ∗
12(1⊗ α̃)Wη

)

=
(

U∗
23(1⊗ 1⊗Q)W23(ξ ⊗ ξ0)

∣

∣U∗
23U

∗
13(1⊗ 1⊗ P )W13W23(η ⊗ ξ0)

)

=
(

W23(ξ ⊗ ξ0)
∣

∣(1⊗ 1⊗Q∗)(ι⊗ π)(W ∗)13(1⊗ 1⊗ P )W13W23(η ⊗ ξ0)
)

=
(

W23(ξ ⊗ ξ0)
∣

∣(ι⊗ L)(W ∗)13W13W23(η ⊗ ξ0)
)

By Proposition 2.4, (L⊗ ι)(Ŵ ) = (1⊗ a)Ŵ . Equivalently, we have (ι⊗ L)(W ∗) = (a⊗ 1)W ∗, so
we get

(

(1⊗ β̃)ξ
∣

∣W ∗
12(1⊗ α̃)Wη

)

=
(

W23(ξ ⊗ ξ0)
∣

∣(a⊗ 1⊗ 1)W ∗
13W13W23(η ⊗ ξ0)

)

=
(

ξ
∣

∣(a⊗ 1)η
)

.

Thus (α, β) is invariant, and induces a; in particular, we must have that a ∈ Cb(G). So by

Proposition 4.1, if L∗
0(x) = β̃∗(x ⊗ 1)α̃ for x ∈ L∞(Ĝ), then L∗

0 is normal, maps into L∞(Ĝ), and

the pre-adjoint L0 satisfies λ̂(L0(ω̂)) = aλ̂(ω̂) for ω̂ ∈ L1(Ĝ). As λ̂ injects, it follows that L0 = L∗,
as required.

5 Approaches to right multipliers

In the previous section, we studied represented completely bounded left multipliers. There are a
number of ways to deal with right multipliers:

• Directly try to generalise the proof of Proposition 4.1. We do this in Proposition 5.1. However,
there are no a priori links with L(C0(G), C0(G)⊗K).

• Use the unitary antipode to convert right multipliers into left multipliers. We do this in
Lemma 5.2, which gives formulas suggestive of those in Proposition 5.1. We are also now in
a position to use [12, Corollary 4.4] to show that every completely bounded left multiplier is
represented.

• Use the opposite algebra L1(Ĝop), as a right multiplier of L1(Ĝ) is a left multiplier of L1(Ĝop).
However, by the duality theory, this leads us to consider the algebra C0(G

′). We find a way to
move back to C0(G) which gives exactly the formulas we were led to consider by Lemma 5.2.
Further, we find that a pair (α, β) in L(C0(G), C0(G) ⊗ K) is invariant if and only if (β, α)
is invariant. This “swap” operation (α, β) 7→ (β, α) induces a natural map L∗ 7→ L†

∗ of left
multipliers, see Proposition 5.8.

• To make links with [15], we consider a “coordinate” approach in Section 5.2 which leads to
Theorem 5.9 which, in particular, allows us to show that the map (α, β) 7→ (β, α) is the
antipode (in a technical sense).

Proposition 5.1. Let P,Q ∈ B(L2(G), L2(G)⊗K), and define a map R : L∞(Ĝ) → B(L2(G)) by

R(x) = P ∗(x⊗ 1)Q for x ∈ L∞(Ĝ). Let a ∈ Cb(G). The following are equivalent:

1. R is the adjoint of a completely bounded right multiplier of L1(Ĝ) which is represented by a;

2. (1⊗Q∗)W12(1⊗ P )W ∗ = a∗ ⊗ 1.

Proof. As in the proof of Proposition 4.1,

(R⊗ ι)(Ŵ ) = σ(1⊗ P ∗)W ∗
12(1⊗Q)σ.
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Thus, if (i) holds, then by Proposition 2.4,

σ(1⊗ P ∗)W ∗
12(1⊗Q)σ = σW ∗(a⊗ 1)σ.

Taking the adjoint gives (ii). The converse follows from Proposition 2.3.

Compared to Proposition 4.1, we have swapped W with W ∗. As such, it’s not immediately
clear how to relate P and Q to maps in L(C0(G), C0(G)⊗K).

Another approach to right multipliers is to use the unitary antipode κ̂ to convert the problem
to studying left multipliers, which follows, as κ̂∗ is anti-multiplicative on L1(Ĝ).

Lemma 5.2. Let R∗ : L1(Ĝ) → L1(Ĝ) be a right multiplier, and defined L∗ = κ̂∗R∗κ̂∗, a left
multiplier. Then:

1. R∗ is completely bounded if and only if L∗ is;

2. if R∗ is represented by a ∈ Cb(G), then L∗ is represented by κ(a) ∈ Cb(G).

Proof. For (i), suppose first that R∗ is completely bounded, so that R ∈ CB(L∞(Ĝ)). For x ∈

L∞(Ĝ), we have that κ̂(x) = Jx∗J , and so

L(x) = κ̂Rκ̂(x) = JR(Jx∗J)∗J (x ∈ L∞(Ĝ)).

As R is completely bounded, it admits a dilation– compare with the proof of Theorem 4.2 above,
but here we will assume that the normal representation π is an amplification (as we may, see [24,
Chapter IV, Theorem 5.5] for example). So there exists a Hilbert space H and bounded maps

U, V : L2(G) → H ⊗ L2(G) such that R(x) = V ∗(1⊗ x)U for x ∈ L∞(Ĝ). Thus

L(x) = JU∗(1⊗ J)(1⊗ x)(1⊗ J)V J (x ∈ L∞(Ĝ)),

showing that L, and hence also L∗, are completely bounded. The converse follows similarly.
For (ii), let ω̂ ∈ L1(Ĝ), so that

λ̂(L∗(ω̂)) = κλ̂
(

R∗κ̂∗(ω̂)
)

= κ
(

λ̂(κ̂∗(ω̂))a
)

= κ(a)κλ̂
(

κ̂∗(ω̂)
)

= κ(a)λ̂(ω̂),

using that κλ̂ = λ̂κ̂∗. Hence L∗ is represented by κ(a), as required.

Thus, if R∗ is a completely bounded right multiplier which is represented, then L∗ = κ̂∗R∗κ̂∗ is
a represented left multiplier, and hence admits an invariant pair (α, β) in L(C0(G), C0(G) ⊗K).

Indeed, for x ∈ L∞(Ĝ), we have that L(x) = β̃∗(x⊗ 1)α̃, so that

R(x) = κ̂Lκ̂(x) = JL(κ̂(x))∗J = Jα̃∗(κ̂(x)∗ ⊗ 1)β̃J = Jα̃∗(JxJ ⊗ 1)β̃J

= Jα̃∗(J ⊗ JK)(x⊗ 1)(J ⊗ JK)β̃J.

Here JK is some involution on K: a conjugate linear isometry with J2
K = 1 (we can always find

such a map: just write K as ℓ2(I) for some index set I). This gives one way to link the maps P
and Q appearing in Proposition 5.1 above to maps α, β in L(C0(G), C0(G) ⊗ K). Furthermore,
the map (J ⊗ JK)α̃J will appear (in slightly different context) below in Lemma 5.4.

The following is an improvement upon [12, Corollary 4.4], in that we can show that every left
or right multiplier is represented by an element of Cb(G), and not just L∞(G).

Proposition 5.3. Any left or right completely bounded multiplier of L1(Ĝ) is represented by an
element of Cb(G).
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Proof. Let R∗ be a completely bounded right multiplier of L1(Ĝ), and choose x ∈ L∞(G′) by

Theorem 2.2 (that is, using [12]) so that ρ̂(ω̂)x = ρ̂(R∗(ω̂)) for ω̂ ∈ L1(Ĝ). By the definition of ρ̂,

we see that λ̂(ω̂)JĴxĴJ = λ̂(R∗(ω̂)) for each ω̂ ∈ L1(Ĝ). Set b = JĴxĴJ , and let L∗ = κ̂∗R∗κ̂∗ so

by (the proof of) Lemma 5.2, L∗ is a completely bounded left multiplier with κ(b)λ̂(ω̂) = λ̂(L∗(ω̂))

for each ω̂ ∈ L1(Ĝ). From Theorem 4.2, it follows that κ(b) ∈ Cb(G), and so also b ∈ Cb(G).
Similarly, using the unitary antipode, a similar argument gives the result for completely bounded
left multipliers.

5.1 Using the opposite algebra

Recall the definition of the opposite quantum group Ĝop from Section 2. Given a completely
bounded right multiplier R∗ of L1(Ĝ), write Rop

∗ for R∗ considered as a map on L1(Ĝop), so that
Rop

∗ is a completely bounded left multiplier.
We now know that Rop

∗ is represented, say by JbJ ∈ Cb(G′) = JCb(G)J . By Theorem 4.2, we
can find α′, β ′ ∈ L(C0(G

′), C0(G
′)⊗K) such that the pair (α′, β ′) is invariant with respect to JbJ ,

that is, (1⊗ β ′)∗(∆′ ∗ α′) = JbJ ⊗ 1, and such that R(x) = β̃ ′∗(x⊗ 1)α̃′ for x ∈ L∞(G).

Recall the isomorphism Φ : C0(G
′) → C0(G); a 7→ ĴJaJĴ . Given α′ ∈ L(C0(G

′), C0(G
′)⊗K),

we notice that (Φ ⊗ ι)α′Φ−1 is in L(C0(G), C0(G) ⊗ K). However, this isomorphism does not
interact well with forming ∆∗α or α̃ (for example, we get nothing like Lemma 5.5 below). Rather,
we study another bijection between L(C0(G), C0(G)⊗K) and L(C0(G

′), C0(G
′)⊗K) which comes

at the cost of choosing an involution JK on K, which the bijection will depend upon. However,
the results below show that, as far as multipliers are concerned, there is no dependence upon JK .
From now on, fix some involution JK on K.

Lemma 5.4. Define an anti-linear isomorphism θ : C0(G
′) → C0(G); a 7→ JaJ . For α′ ∈

L(C0(G
′), C0(G

′) ⊗ K), the map α = (θ ⊗ JK)α
′θ−1 is in L(C0(G), C0(G) ⊗ K). Furthermore,

we have that α̃ = (J ⊗ JK)α̃
′J .

Proof. First check that for τ, σ ∈ C0(G)⊗K, we have that

(

(θ ⊗ JK)τ
∣

∣(θ ⊗ JK)σ
)

= J(τ |σ)J.

Then, for a, b ∈ C0(G),

(

α(a)
∣

∣α(b)
)

= J
(

α′(JaJ)
∣

∣α′(JbJ)
)

J = a∗Jα′∗α′Jb,

where here α′∗α′ ∈ Cb(G′), and so Jα′∗α′J ∈ Cb(G). It follows that α is well-defined and bounded.
We can similarly show that α∗ = θα′∗(θ−1 ⊗ JK), so in particular, α is adjointable.

Let a ∈ C0(G), ξ ∈ L2(G) and η ∈ K. With reference to Proposition 3.1, we have that
eξ(θ ⊗ JK)(a⊗ η) = JaJξ ⊗ Jk(η) = (J ⊗ Jk)eJξ(a⊗ η). It follows that

α̃(aξ) = eξ(θ ⊗ JK)α
′θ−1(a) = (J ⊗ JK)eJξα

′(JaJ) = (J ⊗ JK)α̃
′(Jaξ),

and so α̃ = (J ⊗ JK)α̃
′J .

Lemma 5.5. Let α′, β ′ ∈ L(C0(G
′), C0(G

′) ⊗K) and α, β ∈ L(C0(G), C0(G) ⊗K) be associated
as in the previous lemma. Then the pair (α′, β ′) is invariant with respect to JbJ ∈ Cb(G′) if and
only if the pair (α, β) is invariant with respect to b ∈ Cb(G).
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Proof. We have that

(∆′ ∗ α)̃ = (W ′)∗12(1⊗ α̃′)W ′

= (J ⊗ J ⊗ JK)W
∗
12(J ⊗ J ⊗ JK)(J ⊗ J ⊗ JK)(1⊗ α̃)(J ⊗ J)(J ⊗ J)W (J ⊗ J)

= (J ⊗ J ⊗ JK)W
∗
12(1⊗ α̃)W (J ⊗ J) = (J ⊗ J ⊗ JK)(∆ ∗ α)̃ (J ⊗ J).

Hence (α′, β ′) being invariant with respect to JbJ is equivalent to

JbJ ⊗ 1 = (1⊗ β̃ ′∗)(J ⊗ J ⊗ JK)(∆ ∗ α)̃ (J ⊗ J)

= (J ⊗ J)(1⊗ β̃∗)(∆ ∗ α)̃ (J ⊗ J).

By applying J ⊗ J to both sides, this is equivalent to (α, β) being invariant with respect to b, as
claimed.

For x ∈ L∞(G), we have that R(x) = β̃ ′∗(x⊗ 1)α̃′. By using Lemma 5.4, we see that

R(x) = Jβ̃∗(JxJ ⊗ 1)α̃J = κ̂
(

α̃∗(Jx∗J ⊗ 1)β̃
)

= κ̂
(

α̃∗(κ̂(x)⊗ 1)β̃
)

(x ∈ L∞(Ĝ)).

So to make links with Lemma 5.2, we are led to look at the pair (β, α).

Proposition 5.6. Let (α, β) be an invariant pair in L(C0(G), C0(G) ⊗ K), and let (α′, β ′) be

the associated invariant pair in L(C0(G
′), C0(G

′) ⊗K). Let Rop
∗ be the left multiplier of L1(Ĝop)

induced by (α′, β ′), and let R∗ (a right multiplier of L1(Ĝ)) be represented by a ∈ Cb(G). Then
(β, α) is invariant with respect to κ(a).

Proof. Form Rop
∗ using (α′, β ′), so that R∗ is a completely bounded right multiplier of L1(G).

By Proposition 5.3, R∗ is represented, say by a ∈ Cb(G). Let L∗ = κ̂∗R∗κ̂∗, so by Lemma 5.2,

L∗ is a left multiplier represented by κ(a). For x ∈ L∞(Ĝ), we have that κ̂Lκ̂(x) = R(x) =

κ̂
(

α̃∗(κ̂(x) ⊗ 1)β̃
)

, using the above calculation. Hence L(x) = α̃∗(x ⊗ 1)β̃. By Proposition 4.1, it
follows that (β, α) is invariant with respect to κ(a).

We now show what happens with the induced left multipliers of L1(Ĝ), without reference to

L1(Ĝop). We first need a lemma: remember that λ̂op is the homomorphism L1(Ĝop) → C0(G
′).

Lemma 5.7. For ω̂ ∈ L1(Ĝ), we have that λ̂op(ω̂) = JĴλ̂(ω̂∗)∗ĴJ .

Proof. From [17, Section 4], we have that W op = (Ĵ ⊗ Ĵ)W (Ĵ ⊗ Ĵ), and so by duality, Ŵ op =

(J ⊗ J)Ŵ (J ⊗ J). For ω̂ = ω̂ξ0,η0 ∈ L1(Ĝ), we have that

〈x, ω̂Jξ0,Jη0〉 = (Jξ0|xJη0) = (η0|Jx
∗Jξ0) = 〈κ̂(x), ω̂∗〉 (x ∈ L∞(Ĝ)).

Thus, for ξ, η ∈ L2(G), we have

(

ξ
∣

∣λ̂op(ω̂)η
)

=
(

ξ
∣

∣(ω̂ ⊗ ι)(Ŵ op)η
)

=
(

ξ0 ⊗ ξ
∣

∣(J ⊗ J)Ŵ (J ⊗ J)(η0 ⊗ η)
)

=
(

Ŵ (Jη0 ⊗ Jη)
∣

∣Jξ0 ⊗ Jξ
)

=
(

Jξ0 ⊗ Jξ
∣

∣Ŵ (Jη0 ⊗ Jη)
)

=
(

Jξ
∣

∣(ω̂Jξ0,Jη0 ⊗ ι)(Ŵ )Jη
)

=
(

Jξ
∣

∣λ̂(κ̂∗(ω̂∗))Jη
)

=
(

κλ̂(ω̂∗)Jη
∣

∣Jξ
)

=
(

Ĵ λ̂(ω̂∗)∗ĴJη
∣

∣Jξ
)

=
(

ĴJξ
∣

∣λ̂(ω̂∗)∗ĴJη
)

.

Thus λ̂op(ω̂) = JĴλ̂(ω̂∗)∗ĴJ .
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Given a left multiplier L∗ of L1(Ĝ) define

L†
∗(ω̂) = L∗(ω̂

∗)∗ (ω̂ ∈ L1(G)).

For ω̂ ∈ L1(Ĝ), recall that ω̂∗ ∈ L1(Ĝ) satisfies 〈x, ω̂∗〉 = 〈x∗, ω̂〉 for x ∈ L∞(Ĝ). As the coproduct

∆ is a ∗-homomorphism, it is easy to see that L1(Ĝ) → L1(Ĝ); ω̂ 7→ ω̂∗ is a conjugate-linear algebra
homomorphism. It follows that L†

∗ is a left multiplier; completely bounded if L∗ is (compare with
the proof of Lemma 5.2). Similarly, we define R†

∗ for a right multiplier.

Proposition 5.8. For L∗ ∈ M l
cb(L

1(G)), let L∗ be given by an invariant pair (α, β). Then the
invariant pair (β, α) induces the left multiplier L†

∗.

Proof. Let (α, β) be invariant with respect to b ∈ Cb(G), and let (β, α) be invariant with respect

to κ(a). Thus (β ′, α′) is invariant with respect to Jκ(a)J = JĴa∗ĴJ . Let T op
∗ be the associated

left multiplier of L1(Ĝop), and let T∗ be the associated right multiplier of L1(Ĝ). Then, as in
Proposition 5.6, we have that

T (x) = (α̃′)∗(x⊗ 1)β̃ ′ = Jα̃∗(JxJ ⊗ 1)β̃J = κ̂Lκ̂(x) (x ∈ L∞(Ĝ)).

It follows that

λ̂op(κ̂∗L∗κ̂∗(ω̂)) = λ̂op(T op
∗ (ω̂)) = JĴa∗ĴJλ̂op(ω̂) (ω̂ ∈ L1(Ĝ)).

Now, for ω̂ ∈ L1(Ĝ), by Lemma 5.7, we have that λ̂op(κ̂∗(ω̂)) = JĴλ̂(κ̂(ω̂∗))∗ĴJ = JĴκ(λ̂(ω̂∗))∗ĴJ =

Jλ̂(ω̂∗)J . For ω̂ ∈ L1(Ĝ), let σ̂ = κ̂∗(ω̂
∗), so also ω̂ = κ̂∗(σ̂

∗). Then

λ̂op(κ̂∗L∗κ̂∗(ω̂)) = Jλ̂(L∗κ̂∗(ω̂)
∗)J = Jλ̂(L†

∗κ̂∗(ω̂
∗))J = Jλ̂(L†

∗(σ̂))J,

and also
JĴa∗ĴJλ̂op(ω̂) = Jκ(a)Jλ̂op(κ̂∗(ω̂

∗)) = Jκ(a)JJλ̂(ω̂)J.

As these two are equal, we see that

λ̂(L†
∗(σ̂)) = κ(a)λ̂(σ̂) (σ̂ ∈ L1(Ĝ)).

Thus L†
∗ is represented by κ(a), which (β, α) is invariant with respect to, as required.

5.2 Taking a coordinate approach

We have shown that an invariant pair (α, β), say represented by b ∈ Cb(G), gives rise to another in-
variant pair (β, α), say represented by κ(a) ∈ Cb(G). In this section, we show that the relationship
between a and b is given by the (in general, unbounded) antipode S.

Let us recall from [18, Section 5.5] that MCI(C0(G)) is the collection of (xi)i∈I ⊆ M(C0(G))
such that

∑

i x
∗
ixi is strictly convergent in M(C0(G)). Similarly, define MRI(C0(G)) to be the

collection of those families (x∗
i )i∈I with (xi) ∈ MCI(C0(G)).

Let K be a Hilbert space, and let α ∈ L(C0(G), C0(G)⊗K). Let (ei) be an orthonormal basis
for K, and let αi = (ι ⊗ ei)α ∈ L(C0(G)) ∼= Cb(G) for each i. A simple calculation shows that
(ι ⊗ ei)

∗(ι ⊗ ei) = 1 ⊗ θei,ei ∈ L(C0(G) ⊗K), and so
∑

i(ι ⊗ ei)
∗(ι ⊗ ei) converges strictly to the

identity. Thus
∑

i α
∗
iαi converges strictly to α∗α, and so (αi) ∈ MCI(C0(G)). Furthermore, we

have that
α(a) =

∑

i

αia⊗ ei ∈ C0(G)⊗K (a ∈ C0(G)),
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with the sum converging in norm.
Similarly, from Proposition 3.2, we have that (∆ ∗ α)i = ∆(αi) for all i. Hence, a pair (α, β) is

invariant with respect to b ∈ Cb(G) precisely when
∑

i

(1⊗ β∗
i )∆(αi) = b⊗ 1 ∈ Cb(G)⊗ 1.

Theorem 5.9. For a, b ∈ Cb(G), the following are equivalent:

1. there is R∗ ∈ M r
cb(L

1(Ĝ)) represented by a, with Rop
∗ being represented by JbJ ;

2. there is a pair (α, β) of maps in L(C0(G), C0(G) ⊗ K) which is invariant with respect to b,
and with (β, α) being invariant with respect to κ(a);

3. there is L∗ ∈ M l
cb(L

1(Ĝ)) represented by b ∈ Cb(G), with L†
∗ being represented by κ(a).

Furthermore, if these hold, then a ∈ D(S)∗ = D(S−1) = D(τ−i/2)
∗ and b = τ−i/2(a

∗) = ĴS−1(a)Ĵ .

Proof. By Proposition 5.6, (i) and (ii) are equivalent, and by Proposition 5.8, (ii) and (iii) are
equivalent.

We shall assume (ii). As (β, α) is invariant with respect to κ(a), applying the adjoint shows
that

∑

i

∆(β∗
i )(1⊗ αi) = ĴaĴ ⊗ 1 ∈ Cb(G)⊗ 1.

By [18, Corollary 5.34] (and, as we are working with Cb(G) and not C0(G) here, we need also to
look at [18, Remark 5.44]) it follows that κ(a∗) ∈ D(S) with Sκ(a∗) = b. Thus τ−i/2(a

∗) = b, as
claimed.

For each ω̂ ∈ L1(Ĝ), we have that λ̂(ω̂∗)∗ ∈ D(S) = D(τ−i/2) and S(λ̂(ω̂∗)∗) = λ̂(ω̂). Further-

more, {λ̂(ω̂∗)∗ : ω̂ ∈ L1(Ĝ)} forms a core for S (either as an operator on C0(G) or on L∞(G)).
These results follow easily from [18, Proposition 8.3] and [17, Proposition 2.4]. Combined with
the work of Kustermans in [16] on strict extensions of one-parameter groups on C∗-algebras, these
observations would give another way to show the above theorem. The proof of Lemma 5.7 can be
adapted to show that λ̂op(ω̂) = JĴS−1(λ̂(ω̂))ĴJ for ω̂ ∈ L1(Ĝ), and this could then be used to
argue purely at the level of multipliers, instead of with invariant pairs.

Notice that the “coordinate” approach is very close in spirit to how Vaes and Van Daele gave
a definition of a Hopf C∗-algebra in [28]. It would be interesting to explore this further, together
with the implicit link with Haagerup tensor products (which Spronk used extensively in his study
of the completely bounded multipliers of A(G) in [23]). Indeed, if one looks at the proof of [12,
Corollary 4.4], then there are two steps. Firstly, the adjoint of a right multiplier is extended from
L∞(G) to a map on B(L2(G)) with certain commutation properties (see [12, Proposition 4.3]) and
then an argument using the extended (or weak∗) Haagerup tensor product is used, [12, Proposi-
tion 3.2] (compare with [2, Theorem 4.2], where it is more explicit as to how the Haagerup tensor
product appears). Indeed, with this perspective, what we have done is to finesse where we can
take the elements in the extended Haagerup tensor product expansion (that is, from Cb(G) and
not L∞(G)). We note that [23, Corollary 5.6] shows that in the motivating example of A(G), we
can even work with wap(G) and not Cb(G): it’s unclear what the “quantum” analogue of this
would be.

We curiously get the following strengthening of [18, Corollary 5.34] (and [18, Remark 5.44])
where it is a hypothesis that there exists b ∈ Cb(G) with b ⊗ 1 =

∑

i(1 ⊗ pi)∆(qi), and the

conclusion is that b = S(a). To be careful, we now do not identify S with its strict closure.
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Corollary 5.10. Let a ∈ Cb(G) be such that for some (pi) ∈ MRI(C0(G)) and (qi) ∈ MCI(C0(G)),
we have that

a⊗ 1 =
∑

i

∆(pi)(1⊗ qi).

Let S be the strict closure of S on Cb(G). Then a ∈ D(S) and

S(a)⊗ 1 =
∑

i

(1⊗ pi)∆(qi).

Proof. Let (qi) and (p∗i ) induce, respectively, α and β in L(C0(G), C0(G) ⊗ ℓ2(I)), so that by
applying the adjoint, we see that (β, α) is invariant with respect to a∗. Then (α, β) is invariant
say with respect to b ∈ Cb(G). Thus

b⊗ 1 =
∑

i

(1⊗ β∗
i )∆(αi) =

∑

i

(1⊗ pi)∆(qi).

By [18, Remark 5.44], or from Theorem 5.9, it follows that a ∈ D(S) and S(a) = b, as required.

A slight subtly here is the following. Suppose that actually a ∈ C0(G), so that the above
theorem tells us that a ∈ D(S). However, this is seemingly not enough to ensure that a ∈ D(S)
(where S is considered as a densely defined operator on C0(G)). Indeed, using that S = κτ−i/2, by
[16, Proposition 2.15], we have that a ∈ D(S) if and only if S(a) = b ∈ C0(G) (as κ leaves C0(G)
invariant). It is not clear to us whether this is likely to be true or not.

We could have used this “coordinate” approach to L(C0(G), C0(G)⊗K) throughout. However,
this would have been much harder to motivate from Gilbert’s theorem. Furthermore, in Section 3
above, we used that L(C0(G), C0(G) ⊗ K) was a “slice” of L(C0(G) ⊗ K). This seemed like a
technical tool, but in the next two sections, we shall see how this viewpoint actually appears quite
natural and profitable.

6 Links with universal quantum groups

For a locally compact group G, we always have that B(G), the Fourier-Stieltjes algebra of G,
embeds into McbA(G). Furthermore, we can construct the maps α, β in the Gilbert representation
by using unitary representations of G.

An analogous result holds for quantum groups. Firstly, we consider the analogue of B(G).
Given a locally compact quantum group G, we can consider the Banach ∗-algebra L1

♯ (G), and

then take its universal enveloping C∗-algebra, say Cu
0 (Ĝ). In [15], it is shown that Cu

0 (Ĝ) admits
a coproduct, left and right invariant weights, and so forth, all of these objects interacting very
well with the natural quotient map π̂ : Cu

0 (Ĝ) → C0(Ĝ). Indeed, we call Cu
0 (Ĝ) the universal

quantum group of Ĝ, the essential difference with the reduced quantum group C0(Ĝ) being that the
invariant weights are no longer faithful. This is a generalisation of the difference between C∗(G)

and C∗
r (G) for a non-amenable locally compact group G. Then Cu

0 (Ĝ)∗ becomes a Banach algebra,

and π̂∗ : M(Ĝ) = C0(Ĝ)∗ → Cu
0 (Ĝ)∗ a homomorphism.

We showed in [6], adapting the argument given in [18, page 914], that Cu
0 (Ĝ)∗ embeds into

McbL
1(Ĝ). To be precise, let ι : L1(Ĝ) → Cu

0 (Ĝ)∗ be the natural inclusion, given by composing

the map L1(Ĝ) → C0(Ĝ)∗ with π̂∗. Then [6, Proposition 8.3] shows that ι(L1(Ĝ)) is an ideal in

Cu
0 (Ĝ)∗ and that the induced map Cu

0 (Ĝ)∗ → Mcb(L
1(Ĝ)) is an injection.
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If L1(Ĝ) has a bounded approximate identity (that is, Ĝ is coamenable) then Mcb(L
1(Ĝ)) =

Cu
0 (Ĝ)∗ = M(Ĝ). We remark that we don’t know if the converse is true or not. In particular,

in the commutative case, for a locally compact group, L1(G) always has a bounded approximate
identity, and so Mcb(L

1(G)) = M(G) (which is the classical Wendel’s Theorem). The following
result thus shows how measures in M(G) arise from invariant pairs in L(C∗

r (G), C∗
r (G)⊗K) for a

suitable Hilbert space K.

Theorem 6.1. There exists a Hilbert space K with an involution JK, and a unitary U ∈ L(C0(G)⊗

K) with the following property. For each µ ∈ Cu
0 (Ĝ)∗, say giving a multiplier (L∗, R∗) ∈ Mcb(L

1(Ĝ)),
there exist ξ0, η0 ∈ K with ‖ξ0‖‖η0‖ = ‖µ‖, and such that:

1. with α = U∗(ι⊗ ξ0)
∗ and β = U∗(ι⊗ η0)

∗, we have that (α, β) is an invariant pair which gives
L∗;

2. with γ = U∗(ι ⊗ JKη0)
∗ and δ = U∗(ι ⊗ JKξ0)

∗, we have that (γ, δ) is invariant, and gives
κ̂∗R∗κ̂∗ (and thus, using Section 5, gives R∗).

Proof. Let θ : Cu
0 (Ĝ) → B(K) be the universal representation. That is, for each state µ ∈ Cu

0 (Ĝ)∗,
let (Hµ, θµ, ξµ) be the cyclic GNS construction for µ, and let K =

⊕

µHµ with θ the direct sum
representation.

We next find our unitary U . Let λu : L1
♯ (G) → Cu

0 (Ĝ) be the natural map. As in the proof

of Theorem 4.2, using [15], as the map L1
♯ (G) → M(B0(K));ω 7→ θ(λu(ω)) is a non-degenerate

∗-representation, there is a unitary corepresentation U ∈ M(C0(G)⊗ B0(K)) with

θ(λu(ω)) = (ω ⊗ ι)(U) (ω ∈ L1
♯ (G)) (∆⊗ ι)(U) = U13U23.

Then U induces U ∈ L(C0(G)⊗K).

Actually, the unitary U is actually given by a “universal” unitary Û ∈ M(C0(G)⊗ Cu
0 (Ĝ)), by

which we mean satisfies U = (ι⊗ θ)(Û), see the proof of [15, Corollary 4.3]. Kustermans works on
the dual side in [15], but as explained on [15, Page 311], we can use biduality to recover results for

Cu
0 (Ĝ). In particular, Û induces the coproduct in the sense that

(π̂ ⊗ ι)
(

σ(∆̂u(y))
)

= Û(π̂(y)⊗ 1)Û∗ (y ∈ Cu
0 (Ĝ)).

Define (α, β) as in (i), where we choose ξ0 and η0 so that ωη0,ξ0 ◦ θ = µ. We then have that

α̃(ξ) = U∗(ξ ⊗ ξ0) and β̃(ξ) = U∗(ξ ⊗ η0), for ξ ∈ L2(G). Then

(1⊗ β̃∗)W ∗
12(1⊗ α̃)W = (ι⊗ ι⊗ ωη0,ξ0)

(

U23W
∗
12U

∗
23W12

)

= (ι⊗ ι⊗ ωη0,ξ0)
(

U23(∆⊗ ι)(U)∗
)

= (ι⊗ ι⊗ ωη0,ξ0)
(

U23U
∗
23U

∗
13

)

= (ι⊗ ι⊗ ωη0,ξ0)
(

U∗
13

)

∈ Cb(G)⊗ 1,

as U ∈ M(C0(G) ⊗ B0(K)), so the right slice of U is in M(C0(G)) = Cb(G). Thus (α, β) is an

invariant pair, inducing L′
∗ ∈ CB(L1(Ĝ)), say.

We wish to show that L′
∗ is given by left multiplication by µ. Let ω̂ = ω̂η1,ξ1 ∈ L1(Ĝ), so that

µι(ω̂) ∈ ι(L1(Ĝ)). Let ω ∈ L1
♯ (G), and set x = λ(ω) ∈ C0(Ĝ). Then π̂(λu(ω)) = x, so

〈x, ι−1
(

µι(ω̂)
)

〉 = 〈µι(ω̂), λu(ω)〉 = 〈µ⊗ ι(ω̂), ∆̂u(λu(ω))〉 = 〈ι(ω̂)⊗ µ, σ∆̂u(λu(ω))〉

= 〈ω̂ ⊗ µ, (π̂ ⊗ ι)(σ∆̂u(λu(ω)))〉 = 〈ω̂ ⊗ µ, Û(π̂(λu(ω))⊗ 1)Û∗〉

= 〈ω̂ ⊗ ωη0,ξ0, U(x⊗ 1)U∗〉 =
(

U∗(η1 ⊗ η0)
∣

∣(x⊗ 1)U∗(ξ1 ⊗ ξ0)
)

=
(

β̃(η1)
∣

∣(x⊗ 1)α̃(ξ1)
)

= 〈L(x), ω̂〉 = 〈x, L∗(ω̂)〉,
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as we hoped. By density, this holds for all x ∈ L∞(Ĝ), so that L′
∗ = L∗ as required to show (i).

We next define JK . By [15, Proposition 7.2], there is an anti-∗-automorphism κ̂u : Cu
0 (Ĝ) →

Cu
0 (Ĝ) which “lifts” κ̂, in the sense that π̂κ̂u = κ̂π̂. For each state µ ∈ Cu

0 (Ĝ)∗, let µ′ = κ̂∗
u(µ),

which is still a state, as κ∗
u is an anti-∗-automorphism. On each Hµ, (densely) define JK by

JK

(

θµ(a)ξµ
)

= θµ′(κ̂u(a
∗))ξµ′ (a ∈ Cu

0 (Ĝ)).

Then, for a ∈ Cu
0 (Ĝ), we have

∥

∥JK

(

θµ(a)ξµ
)
∥

∥

2
= 〈µ′, κ̂u(a)κ̂u(a

∗)〉 = 〈κ̂∗
u(µ), κ̂u(a

∗a)〉 = 〈µ, a∗a〉 =
∥

∥θµ(a)ξµ
∥

∥

2
.

Thus JK extends by linearity and continuity to all of K. Clearly JK is an involution. Then, for
a, b ∈ Cu

0 (Ĝ), we have

JKθ(a
∗)JKθµ(b)ξµ = JKθµ′

(

a∗κ̂u(b
∗)
)

ξµ′ = θµ
(

κ̂u(κ̂u(b)a)
)

ξµ

= θµ
(

κ̂u(a)b
)

ξµ = θ
(

κ̂u(a)
)

θµ(b)ξµ.

It follows that θκ̂u(a) = JKθ(a
∗)JK for each a ∈ Cu

0 (Ĝ).
Now define (γ, δ) as in (ii), so by the argument just given, (γ, δ) is an invariant pair which

induces the left multiplier given by multiplication by ωJKξ0,JKη0 ◦ θ ∈ Cu
0 (Ĝ)∗. Now, for x ∈ Cu

0 (Ĝ),

〈ωJKξ0,JKη0 ◦ θ, x〉 = (JKξ0|θ(x)JKη0) = (η0|JKθ(x)
∗JKξ0) = (η0|θ(κ̂u(x))ξ0) = 〈µ, κ̂u(x)〉.

Thus (γ, δ) gives the left multiplier induced by κ̂∗
u(µ). For ω̂ ∈ L1(Ĝ), we have that ι(ω̂)µ =

ι(R∗(ω̂)), and so

ι
(

κ̂∗R∗κ̂∗(ω̂)
)

= κ̂∗
uι
(

R∗κ̂∗(ω̂)
)

= κ̂∗
u

(

ι(κ̂∗(ω̂))µ
)

= κ̂∗
u(µ)ι(ω̂).

Thus (γ, δ) gives κ̂∗R∗κ̂∗(ω̂), showing (ii).

Consider further (γ, δ) as in (ii) above. By [15, Proposition 7.2] we have that (κ⊗ κ̂u)(Û) = Û .

As U = (ι⊗ θ)(Û) and θκ̂u(·) = JKθ(·)
∗JK , we see that

U = (κ⊗ θκ̂u)(Û) = (J ⊗ JK)U
∗(J ⊗ JK).

Now, we have that γ̃(ξ) = U∗(ξ ⊗ JKη0) for ξ ∈ L2(G). It follows that

(J ⊗ JK)γ̃(ξ) = U(Jξ ⊗ η0) (ξ ∈ L2(G)),

and a similar formula holds for δ̃. Thus γ̃ and δ̃ are given by right slices of U ; however, it is not
clear what, if any, meaning we can give to taking a right slice of U .

7 For two-sided multipliers

In this final section, we look at two-sided multipliers. Firstly, as we saw in Section 2.1, a two-sided
multiplier (L∗, R∗) ∈ Mcb(L

1(Ĝ)) gives rise to represented multipliers, represented by the same
a ∈ Cb(G).

Let (L∗, R∗) ∈ Mcb(L
1(Ĝ)), and recall the definitions of L†

∗ and R†
∗ from Section 5.1. For

ω̂, σ̂ ∈ L1(Ĝ) we have that

ω̂L†
∗(σ̂) =

(

ω̂∗L∗(σ̂
∗)
)∗

=
(

R∗(ω̂
∗)σ̂∗

)∗
= R†

∗(ω̂)σ̂.
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Thus the map (L∗, R∗) → (L†
∗, R

†
∗) is a conjugate-linear, period two algebra homomorphism from

Mcb(L
1(G)) to Mcb(L

1(G)). This map extends the map L1(Ĝ) → L1(Ĝ); ω̂ 7→ ω̂∗. The following is
easy to deduce from Theorem 5.9.

Proposition 7.1. The homomorphism Λ̂ : Mcb(L
1(Ĝ)) → Cb(G) maps into D(S−1) = D(S)∗.

Furthermore, for (L∗, R∗) ∈ Mcb(L
1(Ĝ)), we have that Λ̂(L†

∗, R
†
∗) = S(Λ̂(L∗, R∗)

∗).

Informally, this means that we can “see” the (unbounded) antipode at the level of two-sided

multipliers. From the remarks after Theorem 5.9 that the image of λ̂, and hence certainly the
image of Λ̂, is a strict core for S (as an operator on Cb(G)). We remark that in the classical case,
when G = G a locally compact group, then S is bounded, but McbA(G) need not be norm dense
in Cb(G) (but it is of course always strictly dense).

To finish, we make links with Section 6, and show how our consideration of L(A,A⊗K) as a
“slice” of L(A⊗K) is more than a technical tool.

Theorem 7.2. Let (α, β) be an invariant pair in L(C0(G), C0(G)⊗K). There exists a contraction
T ∈ L(C0(G)⊗K) and ξ0, η0 ∈ K with ‖ξ0‖ = ‖α‖ and ‖η0‖ = ‖β‖ such that α = T (ι⊗ ξ0)

∗ and
β = T (ι⊗ η0)

∗.

Proof. We shall suppose, by rescaling, that ‖α‖ = ‖β‖ ≤ 1. We first show that β∗α = ǫ1 for some

ǫ ∈ C with |ǫ| ≤ 1. Indeed, let L∗ ∈ CB(L1(Ĝ)) be the left multiplier induced by (α, β). Then

β∗α = β̃∗α̃ = β̃∗(1⊗ 1)α̃ = L(1). Now, for ω̂, σ̂ ∈ L1(Ĝ), we have that

〈∆(L(1)), ω̂ ⊗ σ̂〉 = 〈1, L∗(ω̂σ̂)〉 = 〈1, L∗(ω̂)σ̂〉 = 〈∆(1), L∗(ω̂)⊗ σ̂〉 = 〈L(1)⊗ 1, ω̂ ⊗ σ̂〉.

Thus ∆(L(1)) = L(1)⊗1. It follows from (the von Neumann version of) [18, Result 5.13] (see also
[1, Lemma 4.6]) that L(1) ∈ C1, as required. As ‖β∗α‖ ≤ 1, it follows that |ǫ| ≤ 1.

Suppose for now that |ǫ| < 1. Let ξ0 and ξ1 be orthogonal unit vectors in K. Choose δ with
|ǫ|2 + |δ|2 = 1; by our assumption, δ 6= 0. Set η0 = ǫξ0 + δξ1, and define

T = α(ι⊗ ξ0) + δ−1(β − ǫα)(ι⊗ ξ1).

Then T (ι ⊗ ξ0)
∗ = α and T (ι ⊗ η0)

∗ = ǫα + δδ−1(β − ǫα) = β, as required. It remains to show
that T is a contraction. It suffices to show that ‖T (τ)‖ ≤ ‖τ‖ for all τ ∈ A ⊗ K of the form
T = a⊗ ξ0 + b⊗ ξ1, for some a, b ∈ C0(G). Indeed, as the span of ξ0 and ξ1 agrees with the span
of ξ0 and η0, we may suppose that τ = a⊗ ξ0 + b⊗ η0. Then T (τ) = α(a) + β(b), so

‖T (τ)‖2 = (α∗α(a)|a) + (β∗α(a)|b) + (b|β∗α(a)) + (β∗β(b)|b)

≤ ‖a‖2 + ǫ(a|b) + ǫ(b|a) + ‖b‖2

= (a|a) + (ξ0|η0)(a|b) + (η0|ξ0)(b|a) + (b|b)

=
(

a⊗ ξ0 + b⊗ η0
∣

∣a⊗ ξ0 + b⊗ η0
)

= ‖τ‖2.

Thus T is a contraction.
If |ǫ| = 1, then α must be an isometry, for if ‖α(a)‖ < ‖a‖ for some a ∈ C0(G), then ‖a‖ >

‖β∗α(a)‖ = |ǫ|‖a‖, a contradiction. Similarly, β is an isometry. It follows that (α−ǫβ)∗(α−ǫβ) = 0,
showing that α = ǫβ. Hence in this case, we can simply set η0 = ǫξ0 and T = α(ι⊗ ξ0).

If α = T (ι⊗ ξ0)
∗ and β = T (ι⊗ η0)

∗, then the proof of Proposition 3.3 shows that

(1⊗ β)∗(∆ ∗ α) = (ι⊗ ι⊗ ωη0,ξ0)T
∗
23W

∗
12T23W12.

Hence invariance can be expressed directly at the level of T ; this of course is taking us very far from
our analogies with McbA(G) and Gilbert’s result. Let us finish by looking at two-sided multipliers.
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Theorem 7.3. Let (L∗, R∗) be a completely bounded two-sided multiplier of L1(Ĝ). There exists
a Hilbert space K with an involution JK, T ∈ L(C0(G)⊗K), and ξ0, η0 ∈ K such that:

1. with α = T (ι⊗ ξ0)
∗ and β = T (ι⊗ η0)

∗, we have that (α, β) is invariant, and induces L∗;

2. with γ = T (ι ⊗ JKη0)
∗ and δ = T (ι ⊗ JKξ0)

∗, we have that (γ, δ) is invariant, and induces
κ̂∗R∗κ̂∗ (and thus, using Section 5, induces R∗).

Proof. By rescaling, suppose that ‖(L,R)‖cb = 1, so that ‖L‖cb ≤ 1 and ‖R‖cb ≤ 1. Apply the
previous theorem to an invariant pair which induces L∗ to form T1 ∈ L(C0(G) ⊗ K1), say, with

ξ
(1)
0 , η

(1)
0 ∈ K1. Similarly, find T2 ∈ L(C0(G)⊗K2) and ξ

(2)
0 , η

(2)
0 ∈ K2 for κ̂∗R∗κ̂∗. Indeed, looking

at the proof of Theorem 7.2, we have that ξ
(1)
0 and ξ

(1)
1 are orthogonal unit vectors, and that

η
(1)
0 = ǫ1ξ

(1)
0 + γ1ξ

(1)
1 , where L(1) = ǫ11. We have a similar construction for κ̂∗R∗κ̂∗; in particular,

ǫ21 = κ̂Rκ̂(1) = R(1). Now, that (L∗, R∗) is a two-sided multiplier means that ω̂L∗(σ̂) = R∗(ω̂)σ̂

for ω̂, σ̂ ∈ L1(Ĝ). Equivalently, (ι⊗ L)∆̂ = (R⊗ ι)∆̂, and so

ǫ11⊗ 1 = 1⊗ L(1) = (ι⊗ L)∆̂(1) = (R ⊗ ι)∆̂(1) = R(1)⊗ 1 = ǫ21⊗ 1,

showing that ǫ1 = ǫ2. Remember that we have a free choice for γ1 and γ2, subject to the condition
that |γ1|

2 = 1− |ǫ1|
2 = 1− |ǫ2|

2 = |γ2|
2. We shall assume that γ1 = γ2.

Let {ξ
(1)
0 , ξ

(1)
1 }∪{ei} be an orthonormal basis for K1, and let {ξ

(2)
0 , ξ

(2)
1 }∪{fi} be an orthonormal

basis for K2. By embedding K1 or K2 in a larger Hilbert space, if necessary, we may suppose that
{ei} and {fi} are indexed by the same set. Let K = K1⊕K2, and let JK be the unique involution
on K which satisfies

JK

(

ξ
(1)
0

)

= η
(2)
0 , JK

(

ξ
(1)
1

)

= γ1ξ
(2)
0 − ǫ1ξ

(2)
1 , JK(ei) = fi.

For this to make sense, we need that for all a, b, c, d ∈ C, we have

ac+ bd =
(

aξ
(1)
0 + bξ

(1)
1

∣

∣cξ
(1)
0 + dξ

(1)
1

)

=
(

JK(cξ
(1)
0 + dξ

(1)
1 )

∣

∣JK(aξ
(1)
0 + bξ

(1)
1 )

)

=
(

cǫ1ξ
(2)
0 + cγ2ξ

(2)
1 + dγ1ξ

(2)
0 − deitǫ1ξ

(2)
1

∣

∣aǫ1ξ
(2)
0 + aγ2ξ

(2)
1 + bγ1ξ

(2)
0 − beitǫ1ξ

(2)
1

)

= (cǫ1 + dγ1)(aǫ1 + bγ1) + (cγ2 − de−itǫ1)(aγ2 − beitǫ1)

= ac(|ǫ1|
2 + |γ2|

2) + bd(|γ1|
2 + |ǫ1|

2) + cb(γ1 − γ2)ǫ1 + ad(γ1 − γ2)ǫ1.

This holds, as γ1 = γ2, ǫ1 = ǫ2, and |ǫ1|
2 + |γ1|

2 = 1. Notice that

JK

(

η
(1)
0

)

= ǫ1JK

(

ξ
(1)
0

)

+ γ1JK

(

ξ
(1)
1

)

= ǫ1η
(2)
0 + γ1

(

γ1ξ
(2)
0 − ǫ1ξ

(2)
1

)

= ǫ1ǫ1ξ
(2)
0 + ǫ1γ1ξ

(2)
0 + γ1

(

γ1ξ
(2)
0 − ǫ1ξ

(2)
1

)

= ξ
(2)
0 .

We have that C0(G)⊗K = C0(G)⊗K1 ⊕ C0(G)⊗K2 for the obvious isomorphism. Let

T =

(

T1 0
0 T2

)

∈ L(C0(G)⊗K).

Then, with α = T (ι⊗ ξ
(1)
0 )∗ = T1(ι⊗ ξ

(1)
0 )∗ and β = T (ι⊗η

(1)
0 )∗ = T1(ι⊗ ξ

(1)
0 )∗, we have that (α, β)

induces L∗. Also, with

γ = T (ι⊗ JKη
(1)
0 )∗ = T (ι⊗ ξ

(2)
0 )∗, δ = T (ι⊗ JKξ

(1)
0 )∗ = T (ι⊗ η

(2)
0 )∗,

we have that (γ, δ) induces κ̂∗R∗κ̂∗, as we hoped.
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While the formulas in the above theorem are nicely symmetric, the proof feels a little like a
“trick” (although it is far from being completely artificial, as we do use that L∗ and R∗ interact
as a two-sided multiplier). It is still our belief that there should be a more elegant approach to
two-sided multipliers.

In particular, let us finish with a question. Let (α, β) be an invariant pair, leading to a left
multiplier L. Can we “see”, at the level of the maps α and β, when there is a right multiplier R
making the pair (L,R) a two-sided multiplier?
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[3] M. Bożejko, G. Fendler, ‘Herz-Schur multipliers and completely bounded multipliers of the
Fourier algebra of a locally compact group’, Boll. Un. Mat. Ital. A (6) 2 (1984) 297–302.

[4] M. Cowling U. Haagerup, ‘Completely bounded multipliers of the Fourier algebra of a simple
Lie group of real rank one’, Invent. Math. 96 (1989) 507–549.

[5] H. G. Dales, Banach algebras and automatic continuity (Clarendon Press, Oxford, 2000).

[6] M. Daws, ‘Multipliers, Self-Induced and Dual Banach Algebras’, Dissertationes Math. 470
(2010) 62 pp.

[7] E. G. Effros Z.-J. Ruan, Operator spaces, London Mathematical Society Monographs. New
Series, 23. (The Clarendon Press, Oxford University Press, New York, 2000)

[8] M. Enock J.-M. Schwartz, Kac algebras and duality of locally compact groups (Springer-Verlag,
Berlin, 1992).
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