
SELF-DUAL PROJECTIVE TORIC VARIETIES

MATHIAS BOUREL, ALICIA DICKENSTEIN AND ALVARO RITTATORE

Abstract. Let T be a torus over an algebraically closed field k of charac-
teristic 0, and consider a projective T -module P(V ). We determine when a

projective toric subvariety X ⊂ P(V ) is self-dual, in terms of the configuration

of weights of V .

1. Introduction

The notion of duality of projective varieties, which appears in various branches of
mathematics, has been a subject of study since the beginnings of algebraic geometry
[12, 17]. Given an embedded projective variety X ⊂ P(V ), its dual variety X∗ is
the closure in the dual projective space P(V ∨) of the hyperplanes intersecting the
regular points of X non transversally.

A projective variety X is self-dual if it is isomorphic to its dual X∗ as embedded
projective varieties. The expected codimension of the dual variety is one. If this is
not the case, X is said to be defective. Self-dual varieties other than hypersurfaces
are defective varieties with “maximal” defect.

Let k be an algebraically closed field of characteristic 0. Let T be an algebraic
torus over k and V a finite dimensional T -module. In this paper we characterize
self-dual projective toric varieties X ⊂ P(V ) equivariantly embedded, in terms of
the combinatorics of the associated configuration of weights A (cf. Theorems 4.4
and 4.16) and in terms of the interaction of the space of relations of these weights
with the torus orbits (cf. Theorems 3.2 and 3.8). In particular, we show that X is
self-dual if and only if dimX = dimX∗ and the smallest linear subspaces containing
X = XA and X∗ have the same dimension, see Theorems 3.3 and 3.7.

Given a basis of eigenvectors of V and the configuration of weights of the torus
action on V , it is not difficult to check the equality of the dimensions of X and its
dual (for instance, by means of the combinatorial characterization of the tropical-
ization given in [8]). But the complete classification of defective projective toric
varieties in an equivariant embedding is open in full generality and involves a com-
plicated combinatorial problem. For smooth toric varieties this characterization
is obtained in [9]; the case of Q-factorial toric varieties is studied in [3]. For non
necessarily normal projective toric varieties of codimension two, a characterization
is given in [7]. This has been extended for codimensions three and four in [6].

For smooth projective varieties, a full list of self-dual varieties is known [10, 11,
17]. This list is indeed short and reduces in the case of toric varieties to hyper-
surfaces or Segre embeddings of P1 × Pm−1, for any m ≥ 2, under the assumption
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that dimX ≤ 2 dim P(V )
3 . This was expected to be the whole classification under the

validity of Hartshorne’s conjecture [10]. We prove that this is indeed the whole list
of self-dual smooth projective toric varieties in Theorem 5.8.

There exist some classical examples of self-dual non smooth varieties, as the
quartic Kummer surface. Popov and Tevelev gave new families of non smooth
self-dual varieties that come from actions of isotropy groups of complex symmetric
spaces on the projectivized nilpotent varieties of isotropy modules ([14], [15]). As
a consequence of Theorem 4.4, it is easy to construct new families of self-dual
projective toric varieties in terms of the Gale dual configuration (see Definition 4.1).

A big class of self-dual toric varieties are the toric varieties associated to Lawrence
configurations (see Definition 5.1), which contain the configurations associated to
the Segre embeddings. Lawrence constructions are well known in the domain of
geometric combinatorics, where they are one of the prominent tools to visualize the
geometry of higher dimensional polytopes (see [19, Chapter 6]); the commutative
algebraic properties of the associated toric ideals are studied in [2]. We show in
Section 5 other non Lawrence concrete examples for any dimension bigger than 2
and any codimension bigger than 1.

We also introduce the notion of strongly self-dual toric varieties (see Defini-
tion 6.1), which is not only related to the geometry of the configuration of weights
but also to number theoretic aspects. This concept is useful for the study of the
existence of rational multivariate hypergeometric functions [13, 4].

In Section 2 we gather some preliminary results about embedded projective toric
varieties and duality of projective varieties. In Section 3 we characterize self-dual
projective toric varieties in terms of the geometry of the action of the torus and
we give precise assumptions under which self-dual projective varieties are precisely
those with maximal defect. In Section 4 we give two (equivalent) combinatorial
characterizations of self-duality. In Section 5 we collect several new examples of
self-dual (non smooth) projective toric varieties. Finally, in Section 6 we study
strongly self-dual toric varieties.

Acknowledgments: We are grateful to Eduardo Cattani for his suggestion of the
statement of Theorem 4.4 and to Vic Reiner for his help in the statement of Theo-
rem 4.16. We also thank the referee for posing helpful questions.

2. Preliminaries

In this section we collect some well known results and useful observations on
projective toric varieties and duality of projective varieties.

2.1. Actions of tori. Let T be an algebraic torus over an algebraically closed field
k of characteristic 0. We denote by X (T ) the lattice of characters of T ; recall that
k[T ] =

⊕
λ∈X (T ) kλ. Any finite dimensional rational T -module V , dimV = n,

decomposes as a direct sum of irreducible representations

(1) V ∼=
n⊕
i=1

kvi,

with t · vi = λi(t)vi, λi ∈ X (T ), for all t ∈ T .
The action of T on V canonically induces an action T × P(V ) → P(V ) on the

associated projective space, given by t · [v] = [t · v], where [v] ∈ P(V ) denotes the
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class of v ∈ V \ {0}. Recall that an irreducible T -variety X is called toric if there
exists x0 ∈ X such that the orbit O(x0) is open in X.

Let A = {λ1, . . . , λn} (which may contain repeated elements) be the associated
set of weights of a finite dimensional T -module V — we call A the configuration
of weights associated to the T -module V . To any basis B = {v1, . . . , vn} ⊂ V of
eigenvectors we can associate a projective toric variety by

XV,B = O
([∑

vi
])
⊂ P(V ).

Denote by Tn−1 =
{∑

pivi ∈ P(V ) :
∏
pi 6= 0

}
. The dense orbit O

([∑
vi
])

in

XV,B coincides with the intersection XV,B ∩ Tn−1. Observe that since dimXV,B is
equal to dimO

([∑
vi
])

, it follows that dimXV,B is maximal among the dimensions

of the toric subvarieties of P(V ) — i.e. those of the form O([v]) for some [v] ∈ P(V ).
Based on the decomposition (1), in [12, Proposition II.5.1.5] it is proved that

any projective toric variety in an equivariant embedding is of type XV,B for some
T -module V and a basis of eigenvectors B = {v1, . . . , vn} of V , in the following
sense. Let U be a T -module and Y ⊂ P(U) a toric subvariety; then there exists A =
{λ1, . . . , λn} ⊂ X (T ) (with possible repetitions) and a T -equivariant linear injection
f : W :=

⊕n
i=1 kwi ↪→ U , t · wi = λi(t)wi, such that the induced equivariant

morphism f̂ : P(W ) ↪→ P(U) gives an isomorphism XW,B ∼= Y . Moreover, let W ′

be another T -module, B′ = {w′1, . . . , w′n} ⊂ W ′ a basis of eigenvectors of W ′ such
that t ·w′i = λi(t)w

′
i, and consider f ∈ HomT (W,W ′), given by f(wi) = w′i. Clearly,

f is an isomorphism of T -modules, and its induced morphism f̂ : P(W ) → P(W ′)

is an isomorphism such that f̂(XW,B) = XW ′,B′ .
In view of the preceding remark, the following notation makes sense.

Definition 2.1. The projective toric variety XA associated to the configuration of
weights A is defined as

XA = XV,B = O
([∑

vi
])
⊂ P(V ),

where V is a T -module with A as associated configuration of weights.

We can make a series of reductions on A and T , as in [8]. First, the following
easy lemma allows to reduce our problem to the case of a faithful representation.

Lemma 2.2. Given a T -module V of finite dimension and A the associated con-
figuration of weights, consider the torus T ′ = HomZ(〈A〉Z,k∗), where 〈A〉Z ⊂ X (T )
denotes the Z-submodule generated by A. The representation of T in GL(V ) induces
a faithful representation T ′ → GL(V ) which has the same set theoretical orbits in
V . �

We can then replace T by the torus T ′. It is easy to show that this is equivalent
to the fact that 〈A〉Z = X (T ), which we will assume from now on without loss of
generality.

Next, we enlarge the torus without affecting the action on P(V ); this will allow us
to easily translate affine relations to linear relations on the configuration of weights.
If we let the algebraic torus k∗×T act on V by (t0, t) ·v = t0(t ·v), then the actions
T ×P(V )→ P(V ) and (k∗×T )×P(V )→ P(V ) have the same set theoretical orbits.
More in general, let λ ∈ X (T ) and A′ = {λ+λ1, . . . , λ+λn}. Consider the T -action
on V given by t ·λ vi = (λ+λi)(t)vi. The actions · and ·λ coincide on P(V ), and the
corresponding variety XA′ coincides with XA. Hence, we can assume that there is
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a splitting of T = k∗ × S in such a way that (t0, s) · v = t0(s · v) for all v ∈ V ,
t0 ∈ k∗ and s ∈ S.

In fact, the previous reductions are comprised in the following more general
setting:

Lemma 2.3 ([12, Proposition II.5.1.2]). Consider T, T ′ two tori and two finite
configurations of n weights A = {λ1, . . . , λn} ⊂ X (T ), A′ = {λ′1, . . . , λ′n} ⊂ X (T ′).
Assume that there exists a Q-affine transformation ψ : X (T ) ⊗ Q → X (T ′) ⊗ Q
such that ψ(λi) = λ′i for all i = 1, . . . , n. Then XA = XA′ . �

Remark 2.4. (1) The dimension of the projective toric variety XA equals the
dimension of the affine span of A.
(2) Note that if A = {λ1, . . . , λn} is contained in a hyperplane off the origin, then
XA = P(V ) precisely when dimT = n and the elements in A are a basis of X (T ).
(3) If we denote by d the dimension of the affine span of A, thenXA is a hypersurface
if and only if n = d+ 2. In this situation, either A coincides with the set of vertices
of its convex hull Conv(A) ⊂ X (T ) ⊗ R, or Conv(A) contains only one element
λ ∈ A in its relative interior, and A \ {λ} is the set of vertices.

We end this paragraph by recalling some basic facts about the geometric struc-
ture of a toric variety XA.

Lemma 2.5 ([5]). Let A = {λ1, . . . , λn} ⊂ X (T ) be a configuration, where {λ1, . . . , λs}
is the set of vertices of Conv(A). Set Xi = Spec

(
k
[
Z+〈(λj − λi) : λj ∈ A〉

])
,

i = 1, . . . , s. Then Xi is an affine toric T -variety, and there exist T -equivariant
open immersions ϕi : Xi ↪→ XA, in such a way that

XA = ∪si=1ϕi(Xi) = ∪si=1 Spec
(
k
[
Z+〈λj − λi : λj ∈ A〉

])
.

In particular, XA is a normal variety if and only if Z+〈λj − λi : λj ∈ A〉 =(
R+〈λj − λi : λj ∈ A〉

)
∩ X (T ) for all i = 1, . . . , s.

Moreover, XA is a smooth variety if for all i = 1, . . . , s, there are exactly dimXA

edges of Conv(A) from λi, and the subset {λjh −λi : h = 1, . . . ,dimXA} is a basis
of X (T ), where λjh is the “first” point on an edge from λi. �

Proof. See for example [5, Appendix to Chapter 3]. �

2.2. Configurations in lattices, pyramids and projective joins. Let M ′ be
a lattice of rank d − 1. We let M = Z × M ′ and consider the k-vector space
Mk = M ⊗Z k. Recall that given a basis {µ1, . . . , µd} of M , we can identify M with
Zd and Mk with kd.

Definition 2.6. A lattice configuration A = {λ1, . . . , λn} ⊂M is a finite sequence
of lattice points. We say that a configuration A is regular if it is contained in a
hyperplane off the origin.

Remark 2.7. Let T be an algebraic torus, and let A = {λ1, . . . , λn} ⊂ X (T ) be a
configuration of weights. Then the following are equivalent:
(1) the configuration A is regular;
(2) up to affine isomorphism, A has the form λi = (1, λ′i) for all i = 1, . . . , n;
(3) there exists a splitting T = k∗ × S, such that under the identification X (T ) =
Z × X (S), the weights of A are of the form λi = (1, λ′i), i = 1, . . . , n. See also the
reductions made before Lemma 2.3.
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Definition 2.8. We denote by RA ⊂ Zn the lattice of affine relations among the
elements of A, that is (a1, . . . , an) belongs to RA if and only if

∑
i aiλi = 0 and∑

i ai = 0.

If A is regular, then RA coincides with the lattice of linear relations among the
elements of A. Note that these (affine or linear) relations among the elements of A
can be identified with the affine relations among the elements of the configuration
{λ′1, . . . , λ′n} ⊂ M ′. Thus, given any configuration {λ′1, . . . , λ′n} ⊂ M ′, we can
embed it in M = Z×M ′ via λ′ 7→ (1, λ′) so that affine dependencies are translated
to linear dependencies. In fact, the map λ′ 7→ (1, λ′) is an injective affine linear
map. More in general, we have the following definition.

Definition 2.9. We say that two configurations Ai ⊂ X (Ti), i = 1, 2, are affinely
equivalent if there exists an affine linear map ϕ : X (T1)⊗R→ X (T2)⊗R (defined
over Q) such that ϕ sends A1 bijectively to A2 (in particular, ϕ defines an injective
map from the affine span of A1 to the affine span of A2).

So, if A1 and A2 are affinely equivalent, they have the same cardinal and more-
over, RA1 = RA2 . Any property of a configuration A shared by all its affinely
equivalent configurations is called an affine invariant of A. In this terminology,
Lemma 2.3 asserts that the projective toric variety XA is an affine invariant of the
configuration A.

Definition 2.10. We say that A = {λ1, . . . , λn} ⊂M is a pyramid (or a pyramidal
configuration) if there exists an affine hyperplane H such that #{i / λi /∈ H} = 1,
i.e. if all points in A but one lie in H, or equivalently, if there exist an index
i0 ∈ {1, . . . , n} and an affine linear function ` : Mk → k such that `(λi) = 0 for all
i 6= i0 and `(λi0) = 1.

More precisely, we say that A is a k-pyramidal configuration if, after reordering,
there exists a splitting of the lattice as a direct sum of lattices M = M1⊕M2, with
A1 = {λ1, . . . , λr} a basis of M1 and A2 = {λr+1, . . . , λn} ⊂ M2, with A2 not a
pyramidal configuration of M2 ⊗Z k. In particular, the 0-pyramidal configurations
are the non pyramidal configurations.

Remark 2.11. Being a pyramid is clearly an affine invariant of a configuration. It
is straightforward to check that A is a non pyramidal configuration if and only if
there exists a relation (p1, . . . , pn) ∈ RA with

∏
i pi 6= 0, i.e. if RA is not contained

in a coordinate hyperplane.

Definition 2.12. Let V1, V2 two k-vector spaces of respective dimensions h1 +
1, h2 + 1 and X ⊂ P(V1), Y ⊂ P(V2) two projective varieties. Recall that the join
of X and Y is the projective variety

Jh1,h2
(X,Y ) =

{
[x : y] : [x] ∈ X, [y] ∈ Y

}
⊂ P(V1 × V2),

that is, the cone over the join Jh1,h2(X,Y ) is the product of the cones over X and
Y . We set

Jh1,h2
(∅, Y ) =

{
[0 : · · · : 0︸ ︷︷ ︸

h1+1

: y] ∈ P(V1 × V2), [y] ∈ Y
}
⊂ P(V1 × V2).

We define analogously Jh1,h2
(X, ∅).

We will denote Ph = P(kh+1). Observe that for any Y ⊂ Ph2 , Y ∼= Jh1,h2
(∅, Y ) ⊂

Ph1+h2+1 for any h1 ∈ N. If X and Y are non empty, then dim Jh1,h2
(X,Y ) =

dimX + dimY + 1.
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Remark that given Xi ⊂ P(Vi), dimVi = hi + 1, i = 1, 2, 3, then

Jh1+h2+1,h3

(
Jh1,h2

(X1, X2), X3

)
= Jh1,h2+h3+1

(
X1, Jh2,h3

(X2, X3)
)
⊂ P(V1×V2×V3).

We will denote this variety by Jh1,h2,h3
(X1, X2, X3).

Given two projective toric varieties XA1
and XA2

, then their join is also a toric
variety:

Remark 2.13. (1) Let T = S1×S2 be a splitting of T as a product of tori, and A1 =
{λ1, . . . , λk} ⊂ X (S1), A2 = {λk+1, . . . , λn} ⊂ X (S2) two regular configurations.

Let V1 =
⊕k

i=1 kvi, s1 · vi = λi(s1)vi for all s1 ∈ S1, and V2 =
⊕n

i=k+1 kvi,
s2 · vi = λi(s2)vi for all s2 ∈ S2. Then V = V1 × V2 is a T -module for the product
action (s1, s2) · (w1, w2) = (s1 · w1, s2 · w2). Moreover, V decomposes in simple

submodules as V =
⊕k

i=1 k(vi, 0)⊕
⊕n

i=k+1 k(0, vi).
Consider the Si-toric varieties XAi ⊂ P(Vi) (i = 1, 2) and let A = A1 × {0} ∪

{0}×A2 ⊂ X (S1)×X (S2) = X (T ). The projective toric variety associated to A is
then the join XA = Jk−1,n−k−1(XA1 , XA2).
(2) In the particular case when A ⊂ M = M1 ⊕ M2 is a k-pyramidal configu-
ration with A1 ⊂ M1, A2 ⊂ M2 as in Definition 2.10, let S1 = HomZ(M1,k∗),
S2 = HomZ(M2,k∗), T = S1 × S2 and V as above. We then have that XA =

Jk−1,n−k−1(P(V1), XA2
). That is, XA is the cone over XA2

with vertex P(V1).

Next, we describe the toric varieties associated to configurations with repeated
weights. Recall that a projective variety is called non degenerate if it is not con-
tained in a proper linear subspace.

Lemma 2.14. Let A = {λ1, . . . , λ1, . . . , λh, . . . , λh} ⊂ X (T ) be a configuration of
n weights, with λi appearing ki + 1 times and λi 6= λj if i 6= j. If we set k =∑
i ki = n−h, then the smallest linear subspace that contains XA has codimension

k.
In particular, XA is a non degenerate variety if and only if the configuration A

has no repeated elements.

Proof. Let B = {v1,1, . . . , v1,k1+1, . . . , vh,1, . . . , vh,kh+1} be a basis of associated
eigenvectors of V , with t · vi,ji = λi(t)vi,ji for all i = 1, . . . , h, ji = 1, . . . , ki + 1.

Consider a hyperplane Π ⊂ P
(⊕h

i=1

(⊕ki+1
ji=1 kvi,ji

))
of equation∑

i,j1,...,jh

ci,jixi,ji = 0,

where xi,ji are the coordinates in the basis B. Then XA ⊂ Π if and only if
[
t ·∑

vi,ji
]
⊂ Π for all t ∈ T . As

[
t ·
∑
vi,ji

]
=
[∑

λi(t)vi,ji
]
∈ Π, this is equivalent

to the equalities
h∑
i=1

ki+1∑
ji=1

ci,jiλi(t) = 0, t ∈ T.

Since {λ1, . . . , λh} are different weights, we deduce that
∑ki+1
ji=1 ci,ji = 0 for all

i = 1, . . . , h. It follows that the maximum codimension of a subspace that contains

XA is
∑h
i=1 ki = k.

On the other hand, clearly

XA ⊂ H =
{∑h

i=1 xi
∑ki+1
ji=1 vi,ji : xi ∈ k

}
,
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where the subspace H ⊂ P(V ) has codimension k. �

Lemma 2.15. Let A = {λ1, . . . , λ1, . . . , λh, . . . , λh} ⊂ X (T ) be a configuration of n
weights, with λi appearing ki + 1 times and λi 6= λj if i 6= j. Set k =

∑
i ki = n−h

and let

V =

h⊕
i=1

(⊕ki+1
ji=1 kvi,ji

)
=
( h⊕
i=1

(⊕ki
ji=1 kvi,ji

))
⊕
(⊕h

i=1 kvi,jki+1

)
,

with t · vi,ji = λi(t)vi,ji for all t ∈ T , i = 1, . . . h, ji = 1, . . . , ki + 1.

Let C = {λ1, . . . , λh} and consider XC ⊂ P
(⊕h

i=1 kvi,jki+1

)
. Then XA is iso-

morphic to the cone Jk−1,h−1(∅, XC) over the non degenerate projective toric variety
XC .

Proof. Let f : V → V the linear isomorphism defined by

f
(
(xi,ji)i=1,...,h,ji=1,...,ki , (xi,jki+1

)i=1,...,h

)
=(

(xi,ji − xi,jki+1
)i=1,...,h,ji=1,...,ki , (xi,jki+1

)i=1,...,h

)
.

The associated projective map clearly sends XA to the join Jk−1,h−1(∅, XC). �

In Proposition 2.17 below we combine Remark 2.13 and Lemmas 2.14 and 2.15,
in order to describe a projective toric variety as a cone over a non degenerate
projective toric variety that is not a cone (that is, the associated configuration is
non pyramidal).

Remark 2.16. Let X ⊂ Pn−1 be a non linear irreducible projective variety. Let
H ⊂ Pn−1 be the minimal linear subspace containing X, and let k be the codimen-
sion of H. Then H ∼= Pn−k−1 and if X ′ denotes the variety X as a subvariety of
H, then X = Jk−1,n−k−1(∅, X ′). Since X ′ is non degenerate, it follows that there
exists Y ⊂ Pm−1 such that X ′ = Jh−1,m−1

(
Ph−1, Y

)
, where n− k− 1 = h+m− 1.

Hence, we have an identification

X = Jk−1,h−1,m−1
(
∅,Ph−1, Y

)
.

In particular, dimX = h+ dimY .
Observe that Y ⊂ Pm−1 is a non degenerate subvariety. Moreover, we can

assume that Y is not a cone. In this case, we will denote Xnd = Y . If moreover X
is an equivariantly embedded toric variety, then we can choose Xnd as XC2 in the
following proposition.

When X is linear, X = H, m = 1 and Y is empty.

Proposition 2.17. Let A = {λ1, . . . , λ1, . . . , λh, . . . , λh} ⊂ X (T ) be a configuration
of n weights, with λi appearing ki + 1 times and λi 6= λj if i 6= j. Set k =∑
i ki = n − h and assume that C = {λ1, . . . , λh} is r-pyramidal. Then there

exists a splitting T = S1 × S2 such that, after reordering of the elements in C, it
holds that C = C1 ∪ C2, where C1 = {λ1, . . . , λr} is a basis of X (S1) and C2 =
{λr+1, . . . , λh} ⊂ X (S2) is a non pyramidal configuration, as in Definition 2.10.
Moreover, we have that

XA = Jk−1,r−1,h−r−1
(
∅,Pr−1, XC2

)
.

In the special case when XA is linear, C2 is empty.
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Proof. We set V =
⊕h

i=1

(⊕ki+1
ji=1 kvi,ji

)
, with t · vi,ji = λi(t)vi,ji for all t ∈ T ,

i = 1, . . . h, ji = 1, . . . , ki + 1, and wi = vi,ki+1.

Assume that C is a r-pyramidal configuration, and let XC ⊂ P
(⊕h

i=1 kwi
)
.

Then, there exists a splitting T = S1 × S2 such that, after reordering of C,
C1 = {λ1, . . . , λr} is a basis of X (S1) and C2 = {λr+1, . . . , λh} ⊂ X (S2) is a
non pyramidal configuration. Hence,

XC = Jr−1,h−r−1(Xidr , XC2
) = Jr−1,h−r−1

(
P
(
⊕ri=1kvi,ki+1

)
, XC2

)
.

By Lemma 2.15, we can assume that XA = Jk−1,h−1(∅, XC), and so

XA = Jk−1,h−1
(
∅, Jr−1,h−r−1(Xidr , XC2

)
)

=

Jk−1,h−1
(
∅, Jr−1,h−r−1

(
P
(
⊕ri=1kvi,ki+1

)
, XC2

))
=

Jk−1,r−1,h−r−1
(
∅,P
(
⊕ri=1kvi,ki+1

)
, XC2

)
,

as claimed. �

2.3. Dual of a projective toric variety. We recall the classical notion of the
dual variety of a projective variety.

Definition 2.18. Let V be a k-vector space of finite dimension and denote by
V ∨ its dual k-vector space. Let X ⊂ P(V ) be an irreducible projective variety.
The dual variety of X is defined as the closure of the hyperplanes intersecting the
regular part Xreg of X non transversally:

X∗ =
{

[f ] ∈ P(V ∨) : ∃x ∈ Xreg , f |TxX ≡ 0
}
⊂ P(V ∨).

As usual, TxX denotes the embedded tangent space of X at x ∈ Xreg.
Note that P(V )∗ = ∅. We set by convention, ∅∗ = P(V ∨).

Self-duality is not an intrinsic property, it depends on the projective embedding.
It can be proved that X∗ is an irreducible projective variety and that (X∗)∗ = X
(see for example [12]).

For a generic variety X ⊂ P(V ), codimX∗ = 1. If codimX∗ 6= 1, it is said that
X has defect codimX∗ − 1.

Definition 2.19. An irreducible projective variety X ⊂ P(V ) is called self-dual if
X is isomorphic to X∗ as embedded projective varieties, that is if there exists a
(necessarily linear) isomorphism ϕ : P(V )→ P(V ∨) such that ϕ(X) = X∗.

A self-dual projective variety X ⊂ Pn−1 of dimension d−1 < n−1 (i.e., which is
not a hypersurface) has positive defect n−d−1. The defect of the whole projective
space Pn−1 is n− 1.

Remark 2.20. Recall that given a basis B = {v1, . . . , vn} of V , we can identify
P(V ) with P(V ∨) by means of vi ! v∨i , where {v∨1 , . . . , v∨n} is the dual basis of
B. Then, via the choice of a basis of V , we can look at the dual variety inside the
same projective space. Self-duality can be reformulated as follows: X ⊂ P(V ) is
self-dual if there exists ϕ ∈ Aut

(
P(V )

)
such that ϕ(X) = X∗.

Let V be a T -module of finite dimension n over a d-dimensional torus T and
let A be the associated configuration of weights. In view of the considerations of
the preceding subsections, we assume from now on and without loss of generality,
that A = {λ1, . . . , λn} ⊂ X (T ) is a regular configuration, possibly with repeated
elements, such that 〈A〉Z = X (T ).
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The regularity of A implies in particular the existence of a splitting T = k∗ × S
as in Remark 2.7. Then, XA is a (d − 1)-dimensional subvariety of the (n − 1)-
dimensional projective space P(V ) and the lattice RA has rank n− d.

The dual variety X∗A has the following interpretation. For [ξ] ∈ P(V ∨), let
fξ ∈ k[T ], fξ(t) = ξ(t ·

∑
vi) ∈ k[T ]. Then X∗A is obtained as the closure of the set

of those [ξ] ∈ P(V ∨) such that there exists t ∈ T with fξ(t) =
∂fξ
∂ti

(t) = 0 for all
i = 1, . . . , n.

X∗A =

{
ξ ∈ P(V ∨) : ∃t ∈ T , fA(t) =

∂fξ
∂t1

(t) =
∂fξ
∂t2

(t) = · · · = ∂fξ
∂td

(t) = 0

}
.

In [8] a rational parameterization of the dual variety X∗A was obtained. We adapt
this result to our notations. As before, B = {v1, . . . , vn} is a basis of eigenvectors,
t · vi = λi(t)vi, and BA = {u1, . . . , un−d} is a basis of RA. We denote by RA,k the
(n − d)-dimensional k-vector space RA ⊗Z k and we identify P(V ) with P(V ∨) by
means of the chosen basis B of eigenvectors (and its dual basis) as in Remark 2.20.

Proposition 2.21 ([8, Proposition 4.1]). Let T = k∗ × S, V,A,B,BA as before.
Then the mapping P(RA,k)× S → P(V ) defined by(

[a1 : · · · : an], s) 7→ s ·
[∑

aivi
]

has image dense in X∗A. That is, the morphism

(k∗)n−d × T → P(V ) , (c, t) 7→ t ·
[∑

ciui
]

is a rational parameterization of X∗A, and

X∗A =
⋃

p∈P(RA,k)

O
(
p
)

= T · P(RA,k).
�

This last equality, which expresses the dual variety as the closure of the union of
the torus orbits of all the classes in the vector space of relations of the configuration
A, is the starting point of our classification of self-dual projective toric varieties,
which we describe in the sequel.

3. Characterization of self-duality in terms of orbits

Let T be a torus of dimension d and V a rational T -module of dimension n with
associated configuration of weights A = {λ1, . . . , λn}. We assume that 〈A〉Z = X (T )
and keep the notations of the preceding section. Given p =

[∑
pivi

]
∈ Tn−1, we

denote by mp

(
[
∑
xivi]

)
=
[∑

pixivi
]

the diagonal linear isomorphism defined by
p.

3.1. Non pyramidal configurations. In this subsection we characterize self-dual
projective toric varieties associated to a configuration of weights A which define a
non pyramidal configuration, in terms of the orbits of the torus action.

Note that the whole projective space P(V ) can be seen as a toric projective
variety associated to a dimV -pyramidal configuration and its dual variety is empty.
But we now show that for non pyramidal configurations the dimension of the dual
varietyX∗A cannot be smaller than the dimension of the toric varietyXA. This result
has been proved by Zak [18] for any non degenerate smooth projective variety.
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Lemma 3.1. If A is a non pyramidal configuration, then dimX∗A ≥ dimXA.

Proof. Indeed, if A is not a pyramidal configuration, then by Remark 2.11 we know
that there exists p =

∑
pivi ∈ RA,k such that pi 6= 0 for all i = 1, . . . , n. Hence, if

we identify P(V ) with P(V ∨) by means of the dual basis, then

X∗A = T · P(RA,k) ⊃ O([p]) = mp

(
O
([∑

i vi
]))

= mp(XA).

Since p ∈ Tn−1, we have that dimmp(XA) = dimXA and the result follows. �

We identify P(V ) with P(V ∨) by means of the chosen basis B of eigenvectors
(and its dual basis) as in Remark 2.20. The following is the main result of this
subsection.

Theorem 3.2. Let A ⊂ X (T ) be a non pyramidal configuration.
The following assertions are equivalent.

(1) XA is a self-dual projective variety.

(2) There exists p0 ∈ P(RA,k) ∩ Tn−1 such that P(RA,k) ⊂ O(p0).
(3) There exists p0 ∈ P(RA,k) ∩ Tn−1 such that X∗A = mp0(XA).

(4) For all q ∈ P(RA,k) ∩ Tn−1, P(RA,k) ⊂ O(q).
(5) For all q ∈ P(RA,k) ∩ Tn−1, X∗A = mq(XA).

Proof. We prove (1)⇒ (5) and (2)⇒ (4), the rest of the implications being trivial.
(1)⇒ (5): By Proposition 2.21,

X∗A =
⋃

p∈P(RA,k)

O(p) ⊃
⋃

p∈P(RA,k)∩Tn−1

O(p) ⊃ O(q) = mq(XA),

for all q ∈ P(RA,k) ∩ Tn−1. Since dimXA = dimX∗A, equality holds in the last
equation.

(2) ⇒ (4): Let p0 ∈ P(RA,k) ∩ Tn−1 be such that P(RA,k) ⊂ O(p0). If q ∈
P(RA,k) ∩ Tn−1, then q ∈ O(p0) ∩ Tn−1 = O(p0). Then, O(q) = O(p0) and the
result follows. �

The equivalence between (1) and (5) in Theorem 3.2 implies that as soon as the
dual of an equivariantly embedded projective toric variety of the form XA has the
same dimension of the variety, there exists a linear isomorphism between them.

Theorem 3.3. Let A ⊂ X (T ) be a configuration of weights which is non pyramidal.
Then XA is self-dual if and only if dimXA = dimX∗A. �

This result is not true in general for projective toric varieties not equivariantly
embedded, even for rational planar curves (for which the dual is again a curve, but
not necessarily isomorphic).

3.2. The general case. We now address the complete characterization of self-
dual projective toric varieties associated to an arbitrary configuration of weights
A ⊂ X (T ). We keep the notations of the preceding section.

We begin by recalling a well known result about duality of projective varieties:

Lemma 3.4 ([17, Theorem 1.23]). Let X ⊂ Pn be a non linear irreducible subva-
riety.

(1) Assume that X is contained in a hyperplane H = Pn−1. If X ′
∗

is the dual
variety of X, when we consider X as a subvariety of Pn−1, then X∗ is the cone
over X ′

∗
with vertex p corresponding to H.
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(2) Conversely, if X∗ is a cone with vertex p, then X is contained in the corre-
sponding hyperplane H.

When X is linear, (X ′)∗ is empty. �

As an immediate application of Lemma 3.4, we have the following characteriza-
tion of self-dual equivariantly embedded projective toric hypersurfaces. Note that
the only linear varieties which are self-dual are the subspaces of dimension k− 1 in
P2k−1. In particular, the only hyperplanes which are self dual are points in P1.

Corollary 3.5. Let T be an algebraic torus and A ⊂ X (T ) a configuration such
that XA is a non linear hypersurface. Then XA is self-dual if and only if XA is not
a cone.

Proof. Assume that XA is a cone. Then by Lemma 3.4, it follows that X∗A is
contained in a hyperplane, hence XA is not self-dual.

If XA is not a cone, then A is non pyramidal (see Remark 2.13), and it follows
from Lemma 3.1 that dimX∗A ≥ dimXA. If dimX∗A > dimXA, then X∗A = P(V )
and hence XA = (X∗A)∗ = ∅, which is a contradiction. It follows that dimX∗A =
dimXA and hence Theorem 3.3 implies that XA is self-dual. �

Applying Lemma 3.4, we can reduce the study of duality of projective varieties
to the study of non degenerate projective varieties that are not a cone.

Proposition 3.6. Let X ⊂ Pn−1 be an irreducible projective variety. Let k − 1
be the codimension of the minimal subspace of Pn−1 containing X. Then, with the
notations of Remark 2.16, the following assertions hold:
(1) If X = Jk−1,k−1,m−1

(
∅,Pk−1, Xnd

)
, with Xnd ⊂ Pm−1 self-dual, then X is

self-dual.
(2) If X is self-dual, then dimXnd = dim(Xnd)∗, and h = k, that is

(2) X = Jk−1,k−1,m−1
(
∅,Pk−1, Xnd

)
,

Proof. Let X = Jk−1,h−1,m−1
(
∅,Ph−1, Xnd

)
. Applying recursively Lemma 3.4 (see

Remark 2.16) we obtain that

X∗ = Jk−1,h−1,m−1
(
∅,Ph−1, Xnd

)∗
= Jk−1,h+m−1

(
∅, Jh−1,m−1

(
Ph−1, Xnd

))∗
=

Jk−1,h+m−1
(
Pk−1, Jh−1,m−1

(
Ph−1, Xnd

)∗)
=

Jk−1,h+m−1
(
Pk−1, Jh−1,m−1

(
∅, X∗nd

))
=

Jk−1,h−1,m−1
(
Pk−1, ∅, X∗nd

)
= Jh−1,k−1,m−1

(
∅,Pk−1, X∗nd

)
=

Jh−1,k+m−1
(
∅, Jk−1,m−1

(
Pk−1, X∗nd

))
.

In particular, dimX∗ = k + dimX∗nd, and the maximal subspace that contains
X∗ has codimension h.

In order to prove (1), assume that h = k and Xnd is self-dual. Then X∗ =

Jk−1,k−1,m−1
(
∅,Pk−1, X∗nd

)
. Since Xnd is self-dual, there exists an isomorphism

ϕ : Pm−1 → Pm−1 such that ϕ(Xnd) = X∗nd. It is clear that ϕ extends to an
isomorphism ϕ̃ : Pn−1 → Pn−1 such that ϕ̃(X) = X∗.

In order to prove (2), assuming X is self-dual and writing X as in Remark 2.16,
it follows that h = k, and hence h+dimXnd = dimX = dimX∗ = k+dimXnd. �

In our toric setting, Proposition 3.6 can be improved, so that we obtain a geo-
metric characterization of self-dual projective toric varieties.
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Theorem 3.7. Let A be an arbitrary lattice configuration. Then XA is self-dual
if and only if dimXA = dimX∗A and the smallest linear subspaces containing XA

and X∗A have the same (co)dimension.

Proof. By Proposition 2.17,

XA = Jk−1,h−1,m−1
(
∅,Ph−1, XC2

)
,

where C2 ⊂ A is a non pyramidal configuration without repeated weights. By
Theorem 3.3, XC2

⊂ Pm−1 is self dual if and only if dimXC2
= dimX∗C2

. The
result follows now from Proposition 3.6. �

Combining Proposition 2.17 and Theorem 3.7 we obtain the following explicit
combinatorial description of self-dual toric varieties.

Theorem 3.8. Let A = {λ1, . . . , λ1, λ2, . . . , λ2, . . . , λh, . . . , λh} ⊂ X (T ) be a con-
figuration of n weights with each λi appearing ki + 1 times, λi 6= λj if i 6= j. Let
C = {λ1, . . . , λh} be the associated configuration without repeated weights. Then
XA is self-dual if and only if the following assertions hold.

(1) C is a k-pyramidal configuration, where k = n− h =
∑
ki.

(2) There exists a splitting T = S1 × S2 such that, after reordering of the el-
ements in C, it holds that C = C1 ∪ C2, where C1 = {λ1, . . . , λk} is a basis of
X (S1) and C2 = {λk+1, . . . , λh} ⊂ X (S2) is a non pyramidal configuration, as in

Definition 2.10. Moreover, the S2–toric projective variety XC2 ⊂ P
(⊕h

i=k+1 kwi
)
,

t · wi = λi(t)wi, is self-dual. �

It follows from Theorem 3.8 that if XA is a self-dual toric variety with A pyra-
midal, then there are repeated weights in A. The converse of this statement does
not hold. In the next example we show a family of non-pyramidal configurations
A with repetitions such that XA is self dual.

Example 3.9. Let C = {c1, . . . , cs} ⊂ Zn−1 be any non pyramidal configuration,
such that XC is self-dual. Then, the configuration A = {e1, e1, (0, c1), . . . , (0, cs)} ⊂
Zn has repeated weights, and XA is self-dual by Theorem 3.8. It is straightfoward
to check that A is non-pyramidal. Note that these configurations become pyramidal
when we avoid repetitions.

4. Characterizations of self-duality in combinatorial terms

In this section we will characterize self-duality of projective toric varieties of type
XA in combinatorial terms. We make explicit calculations for the algebraic torus
(k∗)d acting on kn, in order to give an interpretation of the conditions of Theorem
3.2 in terms of the configuration A and in terms if its Gale dual configuration,
whose definition we recall below.

We refer the reader to [19, Chapter 6] for an account of the basic combinatorial
notions we use in what follows.

4.1. Explicit calculations for (k∗)d acting on kn. Let T = (k∗)d. We identify
the lattice of characters X (T ) with Zd. Thus, any character λ ∈ X (T ) is of the form
λ(t) = tm, where m ∈ Zd and tm = tm1

1 · · · t
md
d . We take the canonical basis of kn

as the basis of eigenvectors of the action of T . That is, if A = {λ1, . . . , λn} ⊂ Zd, T
acts on kn by t · (z1, . . . , zn) = (tλ1z1, . . . , t

λnzn) for all t = (t1, . . . , td) ∈ T . Then,

XA = O
(
[1 : · · · : 1]

)
=
{

[tλ1 : · · · : tλn ] : t ∈ (k∗)d
}
⊂ Pn−1.
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By abuse of notation we also set A ∈ Md×n(Z) the matrix with columns the
weights λi. In view of the reductions made in Section 2 we assume without loss of
generality that the first row of A is (1, . . . , 1) and that the columns of A span Zd.

The homogeneous ideal IA in k[x1, . . . , xn] of the associated projective toric
variety XA is the binomial ideal ([16])

IA =
〈
xa − xb : a, b ∈ Nn,

n∑
i=1

aiλi =

n∑
i=1

biλi
〉
.

Thus, XA =
{

[x] ∈ Pn−1 : xa = xb, ∀ a, b ∈ Nn such that Aa = Ab
}
, and it is easy

to see that

XA =
{

[x] ∈ Pn−1 : xv
+

− xv
−

= 0, ∀ v ∈ RA
}
,

where v+i = max{vi, 0}, v−i = −min{vi, 0} (and so v = v+ − v−).
For p ∈ Tn−1 we then have

mp(XA) = O(p) =
{

[x] ∈ Pn−1 : pv
−
xv

+

− pv
+

xv
−

= 0, ∀ v ∈ RA
}
.

4.2. Characterization of self-duality in terms of the Gale dual configura-
tion. If A is a non pyramidal configuration, then Theorem 3.2 can be rephrased in
terms of a geometric condition on the Gale dual of A.

Definition 4.1. Let A ∈ Md×n(Z) with rank d. Let BA = {u1, . . . , un−d} ⊂ Zn
be a basis of RA.

We say that the matrix BA ∈Mn×(n−d)(Z) with columns the vectors ui is a Gale

dual matrix of A. Let GA = {b1, . . . , bn} ⊂ Zn−d be the configuration of rows of BA,

that is BA =

(
b1
...
bn

)
(observe that we allow repeated elements). The configuration

GA is called a Gale dual configuration of A. Remark that
∑n
i=1 bi = 0.

Remark 4.2. (1) Since RA is an affine invariant of the configuration A, it follows
that two affinely equivalent configuration share their Gale dual configurations.
(2) The configuration A is non pyramidal if and only bi 6= 0 for all i = 1, . . . , n.
(3) When A is regular, RA is the integer kernel KerZ(A) of the matrix A.
(4) For any Gale dual matrix ofA, the morphism γ : kn−d → kn, γ(s) =

(
〈s, b1〉, . . . , 〈s, bn〉

)
gives a parameterization of RA,k, where we denote 〈s, bi〉 =

∑n−d
j=1 sjbij .

Remark 4.3. By Theorem 3.2, XA is self-dual if and only if there exists p0 ∈
P
(
RA,k

)
∩ Tn−1 such that P

(
RA,k

)
⊂ O(p0). By the remarks in subsection 4.1, it

follows that XA is self-dual if and only if for some such p0 we have that pv
−

0 wv
+ −

pv
+

0 wv
−

= 0 for all w ∈ RA,k and v ∈ RA.
Assume XA is self-dual. Then, given any choice of Gale dual configuration, we

deduce that for all s ∈ kn−d \ {0} and j = 1, . . . , n− d, we have that

p
u−j
0

(
〈s, b1〉, 〈s, b2〉, . . . , 〈s, bn〉

)u+
j = p

u+
j

0

(
〈s, b1〉, 〈s, b2〉, . . . , 〈s, bn〉

)u−j .
for (some, or in fact all) p0 ∈ P

(
RA,k

)
∩ Tn−1.

Since this gives an equality in the polynomial ring k[s1, . . . , sn−d], both sides
must have the same irreducible factors. But 〈s, bi〉 and 〈s, bk〉 are associated irre-
ducible factors if and only if bi and bk are collinear vectors. We deduce that for
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any line L in B-space Zn−d and for all j,∑
bi∈L,bij>0

bij = −
∑

bi∈L,bij<0

bij .

Hence,
∑
bi∈L

bij = 0 for all j = 1, . . . , n− d, or equivalently,
∑
bi∈L

bi = 0.

In fact, this last condition is not only necessary but also sufficient. We give a
proof of both implications using results about the tropicalization of the dual variety
XA as described in [8].

First we recall that given a dual Gale configuration GA = {b1, . . . , bn}, and a
subset J ⊂ {1, . . . , n}, the flat SJ of GA associated to J is the subset of all the
indices i ∈ {1, . . . , n} such that bi belongs to the subspace generated by {bj : j ∈ J}.

Theorem 4.4. Let A ∈ Md×n(Z) a non pyramidal configuration and BA a Gale
dual for A as in (4.1). Then XA is self-dual if and only if for any line L through
the origin in Zn−d we have that

∑
bi∈L

bi = 0.

Proof. Since we are dealing with affine invariants, we can assume that A is a regular
configuration. By Theorem 3.3, we know that XA is self-dual if and only if dimXA

equals dimX∗A. Given a vector v ∈ Zn, we define a new vector σ(v) ∈ {0, 1}n by
σ(v)i = 0 if vi 6= 0 and σ(v)i = 1 if vi = 0.

If follows from [8, Corollary 4.5] that dimXA = dimX∗A if and only if for any
vector v ∈ RA, the vector (1, . . . , 1)− σ(v) lies in the row span F of the matrix A.
But since we are assuming that (1, . . . , 1) ∈ F , this is equivalent to the condition
that σ(v) ∈ F . By duality, this is in turn equivalent to the fact that for any
j = 1, . . . , n− d, the inner product

〈σ(v), uj〉 =
∑
vi=0

bij = 0.

That is to say, XA is self dual if and only if for any v ∈ RA the sum
∑
vi=0 bi = 0.

But the sets S of non zero coordinates of the vectors in the space of linear relations
RA coincide with the flats of the Gale configuration GA. So, XA is self-dual if and
only if for any flat S ⊂ {1, . . . , n} the sum

∑
i∈S bi = 0. It is clear that this happens

if and only if the same condition holds for all the one-dimensional flats, i.e. if for
any line L through the origin the sum

∑
bi∈L bi = 0. �

The assumption that A is a non pyramidal configuration in Theorem 4.4 is
crucial, as the following example shows.

Example 4.5. Let A be a configuration such that RA has rank 1. Then RA is
spanned by a single vector, whose coordinates add up to 0. So, the condition in
Theorem 4.4 that the sum of the bi in this line equals 0 is satisfied. But by Corollary
3.5 if A is a pyramid, then XA is not self-dual.

4.3. Geometric characterization of self-dual configurations. In this para-
graph we characterize the non pyramidal configurations A ⊂ Zd whose Gale dual
configurations are as in Theorem 4.4. We keep the assumptions that 〈A〉Z = Zd and
that A is non pyramidal. We begin with some basic definitions about configurations.

Definition 4.6. Given a = (a1, . . . , an) ∈ RA,k, we call {i : ai 6= 0} the support
of the relation and denote supp(a) = {i : ai 6= 0}. We say that λi belongs to the
relation if i ∈ supp(a).
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Recall that any affine relation a ∈ RA,k satisfies
∑
i ai = 0. It is said that a is

a circuit if there is no non trivial affine dependency relation with support strictly
contained in supp(a). In other words, a circuit is a minimal affine dependency
relation.

Remark 4.7. Let C be a circuit of a configuration A, and let F be the minimal
face of Conv(A) containing C. If d′ denotes the dimension of the affine span of F ,
then C has at most d′ + 2 elements.

Definition 4.8. Two elements b, b′ of a configuration B are parallel if they generate
the same straight line through the origin. In particular, b 6= 0 and b′ 6= 0. The
elements b, b′ are antiparallel if they are parallel and point into opposite directions.

Two elements λ, λ′ of a configuration A are coparallel if they belong exactly to
the same circuits.

Remark 4.9. (1) Coparallelism is an equivalence relation. We denote by cc(λ) the
coparallelism class of the element λ ∈ A.
(2) It is easy to see that λ and λ′ are coparallel if and only if they belong to the
same affine dependency relations.
(3) The definition of coparallelism can be extended to pyramidal configurations as
follows. If λ ∈ A is such that it does not belong to any dependency relation, then
cc(λ) = {λ}. Otherwise, cc(λ) consists, as above, of all elements of A belonging to
the same circuits as λ. The condition that A is not a pyramid is then equivalent to
the condition that | cc(λ)| ≥ 2 for all λ ∈ A.

Lemma 4.10. Let GA = {b1, . . . , bn} be a Gale dual of A. Then λi is coparallel to
λj if and only if bi and bj are parallel elements of GA.

Proof. Let BA the (n× (n− d))-matrix with rows given by GA as in Definition 4.1.
As A is not a pyramid, no row bi of BA is zero. Any element a ∈ RA,k is of the
form BA ·m, for some m ∈ kn−d. Then λi is coparallel to λj if and only if for any
nonzero m ∈ kn−d it holds that 〈bi,m〉 6= 0 precisely when 〈bj ,m〉 6= 0. It is clear
that this happens if and only if bi = αbj for a non zero constant α ∈ k, that is, if
and only if bi, bj are parallel. �

Definition 4.11. Let A = {λ1, . . . , λn} ⊂ Zd be a configuration. A subconfigura-
tion C ′ ⊂ A is called facial if there exists a face F of the convex hull Conv(A) ⊂ Rd
of A such that C ′ = A ∩ F .

A subconfiguration C ⊂ A is a face complement if A \ C is a facial subconfigu-
ration of A.

Remark 4.12. Let A = {λ1, . . . , λn} ⊂ Zd be a configuration. A subconfiguration
C = {λi1 , . . . , λih} ⊂ A is a face complement if and only if there exists a dependency
relation such that

h∑
j=1

rij bij = 0 , rij > 0.

Indeed, a dependency relation
∑h
j=1 rij bij = 0 with all rij > 0 can be extended

with zero coordinates to a relation r = (r1, . . . , rn) among all bi’s. Thus, r lies in
the row space of A and so there exists ` = (`1, . . . , `d) such that ri = 〈`, λi〉. It
follows that the linear form associated to ` vanishes on the complement of C, and
all the points of C lie in the same open half space delimited by the kernel of `.
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Lemma 4.13. Let A = {λ1, . . . , λn} ⊂ Zd be a configuration. A coparallelism class
C = {λi1 , . . . , λih} ⊂ A is a face complement if and only if and only if there exist
j, k ∈ {1, . . . , h} such that bij and bik are antiparallel.

Proof. If C is a coparallelism class, we know by Lemma 4.10 that all bi1 , . . . , bih
are parallel. It is then clear that a dependency relation r as in Remark 4.12 exists
if and only if two of the vectors bij , bik are antiparallel. �

Definition 4.14. Let A ⊂ Zd be a configuration and C ⊂ A a face complement.
We say that C is a parallel face complement if C and A\C lie in parallel hyperplanes.

Note that in this case both C and A \ C are facial.

Example 4.15. In Figure 1 below there are three configurations of 6 lattice points
in 3-dimensional space (the 6 vertices in each polytope). The 2 vertices marked
with big dots in each of the configurations define a coparallelism class C. In the
first polytope (1), C is not a face complement; in the second polytope (2), C is a
face complement but not a parallel face complement; in the third polytope (3), C is
a parallel face complement. The characterization in our next theorem proves that
only the toric variety corresponding to this last configuration is self-dual.

Figure 1. Only configuration (3) is self-dual.

It is straightforward to check that if A1, A2 are affinely equivalent configurations
and ϕ is an affine linear map sending bijectively A1 to A2, then ϕ preserves coparal-
lelism classes, faces and parallelism relations. Indeed, all these notions can be read
in a common Gale dual configuration. Moreover, we can translate Theorem 4.4 as
follows.

Theorem 4.16. Let A ⊂ Zd be a non pyramidal configuration. The projective toric
variety XA is self-dual if and only if any coparallelism class of A is a parallel face
complement.

Proof. Let GA be a Gale dual of A as in Definition 4.1. By Lemma 4.10, coparal-
lelism classes C = {λi1 . . . , λih} in A are in correspondence with parallel vectors
bi1 , . . . , bih in the dual space (i.e. lines containing vectors of GA). But now, C
is a parallel face complement if and only if there exists ` = (`1, . . . , `d) such that
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〈`, λi〉 = 0 for all λi /∈ C and 〈`, λij 〉 = 1 for all j = 1, . . . , h. Reciprocally, the sum

of the vectors
∑h
j=1 bij = 0 implies the existence of such an ` as in Remark 4.12.

The result now follows from Theorem 4.4. �

We have the following easy lemma.

Lemma 4.17. Assume that A is a non pyramidal self-dual lattice configuration.
Then, for any µ ∈ A, the coparallelism class cc(µ) has at least two elements and it
is a facial subconfiguration of A.

Proof. It follows from Definition 4.14 that there exists a linear function f taking
value 0 on A\cc(µ) and value 1 on cc(µ). Then, cc(µ) is the facial subconfiguration
of A supported by the hyperplane (f − 1) = 0. If cc (µ) = {µ}, then by Theorem
4.16 {µ} is a vertex, and hence A would be a pyramid. It follows that so | cc(µ)| ≥ 2,
for any µ ∈ A. �

We give in Lemma 5.4 (2) an example of a self-dual lattice configuration A which
contains an interior point of Conv(A). However, this cannot happen if XA is not a
hypersurface, as the following proposition shows.

Proposition 4.18. Let A ⊂ X (T ) be a configuration without repetitions such that
XA is self-dual, with codimXA > 1. Then, the interior of the convex hull Conv(A)
does not contain elements of A and for any facial subconfiguration C ′ of A, at most
one point of C ′ lies in the relative interior of Conv(C ′).

Proof. Since A = {λ1, . . . , λn} ⊂ X (T ) has no repeated elements, it follows from
Theorem 3.8 that A is non pyramidal. Then, as XA is not a hypersurface, if follows
from Remark 2.4 that n ≥ d+ 3, where d is the dimension of the affine span of A.

Assume that there exists µ ∈ A belonging to the relative interior of an s-
dimensional face F of Conv(A). Therefore, µ is a convex combination of the vertices
of F , and thus cc(µ) ⊂ F . But by Lemma 4.17, cc(µ) is a facial subconfiguration of
A, and thus a facial subconfiguration of F ∩A, which intersects the relative interior
of F . Then, cc(µ) = F ∩A. Let cc(µ) = {µ, λ1, . . . , λr}. We claim that {λ1, . . . , λr}
are affinely independent and thus, cc(µ) is a circuit. Indeed, for any i = 1, . . . , r,
cc(λi) = cc(µ) = F ∩ A, and so there cannot be any non-trivial affine dependence
relation involving only {λ1, . . . , λr}. In particular, r = s+1, {λ1, . . . , λs+1} are the
vertices of F and µ is the only point in F ∩ A belonging to the relative interior of
Conv(F ).

Therefore, if the relative interior of Conv(A) contains one element µ ∈ A, it
follows that A is a circuit, and hence n = d+ 2, see Remark 4.7. That is, XA is a
hypersurface. �

Example 4.19. Consider the self-dual configuration A given by the columns of
the matrix

A =


1 1 1 0 0 0
0 0 0 1 1 1
0 1 2 0 0 0
0 0 0 0 1 2

 .

The associated toric variety has dimension 3 in P5, so it is not a hypersurface.
No point of A = Conv(A) ∩ Z4 lies in the interior, but there are two facial sub-
configurations of A (namely, the segments with vertices {(1, 0, 0, 0), (1, 0, 2, 0)} and
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{(0, 1, 0, 0), (0, 1, 0, 2)}, respectively) which do have a point of A in their relative
interior. Note that

XA = {(x1, . . . , x6) ∈ P5 / x22 − x1x3 = x24 − x5x6}

is not smooth. It is a complete intersection but the four fixed points
(0, 0, 1, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1) are not regular, as can
be checked by the drop in rank of the Jacobian matrix. This could be seen directly
in the geometry of the configuration. The convex hull of A is a simple polytope (in
fact, it is a simplex) of dimension 3 lying in the hyperplane H = {(y1, . . . , y4) ∈
R4 / y1 + y2 = 1}, but fixing the origin at any of the four vertices, the first lattice
points in the 3 rays from that vertex do not form a basis of the lattice H ∩ Z4.
Note that there is a splitting of the 4-torus T as a product of tori of dimension 2
corresponding respectively to the first three and last three weights in A.

We end this paragraph by showing another interesting combinatorial property
of configurations associated to self-dual toric varieties.

Proposition 4.20. Let A = {λ1, . . . , λn} ⊂ X (T ) be a non pyramidal configuration
such that XA is self dual and let D be an arbitrary non empty subset of A. Then,
either D is a pyramidal configuration or XD is self-dual and, moreover, D is a
facial subconfiguration of A.

Proof. Assume that D = {λ1, . . . , λs} ⊂ A is non pyramidal, and considerRD ⊂ Zs
. It is clear that RD × {0} ⊂ RA. Hence, if BD is a basis of RD, then there exists
a Q-basis of RA ⊗ Q of the form GD × {0} ∪ C. Let BA be a Z-basis of RA, and
GA = {b1, . . . , bn} its associated Gale dual configuration. Then there exists an
invertible Q-matrix M such that

B′ =


BD C1

0 C2

 =



b1
...
bs
bs−1

...
bn


M.

Since A is self-dual, it follows from Theorem 4.4 that the rows bi are such that
the sum of vectors bi in the same line through the origin is zero. Hence, the matrix
B′ satisfies the same property. As D is non pyramidal, no row of BD is zero.
Therefore, (BD , C1), and hence BD, also satisfy the property that the sum of all
its row vectors in a line through the origin is equal to zero. Hence, XD is self-dual.
Moreover, the sum of the row vectors of C2 is zero, and it follows from Remark 4.12
that D is facial. �

5. Families of self-dual projective varieties.

In this section we use our previous results in order to obtain new families of
projective toric varieties that are self-dual. In particular, we obtain many new
examples of non smooth self-dual projective varieties. We also identify all the
smooth self-dual projective varieties of the form XA. We retrieve in this (toric)
case Ein’s result, without needing to rely on Hartshorne’s conjecture.
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5.1. Projective toric varieties associated to Lawrence configurations.

Definition 5.1. We say that a configuration A of 2n lattice points is Lawrence if
it is affinely equivalent to a configuration whose associated matrix has the form

(3)

(
Idn Idn
0 M

)
,

where Idn denotes the n×n identity matrix. Equivalently, A is a Lawrence config-
uration if it is affinely equivalent to a Cayley sum of n subsets, each one containing
the vector 0 and one of the column vectors of M .

Lawrence configurations are a special case of Cayley configurations (see [4]). The
Lawrence configuration associated to the matrix (3) is the Cayley configuration of
the two-point configurations consisting of the origin and one column vector of M .
In the smooth case, Cayley configuration of strictly equivalent polytopes correspond
to toric fibrations (see [9]).

It is straightforward to verify that if A is Lawrence, then

(i) RA =
{(−v

v

)
: v ∈ KerZ(M)

}
.

(ii) A is pyramidal if and only if M is pyramidal.

We immediately deduce from Theorem 4.4 the following result.

Corollary 5.2. If A is a non pyramidal Lawrence matrix then XA is self-dual. �

Example 5.3. The well known fact that the Segre embedding of P1 × Pm−1 in
P2m−1 is self-dual follows directly from Corollary 5.2, the image of the Segre mor-
phism

ϕ(x, y) = [y0x0 : y1x0 : · · · : ymx0 : y0x1 : y1x1 : · · · : ymx1],

where x = [x0, x1], y = [y0 : y1 : · · · : ym], is a projective toric variety with
associated matrix

A =


1 1 0 0

0 0 1 1

1 0 0 1 0 0

0 0

0 0

0 0 1 0 0 1


The sum of the first two rows equals the sum of the last m rows. It is easy to

see that A is affinely equivalent to the configuration A′ with associated matrix

(4) A′ =

(
Idn Idn
0 ··· 0 1 ··· 1

)
.

The matrix A′ is a non pyramidal Lawrence matrix, hence XA′ = XA is self-dual.

We finish this paragraph by proving that Segre embeddings of P1×Pm−1, m ≥ 2
are the unique smooth self-dual projective toric varieties that are not a hypersurface.
We begin with an easy lemma which classifies all smooth hypersurfaces of the form
XA

Lemma 5.4. Let A be a lattice configuration such that XA is a smooth hypersurface.
Then, A is of one of the following forms:

(1) A consists of two equal points, and so XA = {(1 : 1)} = {(x0 : x1) ∈
P1 / x0 − x1 = 0}.

(2) A consists of three collinear points with one of them the mid point of the
others, and so XA = {(x0 : x1 : x2) ∈ P2 / x21 − x0x2 = 0}.
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(3) A consists of four points a, b, c, d with a + c = b + d, and so XA =
{(x0, x1, x2, x3) ∈ P3 / x0x3 − x1x2 = 0} is the Segre embedding of P1 × P1

in P3.

Proof. When XA is a hypersurface, an equation for XA is given by bA(x) =∏
bi>0 x

bi
i −

∏
bi<0 x

−bi
i , where the transpose of the row vector (b1, . . . , bn) is a

choice of Gale dual of A. The cases (1), (2) and (3) in the statement correspond to
the row vectors (1, 1), (1,−2, 1) and 1,−1,−1, 1), respectively (or any permutation
of the coordinates), and it is straightforward to check that XA is smooth. It is easy
to verify that in any other case, there exists a point x ∈ XA where bA and all its
partial derivatives vanish at x. �

We saw in Example 4.19 that a non-pyramidal self-dual lattice configuration A
with codim(XA) > 1 can have a point in the interior of a proper face. Moreover,
more complicated situations can happen:

Example 5.5. Consider the following dimension 3 configuration A ⊂ Z4, A ={
(1, 0, 0, 2), (1, 0, 0, 0), (0, 1, 0, 0), (0, 1, 0, 2), (0, 0, 1, 0), (0, 0, 1, 1)

}
. Then, ZA = Z4

and XA is self-dual because the following is a choice of Gale dual B ∈ Z6×2:

B =


1 0
−1 0

0 1
0 −1
2 −2
−2 2

 .

All the points in A are vertices of the polytope P := Conv(A), but A 6= P ∩Z4. In-
deed, there is a lattice point in the middle of each of the segments [(1, 0, 0, 2), (1, 0, 0, 0)],
[0, 1, 0, 0), (0, 1, 0, 2)], which are faces of P . It is clear that XA is not smooth (for in-
stance looking at the first lattice points in all the edges emanating from (1, 0, 0, 0)),
nor embedded by a complete linear system.

However, the following result shows that when XA is smooth and self-dual, the
situation is nicer.

Lemma 5.6. Let A be a lattice configuration without repeated points such that XA

is self-dual and smooth. Then, unless XA is the quadratic rational normal curve
in (2) of Lemma 5.4, no facial subconfiguration C ⊆ A contains a point of A in the
relative interior of Conv(C).

Proof. Assume A = {λ1, . . . , λn} has no repeated points and there exists µ ∈ A and
a proper face F of Conv(A) containing µ in its relative interior. Then, F ∩A is not
a pyramid, and it follows from Proposition 4.20 that XF∩A is self-dual. Since XF∩A
is also smooth, Proposition 4.18 implies that XF∩A is a hypersurface. We deduce
from Lemma 5.4 that F ∩ A has dimension one and consists (up to reordering) of
3 points {λ1, λ2, λ3} with λ1 + λ3 = 2λ2. We can choose a Gale dual B of A of the
form:

B =


B1 C1

0 C2

 ,
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with B1 the 3× 1 column vector with transpose (1,−2, 1). We see that the copar-
allelism class of each λi is contained in F ∩ A and no class can consist of a single
element because A is not a pyramid. Therefore, cc(λi) = F ∩A, i = 1, 2, 3; that is,
any two of the first 3 rows of B are linearly dependent. We can thus find another
choice of Gale dual B′ of A of the form:

B =


B1 0

0 C2

 .

Then, there is a splitting of the torus and XA cannot be smooth, with arguments
similar to those in Example 4.19, because A has no repeated points and so there is
no linear equation in the ideal IA. �

We now characterize the Segre embeddings P1×Pm−1 in P2m−1 from Example 5.3
in terms of the Gale dual configuration.

Lemma 5.7. A toric variety XA ⊂ P2m−1 is the Segre embedding of P1 × Pm−1
if and only if any Gale dual B ∈ Z2m×r of A has the following form: r = m − 1
and, up to reordering, the rows of b1, . . . , b2m of B satisfy det(b1, . . . , bm−1) =
1, b1 + · · ·+ bm = 0 and bm+j + bj = 0, for all j = 1, . . . ,m.

Proof. It is clear that any Gale dual to the matrix A′ in (4) is of this form. And
it is also straightforward to check that any matrix B as in the statement is a Gale
dual of this A′. �

We can now prove the complete characterization of smooth self-dual varieties
XA.

Theorem 5.8. The only self-dual smooth non linear projective toric varieties equiv-
ariantly embedded are the toric hypersurfaces described in (2) and (3) of Lemma 5.4
and the Segre embeddings P1 × Pm−1 in P2m−1 for m ≥ 3.

Proof. We proceed by induction in the codimension of A. By Lemma 5.4, the result
is true when XA is a hypersurface. Assume then that codim(XA) > 1. Now, by
Lemma 5.6, we know that all the points in A are vertices of Conv(A). Let C be a
coparallelism class and let D := A\C. Then, XD is smooth and it is non pyramidal.
Indeed, we can choose a Gale dual B of A of the form:

B =


b11
...
br1

0

br+1,1

...
bn1

D2

 ,

where (b11, 0), . . . , (br1, 0) correspond to the elements of C. If D is a pyramid, is
is easy to show that at least one row of D2 must be zero, and it follows that the
corresponding point of the configuration belongs also to C, and thus is a contra-
diction.

Hence, it follows from Proposition 4.20 that XD is self-dual with codim(XD) =
codim(XA) − 1 < codim(XA) and no point of D belongs to the relative interior

of Conv(D). Therefore, by induction, XD is the Segre embedding of P1 × Pm′−1
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in P2m′−1 for m′ ≥ 2 (including the hypersurface case P1 × P1). In particular,
|D| = 2m′ is even.

Assume C = {µ1, . . . , µr}. Let BD ∈ Z2m′×(m′−1) be a choice of Gale dual of D
as in Lemma 5.7, with rows e′1, . . . , e

′
m′ ,−e′1, . . . ,−e′m′ with {e′1, . . . , e′m′−1} a basis

of Zm′−1 and e′1 + · · · + e′m = 0. Add another integer affine relation with coprime
entries as the first column, to form a matrix B′ whose columns are a Q-basis of
relations of A of the form:

B′ =


B1 0

B2 BD

 .

Now, each coparallelism class of any µ ∈ D (with respect to D) has two elements
when m′ > 2, and so it cannot be “broken” when considering coparallelism classes
in A, since it is not a pyramid. Then, via column operations we can assume that
B2 is of the form Bt2 = (0, . . . , 0, a, 0, . . . , 0,−a), (a ∈ Z≥0). In case m′ = 2, then
BtD = (1,−1,−1, 1) and the unique coparallelism class could be broken, but at most
in two pieces with two elements each, and again we have the same formulation for
B2. In both cases, if a = 0, then we have a splitting, which implies that either there
is a repeated point (if Bt1 = (1,−1)) or XA is not smooth. Then a ≥ 1. Consider
the subconfiguration E of A obtained by forgetting the two columns corresponding
to the rows m′ and 2m′ of BD. Since the vectors bi with complementary indices
add up to zero, it follows that E is facial and again, XE is smooth. We deduce
that a = 1 and Bt1 = ±(1,−1), which implies that XA is the Segre embedding of

P1 × Pm′+1 in P2m′+1. �

5.2. Non Lawrence families of examples. We have the following obvious corol-
laries of Theorem 5.8:

Corollary 5.9. Let A ∈ Md×n(Z) with maximal rank d associated to a regular
configuration of weights and let XA ⊂ Pn−1 be the projective toric variety associated
to A. Assume XA is not a hypersurface, non linear, smooth and self-dual. Then,
n is even. �

As the defect of the Segre embedding Xm = P1 × Pm−1 in P2m−1 for any m ≥ 2
equals 2m− 2−m = m− 2 = dimXm − 2, we recover for smooth varieties XA the
following result, due to Landman ([10]) for any projective smooth variety.

Corollary 5.10. [Landman] If XA ⊂ Pn−1 is a non linear smooth projective variety
such that dimX < n− 2 with defect k > 0, then dimX ≡ k (2). �

We use the previous corollaries together with Theorem 4.4 to construct families
of non regular self-dual varieties.

Example 5.11. Consider the families of matrices {Aα}, {Bα} for α ∈ Z, α 6= 0,
defined by:

Aα =

( 1 1 1 1 1 1 1
1 1 1 1 1 0 0
0 0 0 1 1 0 0
0 1 0 α 0 −α 0
0 0 1 0 −α 0 α

)
, Bα =


2α 0
−α 0
−α 0
1 1
−1 −1
0 1
0 −1

 .

Clearly, Bα is a choice of a Gale dual matrix of Aα.
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Observe that as α 6= 0, the configuration Aα is not a pyramid and dim(XAα) = 4.
Moreover, it is easy to show that if α 6= α′, then XAα and XAα′ are not isomorphic
as embedded varieties because they have different degrees. The degree of XAα is
the normalized volume of the convex hull of the points in the configuration Aα
([16]) and it can be computed easily in terms of the Gale dual configuration.

Since the conditions of Theorem 4.4 hold, it follows that XAα is self-dual for all
α ∈ Z, α 6= 0. Moreover, n = 7 is odd and so we deduce from Corollary 5.9 that
XAα is a singular variety. The difference between its dimension and its defect is
4− 1 = 3 6≡ 0 (2).

We can generalize Example 5.11 in order to construct families of non degenerate
projective toric self-dual varieties of arbitrary dimension greater than or equal to 3
and of arbitrary codimension greater than or equal to 2.

Example 5.12. Families of self-dual varieties of any dimension ≥ 3. Let any
r ≥ 2 and α1, . . . , αr non zero integer numbers satisfying

∑r
i=1 αi = 0. Consider

the planar lattice configuration

Gα =
{

(α1, 0), . . . , (αr, 0), (0, 1), (0,−1), (1, 1), (−1,−1)
}
.

Let A be any lattice configuration with Gale dual Gα. Then, A is not a pyramid
and the associated projective toric variety XA ⊂ Pr+3 is self-dual by Theorem 4.4,
with dimension dimXA = (r + 4)− 2− 1 = r + 1.

When r = 2, the dimension of XAα is 3. The case α1, α2 = ±1 corresponds to the
Segre embedding of P1 × P2 in P5. Already for α1, α2 = ±2, the configuration Aα
does not contain all the lattice points in its convex hull. If we add those “remaining”
points to the configuration, the associated toric variety is no longer self-dual.

Example 5.13. Families of self-dual varieties of any codimension ≥ 2. Using
the same ideas of the previous example, we can construct pairs (A,B) with A
a non pyramidal configuration and B its Gale dual satisfying the hypothesis of
Theorem 4.4, so that XA is self-dual, with arbitrary codimension m ≥ 2.

For any r ≥ 2 set n = 2m+ r. As usual, e1, . . . , em denotes the canonical basis
in Zm. For any choice of non zero integers α1, . . . , αr with

∑r
i=1 αi = 0 consider

the following lattice configuration in Zm:

Gα :=
{
α1e1, . . . , αre1, e2,−e2, . . . , em,−em, e1 + · · ·+ em,−(e1 + · · ·+ em)

}
.

For any lattice configuration Aα ⊂ Zn with this Gale dual, Aα is not a pyramid
and its associated self-dual toric variety XAα ⊂ Pn has dimension m + r − 1 and
codimension m.

6. Strongly self-dual varieties

We are interested now in characterizing a particular interesting case of self-dual
projective toric varieties.

Definition 6.1. Let A be a regular lattice configuration without repetitions. We
say that the projective variety XA ⊂ Pn−1 is strongly self-dual if XA coincides with
X∗A under the canonical identification between Pn−1 and its dual projective space
as in Remark 2.20.

We deduce from Theorem 3.2 the following characterization of strongly self-dual
projective toric varieties of the form XA.
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Proposition 6.2. Let A be a regular lattice configuration without repetitions. Then
XA is strongly self-dual if and only if P

(
RA,k

)
⊂ XA.

Proof. If XA is strongly self-dual, the containment P
(
RA,k

)
⊂ X∗A implies that the

condition P
(
RA,k

)
⊂ XA is necessary.

Assume that this condition holds and A has no repetitions. As we already
observed, Theorem 3.8 implies that A is not pyramidal. Then, it follows from
Theorem 3.2 that for any q ∈ P

(
RA,k

)
∩ Tn−1 ⊂ XA ∩ Tn−1, mq

(
XA

)
= X∗A. But

since q ∈ O
(
[1 : · · · : 1]

)
, we deduce that mq

(
XA

)
= O(q) = O

(
[1 : · · · : 1]

)
= XA,

that is X∗A = XA. �

Using the same notation of Theorem 4.4, we have:

Theorem 6.3. Let A be a non pyramidal regular lattice configuration A of n weights
spanning Zd and let BA be a Gale dual of A. Then:

XA is strongly self-dual ⇔


(a) For any lineL through the origin
we have

∑
bi∈L

bi = 0.

(b)
n∏
j=1
bji>0

b
bji
ji =

n∏
j=1
bji<0

b
−bji
ji , i = 1, . . . , n− d.

In the above statement, we use the convention that 00 = 1.

Proof. Assume that XA is strongly self-dual. Then (a) holds by Theorem 4.4. By
Proposition 6.2, we know that P

(
RA,k

)
∩ Tn−1 ⊂ XA ∩ Tn−1, and this last variety

is cut out by the (n− d) binomials
n∏
j=1
bji>0

x
bji
j =

n∏
j=1
bji<0

x
−bji
j , ∀ i = 1, . . . , n− d.

Then, we have the following equalities, for all s ∈ kn−d:

(5)

n∏
j=1
bji>0

〈s, bj〉bji =

n∏
j=1
bji<0

〈s, bj〉−bji , ∀ i = 1, . . . , n− d.

We get the conditions (b) by evaluating respectively at s = e1, . . . , en−d.
Conversely, condition (a) implies the equalities (5) of the polynomials in s on

both sides up to constant, as in Remark 4.3. Then, condition (b) ensures that this
constant is 1. Therefore, P

(
RA,k

)
∩ Tn−1 ⊂ XA ∩ Tn−1, and so XA is strongly

self-dual by Proposition 6.2. �

Example 6.4. Consider the matrix A =


1 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 1 1
0 0 1 0 0 0 0 2 0
0 0 0 1 0 0 0 0 2
0 0 0 0 1 0 0 −2 −2
0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 1 0 −1

. Observe that A

is non pyramidal. A Gale dual matrix BA for A is given by the transpose of the
matrix

(−2 −2 −2 −2 4 1 1 1 1
1 1 2 0 −2 −1 0 −1 0

)
.

Clearly, BA satisfies the conditions of Theorem 6.3 and hence XA is strongly
self-dual. But note that A is not a Lawrence configuration.

We conclude this section with the complete characterization of strongly self-dual
varieties of type XA, with A a non pyramidal Lawrence matrix.
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Theorem 6.5. Let A be a non pyramidal Lawrence configuration consisting of 2n
points in Zn+d, as in (3). Then XA is strongly self-dual if and only if there exists
a subset I of rows of the lower matrix M = (mjk) such that

∑
j∈I mjk is an odd

number for all k = 1, . . . , n.

Proof. By Corollary 5.2, XA is self-dual for any non pyramidal Lawrence configura-
tion A. Thus, XA is strongly self-dual if and only if conditions (b) in Theorem 6.3
are satisfied. If GM = {c1, . . . , cn} ⊂ Zn−d is a Gale dual configuration for M , then
{−c1, . . . ,−cn, c1, . . . , cn} defines a Gale dual configuration for A. Conditions (b)
are then equivalent in this case to the equalities

(−1)
∑n
j=1 cji = 0, i = 1, . . . , n− d.

This is in turn equivalent to the condition that for all v ∈ RM , the sum
∑n
j=1 vj ≡

0 (2). But this is equivalent to the fact that the vector (1, . . . , 1) lies in the row
span of M when we reduce all its entries modulo 2. Denoting classes in Z2 with an
over-line, this condition means that there exist α1, . . . , αd ∈ Z2 = {0, 1} such that

(1, . . . , 1) =

d∑
i=1

αi(mi1, . . . ,min) =
∑
αi=1

(mi1, . . . ,min).

It suffices to call I =
{
i ∈ {1, . . . , d} : αi = 1

}
. �

Example 6.6. The Segre embeddings in Example 5.3 have associated Lawrence
matrices as in (4), where M is a matrix with a single row of with all entries equal
to 1. They clearly satisfy the hypotheses of Theorem 6.5. Then, for any m > 1,
the Segre embedding of P1 × Pm−1 is a strongly-self dual projective toric variety.
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[13] I.M. Gelfand; M.M. Kapranov y A.V. Zelevinsky, Hypergeometric functions and toral man-

ifolds. Funct. Anal. Appl. 23 (1989), no. 2, 94–106.

http://arxiv.org/abs/math/0512385


26 M. BOUREL, A. DICKENSTEIN AND A. RITTATORE

[14] V.L. Popov, Self-dual algebraic varieties and nilpotents orbits. Proceedings of the Interna-

tional Colloquium on Algebra, Arithmetic and Geometry, Mumbai, 2000, Tata Inst. Fund.

Research, Narosa Publ. House, 2002, 509–533.
[15] V.L. Popov; E.A. Tevelev, Self-dual projective algebraic varieties associated with symmetric

spaces. In: Popov, Vladimir L. (ed.), Algebraic groups and algebraic varieties, Encyclopaedia

of Mathematical Sciences, Vol. 132, Invariant Theory and Algebraic Transformation Groups
Vol. III, Springer Verlag, 131–167 (2004).
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