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SPECTRUM OF PLANE CURVES VIA KNOT THEORY

MACIEJ BORODZIK AND ANDRÁS NÉMETHI

Abstract. In this paper we use topological methods to study various semicontinuity
properties of spectra of singular points of plane algebraic curves and of polynomials in two
variables at infinity. Using the Seifert form and the Tristram–Levine signature of links, we
reprove (in a slightly weaker version) a result obtained by Steenbrink and Varchenko on
semicontinuity of spectra of singular points under deformation and results of Némethi and
Sabbah on semicontinuity of spectrum at infinity. We also relate the spectrum at infinity
of a polynomial with spectra of singular points of a chosen fiber.

1. Introduction

The Hodge spectrum of a local hypersurface isolated singularity f : (Cn+1, 0) → (C, 0)
is the output of the mixed Hodge structure of the vanishing cohomology of the singular
germ [A, St1, St2, Var, Var2]. Usually, it is not topological, it is one of the finest analytic
invariants of the germ. Although, it does not characterize the singularity completely, it gives
extremely strong information about it. As it was conjectured by Arnold [A], and proved by
Varchenko [Var, Var2] and Steenbrink [St2], the spectrum behaves semicontinuously under
deformations, which makes it, for example, a very strong tool in attempts to solve the
adjacency problem (i.e., to determine, which singularities can specialize to a given one).

A more precise picture is the following: the algebraic monodromy acts on the vanishing
cohomology, this cohomology supports a mixed Hodge structure, which is polarized by the
intersection form, and the Seifert form (which can be identified with the variation map).
The equivariant Hodge numbers were codified by Steenbrink in the spectral pairs; if one
deletes the information about the weight filtration, one gets the spectral numbers Sp(f).
They are (in some normalization) rational numbers in the interval (0, n+1). In the presence
of a deformation ft, where t is the deformation parameter t ∈ (C, 0), the semicontinuity
guarantees that |Sp(f0) ∩ I| ≥ |Sp(ft6=0) ∩ I| for the semicontinuity domain I. Arnold
made his conjecture for I = (−∞, x], Steenbrink and Varchenko proved the statement for
I = (x, x+1], which implies Arnold’s conjecture. Additionally, Varchenko in [Var] for some
cases verified the strongest version, namely semicontinuity for I = (x, x+ 1).

The semicontinuity property (with any domain) cannot be extended to the spectral pairs,
hence in studies targeting these kind of applications one usually works with spectrum only.
This is what we will do in the present article as well.

On the other hand, (one of) the strongest topological invariants of f is its Seifert form,
for terminology see e.g. [AGV]. The relation between the Hodge invariants and Seifert
form was established by the second author in [Nem2], proving that the collection of mod 2
spectral pairs are equivalent with the real Seifert form. In this way, the real Seifert form
is in strong relationship with the mod 2 spectrum, that is with the collection of numbers
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x mod 2 in (0, 2], where x run over Sp(f). Clearly, for plane curve singularities, i.e. when
n = 1, by taking mod 2 reduction we loose no information.

Our primary goal is to extend the above correspondence for an arbitrary link (S3
R, L),

where S3
R is the boundary of some ball with radius R in C2, and L is the intersection of S3

R

with some affine algebraic curve C in C2. The primary interest is the link at infinity of such
affine curve (hence R ≫ 0), but we also wish to develop a method to study any general
(S3

R, L), for which the available methods in the literature are rather sparse.
Let us consider a complex polynomial map F : C2 → C. For its topology at infinity see

Neumann’s article [Neu3]. Our first main result recovers the spectrum at infinity associated
with the limit mixed Hodge structure at infinity (supported by the cohomology of the generic
fiber) from the real Seifert form of the regular link at infinity associated with F . In particular,
we reobtain the spectrum at infinity topologically, in pure link–theoretical language.

The key bridge which connects the link–theoretical language and invariants with the
Hodge theoretical spectrum is the Tristram–Levine signature [Tri, Le]. For example, for
the weighted homogeneous singularity given by {xp − yq = 0} with p and q relative prime

integers, the spectrum is Spp,q = { i
p +

j
q , 1 ≤ i ≤ p− 1, 1 ≤ j ≤ q− 1}, while the Tristram–

Levine signature function of the (p, q)−torus knot, evaluated at e2πix with x ∈ (0, 1), pqx 6∈
Z, is equal to 2|Spp,q∩ (x, x+1)|− (p−1)(q−1), see e.g. [Li]. In [BN] we made this relation
rigorous, showing a direct translation between spectra of singularities and Tristram–Levine
signatures of their links.

In this correspondence, what is really surprising — and this is the seconds main message
of the article — is the fact that the semicontinuity of the mod 2 spectrum is topological: it
can be recovered independently of analytic (Hodge theoretical) tools, it follows from pure
link theory. More precisely, we prove that length one ‘intervals’ intersected by the mod 2
spectrum, namely sets of type Sp∩(x, x+1) and (Sp∩(0, x))∪(Sp∩(x+1, 2]), for x ∈ [0, 1],
satisfy semicontinuty properties, whenever this is question is well–posed.

In this article we exemplify this by three cases: we recover the semicontinuity (in the
above form, with slight assumptions) for deformations of local plane curve singularities,
corresponding to results of Varchenko and Steenbrink, and also we establish a semicontinuity
of the spectrum at infinity associated with a family of polynomials in two variables, in the
spirit of [NS]. The third case targets a new phenomenon: in the context of an affine curve
C ⊂ C2 we show a semicontinuity connecting the local spectra of the singularities of C with
the spectrum at infinity of C. In all these cases, the key link–theoretical ingredient is a
Murasugi type inequality, which controls the modification of the Tristram–Levine signature
under those type of surgeries which appears when we pass from C ∩S3

r to C ∩S3
R via Morse

theory (r < R). This was studied by the first author in [Bo].

The organization of the paper is the following. In section 2 we review the theory of
hermitian variation structures from [Nem2], their relation with the spectrum, how can
one associate such a structure to a link [BN], and how it connects the spectrum with the
Tristram–Levine signatures [BN]. We also recall some of the main results of [Bo] about
surgery inequalities of links of type S3

R∩C. Section 3 contains the study of the spectrum at
infinity of a polynomial map in terms of the Seifert form at infinity. In section 4 we prove
semicontinuity results regarding the spectrum.

For a finite set A, we denote by |A| the cardinality of A.

Acknowledgements. The main part of the paper was accomplished during the stay of
the first author at Alfréd Rényi Institute in Budapest. The first author expresses his thank
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2. Variations structures of links

We recall in 2.1 the definition of an abstract hermitian variation structure and its spectra,
and in 2.2 the definition of the hermitian variation structure and spectra associated with
links in a three-sphere. Subsection 2.3 reviews the definition of mixed Hodge structures
and their Hodge spectra. Finally, in 2.4 we draw a relationship observed in [BN] between
spectra and Tristram–Levine signatures of links. In 2.5 we recall some results from [Bo]
which are crucial ingredients in the proof of the semicontinuity results of the last section.

2.1. Hermitian variation structures were introduced in [Nem2], they are generalization
of ε–symmetric isometric structures. Here we review the minimal basics, for more details
see [Nem2, Nem3].

Recall that a structure (U = Cn; b, h), where b is an ε–symmetric hermitian form on U
preserved by the automorphism h of U , is called an isometric structure (for ε = ±1). The
classification of isometric structures when b is non–degenerate was established by Milnor
[Mil] (see also [Neu1, Neu2]). Any ε–hermitian variation structure (in short ε–HVS) can be
regarded as the isometric structure together with an operator V : U∗ → U such that

(2.1.1) V ∗ = −εV h∗ and V ◦ b̃ = h− Id,

where b̃ is the form b regarded as map from U to U∗. We denote it as V = (U ; b, h, V ). Here
∗ denotes the duality, while · the complex conjugation.

Definition 2.1.2. We say that the isometric structure (U ; b, h) can be completed to a
hermitian variation structure, if there exists V : U∗ → U such that (2.1.1) is satisfied.

If b is non–degenerate, then the isometric structure can be uniquely completed to a HVS:
V = (h − Id) ◦ b̃−1. In general, not every isometric structures can be completed (see e.g.
(3.2.8)(c) below). Moreover, if a completion exists, in general, it is not unique (even if we
restrict ourselves to non–degenerate matrices V , see e.g. [Nem2, (2.7.7)]).

A HVS is called simple if V is an isomorphism. The classification of simple HVS’s is
established in [Nem2]. Each simple variation structure is a direct sum of indecomposable
simple variation structures. Indecomposable structures can be listed: for each positive
integer k, and for each λ ∈ C such that 0 < |λ| ≤ 1 we have

• for |λ| < 1 a unique simple indecomposable variation structure V2k
λ ;

• for |λ| = 1 two simple indecomposable structures, denoted by Wk
λ(+1) and Wk

λ(−1).

This classification is a refinement of the Jordan block decomposition of the matrix h
(or of Milnor’s classification of non–degenerate isometric structures). More precisely, the
matrix h corresponding to Wk

λ(±1) is a single Jordan block of size k and eigenvalue λ, while

the one corresponding to V2k
λ has two Jordan blocks of size k: one with eigenvalue λ, the

other with eigenvalue 1/λ. For their precise form see [Nem2].
Write a simple variation structure V as a (unique) sum of the indecomposable ones:

(2.1.3) V =
⊕

0<|λ|<1
k≥1

qkλ · V2k
λ ⊕

⊕

|λ|=1
k≥1, u=±1

pkλ(u) · W
k
λ(u)

for certain non–negative integers qkλ and pkλ(u). Here we writem·V for V⊕· · ·⊕V (m-times).

The numbers {qkλ}|λ|<1 and {pkλ(±1)}λ∈S1 are called the H–numbers of the HVS V.
Using H–numbers we can define the spectrum of V. Sometimes, in order to emphasize

the source of the definition, we call it HVS–spectrum.
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Definition 2.1.4. ([Nem1] or [BN, (2.3.1)-(2.3.3)]) Consider the H–numbers {qkλ}|λ|<1 and

{pkλ(±1)}λ∈S1 of V. The extended spectrum ESp is the union ESp = Sp ∪ ISp, where

(a) Sp, the spectrum, is a finite set of real numbers from the interval (0, 2] such that
any real number α occurs in Sp precisely s(α) times, where

s(α) =

∞∑

n=1

∑

u=±1

(
2n− 1− u(−1)⌊α⌋

2
p2n−1
λ (u) + np2nλ (u)

)
, (e2πiα = λ).

(b) ISp is the set of complex numbers from (0, 2] × iR, ISp ∩ R = ∅, where z = α+ iβ
occurs in ISp presizely s(z) times, where

s(z) =





∑
k · qkλ if α ≤ 1, β > 0 and e2πiz = λ∑
k · qkλ if α > 1, β < 0 and e2πiz = 1/λ̄

0 if α ≤ 1 and β < 0, or α > 1 and β > 0.

Since the size of a matrices corresponding to V2k
λ is 2k and to Wk

λ(±1) is k, one gets

(2.1.5) |ESp| = dimU = deg det(h− t Id).

2.2. The HVS and spectrum of a link. The variation structure and H–numbers of a
link in S3 were defined in [BN]. Let us review shortly how the construction is performed.

Let S be a Seifert matrix of a link L. (For the convention of its definition see 3.2.) By
Keef’s result [Keef] S is S–equivalent either to an empty matrix, or to a matrix S′, which
can be decomposed into a direct sum

(2.2.1) S′ = S0 ⊕ Sndeg,

where S0 is a zero matrix and Sndeg is non–degenerate, that is detSndeg 6= 0. Moreover, any
two such non–degenerate models Sndeg of the same link, are congruent over Q. The size of

S0 is also determined by L (it is equal to dim(kerS∩kerST )), we will call it the irregularity
of L, and we will denote it by

(2.2.2) Irr = Irr(L) := size(S0).

Let n be the size of Sndeg. The quadruple V = (U, b, h, V ), where U = Cn, V = (ST
ndeg)

−1,

h = V S, b = S − ST , constitutes a HVS with the sign choice ε = −1. (Here ·T denote
transposition.) As changing a Seifert matrix results in congruency of Sndeg, which leads
to an isomorphism of variations structures, the structure V does not depend on the choice
of a Seifert matrix, so it is a well-defined link invariant, called VL. Additionally, VL is
simple. Note that VL is defined over the rational numbers Q. The characteristic polynomial
∆h = det(h−t Id) of h will be called the characteristic polynomial of the link. Its connection
with Alexander polynomial is as follows (see e.g. [BN, §4]):

Lemma 2.2.3. Let VL be as above. If the Alexander polynomial ∆ of L is non–zero then
∆ = ∆h up to multiplication by an invertible element of Q[t, t−1]. If the Alexander polyno-
mial is zero, then ∆h is proportional to the first higher Alexander polynomial ∆k, which is
not identically zero: ∆k = 0 for 0 ≤ k < Irr and ∆Irr = ∆h (up to an invertible element).

Definition 2.2.4. Consider the integers {qkλ}|λ|<1 and {pkλ(±1)}λ∈S1 provided by the direct
sum decomposition (2.1.3) of VL. They are called the H–numbers of the link L. The
associated (extended) spectrum is called the (extended) spectrum of the link.

From (2.1.5) one has |ESp| = deg∆h. Moreover, Sp \ Z is symmetric with respect to 1.
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2.3. Mixed Hodge structures and their spectra. The name and definition of spectrum
in Definition 2.1.4 is motivated by the fact that if L is an algebraic link, i.e. the link of
(local) isolated plane curve singularity, then ISp is empty and Sp is the classical spectrum
associated with the mixed Hodge structure of the vanishing cohomology (for this see e.g.
[St1, St2, Var]).

More generally, let f : (Cn+1, 0) → (C, 0) be the germ of an analytic function with isolated

singularity at 0, and let Y be the Milnor fiber and U = H̃n(Y,R). (For details regarding
the Milnor fibration, see e.g. [Mi2, AGV, Nem2].) One takes the monodromy operator
h : U → U , the intersection form b : U×U → R and the variation operator V : U∗ → U . One
checks (see e.g. [AGV] or [Nem2, § 5]) that the complexification of (U ; b, h, V ) constitutes a
(−1)n–HVS. If S is the Seifert matrix of the Milnor fibration, then at the level of matrices
V = (ST )−1. Since S is unimodular, V will be isomorphism too, hence the variation
structure is simple. For plane curves ε = −1, hence h = (ST )−1S and b = S − ST . The
structure (U ; b, h, V )⊗ C is called the ‘homological HVS’ of the germ.

There is dual a HVS, the ‘cohomological HVS’ associated with the germ, which sits on

H∗ := H̃n(Y,C). Additionally, H̃n(Y,C) carries a limit mixed Hodge structure with Hodge
filtration F and weight filtration W such that the semisimple part h∗ss of the cohomological
monodromy operator acts on (H∗, F,W ). They define spectral pairs. In order to eliminate
any confusion about the existing different normalizations, we provide some details.

One considers the generalized λ–eigenspaces U∗
λ for all the eigenvalues λ of the Gauss–

Manin monodromy operator hGM = (h∗ss)
−1 and the equivariant (Gauss–Manin) Hodge

numbers hp,qλ := dim GrpF GrWp+qU
∗
λ .

Then these numbers can be codified in a different way in the collection of Hodge spectral
pairs of (U∗, F,W ;h∗ss). This is a collection of pairs (α,w) from R× N defined by

(2.3.1) SppGM (f) =
∑

(α,w)

h
n+[−α],w+s−n−[−α]
exp(−2πiα) (α,w) ∈ N[R× N],

where s = 1 if λ = exp(−2πiα) = 1 and s = 0 otherwise.
This can be transformed in several ways. If by some geometric reason, one wishes to

emphasize more the cohomological monodromy operator h∗ss (instead of hGM ), one considers

(2.3.2) Spp∗(f) =
∑

(α,w)

h
n+[−α],w+s−n−[−α]
exp(2πiα) (α,w) ∈ N[R× N],

If we forget the weight filtration, then from the equivariant Hodge filtration one can read
the Hodge spectrum, namely

(2.3.3) Sp∗(f) =
∑

α ∈ N[R] (the sum over the spectral pairs (α,w) of Spp∗(f)).

Any spectral number α is in the interval (−1, n). Another normalizations of the spectrum
identifies it in the interval (0, n + 1): SpMHS(f) is the collection of numbers (α + 1) where
α runs over the entries of Sp∗(f).

The identification of the Hodge invariants with the associated hermitian variation struc-
ture goes through the crucial polarization property of the mixed Hodge structure. In this
way, the cohomological hermitian variation structure of f can be obtained from (U∗, F,W )
by collapsing the Hodge filtration mod 2, having the collapsed spectral numbers in (−1, 1].
The corresponding H–numbers are, in fact, the equivariant primitive Hodge numbers of
(U∗, F,W ) under this collapsing procedure. Usually, the homological and cohomological
HVS’s do not agree, in the case ε = (−1)n = −1 they differ by a sign: Vcoh = −Vhom. This
explains the two slightly different definition of the spectral numbers (2.1.4)(a) and (2.3.2).
Nevertheless, one has the following identification:
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Proposition 2.3.4 ([Nem2, (6.5)]). The HVS–spectrum SpHVS is a mod 2 reduction of the
Hodge spectrum SpMHS considered in (0, 2]. In other words

SpHVS = {x mod 2: x ∈ SpMHS}.

Therefore, for a gem of an isolated plane curve singularity one gets SpHVS = SpMHS.
That means, that the Hodge spectrum can completely be described from the (real) Seifert
form of the link. This is the model of our further investigation.

2.4. Spectrum of a link and the Tristram–Levine signature. The Tristram–Levine
signature (defined first in [Tri, Le]) turn out to be a knot–theoretic counterpart of the
spectrum of singular points. We recall how can they be explicitly expressed from the
spectrum of the link.

Definition 2.4.1. Let L be a link and S its Seifert matrix. The Tristram–Levine signature
function is the mapping from S1 \ {1} = {ζ ∈ C : |ζ| = 1, ζ 6= 1} to Z given by

σL(ζ) = signature
[
(1− ζ)S + (1− ζ)ST

]
.

The nullity nL(ζ) is the nullity of the same form (1− ζ)S+(1− ζ)ST , while the normalized
nullity, ñL(ζ), is defined as nL(ζ) − Irr. For completeness we extend the definitions for
ζ = 1 too. First, we set σL(1) = 0. Then notice that for any ζ 6= 1, ñL(ζ) equals to the
multiplicity of the root of ∆h at ζ. We define ñL(1) by this characterization for ζ = 1.

We have the following relation between H–numbers, signatures and nullities of the link.

Proposition 2.4.2 ([BN, (4.4.6) and (4.4.9)]). Let Sp = SpHVS be the real part of the
spectrum as defined in Definition 2.1.4. Let x ∈ (0, 1) and ζ = e2πix. Then

σ(ζ) = −|Sp ∩ (x, x+ 1)|+ |Sp \ [x, x+ 1]| +
∞∑

n=1

∑

u=±1

up2nζ (u)

ñ(ζ) =
∑

k,u

pkζ (u).

In particular,

(2.4.3) − σ(ζ) + ñ(ζ) ≥ |Sp ∩ (x, x+ 1)| − |Sp \ [x, x+ 1]|.

Remark 2.4.4. In the cases x ∈ {0, 1}, the inequality (2.4.3) still holds. Indeed, the
left hand side is non–negative, while the right hand side is non–positive (since Sp \ Z is
symmetric). Moreover, if 1 is not a root of ∆h, then (2.4.3) is an equality for x = 1.

Let us denote

D = |Sp ∩ {x, x+ 1}| ≥ 0.

Assume that ∆h, the characteristic polynomial of the link, has no roots outside the unit
circle. Then deg∆h = |Sp| = |Sp ∩ (x, x+ 1)|+ |Sp \ [x, x+ 1]|+D, hence one also has

(2.4.5) deg∆h − σ(ζ) + ñ(ζ) = 2|Sp ∩ (x, x+ 1)| +
∑

k odd
u=±1

pkζ (u) +
∑

k even

2pkζ (−1) +D.

For any x ∈ [0, 1], parallel to the set Sp ∩ (x, x + 1), we will also consider the set
Sp \ [x, x+1] = Sp∩ (0, x) +Sp∩ (1+ x, 2]. These two types cover all the ‘length one open
intervals’ of the mod 2 spectrum.

The following corollary will be used extensively in the sequel.
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Corollary 2.4.6. Let L be a link and ∆h its characteristic polynomial. Assume that ∆h

has no roots outside the unit circle. If ζ = e2πix is not a root of ∆h then

|Sp ∩ (x, x+ 1)| =
1

2

(
deg∆h − σ(ζ)

)
and |Sp \ [x, x+ 1]| =

1

2

(
deg∆h + σ(ζ)

)
.

Moreover, for arbitrary x ∈ [0, 1]:

1

2

(
deg∆h − σ(ζ) + ñ(ζ)

)
≥ |Sp ∩ (x, x+ 1)|

1

2

(
deg∆h + σ(ζ) + ñ(ζ)

)
≥ |Sp \ [x, x+ 1]|.

(2.4.7)

2.5. Morse theory of plane curves. For any ξ ∈ C2 and r > 0 let B(ξ, r) be the ball
centered at ξ and with radius r, also S3(ξ, r) := ∂B(ξ, r). For an algebraic curve C sitting in
C2, we write (C ∩B(ξ, r))∧ for the normalization of C∩B(ξ, r), and the genus of C∩B(ξ, r)
is the genus of its normalization.

For any link L, we denote by cL its number of components, and we set

wL(ζ) := −σL(ζ) + 1− cL + nL(ζ)

−uL(ζ) := σL(ζ) + 1− cL + nL(ζ).

Remark 2.5.1. The convention used in [Bo] is that nL is the dimension of the kernel of
(1− ζ)S+(1− ζ)ST increased by 1, this explains the formal differences compared with [Bo].

We will also fix ζ ∈ S1 \ {1}. Let us begin by citing a result from [Bo].

Proposition 2.5.2 ([Bo, Proposition 6.8]). Let ξ be a generic point of C2 and r0 < r1 two
values such that the intersections Li := C ∩ S3(ξ, ri) are transverse (i = 0, 1). With the
notations ci = cLi, gi = the genus of Ci := C ∩ B(ξ, ri) and ki = the number of connected
components of Ci

∧, one has

wL1
(ζ)−

∑
w
Lsing

k
(ζ)− wL0

(ζ) ≥ −2(g1 − g0 + c1 − c0 − k1 + k0),

−
(
uL1

(ζ)−
∑

u
Lsing

k
(ζ)− uL0

(ζ)
)
≥ −2(g1 − g0 + c1 − c0 − k1 + k0),

(2.5.3)

where Lsing

k are the links of singularities of C, which lie in B(ξ, r1) \B(ξ, r0).

We use Proposition 2.5.2 in two special cases.

Corollary 2.5.4. Let C0 and C1 be as in 2.5.2. If C01 = C1 \ C0 is smooth then

−σL1
(ζ) + nL1

(ζ)− (−σL0
(ζ) + nL0

(ζ)) ≥ χ(C01).

σL1
(ζ) + nL1

(ζ)− (σL0
(ζ) + nL0

(ζ)) ≥ χ(C01).

Proof. Use the definition of w, (2.5.3) and C01
∧ = C01 for the first inequality. For the

second one we use −u instead of w. �

The other important application is if r0 is small, so that L0 is an unknot.

Proposition 2.5.5. Fix r such that the intersection C ∩ S(ξ, r) is transverse, and set
L := C ∩ S(ξ, r). Let Csmooth be the smoothing of C ∩B(ξ, r) (e.g. if C is given by F−1(0)
for some reduced polynomial, then Csmooth can be taken as F−1(ε)∩B(ξ, r) for ε sufficiently

small). Let z1, . . . , zk be the singular points of C ∩B(ξ, r) with links Lsing
1 , . . . , Lsing

k , Milnor
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numbers µ1, . . . , µk, number of branches c1, . . . , ck, and signatures σ1(ζ), . . . , σk(ζ). Then

−σL(ζ) + nL(ζ) + (1− χ(Csmooth)) ≥
k∑

j=1

(
−σ

Lsing

j
(ζ) + nj(ζ) + µj

)

σL(ζ) + nL(ζ) + (1− χ(Csmooth)) ≥
k∑

j=1

(
σ
Lsing

j
(ζ) + nj(ζ) + µj

)
.

(2.5.6)

Proof. We prove only the first part, in the second one we use −uL instead of wL.
Let rmin be minimal with C ∩ S(ξ, r) non-empty, and set r0 := rmin + ε for ε sufficiently

small. Then L0 is an unknot with wL0
(ζ) ≡ 0, c0 = k0 = 1, thus (2.5.3) gives

− σL(ζ) + nL(ζ) + 1− cL ≥

≥
k∑

j=1

(−σj(ζ) + nj(ζ) + µj)−
k∑

j=1

(µj + cj − 1)− 2g(C) − 2cL + 2k1.

The proof is completed by applying the genus formula 2(g(Csmooth) − g(C)) =
∑k

j=1(µj +

cj−1), the fact that b1(Csmooth) = 2g(Csmooth)+cL−1 and observing that b0(Csmooth) ≤ 2k1
(it is even bounded by k1 alone). �

Remark 2.5.7. The cited result (i.e. Proposition 2.5.2) does not really require Morse
theoretical arguments, although they are very convenient. We could deduce it — with
approximately the same amount of work — from the Murasugi inequality [Kaw, Theo-
rem 12.3.1] too. The argument is that C01 = C ∩ (B(ξ, r1) \B(ξ, r0)) induces a cobordism

between the links L′
0 := L0∐Lsing

1 ∐ . . .∐Lsing
j and L1. In this way we do not use anywhere

that C is a complex curve, only that its genus is the difference of the genera of the minimal
Seifert surfaces of L1 and L′

0.

3. The Seifert form and the MHS of a polynomial at infinity

In this section we compare the Hodge–spectrum associated with the limit mixed Hodge
structure of a polynomial map at infinity with the HVS–spectrum provided by its regular
link at infinity. In this way we recover the Hodge–spectrum from the ‘Seifert form at infinity’.
For results concerning the limit mixed Hodge structure (MHS) and the Hodge spectrum at
infinity the reader might consult [SSS, Di2, Br].

3.1. Basic definitions. Let F : C2 → C be a reduced polynomial with critical values
x1, . . . , xN . Since C2 is not compact, the topology of a fiber F−1(y) can vary even if y
changes in a set of regular values of F .

Definition 3.1.1. ([Neu3]) The fiber F−1(c) is called regular at infinity if there exists a
(small) disk D ∋ c in C and a (large) ball B ⊂ C2 such that F restricted to F−1(D) \B is
a trivial fibration. The fiber is called irregular at infinity if it is not regular at infinity.

Consider all the values y1, . . . , yM such that F−1(yk) is not regular at infinity. Set ρ ∈ R

with ρ > maxk,l{|xk|, |yl|} and set γ = {z ∈ C : |z| = ρ}. Then F restricted to F−1(γ) is a
locally trivial fibration, called the fibration of F at infinity. It will be denoted Fib∞. The
fiber of Fib∞ is the (generic) fiber Y∞ := F−1(ρ) of F . The induced algebraic monodromy
over γ, called the monodromy of F at infinity, will be denoted by

(3.1.2) h∞ : H1(Y∞,Z) → H1(Y∞,Z).

Furthermore, we consider onH1(Y∞,Z) the intersection form b∞ too. Already this isometric
structure (H1(Y∞); b∞, h∞) contains important information about the behavior of F at
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infinity, nevertheless, we will enhance it in two different ways. The first is topological: we
investigate the possibility to extend the pair (b∞, h∞) to a variation structure (this, strictly
speaking, in general, only ‘partially’ is possible). The candidate for the variation operator
is the inverse transpose of the Seifert matrix of the link at infinity. The second is algebraic:
one lifts the pair (b∞, h∞) to the level of a polarized mixed Hodge structure by considering
the limit mixed Hodge structure of F at infinity.

First we start with the topological part.
Fix a fiber F−1(c) which is regular at infinity. For sufficiently large R the intersection

F−1(c) with ∂B(R) is transverse. This link F−1(c) ∩ ∂B(R) ⊂ ∂B(R), denoted by L∞
reg, is

independent (up to isotopy) of R and c. It is called the regular link at infinity of F .
According to [Neu3, Theorem 5] we can associate with L∞

reg the so–called fundamental
multilink at infinity Lfund, which is fibered. This means the following: there exist a link
Lfund with components {Lfund,i}

ν
i=1 and positive multiplicities n = {ni}

ν
i=1 such that there

is a fibration φ : S3 \ Lfund → S1 with the following property: for any closed loop τ ∈
S3 \ Lfund, φ∗([τ ]) ∈ H1(S

1) = Z equals the linking number of [τ ] with
∑

i niLfund,i.

Furthermore, the closure Yt of the fiber Yt = φ−1(e2πit) (t ∈ [0, 1]) is not a manifold with
boundary, but homologically Yt \ Yt is the multilink

∑
i niLfund,i.

Finally, the connection between the multilink Lfund and the link at infinity L∞
reg is the

following. Let T = T (Lfund) be a closed small tubular neighbourhood of Lfund. Then L∞
reg

is the intersection of a fiber Y0 with ∂ T (Lfund).

Lemma 3.1.3. For any i ∈ {1, . . . , ν}, let li be the linking number

li = lk(Lfund,i,
∑

j 6=i

njLfund,j)

and n′
i the (positive) greatest common divisor of ni and li. Then the number of components

of Y0 ∩ ∂ T (Lfund,i) is exactly n′
i. Hence, L∞

reg has
∑ν

i=1 n
′
i components. Moreover, the

components of Y0 ∩ ∂ T (Lfund,i) are cyclically permuted by the geometric monodromy of φ.

Proof. See [EN, § 3 and 4]. �

Another important point about Lfund is that its fiber Y0 can be identified with the generic
fiber Y∞ of the polynomial F [Neu3, Theorem 4]. In fact, by [AC, Theorem 1.1] one has

Lemma 3.1.4. The multilink fibration S3 \Lfund → S1 associated with (Lfund,n) and the
fibration Fib∞ of F are isomorphic.

By [EN, page 37], Y0 has d = gcdi{ni} connected components. In the sequel we will
assume that d = 1, that is, the generic fiber of F is connected.

3.2. The multilink Seifert form of Lfund. The surface Y0, the fiber of the multilink
(Lfund,n), is a generalized Seifert surface of the multilink, cf. [EN, pages 28-29]. In the
sequel we refer to it as the multilink Seifert surface. Using this surface, one can define
multilink Seifert form associated with Y0, cf. [EN, §15]. It is a bilinear form on H1(Y0,Z)
defined similarly as the classical Seifert form, namely Sfund(α, β) for α, β ∈ H1(Y0,Z) is the
linking number lk(α, β+), where β+ is the push-forward of β in the positive direction.

If all the multiplicities {ni}i equal 1, then Lfund is a fibred link, and Sfund is its classical
Seifert form, hence it has determinant ±1. In the case of general multiplicity system n this
is not the case anymore. In fact, Sfund can be even degenerate. Nevertheless, some parts
of the classical theory survive.

Lemma 3.2.1. Let H∗ denote the dual of H, T o the interior of T , and Y [a,b] :=
⋃

a≤t≤b Yt.
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(a) The groups H1(Y0,Z) and H1(Y0,Z)
∗ are isomorphic. In fact one has the following

sequence of isomorphisms, denoted by s:

H1(Y0)
∂−1

−→ H2(S
3, Y0)

(1)
−→ H2(S

3, Y [0, 1
2
])

(2)
−→ H2(Y [ 1

2
,1], Y1/2 ∪ Y1)

(3)
−→

H2(Y [ 1
2
,1], Y1/2 ∪ Y1 ∪ (T ∩ Y [ 1

2
,1]))

(4)
−→ H2(Y [ 1

2
,1] \ T

o, ∂(Y [ 1
2
,1] \ T

o))

(5)
−→ H1(Y [ 1

2
,1] \ T

o)∗
(6)
−→ H1(Y1 \ T

o)∗
(7)
−→ H1(Y1)

∗ = H1(Y0)
∗.

(b) Let j : H1(Y0,Z) → H1(Y0,Z) be induced by the inclusion. Then the composition

H1(Y0,Z)
j

−→ H1(Y0,Z)
s

−→ H1(Y0,Z)
∗

can be identified with the multilink Seifert form Sfund.
(c) Identify the isometric structure (b∞, h∞) with the intersection form and monodromy

of H1(Y0) (by 3.1.4). Then, in matrix notation,

b∞ = Sfund − ST
fund, and ST

fundh∞ = Sfund.

In particular, h∞ is an automorphism of Sfund, that is hT∞Sfundh∞ = Sfund.

Proof. In the sequence of isomorphisms ∂−1 comes from the exact sequence of the pair; (1),
(3), (6) and (7) are induced by deformation retracts; (2) and (4) are excisions, while (5) is
provided by duality of the manifold with boundary Y [ 1

2
,1] \ T

o. Part (b) and (c) follow by

similar argument as in the classical case, see e.g. the survey [Nem5, (3.15)]. �

In the above composition, although s is an isomorphism, j in general is not. Since, by
our assumption H̃0(Y0,Z) = 0, j can be inserted in the following long exact sequence:

(3.2.2) 0 → H2(Y0) → H2(Y0, Y0) → H1(Y0)
j

−→ H1(Y0) → H1(Y0, Y0) → 0.

Lemma 3.2.3.
(a) H2(Y0, Y0,Z) = ⊕ν

i=1Z
n′

i−1,

(b) H1(Y0, Y0,Z) = ⊕ν
i=1(Z

n′

i−1 ⊕ Zni/n′

i
).

In particular, H2(Y0,Z) = 0 and

(3.2.4) dimker j =
ν∑

i=1

(n′
i − 1).

Proof. By excision and deformation retract argument Hq(Y0, Y0) = ⊕iHq(Ai, Bi), where

(Ai, Bi) := (Y0 ∩ T (Lfund,i), Y0 ∩ ∂T (Lfund,i)).

Note that the homotopy type of Ai is Lfund,i, while of Bi is n
′
i copies of S

1. Each of these
copies maps (via the inclusion Bi →֒ Ai) onto Lfund,i as the ni/n

′
i–covering. Therefore, the

inclusion Bi →֒ Ai at H1–level is Z
n′

i → Z, {a1, . . . , an′

i
} 7→ ni

n′

i
·
∑

k ak. This gives (a) and

(b). The rest follow by rank computation argument from (3.2.2). �

Next, we will consider another compactification Ỹ0 of Y0. Denote Y o
0 := Y0 \ T (Lfund)

o,

the complement of the interior of the tube. ∂Y o
0 consists of

∑
i n

′
i copies of S1. Let Ỹ0

be obtained from Y o
0 by gluing to each boundary circle a 2–disc, in this way obtaining a

compact smooth surface. In fact, the fibration at infinity F over γ can be compactified

(even algebraically) to a fibration F̃ over γ with smooth compact fibers Ỹ0, where in this
language the compact fibers consists of Y0 with additionally

∑
i n

′
i ‘points at infinity’. This

point of view is used in Hodge theoretical computations, see e.g. [Di1] or [Di2, §3].
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One has the following exact sequence:

(3.2.5) 0 → Z → ⊕iZ
n′

i → H1(Y0,Z) → H1(Ỹ0,Z) → 0.

Above, ⊕iZ
n′

i is generated by the discs, their images in H1(Y0) are the classes of the circles

∂Y o
0 . Z from the left is H2(Ỹ0); its image is generated by ∂Y o

0 . The monodromy extends to

H1(Ỹ0) (or to F̃ ) (and will be denoted by h̃∞), and also to the discs/points at infinity: it

acts trivially on Z, on Zn′

i acts by permutation of the base elements (denoted by hper).

Let b̃∞ be the intersection form on H1(Ỹ0).

Lemma 3.2.6.
(a) h̃∞ has no eigenvalue 1, and all its Jordan blocks have size not larger than two.
(b) The exact sequence (3.2.5), together with the algebraic monodromy action on it, splits.

That is, h∞ has no Jordan block of size three, and the blocks of size two of h∞ and h̃∞
agree. In other words, over Q, one has a direct sum decomposition:

(3.2.7) (H1(Y0); b∞, h∞) = (H1(Ỹ0); b̃∞, h̃∞)⊕ (⊕iQ
n′

i/Q; 0, hper).

Moreover, (̃b∞, h̃∞) is a non–degenerate isometric structure.
(c) All roots of h∞ are roots of unity.

Proof. The statements follow from the mixed Hodge theory of the degeneration at infinity
of F and F̃ . Part (a) is proved e.g. in [Di1, Di2]. Part (b) follows from the spectral pair
computation of the mixed Hodge structure carried on H1(Y0,C). More precisely, there
is a cohomological analogue of the sequence (3.2.5) which carries mixed Hodge structure
compatible with the action of the monodromy, see again [Di2, § 3]. The number of Jordan
blocks of size two correspond to those spectral pairs (α,w) for which w = 0. These are

computed for both H1(Y0,C) and H1(Ỹ0,C) in [Br], and their number agree. For (c) use

e.g. the Monodromy Theorem for F̃ at infinity. �

Finally, we summarize the properties of Lfund in the following proposition. As usual, if h
is an automorphism of the vector space V , then Vλ=1 denotes the generalized eigenspace cor-
responding to eigenvalue 1, while Vλ6=1 is the direct sum of the other generalized eigenspaces.

Proposition 3.2.8. Set U := H1(Y0,Q) and let b∞ and h∞ be the intersection form and
the algebraic monodromy induced by the multilink fibration φ : S3 \ Lfund → S1.

Then the following facts hold:
(a) Y0 is the minimal multilink Seifert surface of the multilink (Lfund,n), and all minimal

multilink Seifert surfaces of (Lfund,n) are isotopic to Y0.
(b) One has a direct sum decomposition (Keef decomposition, cf. (2.2.1)):

(3.2.9) (U,Sfund) = (U0 ⊕ Undeg, Sfund,0 ⊕ Sfund,ndeg)

such that Sfund,0 = 0 of size Irr =
∑ν

i=1 (n′
i − 1), and Sfund,ndeg is non–degenerate.

A possible free generator set for U0 is the collection of the cycles L∞
reg,i,k − L∞

reg,i,k+1

(1 ≤ i ≤ ν; 1 ≤ k < n′
i), where {L∞

reg,i,k}
n′

i
k=1 are the components of Y0 ∩ ∂T (Lfund,i).

(c) The compatibility of the decompositions (3.2.9) and (3.2.7) is the following:

(c.1) (Undeg)λ6=1 = H1(Ỹ0). On this space (Sfund,ndeg)λ6=1 completes the non–degenerate

isometric structure (̃b∞, h̃∞) to a simple (−1)–variation structure.

(c.2) (⊕iQ
n′

i/Q; 0, [hper]) = ((Undeg)λ=1; 0, Id) ⊕ (U0; 0, h∞|U0
) (and this is an eigenspace

decomposition).

(c.3) (Undeg)λ=1 has dimension ν−1, on it the restriction of b∞ is trivial, the restriction
of h∞ is the identity, and this degenerate isometric structure is completed by (Sfund,ndeg)λ=1

to a simple variation structure.
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(c.4) On U0 the restrictions of b∞ and Sfund are trivial (hence all the equivariant signa-
ture type invariants including the Tristram–Levine signatures of restrictions of Sfund and
(b∞, h∞) are the same). Nevertheless, the restriction of h∞ is non–trivial (in fact, it has no
eigenvalue 1), hence the isometric structure cannot be completed to a variation structure.
The characteristic polynomial of the restriction of h∞ is

det(h∞|U0
− t Id) =

∏

i

tn
′

i − 1

t− 1
.

Proof. (a) follows from [EN, (4.1)]. For (b) note that the generators listed are in the kernel of

j. For this use e.g. the proof of (3.2.3), where {L∞
reg,i,k}

n′

i
k=1 are exactly the components of Bi.

Another possibility is check directly that Sfund(L
∞
reg,i,k −L∞

reg,i,k+1, β) = Sfund(β,L
∞
reg,i,k −

L∞
reg,i,k+1) = 0 for any β. Indeed, if T is sufficiently small tubular neighborhood, then

it does not intersect β, on the other hand inside of T the circles L∞
reg,i,k and L∞

reg,i,l are

homologous. For part (c) use Lemmas 3.2.1(c) and 3.2.6; for the characteristic polynomial
use the fact that the components {L∞

reg,i,k}k are cyclically permuted, cf. Lemma 3.1.3. �

The multilink structure (Lfund, Sfund) now will be used in two different aspects. First,
it can be related with the link L∞

reg; in fact, one can recover it from L∞
reg, see (3.3). On the

other hand, the multilink fibration of Lfund can be identified with the fibration at infinity
Fib∞ of F , cf. Lemma 3.1.4. In this way Lfund creates the bridge between L∞

reg and Fib∞.

3.3. The Seifert form of L∞
reg. Set Y o

0 := Y0 \ T (Lfund)
o as above. Obviously, Y o

0 →֒ Y0

admits a deformation retract, hence H1(Y
o
0 ,Z) = H1(Y0,Z) canonically.

Lemma 3.3.1. One has the following facts:
(a) Y o

0 is the minimal Seifert surface of L∞
reg, and all minimal Seifert surfaces of L∞

reg

are isotopic to Y o
0 .

(b) The Seifert form Sreg of L∞
reg associated with Y o

0 is identical with Sfund (under the
identification H1(Y

o
0 ,Z) = H1(Y0,Z)). In particular, all the result listed in Proposition

3.2.8 about Sfund are valid for Sreg too.
(c) Let hreg be the monodromy of the variation structure associated with Sreg,ndeg =

Sfund,ndeg (as in 2.2). Then the higher Alexander polynomials ∆k of L∞
reg satisfies the

following identities: ∆k ≡ 0 for 0 ≤ k < Irr, ∆Irr(t) = det(hreg − t Id).
(d) All the roots of the (higher) Alexander polynomial ∆Irr of L

∞
reg are roots of unity.

Proof. (a)–(b)–(c) follows from Proposition 3.2.8 and from the construction of Y o
0 . For (d)

use either Lemma 3.2.6(c) or note that the multilink fibration of Lfund can be represented
by a splice diagram [Neu3, Neu4], hence the characteristic polynomial of hfund is a product
of cyclotomic polynomials by [EN, Theorem 13.6]. �

3.4. The HVS–spectrum of the regular link at infinity, L∞
reg.

For local isolated plane curve singularities we have the following classical result, which in
the language of H–numbers pkλ(±1) and qkλ of their local links can be formulated as follows
(see e.g. [BN, Proposition 3.1.5, Lemma 3.1.6]).

Proposition 3.4.1 (Monodromy Theorem). Let L be an algebraic link and pkλ(±1), qkλ its
H–numbers. Then

(a) qkλ = 0 for all k > 0 and |λ| < 1; moreover pkλ(±1) = 0 unless λ is a root of unity,

(b) pkλ(±1) = 0 for all k > 2. Moreover p21(±1) = 0,
(c) p2λ(−1) = 0 and p11(−1) = 0.
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The fundamental mulitlink at infinity Lfund, or the regular link at infinity L∞
reg, in gen-

eral, cannot be realized by a local algebraic link. However, their H–numbers share similar
properties as the H–numbers of local links.

Proposition 3.4.2. For the H–numbers of L∞
reg the following facts hold.

(a) qkλ = 0 for all k > 0 and |λ| < 1, moreover pkλ(±1) = 0 unless λ is a root of unity,

(b) pkλ(±1) = 0 for all k > 2, and p21(±1) = 0,
(c) p11(−1) = 0,
(d) p2λ(1) = 0 for λ 6= 1.

Proof. (a) and (b) follow from Lemma 3.2.6. Next we prove (c). First we recall that
W1

1 (±1) = (C; 0, Id,∓1), hence we have to show that the restriction of Sfund on Uλ=1 is
negative definite. This follows from the more general result Proposition 3.7.2 of section 3.7.

(d) By [Neu3, NeRu] Lfund can is represented by a splice diagram with all edges have
negative determinants. Thus, Lfund has uniform twists (all positive) (see [EN, Chapter
14]). Therefore, by the discussion in [Neu1, Section 2] we have for each x ∈ Uλ

Sfund(λx, (h∞ − λ)x) ≥ 0.

This shows that p2λ(+1) cannot occur. �

Let SpHVS(L
∞
reg) be the HVS–spectrum associated with the link L∞

reg.

Corollary 3.4.3. (a) The HVS–spectrum of Uλ=1 consists of (ν − 1) copies of (1).
(b) All elements of SpHVS(L

∞
reg) are situated in (0, 2), and SpHVS(L

∞
reg) is symmetric with

respect to 1.

Remark 3.4.4. The proofs of Propositions 3.4.1 and 3.4.2 rely on some key properties of
the splice diagrams of the corresponding links. The common properties (which imply the
common p11(−1) = 0) is that in both cases the ‘multiplicities of the nodes’ and the ‘(near)
weights’ are positive. The crucial difference between the diagrams is that in the local case
the edge determinants are positive, while for the diagram at infinity they are negative. This
implies the sign difference in the p2λ(±1)–vanishing. For more details, see subsection 3.7.

The next identity will be often used in the sequel.

Corollary 3.4.5. If Y∞ is a regular fiber of F , then 1− χ(Y∞) = deg∆Irr(L
∞
reg) + Irr .

Proof. By Lemma 3.3.1(a) the size of Sreg is equal to 1 − χ(Y∞). On the other hand,
deg∆Irr is equal to the size of Sndeg by Lemma 3.3.1(c). The difference of the sizes of the
two matrices is equal to Irr by Proposition 3.2.8(b) (cf. also Lemma 3.3.1(b)). �

3.5. The Hodge–spectrum of the fibration of F at infinity. Let SpMHS,∞ be the
spectrum associated with the limit mixed Hodge structure of F at infinity defined in a
similar way as in subsection 2.3. The main result of this subsection shows that SpMHS,∞ can
be recovered from the rational Seifert form of L∞

reg and from the integers {n′
i}i. Conversely,

SpHVS(L
∞
reg) is the maximal subset of SpMHS,∞, which is symmetric with respect to 1.

More precisely, in Z[Q] one has

Theorem 3.5.1.

SpMHS,∞ = SpHVS(L
∞
reg) +

ν∑

i=1

( 1

n′
i

)
+ · · ·+

(n′
i − 1

n′
i

)
.
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Proof. Let us consider the decomposition given in Proposition 3.2.8:

(3.5.2) (U0; 0, h∞|U0
)⊕ ((Undeg)λ=1; 0, Id)⊕ ((Undeg)λ6=1; b̃∞, h̃∞)

The last component carries a limit mixed Hodge structure which is polarized by b̃∞, and
also it extends to a simple hermitian variation structure with (Sfund,ndeg)λ6=1. In such a
situation, the HVS–spectrum agrees with the Hodge spectrum. The proof is absolutely the
same as in the local case, see Proposition 2.3.4, or the original source [Nem2, (6.5)] (or the
affine polynomial case in [GN2]).

For the middle component both HVS and Hodge spectra are (ν − 1) copies of (1): in the
HVS case see Corollary 3.4.3 as a consequence of Proposition 3.4.2(c), while for the Hodge
case see [Br] or [Di2].

These two components provide the contribution from SpHVS(L
∞
reg). The remaining part,

provided by the first summand is computed in [Br], and it is the sum in the right hand side
of the identity of Theorem 3.5.1. �

Example 3.5.3. Recall that F is ‘good at infinity’ if and only if L∞
reg is a fibred link,

that is ni = 1 for all i, cf. [NeRu, Theorem 6.1]. By our result, in such a case one has
SpMHS,∞ = SpHVS(L

∞
reg).

Corollary 3.5.4. For any x ∈ [0, 1] one has

|SpHVS(L
∞
reg) ∩ (x, x+ 1)| ≤ |SpMHS,∞ ∩ (x, x+ 1)| ≤ |SpHVS(L

∞
reg) ∩ (x, x+ 1)|+ Irr .

and analogous inequality holds for Sp \ [x, x+ 1].

3.6. An example. The above discussion might have been technically quite involved. We
want to illustrate the occuring phenomena by investigating one example, the Briançon
polynomial, which appeared in [ACL, Br, Di2, DN] (we remark that in [AC, Exemple 4.14]
there is a different polynomial called Briançon polynomial, it has different link at infinity
and different irregular fibers).

The splice diagram of the fundamental link at infinity is as follows

32

−7−1
(3)(2)

(1)(1)

(4) (1)
root

Here the numbers in parentheses are the multiplicities of the vertices and arrowheads
(link components). The numbers not in parenthesis denote the weights of corresponding
edges (those omitted equal 1). We have n1 = 4, n′

1 = gcd(4, 6) = 2, and n2 = n′
2 = 1.

Computing the Euler characteristics of a minimal Seifert surface of Lfund (as in [EN])
we get that this surface is a three times punctured torus (3 is the number of components
of Lfund). The rank of H1(Y∞) is 4, while the ranks of U0 and (Undeg)λ=1 are 1. The
monodromy at infinity permutes L1,1, L1,2 and fixes L2. The characteristic polynomial of
the monodromy on boundary components is therefore t2 − 1. The Alexander polynomial of
Lfund, hence the characteristic polynomial of the monodromy at infinity, is (t2−1)(t2+t+1).

The equivariant signatures (which correspond to jumps of the Tristram–Levine sig-
natures) of Lfund can be computed using [Neu2, Theorem 5.3 and Section 6]. Using

[Neu2, Theorem 5.3] for the left-most splice component we compute that σ−
e2πi/3 = −1
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and σ−
e−2πi/3 = 1 so the jumps of the Tristram–Levine signature are respectively −2 and 2,

in other words p1
e2πi/3(+1) = 0, p1

e2πi/3(−1) = 1, p1
e−2πi/3(+1) = 1, p1

e−2πi/3(−1) = 0 (compare

[Br, Sections 3.5, 3.6]). On the other hand, a straightforward computation shows that the
right splice component does not contribute to the equivariant signature at all. Hence, the
non–trivial H–numbers are p1

e2πi/3(−1) = p1
e−2πi/3(+1) = p11(1) = 1.

Concluding, the spectrum at infinity is equal to {2
3 ,

4
3 ,

1
2 , 1} (cf. [Di2, Example 3.6(ii)]),

where {2
3 , 1,

4
3} is the contribution from L∞

reg.

3.7. The definiteness of ‘linking matrix’. The proof of (3.4.2)(c). We wish to prove
that the restriction of Sfund on Uλ=1 is negative definite. This follows from a more general
combinatorial result which we now state.

Let Γ be a rooted Eisenbud–Neumann diagram, cf. [Neu3]. For an edge we call the
weight which is closer to the root vertex the near weight and the other one the far weight.
For any two nodes v and w, if the geodesics connecting w and the root vertex contains v
then we say that w is beyond v. We allow more than one near weight at each node to have
weight different than 1. The linking numbers and multiplicities are determined from the
diagram as in [EN, §10,11]. The arrowhead vertices will be denoted by L1, . . . , Lν , their
multiplicities are n1, . . . , nν .

Let Qν be the Q–vector space generated by {Li}i, The linking matrix {lk(Li, Lj)}ij is
defined as follows: for i 6= j it is the standard linking pairing, while the self–linking lk(Li, Li)
is defined via the identity lk(Li,

∑
j njLj) = 0. Equivalently,

(3.7.1) lk(niLi, niLi) = −
∑

j 6=i

lk(niLi, njLj).

In particular, the null–space of the linking matrix is at least 1–dimensional.

Proposition 3.7.2. Let Γ be a rooted connected graph with the following properties

(a) all near weights are positive and no far weight is allowed to be zero.
(b) if the far weight at a node v is negative, then all far weights of nodes beyond v are

also negative (this property is weaker than negativity of edge determinants);
(c) the multiplicities of all arrowhead and non–arrowhead vertices are positive.

Then, the linking matrix lk(Li, Lj) is negative semi–definite with 1–dimensional null–space.

Proof. We begin with a following special case.

Lemma 3.7.3. The statement of Proposition 3.7.2 holds if lk(Li, Lj) > 0 for all i 6= j.

Proof. The reasoning is exactly as in [Neu1, §3]: for L =
∑

ℓjnjLj one has

lk(L,L) =
∑

i<j

2ℓiℓj lk(niLi, njLj) +
∑

i

ℓ2i lk(niLi, niLi).

Substituting (3.7.1), we get

(3.7.4) lk(L,L) = −
∑

i<j

(ℓi − ℓj)
2 lk(niLi, njLj).

Hence lk(L,L) is zero if ℓ1 = · · · = ℓn, and negative otherwise. �

In general, if some far weights are negative, some of the linking numbers lk(Li, Lj) might
be negative too; in these cases the proof is more involved.

Lemma 3.7.5. If ν ≥ 2 then the self–linking number lk(Li, Li) is negative for any i.
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Proof. For each i, let vi be a node supporting Li, αi denotes the far weight at vi and
βi1, . . . , βiki the near weights at vi, with βi1 the near weight on the edge supporting Li.

If lk(Li, Lj) > 0 for all j 6= i, then the statement follows from (3.7.1). Hence, assume
that lk(Li, Lj) < 0 for some j. Assume that Li and Lj are supported by nodes vi and vj
respectively (the case vi = vj is also possible). Let γ be a path in Γ joining Li to Lj . Since
lk(Li, Lj) < 0, one of the vertices lying on γ, call it vγ , must have a negative weight. This,
by assumption (a), must be a far weight, hence there is a unique vγ along the path with
this property. Now, if vi is beyond vγ , then by (b) we have αi < 0. Otherwise, vi = vγ and
αi < 0 by the definition of vγ . Next, let Mi be the multiplicity of vi, namely

Mi =
∑

j

lk(vi, njLj) = αiβi2 . . . βikini +
∑

j 6=i

lk(vi, njLj).

But for j 6= i one has lk(vi, njLj) = βi1 lk(Li, njLj), hence

(3.7.6) − lk(Li, Li) =
1

βi1ni

∑

j 6=i

lk(vi, njLj) =
Mi

niβi1
−

αiβi2 . . . βiki
βi1

> 0

as Mi > 0. �

Corollary 3.7.7. If the diagram has one or two arrowheads, then the statement of Propo-
sition 3.7.2 holds.

Proof. Use Lemma 3.7.5 and the fcat that the null–space is not trivial. �

The proof is based on induction via reduction of the diagram (via two operations).

Definition 3.7.8. Let Γ be a rooted graph. Assume that the supporting node vi of the
arrowhead vertex Li has the following properties: it is not the root vertex, there is no node
beyond it, Li is the unique arrowhead supported by vi. Hence, all its adjacent vertices
except Li and another one (in the direction of the root) are leaves. As above, denote the
valency of vi by ki + 1 (see the picture below).

A collapse of vi is a graph Γ′ with vi replaced by an arrowhead vertex L′
i with multiplicity

niβ, where β = βi2 · · · · · · · βiki and all other weights and multiplicities are unchanged.

αi βi1
βi2
βi3βiki

Li (ni)
L′
i (βni)

Collapse

Lemma 3.7.9. The linking matrices of Γ and Γ′ are congruent. Moreover, if Γ satisfies
the assumptions (a), (b) and (c) of the proposition, then so does Γ′.

Proof. We shall use the notation lkΓ and lkΓ′ for the linking forms on Γ and Γ′.
For any vertex v (being node or arrowhead), different from the deleted ones, we have

lkΓ(v, Li) = lkΓ′(v, βL′
i). We claim that lkΓ′(βLi, βLi) = lkΓ(Li, Li). This follows from

(3.7.1) applied for Γ and Γ′, and from the fact that in Γ′ the relation βniLi+
∑

j 6=i njLj = 0
holds. Thus, the linking matrix of Γ written in a basis, L1, . . . , Li, . . . , Lν is the same as the
linking matrix of Γ′ in the basis L1, . . . , βL

′
i, . . . , Lν . This proves the first part. As for the
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other part, the multiplicities of all vertices (besides the deleted ones) are preserved. This
shows that if Γ satisfies (c), then so does Γ′, while (a) and (b) are obvious. �

Definition 3.7.10. Let v0 be a node with no other node beyond it. Let L1, . . . , Lk be the
arrowheads adjacent to v0 (k ≥ 2), denote their multiplicities by n1, . . . , nk. v0 might have
several adjacent leaves as well, β denotes the product of their near weights. Assume that
the overall number of vertices of Γ is at least three.

A squeeze of Γ is a graph arising from Γ by replacing two arrowheads supported by v0
(say, L1 and L2) by a single one, denoted by Ls, which will gain multiplicity

ns := n2β1 + n1β2

and the near weight βs := β1β2.

α

(n1)

β1

(n2)β2

(nk)

βk
α

(ns)βs

(n3)

β3

(nk)

βk
Squeeze

Lemma 3.7.11. Let Γ′ be a squeeze of arrowhead L1 and L2 from Γ. If Γ satisfies the
assumptions (a), (b) and (c) of the proposition, then so does Γ′. Moreover, the rational
linking matrix of Γ is a direct sum of the linking matrix of Γ′ and a negative definite 1–
dimensional matrix.

Proof. As for the first part we observe that βs and ns were chosen in such a way that all
multiplicities of vertices are preserved. Moreover, by construction we have

(3.7.12)
lkΓ′(Li, Lj) = lkΓ(Li, Lj) if {i, j} ∩ {1, 2} = ∅ and i 6= j,
lkΓ′(nsLs, Lj) = lkΓ(n1L1 + n2L2, Lj) if j ≥ 3.

We claim lkΓ′(Lj , Lj) = lkΓ(Lj , Lj) for j ≥ 3. Indeed, this follows from (3.7.12) and (3.7.1)
applied for both graphs. Now, let us define

Λ1 = β1L1 − β2L2 and Λ2 = xL1 + yL2,

where the rational numbers x and y will be determined later. By definition,

lkΓ(Λ1, Lj) = 0 for any j ≥ 3.

The self-linking of Λ1 is equal to

lkΓ(Λ1,Λ1) = β2
1 lkΓ(L1, L1) + β2

2 lkΓ(L2, L2)− 2αββ1β2 . . . βk.

If α > 0, then the above expression is negative, because lkΓ(L1, L1) and lkΓ(L2, L2) are

negative by Lemma 3.7.5. If α < 0, we use (3.7.6) to show that lkΓ(Λ1,Λ1) = −Mv0(
β1

n1
+

β2

n2
) < 0, because the multiplicity of Mv0 is positive. Hence lkΓ(Λ1,Λ1) < 0 always.

Since lkΓ(Λ1,Λ1) < 0 and lkΓ(L1, L2) 6= 0, there exist x and y such that lkΓ(Λ2,Λ1) = 0
and Λ1,Λ2 are linearly independent. Such x and y are determined up to a multiplicative
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constant. To choose it observe that

lkΓ(Λ2, Lj) = x lkΓ(L1, Lj) + y lkΓ(L2, Lj) =

(
x+ y

β1
β2

)
lkΓ(L1, Lj)

and lkΓ′(Ls, Lj) =
1
β2

lkΓ(L1, Lj). We chose the rational numbers x and y so that x+y β1

β2
=

1
β2
. Then, we have for all j ≥ 3

(3.7.13) lkΓ(Λ2, Lj) = lkΓ′(Ls, Lj).

Finally, we show that lkΓ(Λ2,Λ2) = lkΓ′(Ls, Ls). This is done as follows. First, on Γ we
have the relation n1L1 + n2L2 +

∑
njLj = 0, which can be rewritten as

λ1Λ1 + λ2Λ2 +
∑

j≥3

njLj = 0

for some λ1 and λ2. On the other hand, on Γ′ we have nsLs +
∑

j≥3 njLj = 0. Now taking
the linking numbers with Lr for some r ≥ 3 we obtain

0 =
∑

j≥3

nr lkΓ(Lr, Lj) + λ2 lkΓ(Lr,Λ2) =
∑

j≥3

nr lkΓ′(Lr, Lj) + ns lkΓ′(Lr, Ls).

Now by (3.7.12), since r ≥ 3 the above equation simplifies to

λ2 lkΓ(Lr,Λ2) = ns lkΓ′(Lr, Ls).

From (3.7.13) and lkΓ′(Lr, Ls) 6= 0 it follows that ns = λ2. But then we have

lkΓ(Λ2, λ2Λ2) = −
∑

j≥3

lkΓ(Λ2, njLj) = −
∑

j≥3

lkΓ′(Ls, njLj) = lkΓ′(Ls, nsLs).

As ns = λ2 we conclude that lk(Λ2,Λ2) = lk(Ls, Ls). Hence the linking form on Γ restricted
to Λ2, L3, . . . , Ln is the same as the linking form on Γ′ written in basis Ls, L3, . . . , Ln, while
the element Λ1 splits out completely as an orthogonal summand. �

Finishing the proof of Proposition 3.7.2. By applying collapses and squeezes to Γ we end
up with a diagram, for which no further collapse or squeeze is possible. This diagram has
one or two arrowheads and we conclude the proof by Corollary 3.7.7. �

Remark 3.7.14. If we assume that the multiplicities of nodes of Γ are only non-negative
(not just positive), we can still prove semidefiniteness of the linking matrix, possibly with
higher dimensional null–space. We omit the details.

4. Semicontinuity results

Now we are ready to prove various semicontinuity results. In subsection 4.1 we recover
(in a slightly weaker form) the classical semicontinuity results valid in the local case of
algebraic plane curve singularities (classically proved by Varchenko in [Var], see also [St2]).
Next, in 4.2, we analyse the behavious of spectra under a degeneration of affine plane curves
in the spirit of [NS]. Finally, we consider an affine plane curve, and we relate the spectrum
of a curve at infinity with the spectra of its singularities, see 4.3. This type of comparison
is unknown in Hodge theory.
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4.1. Semicontinuity of the local singularity spectrum. Recall that in the local case
SpMHS = SpHVS (cf. 2.3.4), which will be denoted just by Sp.

Let us consider now the following situation. Let ft(x, y) be a smooth family of holo-
morphic functions in two local coordinates depending on a local parameter t. Assume that
f0(x, y) = 0 has an isolated singularity at the origin. Let us introduce the following notation.

• B is a small ball centered at the origin such that f−1
0 (0) is transverse to ∂B and

f0(z)/|f0(z)| : ∂B \ f−1
0 (0) → S1 is a Milnor fibration;

• L0 = f−1
0 (0) ∩ ∂B is the link of f0 at 0, and Sp0 the spectrum of the link;

• t 6= 0 and |t| is sufficiently small so that f−1
t (0) ∩ ∂B is a transversal intersection,

and this link is isotopic in ∂B to L0;
• C = f−1

t (0) ∩B;

• z1, . . . , zk are singular points of C, Lsing
1 , . . . , Lsing

k the corresponding local links of

these singularities, and Sp1, . . . , Spk are the spectra of Lsing
1 , . . . , Lsing

k .

Proposition 4.1.1. Fix x ∈ [0, 1] such that e2πix is not a root of the Alexander polynomial
of L0. Then

|Sp0 ∩ (x, x+ 1)| ≥
∑

j

|Spj ∩ (x, x+ 1)|

|Sp0 \ [x, x+ 1]| ≥
∑

j

|Spj \ [x, x+ 1]|.
(4.1.2)

Proof. Assume x 6= 0, 1. We shall prove only the first inequality, the second is completely
analogous (in Section 2.5 all inequalities are given in pairs, the first one we use to prove
results about Sp ∩ (x, x + 1), the other one to prove results about Sp \ [x, x + 1]). As

Lsing
j is an algebraic links, µj is the degree of the Alexander polynomial of Lsing

j . Hence

µj − σ
Lsing

j
(ζ) + n

Lsing

j
(ζ) ≥ 2|Spj ∩ (x, x+ 1)| by Corollary 2.4.6.

By assumption nL0
(ζ) = 0. Since L0 is also an algebraic link, 1−χ(Csmooth) is the degree

of the Alexander polynomial of L0. Thus, again by Corollary 2.4.6, one gets −σL0
(ζ)+ (1−

χ(Csmooth)) = 2|Sp0 ∩ (x, x+ 1)|. Then we conclude by the inequality (2.5.6).
If x ∈ {0, 1} the assumption that e2πix is not a root of the Alexander polynomial means

that L0 is a knot and |Sp0 ∩ (0, 1)| = |Sp0 ∩ (1, 2)| is the delta invariant δ0. For any

singularity link, hence for Lsing
j too, δj = |Sp ∩ (0, 1]| ≥ |Spj ∩ (0, 1)|. Hence the statement

follows from δ0 ≥
∑

δj. �

4.2. Semicontinuity of spectrum at infinity of families of affine curves. The meth-
ods described in this paper allow us also to prove the results on semicontinuity of the
spectrum at infinity in the sense of [NS].

Let Ft : C
2 → C be a smooth family of polynomials with a local deformation parameter

t. Let Spt be corresponding spectra of MHS at infinity and Irrt be the irregularity of the
link at infinity L∞

t,reg associated with Ft.
Note that over a small punctured disc D∗ ∋ t the spectrum Spt is constant.

Theorem 4.2.1. Fix x ∈ [0, 1] such that {x, x+ 1} ∩ Spt = ∅ for t ∈ D∗. Then

|Spt ∩ (x, x+ 1)|+ Irrt ≥ |Sp0 ∩ (x, x+ 1)|

and the same statement holds for Sp \ [x, x+ 1] instead of Sp ∩ (x, x+ 1).

Proof. Again we shall assume that x is not an integer, otherwise we use exactly the same
reduction argument as at the end of the proof of 4.3.1. We write ζ := e2πix ∈ S1 \ {1}.

Let us choose c such that C0 = F−1
0 (c) is smooth and regular at infinity. Furthermore,

choose ξ and r0 such that S3(ξ, r0) ∩ C0 is the regular link of F0 at infinity, denoted by
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L0. By openness of trasversality condition, there exist D, an open neighbourhood of 0, and
Wc, an open neighbourhood of c, such that for any w ∈ Wc and t ∈ D, the intersection
F−1
t (w) ∩ S3(ξ, r0) is transverse and isotopic to L0. Let us take any t ∈ D∗ and choose

w ∈ Wc such that Ct = F−1
t (w) is smooth and regular at infinity. Finally, choose rt such

that Lt := S3(ξ, rt) ∩ Ct is the regular link at infinity of Ct.
Since Ct ∩B(ξ, r0) is isotopic to C0 ∩B(ξ, r0), by Corollary 2.5.4 we get

−σLt(ζ) + nLt(ζ) + 1− χ(Ct ∩B(ξ, rt)) ≥ −σL0
(ζ) + nL0

(ζ) + 1− χ(C0 ∩B(ξ, r0)).

By assumption, ζ is not a root of ∆Irrt(Lt). Hence, applying 3.4.5 for Ft and F0 we obtain

−σLt + deg∆Irrt(Lt) + 2 Irrt ≥ −σL0
(ζ) + ñL0

(ζ) + deg∆Irr0 + 2 Irr0 .

Then Corollary 2.4.6 implies

|SpHVS(Lt) ∩ (x, x+ 1)|+ Irrt ≥ |SpHVS(L0) ∩ (x, x+ 1)| + Irr0 .

Finally, Corollary 3.5.4 provides the result.
To show the statement for Sp \ [x, x+ 1] we use the same argument. �

4.3. Spectrum at infinity of a singular curve. Let C ⊂ C2 be an irreducible plane
algebraic curve given by zero set of a reduced polynomial F . Let z1, . . . , zk be its singular
points and Sp1,. . . ,Spk their (Hodge or HVS) spectra. Let Sp∞ be the Hodge–spectrum
of F at infinity. Similarly, let L∞

reg be the regular link of F at infinity, SpHVS(L
∞
reg) its

HVS–spectrum and Irr be as defined in (3.2.4).

Theorem 4.3.1. With the above notations, for all x ∈ [0, 1] such that e2πix is not a root
of the Alexander polynomial of L∞

reg we have

∣∣SpHVS(L
∞
reg) ∩ (x, x+ 1)

∣∣ + Irr ≥
∑

j

|Spj ∩ (x, x+ 1)|

|Sp∞ ∩ (x, x+ 1)|+ Irr ≥
∑

j

|Spj ∩ (x, x+ 1)| .
(4.3.2)

Moreover, the analogous statement holds if we replace Sp ∩ (x, x+ 1) by Sp \ [x, x+ 1].

In the good case, if the regular link at infinity is fibred (e.g. if it is a knot), then Irr = 0 and
the second inequality of (4.3.2) takes the form |Sp∞ ∩ (x, x+ 1)| ≥

∑n
k=1 |Spk(x, x+ 1)|.

Proof. First we assume that x ∈ (0, 1). We focus on the case Sp ∩ (x, x + 1) the case
Sp \ [x, x+ 1] is analogous.

If C is regular at infinity, the inequality (2.5.6) reads as

(4.3.3) − σL∞
reg

(ζ) + nL∞
reg

(ζ) + (1− χ(Csmooth)) ≥
∑

j

(−σj(ζ) + nj(ζ) + µj),

where Csmooth is the smoothing of C. Since each link Lsing
j is algebraic, −σj(ζ)+nj(ζ)+µj ≥

2|Spj ∩ (x, x+ 1)|. On the other hand, by Proposition 3.4.5 we get

(4.3.4) 1− χ(Csmooth) = Irr+deg∆Irr.

By Lemma 3.3.1(d) ∆h
L∞

reg
has no roots outside the unit circle, hence Corollary 2.4.6 applies.

Since ζ is not a root of ∆h
L∞
reg

, ñ(ζ) = 0, hence

(4.3.5) − σL∞

reg
(ζ) + deg∆h

L∞
reg

= 2|SpL∞

reg
∩ (x, x+ 1)|,

and n(ζ) = Irr (see 3.2). Then (4.3.3), (4.3.4) and (4.3.5) prove the statement in this case.
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If C is not regular at infinity, we argue as follows. We take an r0 such that C ∩ S3(ξ, r0)
is the link of C at infinity, denoted by LC . Then (2.5.6) yields

(4.3.6) − σLC
(ζ) + nLC

(ζ) + (1− χ(Cr0
smooth)) ≥

∑

j

(−σj(ζ) + nj(ζ) + µj),

where Cr0
smooth := Cε ∩ B(ξ, r0) is the smoothing of C in B(ξ, r0). Here Cε := F−1(ε) is

smooth and regular at infinity (for ε non-zero and sufficiently small). Moreover, we can
assume that the links C ∩ S3(ξ, r0) and Cε ∩ S3(ξ, r0) are isotopic. Let r1 be such that
Cε ∩ S3(ξ, r1) is the regular link of F at infinity. Corollary 2.5.4 applied to Cε yields

(4.3.7) − σL∞

reg
(ζ) + nL∞

reg
(ζ)− (−σLC

(ζ) + nLC
(ζ)) ≥ χ(C01),

where C01 = Cε ∩ (B(ξ, r1) \B(ξ, r0)). (4.3.6) and (4.3.7) combined yields

−σL∞
reg

(ζ) + nL∞
reg

(ζ) + (1 − χ(Cε)) ≥
∑

j

(−σj(ζ) + nj(ζ) + µj).

This inequality is identical to (4.3.3) and we proceed further as in the previous case.
Assume that x = 0. Then, by the assumption, 1 is not a root of the Alexander polyno-

mial of L∞
reg, hence L∞

reg is a knot (because Uλ=1 is trivial, but its dimension is ν − 1 by
Proposition 3.2.8). Therefore the link at infinity is good, Irr = 0 and SpHVS(L

∞
reg) = Sp∞.

For θ > 0 sufficiently small |Sp∞∩(0, 1)| = |Sp∞∩(θ, 1+θ)| (because 1 6∈ SpHVS(L
∞
reg) =

Sp∞). On the other hand, in the local case, |Spj ∩ (0, 1)| ≤ |Spj ∩ (θ, 1 + θ)|, hence the
statement follows from the case x ∈ (0, 1).

The case x = 1 follows by the same argument with θ < 0. �

References

[A] V.I. Arnold, On some problems in singularity theory, In: Geometry and Analysis, Papers dedicated
to the memory of V.K.Patodi, Bombay, 1981, 1-10.
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