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THE KATO SQUARE ROOT PROBLEM ON SUBMANIFOLDS

ANDREW J. MORRIS

Abstract. We solve the Kato square root problem for divergence form operators
on complete Riemannian manifolds that are embedded in Euclidean space with
a bounded second fundamental form. We do this by proving local quadratic es-
timates for perturbations of certain first-order differential operators that act on
the trivial bundle over a complete Riemannian manifold with at most exponential
volume growth and on which a local Poincaré inequality holds. This is based on
the framework for Dirac type operators that was introduced by Axelsson, Keith
and McIntosh.
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1. Introduction and Main Results

Let us briefly recall the Kato square root problem on Rn. Given a strictly accretive
matrix-valued function A on R

n with bounded measurable coefficients, the Kato
square root problem is to determine the domain of the square root

√
div(A∇) of

the divergence form operator div(A∇). The original questions posed by Kato can
be found in [23, 24] and are discussed further in [27]. The problem was solved
completely in the case n = 1 by Coifman, McIntosh and Meyer in [16], in the case
n = 2 by Hofmann and McIntosh in [22] and finally for all n ∈ N by Auscher,
Hofmann, Lacey, McIntosh and Tchamitchian in [3]. The reader is referred to the
references within those works for the full list of attributes that led to those results,
since it is not possible to include them all here.
Prior to the solution of the Kato problem in all dimensions, Auscher, McIntosh and

Nahmod [4] reduced the one dimensional problem to proving quadratic estimates for
a related first-order elliptic system. Subsequently, Axelsson, Keith and McIntosh [6]
developed a general framework for proving quadratic estimates for perturbations of
Dirac type operators on Rn. In this unifying approach, the solution of the Kato
problem in all dimensions as well as many results in the Calderón program, such
as the boundedness of the Cauchy singular integral operator on Lipschitz curves,
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follow as immediate corollaries. Their results also have applications to compact
Riemannian manifolds (see Section 7 in [6]) and it is these applications that we
extend to certain noncompact manifolds in this paper.
To state our results, let us fix the following notation. Let M denote a complete

Riemannian manifold with geodesic distance ρ and Riemannian measure µ. We
adopt the convention that such a manifold is smooth and connected. The manifold
is not required to be compact. For any smooth real vector bundle E over M , let
C∞(E) denote the space of smooth sections of E, and let C∞

c (E) denote the subspace
of sections in C∞(E) that are compactly supported. Given a smooth bundle metric
on E, where 〈·, ·〉Ex : Ex × Ex → R denotes the metric on the fibre Ex of E at
each x in M , let L∞(E) denote the Banach space of all measurable sections u of E
that satisfy ‖u‖L∞(E) := ess sup x∈M |u(x)|Ex < ∞, where | · |Ex denotes the norm
induced by the bundle metric on Ex. Let L2(E) denote the Hilbert space of all
measurable sections u of E that satisfy ‖u‖2L2(E) :=

∫
M
|u(x)|2Ex

dµ(x) <∞ with the

inner inner-product 〈u, v〉L2(E) :=
∫
M
〈u(x), v(x)〉Ex dµ(x) for all u, v ∈ L2(E).

We assume that any real vector bundle has been complexified. For instance, when
E is the trivial bundle M × R, its complexification is M × C, so the spaces above
consist of C-valued measurable functions onM . In fact, set C∞(M) := C∞(M × C),
C∞

c (M) := C∞
c (M × C), L∞(M) := L∞(M × C) and L2(M) := L2(M × C).

We consider the following vector bundles over M . The tangent bundle TM ,
the cotangent bundle T ∗M , the endomorphism bundle End(TM) and the tensor
bundle T k,lM for each k, l ∈ N0. For each x in M , the fibres of these bundles are,
respectively, the tangent space TxM , the cotangent space T ∗

xM , the space End(TxM)

of endomorphisms on TxM , and the space T k,l
x M :=

⊗k TxM ⊗⊗l T ∗
xM of tensors.

The smooth bundle metrics on T ∗M , End(TM) and T k,lM are defined to be those
induced by the Riemannian metric on TM .
The Sobolev space W 1,2(M) of functions is defined in Section 2. The gradient and

divergence on M are defined in Section 3 as closed operators

grad : D(grad) ⊆ L2(M) → L2(TM),

div : D(div) ⊆ L2(TM) → L2(M)

with domain D(grad) = W 1,2(M) and − div being the formal adjoint of grad.
Given a function A00 in L∞(M), a vector field A10 in L∞(TM), a differential

form A01 in L∞(T ∗M), and A11 in L∞(End(TM)), define A : L2(M) ⊕ L2(TM) →
L2(M)⊕ L2(TM) by

(1.1) (Au)x =

[
(A00)x (A01)x
(A10)x (A11)x

] [
(u0)x
(u1)x

]

for all u = (u0, u1) ∈ L2(M) ⊕ L2(TM), where (·)x denotes the value of a function
or section at x in M . The components A00 and A10 act by multiplication, as in
(A10)x

(
(u0)x

)
:= (A10)x × u0(x). The notation for the components of A is chosen

to reflect that T 0,0M := C, T 1,0M = TM , T 0,1M = T ∗M and T 1,1M ∼= End(TM).
The bilinear form JA : W 1,2(M)×W 1,2(M) → C is then defined by

JA(u, v) = 〈A11(gradu) + A10u, grad v〉L2(TM) + 〈A01(grad u) + A00u, v〉L2(M)

for all u, v ∈ W 1,2(M).
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Given A as above and a in L∞(M), suppose that there exist constants κ1, κ2 > 0
such that the following accretivity conditions are satisfied:

Re 〈a u, u〉L2(M) ≥ κ1‖u‖2L2(M) for all u ∈ L2(M);

Re JA(u, u) ≥ κ2‖u‖2W 1,2(M) for all u ∈ W 1,2(M).
(1.2)

The divergence form operator LA,a : D(LA,a) ⊆ L2(M) → L2(M) is then defined by

(1.3) LA,au = a{− div[A11(gradu) + A10u] + A01(grad u) + A00u}
for all u ∈ D(LA,a) := {u ∈ W 1,2(M) : A11(gradu) + A10u ∈ D(div)}. We solve the
Kato square root problem for the operator LA,a as in the following theorem.

Theorem 1.1. Let n ∈ N and suppose that M is a complete Riemannian manifold
that is embedded in Rn with a bounded second fundamental form. If a and A satisfy
the accretivity conditions in (1.2), then the divergence form operator LA,a defined by
(1.3) has a square root

√
LA,a with domain D(

√
LA,a) = W 1,2(M) and

‖
√
LA,au‖L2(M) h ‖u‖W 1,2(M)

for all u ∈ W 1,2(M).

To prove Theorem 1.1, we develop a general framework for a class of first-order
differential operators that act on the trivial bundle over a complete Riemannian
manifold. This is the content of Section 2. The main result, Theorem 2.4, is a local
quadratic estimate for certain L∞ perturbations of these operators on manifolds
with at most exponential volume growth and on which a local Poincaré inequality
holds. This framework is based on that introduced in [6], although it resembles more
closely the subsequent development by the same authors in [5]. The statement of
Theorem 2.4 requires some technical preliminaries so we omit it here.
The structure of the remainder of the paper is as follows. We obtain the solution of

the Kato square root problem stated in Theorem 1.1 as a corollary of Theorem 2.4 in
Section 3. The technical tools required to prove Theorem 2.4 include a local version
of the dyadic cube structure developed by Christ in [15] and the local properties of
Carleson measures. The relevant details are contained in Section 4 and Theorem 2.4
is proved in Section 5. The material in Sections 2 and 5 follows closely the treatments
in [6, 5] and the reader is advised to have a copy of those papers at hand.
The following notation is used throughout the paper. For all x, y ∈ R, we write

x . y to mean that there exists a constant c ≥ 1, which may only depend on
constants specified in the relevant preceding hypotheses, such that x ≤ cy. We also
write x h y to mean that x . y . x.

2. Dirac Type Operators

We begin by fixing some notation from operator theory. An operator T on a
Hilbert space H is a linear mapping T : D(T ) ⊆ H → H, where the domain D(T )
is a subspace of H. The range R(T ) := {Tu : u ∈ D(T )} and the null-space

N(T ) := {u ∈ D(T ) : Tu = 0}. Let R(T ) denote the closure of the range in H.
An operator is defined to be closed if the graph G(T ) := {(u, Tu) : u ∈ D(T )} is a
closed subspace of H × H, densely defined if D(T ) is dense in H, and nilpotent if
R(Γ) ⊆ N(Γ). The adjoint of a closed, densely defined operator T is denoted by T ∗.
The unital algebra of bounded operators on H is denoted by L(H), where the unit
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is the identity operator I on H. Given another Hilbert space K, let L(H,K) denote
the space of bounded operators from H into K.
We now recall the operator-theoretic results obtained by Axelsson, Keith and

McIntosh in [6]. Consider three operators {Γ, B1, B2} acting in a Hilbert space H,
with norm ‖ · ‖ and inner-product 〈·, ·〉, that satisfy the following properties:

(H1) The operator Γ : D(Γ) ⊆ H → H is densely defined, closed and nilpotent. The
condition that Γ is nilpotent implies that Γ2 = 0 on D(Γ);

(H2) The operators B1 and B2 are bounded and there exist κ1, κ2 > 0 such that the
following accretivity conditions are satisfied:

Re〈B1u, u〉 ≥ κ1‖u‖2 for all u ∈ R(Γ∗);

Re〈B2u, u〉 ≥ κ2‖u‖2 for all u ∈ R(Γ).

The angles of accretivity are then defined as follows:

ω1 := sup
u∈R(Γ∗)\{0}

| arg〈B1u, u〉| < π
2

ω2 := sup
u∈R(Γ)\{0}

| arg〈B2u, u〉| < π
2
.

Also, set ω := 1
2
(ω1 + ω2).

(H3) The operators satisfy Γ∗B2B1Γ
∗ = 0 on D(Γ∗) and ΓB1B2Γ = 0 on D(Γ). This

implies that ΓB∗
1B

∗
2Γ = 0 on D(Γ) and Γ∗B∗

2B
∗
1Γ

∗ = 0 on D(Γ∗).

Now introduce the following operators.

Definition 2.1. Let Π := Γ + Γ∗, ΓB := B∗
2ΓB

∗
1 and ΠB := Γ + Γ∗

B.

Lemma 4.1 and Corollary 4.3 in [6] show that Γ∗
B = B1Γ

∗B2 and (ΠB)
∗ = Γ∗+ΓB,

that each of these operators is closed and densely defined, and that ΓB and Γ∗
B are

nilpotent. The following results are from Lemma 4.2 in [6]:

‖Γu‖+ ‖Γ∗
Bu‖ h ‖ΠBu‖ for all u ∈ D(ΠB);

‖Γ∗u‖+ ‖ΓBu‖ h ‖Π∗
Bu‖ for all u ∈ D(Π∗

B).
(2.1)

Proposition 2.2 in [6] establishes the following Hodge decompositions of H:

H = N(ΠB)⊕ R(Γ∗
B)⊕ R(Γ) = N(Π∗

B)⊕ R(ΓB)⊕ R(Γ∗),

where there is no orthogonality implied by the direct sums (except in the case
B1 = B2 = I) and the decompositions are topological. It is also shown there that

N(ΠB) = N(Γ∗
B)∩N(Γ) and R(ΠB) = R(Γ∗

B)⊕R(Γ). Furthermore, Proposition 2.5 in
[6] establishes that ΠB is type Sω, which we make precise at the end of this section.
We work within this general framework and consider a complete Riemannian

manifold M with geodesic distance ρ and Riemannian measure µ. The covariant
derivative∇ : C∞(T k,lM) → C∞(T k+1,lM) is defined for each k, l ∈ N0 by extending
the Levi-Civita connection onM to smooth tensor fields. For functions u ∈ C∞(M),
the smooth covector field ∇u is defined by ∇u(X) := X(u) for all X ∈ C∞(TM)
(see (3.7) for further details). The space W1,2(M) consists of all u in C∞(M) with

‖u‖2W1,2(M) := ‖u‖2L2(M) + ‖∇u‖2L2(T ∗M) <∞.

The Sobolev space W 1,2(M) is then defined to be the completion of W1,2(M) under
the norm ‖ · ‖W1,2(M). This completion is identified with the subspace of L2(M)
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consisting of all u in L2(M) for which there exists a Cauchy sequence (un)n in
W1,2(M) that converges to u in L2(M), in which case ∇u is defined to be the limit
of (∇un)n in L2(T ∗M) and

‖u‖2W 1,2(M) := ‖u‖2L2(M) + ‖∇u‖2L2(T ∗M).

Further details on this identification are contained in Section 2.2 of [20].
For each N ∈ N, define the spaces of CN -valued functions

L2(M ;CN) :=
⊕N L2(M) and W 1,2(M ;CN ) :=

⊕N W 1,2(M).

Let (e1, . . . , eN) denote the standard basis of CN so that for each CN -valued function

u there exists N unique C-valued functions uα such that u =
∑N

α=1 uαeα. For each
measurable subset S ⊆ M satisfying 0 < µ(S) < ∞, and each CN -valued function

u =
∑N

α=1 uαeα for which each uα is locally integrable, define

∫

S

u dµ :=

N∑

α=1

(∫

S

uα dµ

)
eα and uS := −

∫

S

u dµ :=
1

µ(S)

∫

S

u dµ.

Finally, for each z =
∑N

α=1 zαeα in CN , let |z| :=∑N
α=1 zαzα.

Now consider the following additional hypotheses for the operators {Γ, B1, B2}
and the Hilbert space H, which are analogous to those used by Axelsson, Keith and
McIntosh in [5]:

(H4) The Hilbert space H = L2(M ;CN) for some N ∈ N;

(H5) The operators B1 and B2 are matrix-valued pointwise multiplication operators
in the sense that the functions defined for all x in M by x 7→ B1(x) and
x 7→ B2(x) belong to L∞(M ;L(CN)).

(H6) The operator Γ is a first-order differential operator in the following sense. There
exists a constant CΓ > 0 such that for all η ∈ C∞

c (M) we have D(Γ) ⊆ D(Γ◦ηI),
where ηI is the operator of pointwise multiplication by η, and the commutator
[Γ, ηI] is a pointwise multiplication operator satisfying

|[Γ, ηI]u(x)| ≤ CΓ |∇η(x)|T ∗
xM |u(x)|

for all u ∈ D(Γ) and almost all x ∈M . This implies that the same hypotheses
hold with Γ replaced by Γ∗ and Π.

(H7) There exists a constant c > 0 such that the following hold for all open geodesic
balls B contained in M of radius r ≤ 1:∣∣∣∣
∫

B

Γu dµ

∣∣∣∣ ≤ cµ(B)
1
2‖u‖L2(M ;CN ) for all u ∈ D(Γ) compactly supported in B;

∣∣∣∣
∫

B

Γ∗u dµ

∣∣∣∣ ≤ cµ(B)
1
2‖u‖L2(M ;CN ) for all u ∈ D(Γ∗) compactly supported in B.

(H8) There exists a constant c > 0 such that

‖u‖W 1,2(M ;CN ) ≤ c‖Πu‖L2(M ;CN )

for all u ∈ R(Γ) ∪ R(Γ∗) ∩ D(Π).

We consider manifolds that have at most exponential volume growth and on which
a local Poincaré inequality holds. This is made precise below using the following
notation. A ball in M will always refer to an open geodesic ball. Given x ∈M and
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r > 0, let B(x, r) denote the ball in M with centre x and radius r, and let V (x, r)
denote the Riemannian measure µ(B(x, r)). Given α, r > 0 and a ball B of radius r,
let αB denote the ball with the same centre as B and radius αr. For all measurable
subsets E, F ⊆M , let 1E denote the characteristic function of E on M , and define
ρ(E, F ) := infx∈E,y∈F ρ(x, y) provided the infimum exists.

Definition 2.2. A complete Riemannian manifoldM has exponential volume growth
if there exist constants c ≥ 1 and κ, λ ≥ 0 such that

(Eloc) 0 < V (x, αr) ≤ cακeλαrV (x, r) <∞
for all α ≥ 1, r > 0 and x ∈M .

Definition 2.3. A complete Riemannian manifold M satisfies a local Poincaré in-
equality if there exists a constant c ≥ 1 such that

(Ploc) ‖1B(u− uB)‖2L2(M) ≤ c r2(‖1Bu‖2L2(M) + ‖1B∇u‖2L2(T ∗M))

for all u ∈ W 1,2(M) and balls B in M of radius r ≤ 1.

In Section 3, we obtain the solution of the Kato square root problem stated in
Theorem 1.1 as a corollary of the following general result.

Theorem 2.4. Let M be a complete Riemannian manifold satisfying (Eloc) and
(Ploc). Given operators {Γ, B1, B2} on L2(M ;CN ) satisfying hypotheses (H1)−(H8),
the perturbed operator ΠB := Γ +B1Γ

∗B2 satisfies the quadratic estimate

(2.2)

∫ ∞

0

‖tΠB(I + t2Π2
B)

−1u‖22
dt

t
h ‖u‖22

for all u in R(ΠB).

Theorem 2.4 is proved in Section 5. We conclude this section by explaining how it
implies a Kato square root estimate for ΠB. To do this, recall that Proposition 2.5
of [6] shows that ΠB is an operator of type Sω, where ω ∈ [0, π/2) is from (H2).
This is defined to mean that the spectrum of ΠB is contained in the closed bisector

Sω := {z ∈ C : | arg z| ≤ ω or |π − arg z| ≤ ω}
and that for each θ ∈ (ω, π/2) there exists a constant Cθ > 0 such that

(2.3) supz∈C\Sθ
|z|‖(zI − ΠB)

−1‖ ≤ Cθ

The theory of type Sω operators is well-understood and can be found in, for in-
stance, [24, 26, 19]. Let us briefly mention the McIntosh functional calculus from [26].
For all θ ∈ (0, π/2), let H∞(So

θ) denote the algebra of bounded holomorphic func-
tions on the open bisector So

θ := {z ∈ C \ {0} : | arg z| < θ or |π − arg z| < θ}.
Also, let Ψ(So

θ) denote the subspace of functions ψ in H∞(So
θ) for which there exists

α, β > 0 such that |ψ(z)| . min{|z|α, |z|−β} for all z ∈ So
θ . The resolvent bounds in

(2.3) and the decay properties of ψ ∈ Ψ(So
θ) allow one to use the Cauchy integral

formula to define the bounded operator ψ(ΠB)u := 1
2πi

∫
γ
ψ(z)(zI−ΠB)

−1u dz for all

u ∈ L2(M ;CN), where γ is the positively oriented boundary of So
µ for any µ ∈ (ω, θ).

The operator ΠB is said to have a boundedH∞(So
θ) functional calculus in the space

L2(M ;CN) if for each θ ∈ (ω, π/2), there exists c > 0 such that ‖ψ(ΠB)‖ ≤ c‖ψ‖∞
for all ψ ∈ Ψ(So

θ). Given f ∈ H∞(So
θ), this property allows one to define the bounded

operator f(ΠB) on L
2(M ;CN ) by f(ΠB)u = f(0)PN(ΠB)u+ limn→∞ ψn(ΠB)u for all
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u ∈ L2(M ;CN ), where PN(ΠB) is the projection from L2(M ;CN) onto N(ΠB) and
(ψn)n is any sequence in Ψ(So

θ) converging to f uniformly on compact subsets of So
θ .

An essential feature of the McIntosh functional calculus is that quadratic estimates
such as those in (2.2) are equivalent to the property that ΠB has a bounded H∞(So

θ)
functional calculus. The following Kato square root estimate is then obtained as a
corollary of Theorem 2.4 by defining f in H∞(So

θ) as f(z) = sgn(Re(z)) = z/
√
z2

and considering the bounded operator f(ΠB) = ΠB/
√
Π2

B. The arguments can be
found in more detail above Corollary 2.11 in [6].

Corollary 2.5. Assume the hypotheses stated in Theorem 2.4. We then have
D(
√
Π2

B) = D(ΠB) = D(Γ) ∩ D(Γ∗
B) with

‖
√

Π2
Bu‖2 h ‖ΠBu‖2 h ‖Γu‖2 + ‖Γ∗

Bu‖2
for all u ∈ D(

√
Π2

B).

3. The Solution of the Kato Square Root Problem on Submanifolds

We now prove Theorem 1.1 as a corollary of Theorem 2.4. Let us first fix notation
and dispense with some technicalities of submanifold geometry.
Fix positive integers n ≥ m and suppose that M is an m-dimensional complete

Riemannian submanifold of Rn. This is defined to mean thatM is anm-dimensional
complete Riemannian manifold and that there is a smooth embedding ι :M → R

n.
An embedding here refers to an injective immersion that induces the Riemannian
metric on M from the ambient Euclidean metric.
A local coordinate chart at x ∈ M refers to an open set U ⊆ M containing x

and a diffeomorphism ϕ : U → Rm. The tangent space TxM is defined to be the
space of derivations on the algebra of germs of smooth functions on M at x. The

derivations (∂1, . . . , ∂m) defined by ∂if = ∂(f◦ϕ−1)
∂xi

(ϕ(x)) for all f ∈ C∞(V ), where
V ⊆ M is any open set containing x, form a basis of the tangent space TxM . The
global coordinate chart for Rn provides an isomorphism between TxR

n and R
n for

all x ∈ Rn. The standard basis of Rn is denoted by (e1, . . . , en). When working in
either of these bases, we adopt the convention whereby repeated indices are summed
over the dimension of the space.
For each x ∈ M , the differential of the embedding ι∗ : TxM → Tι(x)R

n is defined
for all v ∈ TxM by the requirement that

(3.1) (ι∗v)(f) = v(f ◦ ι)
for all f in the algebra of germs o smooth functions on Rn at ι(x). The isomorphism
Tι(x)R

n ∼= R
n allows us to regard this as the mapping ι∗ : TxM → R

n defined by

(3.2) ι∗v := v(ια)eα

for all v ∈ TxM , where ι(x) = ια(x)eα.
The Euclidean metric 〈x, y〉Rn = 〈xαeα, yβeβ〉Rn := xαyα for all x, y ∈ Rn. To say

that ι is an embedding then means that ι is injective and that for each x ∈ M , the
differential ι∗ is injective with the property that

(3.3) 〈u, v〉TxM = 〈ι∗u, ι∗v〉Rn

for all u, v ∈ TxM . In particular, given a local coordinate chart at x ∈M , we have

(3.4) gij(x) := 〈∂i, ∂j〉TxM = ∂iι
α∂jι

α.
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The basis (dx1, . . . , dxm) of the cotangent space T ∗
xM is defined by requiring that

dxi(∂j) = δij , where δ
i
j is the Kronecker delta, and then gij(x) := 〈dxi, dxj〉T ∗

xM .
For each x ∈ M , the properties of the embedding guarantee that ι∗(TxM) is

an m-dimensional subspace of Rn. Let Nι(x)M denote the orthogonal complement
of ι∗(TxM) in Rn so that ι∗(TxM) ⊕ Nι(x)M = Rn. The normal bundle NM is
the bundle over M whose fiber at each x in M is the space Nι(x)M . For each
x ∈ M , let πι∗(TM) denote the orthogonal projection from R

n onto ι∗(TxM) and
define π := ι−1

∗ πι∗(TM). The operator π : Rn → TxM is the adjoint of ι∗, since

(3.5) 〈ι∗u, v〉Rn = 〈ι∗u, πι∗(TM)v〉Rn = 〈ι∗u, ι∗πv〉Rn = 〈u, πv〉TxM

for all u ∈ TxM and v ∈ Rn.
The Euclidean connection on R

n is the directional derivative ∇Rn

X Y := X(Y α)eα
for all X ∈ C∞(TRn) and Y = Y αeα ∈ C∞(TRn). The Levi-Civita connection
∇M : C∞(TM) × C∞(TM) → C∞(TM) is denoted by ∇M

X Y := ∇M(X, Y ) for all
X, Y ∈ C∞(TM). It is completely determined by the Christoffel symbols Γk

ij , which

are the smooth functions satisfying ∇M
∂i
∂j = Γk

ij∂k in a local coordinate chart.
The properties of the embedding guarantee that for each X ∈ C∞(TM) there

exists X̃ ∈ C∞(TRn), which is not necessarily unique, that is an extension of X in

the sense that the restriction of X̃ to ι(M) is ι∗X . The second fundamental form
h : C∞(TM)× C∞(TM) → C∞(NM) is then defined by

h(X, Y ) := πNM

(
∇Rn

X̃
Ỹ
)

for all X, Y ∈ C∞(TM), where X̃, Ỹ ∈ C∞(TRn) denote extensions of X, Y . It is a
standard fact (see, for instance, Lemma 8.1 and Theorem 8.2 in [25]) that this defi-

nition is independent of the extensions X̃, Ỹ , and that ι∗
(
∇M

X Y
)
= πι∗(TM)

(
∇Rn

X̃
Ỹ
)
.

This shows that

h(X, Y ) = ∇Rn

X̃
Ỹ − πι∗(TM)

(
∇Rn

X̃
Ỹ
)
= ∇Rn

X̃
Ỹ − ι∗

(
∇M

X Y
)
.

In a local coordinate chart, we then have

hij : = h(∂i, ∂j)

= ∇Rn

∂̃i
∂̃j − ι∗

(
∇M

∂i
∂j
)

= (ι∗∂i)(∂̃j
α
)eα − ι∗

(
∇M

∂i
∂j
)

= ∂i(∂̃j
α ◦ ι)eα − (∇M

∂i
∂j)(ι

α)eα

= ∂i((ι∗∂j)
α)eα − Γk

ij∂kι
αeα

= (∂i∂jι
α − Γk

ij∂kι
α)eα

=: hαijeα,

(3.6)

where the third equality is obtained by writing ∂̃j = ∂̃j
α
eα, applying the ambient

connection and the fact that ∂̃i is an extension of ∂i, the fourth uses (3.1) and

(3.2), the fifth equality is obtained by using the fact that ∂̃j is an extension of
∂j and applying the submanifold connection, and the sixth uses (3.2). In a local
coordinate chart at x ∈M , we have |h|T ∗

xM⊗T ∗
xM⊗NxM = gijgklhαikh

α
jl, and the second

fundamental form is said to be bounded when

|h| := sup
x∈M

|h|T ∗

xM⊗T ∗

xM⊗NxM <∞.
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The covariant derivative ∇ : C∞(T k,lM) → C∞(T k+1,lM) is defined for each
k, l ∈ N0 by extending the Levi-Civita connection on M to smooth tensor fields.
For functions u ∈ C∞(M), the smooth covector field ∇u is defined by

(3.7) ∇u(dxi) := ∂iu.

The Hessian is the smooth (2,0)-tensor field ∇2u := ∇(∇u) defined by

(3.8) ∇2u(dxi, dxj) := ∂i∂ju− Γk
ij∂ku.

The gradient operator grad : W 1,2(M) ⊆ L2(M) → L2(TM) is defined for each
u ∈ W 1,2(M) by the requirement that

(3.9) 〈gradu,X〉TM = ∇u(X)

for all X ∈ TM , where ∇u is defined by the construction of W 1,2(M) in Section 2.
The Riesz representation theorem guarantees that the gradient operator is well-
defined. If u ∈ C∞(M), then ∇u is defined by (3.7) and in a local coordinate
chart we have gradu = gij∂iu∂j . The Riemannian measure is a Radon measure,
so Urysohn’s Lemma implies that C∞

c (M) is dense in L2(M) (see, for instance,
Proposition 7.9 in [18]). Therefore, the gradient operator is densely defined and its
adjoint grad∗ is defined. The divergence operator div : D(div) ⊆ L2(TM) → L2(M)
is defined by div := − grad∗, so we have

D(div) = {X ∈ L2(TM) : supu∈W 1,2(M);‖u‖2=1|〈gradu,X〉L2(TM)| <∞}
and

(3.10) 〈gradu,X〉L2(TM) = 〈u,− divX〉L2(M)

for all u ∈ W 1,2(M) and X ∈ D(div).
The minus sign is inserted in the definition of div to relate it to the Riemannian

divergence Div : C∞(TM) → C∞(M), which is defined by

(3.11) DivX := trace(∇X) := ∇X(∂i, dx
i)

for all X ∈ C∞(TM). The Riemannian divergence theorem (see, for instance,
equation (III.7.5) in [12]) guarantees that

∫
M
DivX dµ = 0 for all X ∈ C∞

c (TM).
Then, since Div(uX) = 〈gradu,X〉TM + uDivX , the integration by parts formula

(3.12) 〈gradu,X〉L2(TM) = 〈u,−DivX〉L2(M)

is valid for all u ∈ C∞(M) and X ∈ C∞(TM) provided that at least one of X or u
is compactly supported.
To prove that div and Div coincide on C∞

c (TM), we use the density of C∞
c (M)

in W 1,2(M), which was proved on a complete Riemannian manifold by Aubin in [2]
(see also Theorem 3.1 in [20]). Given X ∈ C∞

c (TM) and u ∈ W 1,2(M), let (un)n
denote a sequence in C∞

c (M) that converges to u in W 1,2(M). Using (3.12), we have

|〈gradu,X〉L2(TM)| = |〈grad(u− un), X〉L2(TM) + 〈un,−DivX〉L2(M)|
≤ ‖∇(u− un)‖L2(T ∗M)‖X‖L2(TM) + ‖un‖L2(M)‖DivX‖L2(M)

≤ cX(‖u− un‖W 1,2(M) + ‖u‖L2(M)),

where cX := ‖X‖L2(TM) + ‖DivX‖L2(M) < ∞ because X ∈ C∞
c (TM). This shows

that C∞
c (TM) ⊆ D(div) and a similar argument shows that DivX = divX .
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The Laplacian ∆ : C∞(M) → C∞(M) is defined by ∆u := −Div gradu for all
u ∈ C∞(M), with gradu ∈ C∞(TM) defined by (3.9), so we have ∆v = − div grad v
for all v ∈ C∞

c (M). This completes the setup required to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that a ∈ L∞(M), A00 ∈ L∞(M), A10 ∈ L∞(TM),
A01 ∈ L∞(T ∗M) andA11 ∈ L∞(End(TM)) satisfy the accretivity conditions in (1.2).
We now define operators {Γ, B1, B2} acting in a Hilbert space H such that the
divergence form operator LA,a in (1.3) is a component of the first-order system
Π2

B := Γ +B1Γ
∗B2.

The operator A from (1.1) is used to define the pointwise multiplication operator
Ã ∈ L∞(M ;L(C1+n)) by

Ã(x) :=

[
1 0
0 (ι∗)x

] [
(A00)x (A01)x
(A10)x (A11)x

] [
1 0
0 πx

]

for almost all x ∈M . The components Ã00 ∈ L∞(M ;L(C)), Ã01 ∈ L∞(M ;L(Cn;C)),

Ã10 ∈ L∞(M ;L(C;Cn)) and Ã11 ∈ L∞(M ;L(Cn)) satisfy

Ã(x) =

[
Ã00(x) Ã01(x)

Ã10(x) Ã11(x)

]
=

[
(A00)x (A01)xπx

(ι∗)x(A10)x (ι∗)x(A11)xπx

]
.

The following diagram now commutes, where I denotes the identity on L2(M):

L2(M)

LA

��

[ I
grad]

// L2(M)⊕ L2(TM)

A
��

[I 0
0 ι∗

]
// L2(M ;C1+n)

Ã
��

L2(M) L2(M)⊕ L2(TM)
a[I,− div]

oo L2(M ;C1+n)
[I 0
0 π]

oo

Following [5], define the operator

S :=

[
I 0
0 ι∗

] [
I

grad

]
=

[
I

ι∗ grad

]
: D(S) ⊆ L2(M) → L2(M ;C1+n)

with D(S) = W 1,2(M) and adjoint

S∗ =
[
I − div

] [I 0
0 π

]
=
[
I − div π

]
: D(S∗) ⊆ L2(M ;C1+n) → L2(M).

These are closed and densely defined. The operators {Γ, B1, B2} acting in the Hilbert
space H = L2(M)⊕ L2(M ;C1+n) are now defined below:

(3.13) Γ =

[
0 0
S 0

]
; Γ∗ =

[
0 S∗

0 0

]
; B1 =

[
a 0
0 0

]
; B2 =

[
0 0

0 Ã

]
.

In that case, the operators from Definition 2.1 are as follows:

Γ∗
B = B1Γ

∗B2 =

[
0 aS∗Ã
0 0

]
; ΠB = Γ + Γ∗

B =

[
0 aS∗Ã
S 0

]
;

Π2
B =

[
aS∗ÃS 0

0 SaS∗Ã

]
=

[
LA 0

0 SaS∗Ã

]
.

The assumption that M has a bounded second fundamental form implies a lower
bound on its Ricci curvature. This is proved in Lemma 3.1 below. The lower bound
on Ricci curvature implies that both (Eloc) and (Ploc) are satisfied onM . The volume
growth condition (Eloc) is a consequence of the Bishop–Gromov volume comparison
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theorem (see, for instance, [12]). The local Poincaré inequality is a result of Buser
in [10]. A concise summary of these and other properties of manifolds with Ricci
curvature bounded below can be found in Section 5.6.3 of [30].
The assumption that M has a bounded second fundamental form also implies

that the operators {Γ, B1, B2} on H from (3.13) satisfy hypotheses (H1)–(H8) from
Section 2. This is proved in Proposition 3.2 below.
Therefore, the requirements of Theorem 2.4 are satisfied and Corollary 2.5 implies

that D(
√

Π2
B) = D(ΠB) = D(Γ) ∩ D(Γ∗

B) with

‖
√

Π2
Bu‖2 h ‖ΠBu‖2 h ‖Γu‖2 + ‖Γ∗

Bu‖2
for all u ∈ D(

√
Π2

B). When we restrict this result to u ∈ L2(M), we obtain

D(
√
LA,a) = D(S) =W 1,2(M) with

‖
√
LA,au‖2 h ‖Su‖2 = ‖u‖W 1,2(M)

for all u ∈ W 1,2(M), as required. �

It remains to prove the two claims about a submanifold with bounded second fun-
damental form that were made in the proof above. This is the content of Lemma 3.1,
which records some of the geometric properties implied by a bounded second fun-
damental form, and Proposition 3.2.

Lemma 3.1. Let M be a complete Riemannian submanifold of Rn. If the second
fundamental form h satisfies |h| := supx∈M |h|T ∗

xM⊗T ∗

xM⊗NxM < ∞, then the Ricci
curvature of M is bounded below and the injectivity radius of M is positive.

Proof. The Gauss equation (see, for instance, Theorem 8.4 in [25]) shows that a
bound on the second fundamental form implies a bound on the magnitude of any
sectional curvature, and hence a lower bound on the Ricci curvature of M .
The refined version of Klingenberg’s formula presented by Abresch and Meyer

in Lemma 1.8 of [1] (see also Lemma 5.6 in [13]) shows that the injectivity radius
of M is equal to min{conjM, 1

2
infx∈M ℓM(x)}, where conjM is the conjugate radius

of M and ℓM(x) is the length of the shortest nontrivial geodesic loop γ : [0, 1] → M
starting and ending at x ∈M . The sectional curvature bounds mentioned previously
guarantee that conjM is positive (see, for instance, Corollary B.21 in [14]). Now
suppose that γ is a geodesic loop as above. The curvature of γ is equal to h(γ′, γ′)
(see, for instance, Lemma 8.5 in [25]). Fenchel [17] and Buser [9] proved that the
total curvature of a closed curve in Rn is greater than or equal to 2π, hence we have
2π ≤

∫
|h(γ′, γ′)| ds ≤ |h|ℓM(x) for all x ∈M , and the proof is complete. �

The proof of the following proposition completes the proof of Thereom 1.1.

Proposition 3.2. Let M be a complete Riemannian submanifold of Rn. If the
second fundamental form h satisfies |h| := supx∈M |h|T ∗

xM⊗T ∗

xM⊗NxM < ∞, then the
operators {Γ, B1, B2} on the Hilbert space H = L2(M ;C2+n) from (3.13) satisfy
hypotheses (H1)–(H8) from Section 2.

Proof. Let ‖·‖ and 〈·, ·〉 denote the norm and inner-product on the space L2(M ;C2+n).
Hypotheses (H1) and (H3)–(H6) are immediate and do not require the geometric
assumptions in the proposition.
(H2). There are two estimates to prove:
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(i) If u ∈ R(Γ∗), then u = (S∗ũ, 0) for some ũ ∈ D(S∗) such that S∗ũ ∈ L2(M). The
accretivity assumption on a in (1.2) then implies that

Re〈B1u, u〉 = Re〈aS∗ũ, S∗ũ〉 ≥ κ1‖S∗ũ‖2 = κ1‖u‖2.
(ii) If u ∈ R(Γ), then u = (0, Su0) for some u0 ∈ D(S) = W 1,2(M). The duality in
(3.5) and the accretivity assumption on A in (1.2) then imply that

Re〈B2u, u〉 = Re〈
[
I 0
0 ι∗

]
A

[
I 0
0 π

]
Su0, Su0〉

= Re〈A
[
I

grad

]
u0,

[
I

grad

]
u0〉L2(M)⊕L2(TM)

≥ κ2‖u0‖2W 1,2(M)

= κ2‖u‖2.
(H7). There are two estimates to prove:

(i) To prove the first estimate in (H7), it suffices to show that there exists c > 0
such that for all balls B in M , the following hold for all u ∈ W 1,2(M) with compact
support in B:

∣∣∣∣
∫

B

u dµ

∣∣∣∣ ≤ cµ(B)
1
2‖u‖L2(M);

∣∣∣∣
∫

B

ι∗ grad u dµ

∣∣∣∣ ≤ cµ(B)
1
2‖u‖L2(M)

The first of these is given by the Cauchy–Schwartz inequality. To prove the second,
we start by showing that

(3.14) 〈grad v,X〉L2(TM) = 〈v,−DivX〉L2(M)

for all v ∈ W 1,2(M) that are compactly supported and all X ∈ C∞(M). Suppose
that v ∈ W 1,2(M) is supported in a compact set K ⊆ M and choose a sequence
(vn)n of functions in W1,2(M) supported in K that converge to v in W 1,2(M). For
each n ∈ N, the integration by parts formula (3.12) shows that

|〈grad v,X〉L2(TM) − 〈v,−DivX〉L2(M)|
= |〈grad(v − vn), X〉L2(TM) − 〈(v − vn),−DivX〉L2(M)|
≤ ‖ grad(v − vn)‖L2(TM)‖1KX‖L2(TM) + ‖v − vn‖L2(M)‖1K DivX‖L2(M).

The smoothness of X guarantees that both ‖1KX‖L2(TM) and ‖1K DivX‖L2(M) are
finite, so the bound above can be made arbitrarily small to prove (3.14).
We now obtain∣∣∣∣

∫

B

ι∗ gradu dµ

∣∣∣∣ =
∣∣∣∣
∫

gradu (ια) dµ eα

∣∣∣∣

=

∣∣∣∣
∫

〈grad ια, gradu〉TM dµ eα

∣∣∣∣

=

∣∣∣∣
∫
u∆ια dµ eα

∣∣∣∣

≤ sup
x∈M

|∆ια(x)eα|
∫

B

|u| dµ

≤ |h|µ(B)1/2‖u‖L2(M),
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where the first equality is given by the definition of ι∗ in (3.2), the second is given
by the definition of the gradient in (3.9) for the smooth function ια, and the third
is given by (3.14) because u has compact support. The final inequality is given
by the bound on the second fundamental form h and the Cauchy–Schwartz in-
equality. This estimate actually only requires a bound on the mean curvature
H := traceg h := gijhij = ∆ιαeα, where the last equality can be seen by consid-
ering the local coordinate expression (3.6) for h in geodesic normal coordinates.

(ii) To prove the second estimate in (H7), we start by showing that

(3.15)

∫
divX dµ = 0

for all X ∈ D(div) that are compactly supported. To this end, let us verify that div
preserves support. Suppose that X ∈ D(div) is supported in a compact set K and
choose an open set U ⊆ M that contains K. Also, choose η ∈ C∞(M) such that
η = 1 on K and η = 0 on M \ U . For all v ∈ C∞

c (M), we have

|〈divX − η divX, v〉L2(M)| = |〈[div, ηI]X, v〉L2(M)|
= |〈X, [grad, ηI]v〉L2(TM)|

≤ ‖X‖L2(TM)

(∫

K

| grad η(x)|2TxM |v(x)|2 dµ(x)
) 1

2

= 0,

since η is constant on K. This shows that ‖ divX − η divX‖L2(M) = 0, and hence
divX is supported in U . The above construction applies to an arbitrary open set U
that contains K, so we conclude that divX is supported in K. Now fix η ∈ C∞(M)
as above and choose a sequence (Xn)n of vector fields in C∞(TM) supported in K
that converge to X in L2(TM). For each n ∈ N, the vector field Xn ∈ C∞

c (TM),
hence divXn = DivXn and by the Riemannian divergence theorem we have

∣∣∣∣
∫

divX dµ

∣∣∣∣ =
∣∣∣∣
∫

div(X −Xn) dµ

∣∣∣∣

=

∣∣∣∣
∫
η div(X −Xn) dµ

∣∣∣∣

=
∣∣〈grad η,X −Xn〉L2(TM)

∣∣
≤ ‖1K grad η‖L2(TM)‖X −Xn‖L2(TM).

The smoothness of η guarantees that ‖1K grad η‖L2(TM) is finite, so the bound above
can be made arbitrarily small to prove (3.15).
Now suppose that u = (u0, u1, ũ) ∈ L2(M ;C1+1+n) has compact support in a ball

B in M and that (u1, ũ) ∈ D(S∗). This implies that πũ ∈ D(div), and since π is
defined pointwise onM , the vector field πũ is compactly supported in B. Therefore,
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using the Cauchy–Schwartz inequality and (3.15), we obtain
∣∣∣∣
∫

B

Γ∗u dµ

∣∣∣∣ =
∣∣∣∣
∫

B

u1 − div π ũ dµ

∣∣∣∣

≤ µ(B)
1
2‖u1‖L2(M) +

∣∣∣∣
∫

div(πũ) dµ

∣∣∣∣

= µ(B)
1
2‖u1‖L2(M)

≤ µ(B)
1
2‖u‖.

This completes the proof of the second estimate in (H7). Note that we did not
require the condition that the radius r(B) ≤ 1 to verify (H7).

(H8). Consider two cases:
(i) Let u ∈ R(Γ∗) ∩ D(Π). This implies that u = (u0, 0) for some u0 ∈ L2(M) and

‖Πu‖ = ‖Γu‖ = ‖Su0‖L2(M ;C1+n) = ‖u‖W 1,2(M ;C2+n),

as required.

(ii) Let u ∈ R(Γ)∩D(Π). This implies that u = (0, Su0) for some u0 ∈ W 1,2(M) and

‖Πu‖ = ‖Γ∗u‖ = ‖S∗Su0‖L2(M) = ‖u0 − div gradu0‖L2(M).

It remains to prove that ‖u‖W 1,2(M ;Cn+2) . ‖u0 − div grad u0‖L2(M). Assuming that
ι∗ grad u0 is in W 1,2(M ;Cn), we have

‖u‖2W 1,2(M ;C2+n) = ‖Su0‖2W 1,2(M ;C1+n)

= ‖u0‖2W 1,2(M) + ‖ι∗ gradu0‖2W 1,2(M ;Cn)

= ‖u0‖2W 1,2(M) +

n∑

α=1

(
‖(ι∗ gradu0)α‖2L2(M) + ‖∇(ι∗ grad u0)α‖2L2(T ∗M)

)

= ‖u0‖2W 1,2(M) + ‖ι∗ gradu0‖2L2(M ;Cn) +

n∑

α=1

‖∇(gradu0(ια))‖2L2(T ∗M)

= ‖u0‖2L2(M) + 2‖∇u0‖2L2(T ∗M) +

∫ n∑

α=1

|∇(gradu0(ια))|2T ∗
xM

dµ(x),

where the final inequality follows from the fact that the Riemannian metric on M
is the metric induced by the embedding ι. In particular, using (3.3) we obtain

|ι∗ gradu0|2Cn = | gradu0|2TxM = |∇u0|2T ∗
xM
.

To estimate
∑n

α=1 |∇(gradu0(ια))|2T ∗

xM
, first consider v ∈ C∞

c (M). In geodesic
normal coordinates at a point x ∈M , we obtain
∑

α

|∇(grad v(ια))|2T ∗
xM

= ∂i(g
kl∂kv∂lι

α)∂i(g
mn∂mv∂nι

α)

= gklgmn∂i(∂kv∂lι
α)∂i(∂mv∂nι

α)

= ∂i(∂kv∂kι
α)∂i(∂mv∂mι

α)

= (∂i∂kv∂kι
α + ∂kv∂i∂kι

α)(∂i∂mv∂mι
α + ∂mv∂i∂mι

α)

= (∂i∂kv∂kι
α)(∂i∂mv∂mι

α) + (∂kv∂i∂kι
α)(∂mv∂i∂mι

α) + 2(∂mι
α∂i∂kι

α)(∂kv∂i∂mv).
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The decomposition Cn = TxM ⊕NxM is orthogonal, so by (3.2) and (3.6), we have

∂mι
α∂i∂kι

α = 〈(∂mια)eα, (∂i∂kιβ)eβ〉Cn = 〈ι∗∂m, hik〉Cn = 0.

This shows that the last term in the previous estimate vanishes, so we have
∑

α

|∇(grad v(ια))|2T ∗
xM

= (∂kι
α∂mι

α)(∂i∂kv∂i∂mv) + (∂i∂kι
α∂kv)(∂i∂mι

α∂mv)

= gkm∂i∂kv∂i∂mv +
∑

α

∑

i

(∂i∂kι
α∂kv)

2

≤ ∂i∂kv∂i∂kv + (∂i∂lι
α∂i∂lι

α)(∂kv∂kv)

= ∂i∂kv∂i∂kv + hαilh
α
il∂kv∂kv

= |∇2v|2T ∗

xM⊗T ∗

xM
+ |h|2T ∗

xM⊗T ∗

xM⊗NxM |∇v|2T ∗

xM
,

where we used (3.4) in the second line, the Cauchy–Schwartz inequality in the third,
the local coordinate expression (3.6) in the case of geodesic normal coordinates in the
fourth, followed by (3.7) and (3.8) in the fifth. Lemma 3.1 shows that the Ricci cur-
vature of M is bounded below. Integrating the Bochner–Lichnerowicz–Weitzenböck
formula and applying the Riemannian divergence theorem, as in Proposition 3.3 of
[20], then shows that

‖∇2v‖2L2(T ∗M⊗T ∗M) . ‖∇v‖2L2(T ∗M) + ‖∆v‖2L2(M),

where the constant in the estimate depends only on the lower bound for the Ricci
curvature. Altogether, the bound on the second fundamental form implies that

n∑

α=1

‖∇(grad v(ια))‖2L2(T ∗M) ≤ ‖∇2v‖2L2(T ∗M⊗T ∗M) + |h|2‖∇v‖2L2(T ∗M)

. ‖∇v‖2L2(T ∗M) + ‖∆v‖2L2(TM)

(3.16)

for all v ∈ C∞
c (M).

We now use a density argument to show that the estimate above holds with u0 in
place of v. To do this, let K2,2(M) denote the space of all u in C∞(M) with

‖u‖2K2,2(M) := ‖u‖2L2(M) + ‖∇u‖2L2(T ∗M) + ‖∆u‖2L2(M) <∞
and define the Sobolev space K2,2(M) to be the completion of K2,2(M) under the
norm ‖ · ‖K2,2(M). This completion is identified with a subspace of L2(M) with norm
‖ · ‖K2,2 in the same way that W 1,2(M) was identified in Section 2. Given that
u0 ∈ W 1,2(M) and div grad u0 ∈ L2(M), we can use Friedrichs’ mollifiers to show
that u0 ∈ K2,2(M) (see, for instance, Lemma 10.2.5 in [21] or Appendix A in [8]).
It is shown in Propositions 3.2 and 3.3 of [20] that the space of smooth compactly
supported functions is dense in K2,2 on any complete Riemannian manifold with
Ricci curvature bounded below and positive injectivity radius. Lemma 3.1 shows
that this is indeed the case on M . Therefore, since u0 is in K2,2(M), choose a
sequence (un)n in C∞

c (M) that converges to u0 in K2,2(M). Now introduce the
notation vα0 := grad u0(ια) and vαn := gradun(ια). Using (3.2) and (3.3), for all
n ∈ N we have

n∑

α=1

‖vαn − vα0 ‖2L2(M) =

∫
|ι∗ gradun − ι∗ gradu0|2Cn dµ = ‖∇un −∇u‖2L2(T ∗M),
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and from (3.16), for all m > n we have
n∑

α=1

‖∇(vαn − vαm)‖2L2(T ∗M) . ‖un − um‖2K2,2(M).

This shows that vα0 eα is in W 1,2(M ;Cn) and from (3.16), for all n ∈ N we have
n∑

α=1

‖∇(gradu0(ια))‖2L2(T ∗M) ≤
n∑

α=1

(
‖∇vα0 −∇vαn‖2L2(T ∗M) + ‖∇vαn‖2L2(T ∗M)

)

.

n∑

α=1

‖∇vα0 −∇vαn‖2L2(T ∗M) + ‖un − u0‖2K2,2(M) + ‖u0‖2K2,2(M).

This proves that ι∗ gradu0 is in W 1,2(M ;Cn) and we conclude that

‖u‖2W 1,2(M ;C2+n) . ‖u0‖2L2(M) + ‖∇u0‖2L2(T ∗M) + ‖∆u0‖2L2(M),

where the constant in the estimate depends only on |h|.
Finally, we use the definition of div, the Cauchy–Schwartz inequality and the

functional calculus for the self-adjoint operator − div grad to obtain

‖u‖2W 1,2(M ;C2+n) . ‖u0‖2L2(M) + ‖∆u0‖2L2(M) . ‖(I +∆)u0‖2L2(M),

which proves that ‖u‖W 1,2(M ;C2+n) . ‖u0 − div gradu0‖L2(M) = ‖Πu‖. �

4. Christ’s Dyadic Cubes and Carleson Measures

The results in this section do not require a differentiable structure. To distinguish
these results, it is convenient to let X denote a metric measure space with metric ρ
and Radon measure µ. A ball in X then refers to an open metric ball and the
notation introduced above Definition 2.2 extends to this setting. The metric measure
spaces we consider must at least satisfy the following local doubling condition.

Definition 4.1. A metric measure space X is locally doubling if for each b > 0,
there exists a constant Ab ≥ 1 such that

(Dloc) 0 < V (x, 2r) ≤ AbV (x, r) <∞
for all x ∈ X and r ∈ (0, b].

The proof of Theorem 2.4 in the case M = Rn in [6] relies on the dyadic cube
structure of Rn. In [15], Christ constructs a dyadic cube structure on a space of
homogeneous type. This construction can be applied on a locally doubling metric
measure space to provide a truncated dyadic cube structure. This is the content of
the following proposition. The proof follows as in [15]. In particular, the assumption
that the measure µ is Radon instead of Borel is deliberate. This is because the
proof of the thin boundary property (item (6) below) uses Lebesgue’s differentiation
theorem, which itself requires the density of continuous functions in L1. This did not
seem obvious for a Borel measure. In any case, the assumption serves our purposes
because the Riemannian measure is Radon (see, for instance, Chapter II.5 in [29]).

Proposition 4.2. Let X be a locally doubling metric measure space. There exists
a countable collection ∆(0,1] = (Qk

α)α∈Ik,k∈N0 of open subsets of X , indexed by some
set Ik for each integer k ≥ 0, and a sequence (xkα)α∈Ik,k∈N0 of points in X , together
with constants δ, η ∈ (0, 1) and a0, a1, c > 0, such that the following hold:
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(1) µ
(
X \⋃α∈Ik

Qk
α

)
= 0;

(2) Qk
α ∩Qk

β = ∅ for all α, β ∈ Ik;

(3) For each l > k, α ∈ Ik and β ∈ Il, either Q
l
β ⊂ Qk

α or Qk
α ∩Ql

β = ∅;
(4) For each l ∈ [0, k) and α ∈ Ik there is a unique β ∈ Il such that Qk

α ⊂ Ql
β;

(5) B(xkα, a0δ
k) ⊆ Qk

α ⊆ B(xkα, a1δ
k) for all α ∈ Ik;

(6) µ({x ∈ Qk
α : ρ(x,X \Qk

α) ≤ sδk}) ≤ csηµ(Qk
α) for all α ∈ Ik and s > 0.

Any collection of sets ∆(0,1] = (Qk
α)α∈Ik,k∈N0 with the properties in Proposition 4.2

is called a truncated dyadic cube structure on X ; the sets in ∆(0,1] are called dyadic
cubes. Given t ∈ (0, 1], define the collection of dyadic cubes ∆t := (Qk

α)α∈Ik by
requiring that k ∈ N0 satisfy δ

k+1 < t ≤ δk. For all Q ∈ ∆t, define the side length of
Q by l(Q) := δk and the Carleson box over Q by C(Q) := Q× (0, l(Q)]. Note that
t ≤ l(Q) < t/δ and so l(Q) h t. The dyadic averaging operator At is then defined
for all u ∈ L1

loc(X ) by

Atu(x) = −
∫

Q

u(y) dµ(y) :=
1

µ(Q)

∫

Q

u(y) dµ(y)

for all t ∈ (0, 1] and almost all x ∈ X , where Q is the unique dyadic cube in ∆t

containing x. Standard arguments, such as those in Section 2 of [11], show that local
doubling is enough to guarantee that the following dyadic maximal operator

M∆(0,1]
u(x) := sup

t∈(0,1]

Atu(x) for all x ∈ X

is bounded on Lp(X ) for all all p ∈ (1,∞].
Given a truncated dyadic cube structure on X with the constants specified in

Proposition 4.2, the constant a := max{1, a1/δ}. It is useful to record the following
inequalities, which will be used frequently. Given t ∈ (0, 1], dyadic cubes Q,R ∈ ∆t

and points xQ, xR ∈ X such that

B(xQ, a0l(Q)) ⊆ Q ⊆ B(xQ, a1l(Q)) and B(xR, a0l(R)) ⊆ R ⊆ B(xR, a1l(R)),

the following are easily verified:

ρ(Q,R) ≤ ρ(xQ, xR) ≤ a (2t+ ρ(Q,R)) ;

ρ(Q,R) ≤ ρ(Q, x) ≤ a (2t+ ρ(Q,R)) for all x ∈ R;

ρ(Q, x) ≤ ρ(xQ, x) ≤ a (t+ ρ(Q, x)) for all x ∈ X .

(4.1)

In the next section, we reduce the proof of Theorem 2.4 to verifying a local
analogue of Carleson’s condition. This relies on the following result. The approach
taken in the proof was suggested by an examiner of the author’s thesis.

Theorem 4.3. Let X be a locally doubling metric measure space and suppose that
t0 ∈ (0, 1]. If ν is a (positive) measure on X × (0, t0] satisfying the following local
analogue of Carleson’s condition

‖ν‖C := sup
t∈(0,t0]

sup
Q∈∆t

1

µ(Q)

∫∫

C(Q)

dν(x, t) <∞,

then ∫∫

X ×(0,t0]

|Atu(x)|2 dν(x, t) . ‖ν‖C‖u‖2

for all u ∈ L2(X ).
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Proof. Fix K so that δK+1 < t0 ≤ δK . Using the notation for dyadic cubes from
above, we have

∫∫

X ×(0,t0]

|Atu(x)|2 dν(x, t) ≤
∞∑

k=K

∑

α∈Ik

∫ δk

δ(k+1)

∫

Qk
α

∣∣∣∣−
∫

Qk
α

u(y) dµ(y)

∣∣∣∣
2

dν(x, t).

Introducing the notation

uα,k = −
∫

Qk
α

u(y) dµ(y) and να,k = ν
(
Qk

α × (δ(k+1), δk]
)
,

Fubini’s Theorem shows that the preceding expression on the right is equal to

∞∑

k=K

∑

α∈Ik

|uα,k|2να,k =

∞∑

k=K

∑

α∈Ik

να,k

∫ |uα,k|

0

2r dr

=

∫ ∞

0

2r

∞∑

k=K

∑

α∈Ik

1{|uα,k|>r}να,k dr,

where dr denotes Lebesgue measure on (0,∞).
For each r > 0, let (Rj(r))j∈N denote an enumeration of the collection of maximal

dyadic cubes Qk
α in ∆(0,1] such that |uα,k| > r. This collection has the property that

∞⋃

j=1

Rj(r) = {x ∈ X | M∆(0,1]
u(x) > r}

and so
∞∑

k=K

∑

α∈Ik

|uα,k|2να,k ≤
∫ ∞

0

2r

∞∑

j=1

∑

R∈∆(0,1];

R⊆Rj(r)

ν
(
R × (δl(R), l(R)]

)
dr

=

∫ ∞

0

2r

∞∑

j=1

ν
(
C(Rj(r))

)
dr

≤ ‖ν‖C
∫ ∞

0

2r µ({x ∈ X | M∆(0,1]
u(x) > r}) dr

= ‖ν‖C‖M∆(0,1]
u‖2

. ‖ν‖C‖u‖2.
�

We conclude this section by recording two technical results for use later on. For
all x ≥ 0, we use the notation 〈x〉 := min{1, x}.
Lemma 4.4. Let X be a metric measure space satisfying (Eloc). Let ∆(0,1] denote
a truncated unit cube structure on X with the constant a := max{1, a1/δ}. Then

〈
t

ρ(Q,R)

〉κ

e−aλρ(Q,R) .
µ(Q)

µ(R)
.

〈
t

ρ(Q,R)

〉−κ

eaλρ(Q,R)

for all Q,R ∈ ∆t and t ∈ (0, 1].
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Proof. It suffices to show the second inequality, since the estimate is symmetric in
R and Q. It follows from (Eloc) that

V (x, r) ≤ A

(
1 +

ρ(x, y)

r

)κ

eλ(r+ρ(x,y))V (y, r),

for all x, y ∈ X and r > 0, since B(x, r) ⊆ B(y, (1 + ρ(x,y)
r

)r). Given t ∈ (0, 1]
and Q,R ∈ ∆t, it then follows from Proposition 4.2 and (Eloc) that there exists
xQ, xR ∈ X such that

µ(Q)

µ(R)
≤ V (xQ, a1l(Q))

V (xR, a0l(R))

≤ A(a1
a0
)κeλa1l(Q)V (xQ, a0l(Q))

V (xR, a0l(R))

. A

(
1 +

ρ(xQ, xR)

a0l(Q)

)κ

eλ(a0l(Q)+ρ(xQ,xR))

.

(
1 +

ρ(xQ, xR)

t

)κ

eλρ(xQ,xR).

For all x > 0, we have 1 + x ≤ 2max{1, x} = 2〈1/x〉−1. Using this and the above
estimate with (4.1), we conclude that

µ(Q)

µ(R)
.

〈
t

ρ(xQ, xR)

〉−κ

eλρ(xQ,xR) .

〈
t

ρ(Q,R)

〉−κ

eaλρ(Q,R)

for all Q,R ∈ ∆t. �

Lemma 4.5. Let X be a metric measure space satisfying (Eloc). Let ∆(0,1] denote
a truncated unit cube structure on X . If t ∈ (0, 1], M > κ and m > λt, then

sup
R∈∆t

∑

Q∈∆t

µ(Q)

µ(R)

〈
t

ρ(Q,R)

〉M

e−m
ρ(Q,R)

t . 1.

Proof. Suppose that t ∈ (0, 1], M > κ and m > λt. Let σ = m/λt > 1 and for each
R ∈ ∆t, let

∆j
t (R) =

{
{Q ∈ ∆t : ρ(Q,R)/t ≤ 1} if j = 0;

{Q ∈ ∆t : σ
j−1 < ρ(Q,R)/t ≤ σj} if j ∈ N.

For each R ∈ ∆t, Proposition 4.2 implies that there exists xR ∈ X such that

B(xR, a0l(R)) ⊆ R ⊆ B(xR, a1l(R)).

A simple calculation then shows that
⋃

∆j
t (R) ⊆ B(xR, 3a1l(R) + σjt)

for all j ∈ N0, and it follows from (Eloc) that

µ
(⋃

∆j
t (R)

)
. σjκeλσ

j tµ(R)
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for all j ∈ N0. Therefore, we have

sup
R∈∆t

∑

Q∈∆t

µ(Q)

µ(R)

〈
t

ρ(Q,R)

〉M

e−m
ρ(Q,R)

t

= sup
R∈∆t

∞∑

j=0

∑

Q∈∆j
t (R)

µ(Q)

µ(R)

〈
t

ρ(Q,R)

〉M

e−m ρ(Q,R)
t

≤ sup
R∈∆t

1

µ(R)

[
µ
(⋃

∆0
t (R)

)
+

∞∑

j=1

σ−(j−1)Me−mσj−1

µ
(⋃

∆j
t (R)

)]

.

∞∑

j=0

σ−j(M−κ)e−(m−σλt)2j−1

. 1,

as required. �

5. The Main Local Quadratic Estimate

This section contains the proof of Theorem 2.4. We consider a complete Riemann-
ian manifoldM satisfying (Eloc) and (Ploc) with constants κ, λ ≥ 0, and suppose that
{Γ, B1, B2} are operators on L2(M ;CN ) satisfying the hypotheses (H1)–(H8) from
Section 2. Let ‖ · ‖ and 〈·, ·〉 denote the norm and inner-product on L2(M ;CN ). Let
| · | and (·, ·) denote the norm and inner-product on CN . Fix a truncated dyadic cube
structure ∆(0,1] with constants δ, η ∈ (0, 1) and a1 > a0 > 0 as in Proposition 4.2
and set a := max{1, a1/δ}. For all x ≥ 0, there is the notation 〈x〉 := min{1, x}.
We follow [6, 5] and introduce the following operators.

Definition 5.1. Given t ∈ R \ {0}, define the following bounded operators:

RB
t := (I + itΠB)

−1;

PB
t := (I + t2Π2

B)
−1 = 1

2
(RB

t +RB
−t);

QB
t := tΠB(I + t2Π2

B)
−1 = 1

2i
(−RB

t +RB
−t);

ΘB
t := tΓ∗

B(I + t2Π2
B)

−1.

The operators Rt, Pt and Qt are defined as above by replacing ΠB with Π.

The uniform estimate

(5.1) sup
t∈R\{0}

‖Ut‖ . 1

holds when Ut = RB
t , P

B
t , QB

t and ΘB
t . This follows immediately from (2.1) and the

resolvent bounds in (2.3), since RB
t = (i/t)[(i/t)I − ΠB]

−1 for all t ∈ R \ {0}.
The operator Π is self-adjoint, so by the functional calculus for self-adjoint oper-

ators, we have the quadratic estimate

(5.2)

∫ ∞

0

‖Qtu‖2
dt

t
h ‖u‖2

for all u ∈ R(Π).
The following result, which is an immediate consequence of Proposition 4.8 in [6]

and the inhomogeneity assumed in hypothesis (H8), shows that Theorem 2.4 can be
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reduced to finding t0 > 0 small enough such that a certain local quadratic estimate
holds. The theory of local quadratic estimates was developed by the author in [28].

Proposition 5.2. If there exists t0 ∈ (0, 1] such that

(5.3)

∫ t0

0

‖ΘB
t Ptu‖2

dt

t
. ‖u‖2

for all u ∈ R(Γ), as well as the three similar estimates obtained upon replacing
{Γ, B1, B2} by {Γ∗, B2, B1}, {Γ∗, B∗

2 , B
∗
1} and {Γ, B∗

1 , B
∗
2}, then (2.2) holds for all u

in R(ΠB).

Proof. Suppose that there exists t0 ∈ (0, 1] such that (5.3) holds for all u ∈ R(Γ),
as well as the three similar estimates mentioned in the proposition. If u ∈ R(Γ) and
t > 0, then Ptu = u − tΠQtu ∈ R(Π), since the Hodge decomposition guarantees
that R(Γ) ⊆ R(Π). Therefore, hypothesis (H8) implies that ‖Ptu‖ . ‖ΠPtu‖ for all
u ∈ R(Γ) and t > 0. The uniform bound in (5.1) then implies that

∫ ∞

t0

‖ΘB
t Ptu‖2

dt

t
.

∫ ∞

t0

‖Qtu‖2
dt

t3
. ‖u‖2

∫ ∞

t0

dt

t3
. ‖u‖2

for all u ∈ R(Γ), which shows that
∫ ∞

0

‖ΘB
t Ptu‖2

dt

t
. ‖u‖2

for all u ∈ R(Γ), as well as the three similar estimates obtained upon replacing
{Γ, B1, B2} by {Γ∗, B2, B1}, {Γ∗, B∗

2 , B
∗
1} and {Γ, B∗

1 , B
∗
2}. It then follows from

Proposition 4.8 in [6] that (2.2) holds for all u in R(ΠB). �

The above result allows us to work locally, in the sense that we only need to
consider t ∈ (0, 1], which means that we are not restricted to considering mani-
folds that are doubling. The metric-measure interaction is instead restricted by the
exponential nature of the following off-diagonal estimates. We follow the proof of
Proposition 5.2 in [6] by Axelsson, Keith and McIntosh, and apply the exponential
off-diagonal estimates from [11] by Carbonaro, McIntosh and the author.

Proposition 5.3. Let Ut denote either R
B
t , P

B
t , QB

t or ΘB
t for all t ∈ R\{0}. There

exists a constant CΘ > 0, which depends only on the constants in (H1)–(H8), such
that the following holds: For each M ≥ 0, there exists c > 0 such that

‖1EUt1F‖ ≤ c

〈 |t|
ρ(E, F )

〉M

exp

(
−CΘ

ρ(E, F )

|t|

)

for all closed subsets E and F of M .

Proof. In the case Ut = RB
t = (i/t)[(i/t)I − ΠB]

−1, the result follows exactly as in
the proof of Lemma 5.3 in [11], since ΠB is of type Sω and (H5)–(H6) imply that

|[ΠB, ηI]u(x)| = |[Γ, ηI]u(x) +B1[Γ
∗, ηI]B2u(x)|

≤ CΓ(1 + ‖B1‖∞‖B2‖∞)|∇η(x)|TxM |u(x)|
for all η ∈ C∞

c (M), u ∈ D(ΠB) and almost all x ∈ M . The results for PB
t and QB

t

then follow by linearity. In the case Ut = QB
t , the result is also given by the proof

of Lemma 5.4 in [11].
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Now consider Ut = ΘB
t = tΓ∗

BP
B
t . Let E and F be closed subsets of M with

ρ(E, F ) > 0. Let Ẽ = {x ∈ M : ρ(x, E) ≤ ρ(E, F )/2} and choose η : M → [0, 1] in
C∞

c (M) supported on Ẽ, equal to 1 on E and satisfying ‖∇η‖∞ ≤ 3/ρ(E, F ). The
function η can be constructed from smooth approximations of the Lipschitz function
η̃ that is supported on Ẽ and defined by η̃(x) = 1− 2ρ(x, E)/ρ(E, F ) for all x ∈ Ẽ;
this is Lipschitz because the geodesic distance is Lipschitz on a Riemannian manifold.
For further details see, for instance, [7]. Using both (2.1) and (H5)–(H6), we obtain

‖1EΘ
B
t 1F‖ ≤ ‖(ηI)tΓ∗

BP
B
t 1F‖

≤ ‖t[ηI,Γ∗
B]P

B
t 1F‖+ ‖tΓ∗

B(ηI)P
B
t 1F‖

. |t|‖∇η‖∞‖1ẼP
B
t 1F‖+ ‖tΠB(ηI)P

B
t 1F‖

≤ |t|‖∇η‖∞‖1ẼP
B
t 1F‖+ |t|‖[ΠB, (ηI)]P

B
t 1F‖+ ‖(ηI)QB

t 1F‖
≤ |t|‖∇η‖∞‖1ẼP

B
t 1F‖+ |t|‖∇η‖∞‖1ẼP

B
t 1F‖+ ‖1ẼQ

B
t 1F‖

for all t ∈ R \ {0}. The result then follows from the corresponding estimates for PB
t

and QB
t , since ρ(Ẽ, F ) = 2ρ(E, F ). �

The off-diagonal estimates imply the following result.

Lemma 5.4. The operator ΘB
t on L2(M ;CN) has a bounded extension

ΘB
t : L∞(M ;CN) → L2

loc(M ;CN )

for all t ∈ (0, 〈CΘ/2aλ〉]. Moreover, there exists c > 0 such that

‖ΘB
t u‖2L2(Q) ≤ cµ(Q)‖u‖2∞

for all u ∈ L∞(M ;CN), Q ∈ ∆t and t ∈ (0, 〈CΘ/2aλ〉].
Proof. Let t ∈ (0, 〈CΘ/2aλ〉] and Q ∈ ∆t. There exists xQ ∈M such that

B(xQ, a0t) ⊆ Q ⊆ B(xQ, (a1/δ)t).

Let ∆m,n
t (Q) = {R ∈ ∆t : m < ρ(Q,R) ≤ n} for all integers n > m ≥ 0. Let

u ∈ L∞(M ;CN ) and define un = 1∆0,n
t (Q)u for all n ∈ N. If n > m, then

‖ΘB
t (un − um)‖2L2(Q)

≤
[ ∑

R∈∆m,n
t (Q)

(
µ(R)

µ(Q)

µ(Q)

µ(R)

) 1
2

‖1QΘ
B
t 1R‖‖1Ru‖

]2

≤
( ∑

R∈∆m,n
t (Q)

µ(R)

µ(Q)
‖1QΘ

B
t 1R‖

) ∑

R∈∆m,n
t (Q)

µ(Q)

µ(R)
‖1QΘ

B
t 1R‖‖1Ru‖2

≤
( ∑

R∈∆m,n
t (Q)

µ(R)

µ(Q)
‖1QΘ

B
t 1R‖

) ∑

R∈∆m,n
t (Q)

µ(Q)

µ(R)
‖1QΘ

B
t 1R‖‖u‖2∞µ(R)

≤
( ∑

R∈∆m,n
t (Q)

µ(R)

µ(Q)
‖1QΘ

B
t 1R‖

)( ∑

R∈∆m,n
t (Q)

µ(R)

µ(Q)

µ(Q)

µ(R)
‖1QΘ

B
t 1R‖

)
µ(Q)‖u‖2∞,

Now choose M > 2κ. The off-diagonal estimates from Proposition 5.3 then show
that

‖1QΘ
B
t 1R‖ .

〈
t

ρ(Q,R)

〉M

exp

(
−CΘ

ρ(Q,R)

t

)
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for all Q,R ∈ ∆t and t ∈ (0, 1]. Moreover, Lemma 4.4 shows that

µ(Q)

µ(R)
.

〈
t

ρ(Q,R)

〉−κ

eaλρ(Q,R)

for Q,R ∈ ∆t and t ∈ (0, 1]. Then, since M −κ > κ and CΘ− aλt > λt, Lemma 4.5
guarantees that both of the partial sums in the estimate above converge. Therefore,
the sequence (ΘB

t un)n is Cauchy in L2(Q) and

sup
n∈N

‖ΘB
t un‖2L2(Q) . µ(Q)‖u‖2∞

for all Q ∈ ∆t and t ∈ (0, 〈CΘ/2aλ〉], which implies the result. �

As in [6, 5], we now introduce the following operator to prove (5.3).

Definition 5.5. For each w ∈ CN , let w̃ ∈ L∞(M ;CN ) denote the constant function
that is equal to w on M . For each x ∈ M and t ∈ (0, 〈CΘ/λ〉], the multiplication
operator γt(x) ∈ L(CN) is defined by

[γt(x)]w := (ΘB
t w̃)(x)

for all w ∈ CN , where ΘB
t is defined on L∞(M ;CN) by Lemma 5.4.

Corollary 5.6. The functions γt := (x 7→ γt(x) ∀ x ∈ M) are in L2
loc(M ;L(CN ))

and there exists c > 0 such that

(5.4) −
∫

Q

|γt(x)|2 dµ(x) ≤ c

for all Q ∈ ∆t and t ∈ (0, 〈CΘ/2aλ〉]. Moreover, supt∈(0,〈CΘ/2aλ〉] ‖γtAt‖ . 1.

Proof. The first property follows from Proposition 5.4 and the definition of γt. It
then follows that

‖γtAtu‖2 =
∑

Q∈∆t

∫

Q

|γt(y)Atu(y)|2 dµ(y)

=
∑

Q∈∆t

∫

Q

∣∣∣∣γt(y)−
∫

Q

u(x) dµ(x)

∣∣∣∣
2

dµ(y)

=
∑

Q∈∆t

∣∣∣∣−
∫

Q

u(x) dµ(x)

∣∣∣∣
2 ∫

Q

|γt(y)|2 dµ(y)

.
∑

Q∈∆t

‖u‖2L2(Q)

= ‖u‖2

for all t ∈ (0, 〈CΘ/2aλ〉] and u ∈ L2(M ;CN ), which completes the proof. �

To prove (5.3), we follow [6, 5] and estimate each of the following terms separately:
∫ t0

0

‖ΘB
t Ptu‖2

dt

t
.

∫ t0

0

‖ΘB
t Ptu− γtAtPtu‖2

dt

t
+

∫ t0

0

‖γtAt(Pt − I)u‖2 dt

t

+

∫ t0

0

∫

M

|Atu(x)|2|γt(x)|2
dµ(x)dt

t
.

(5.5)
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The following weighted Poincaré inequality is used to estimate the first term
above. The proof is based on techniques contained in Lemma 5.4 of [6] that have
been adapted to suit off-diagonal estimates of exponential type.

Lemma 5.7. Given M > κ + 3 and m ≥ aλ, we have

∫

M

|u(x)− uQ|2
〈

t

ρ(x,Q)

〉M

e−mρ(x,Q)/t dµ(x)

. t2
∫

M

(|u(x)|2 + |∇u(x)|2T ∗
xM

)

〈
t

ρ(x,Q)

〉M−(κ+3)

e−(m
a
−λt)ρ(x,Q)/t dµ(x)

for all u ∈ W 1,2(M), Q ∈ ∆t and t ∈ (0, 1].

Proof. Let t ∈ (0, 1] and Q ∈ ∆t. There exists xQ ∈ M such that

B(xQ, a0t) ⊆ Q ⊆ B(xQ, (a1/δ)t).

Let r ≥ a and u ∈ W 1,2(M). We have

‖1B(xQ,rt)(u− uQ)‖22 ≤ ‖1B(xQ,rt)(u− uB(xQ,rt))‖22 + ‖1B(xQ,rt)(uB(xQ,rt) − uQ)‖22.

The Cauchy–Schwartz inequality and (Eloc) imply that

‖1B(xQ,rt)(uB(xQ,rt) − uQ)‖22 = V (xQ, rt)|uQ − uB(xQ,rt)|2

= V (xQ, rt)

∣∣∣∣−
∫

Q

(u− uB(xQ,rt))

∣∣∣∣
2

≤ V (xQ, rt)

µ(Q)

∫

Q

|u− uB(xQ,rt)|2

. rκeλrt‖1B(xQ,rt)(u− uB(xQ,rt))‖22,

where r ≥ a1/δ ensured that Q ⊆ B(xQ, rt). It then follows from (Ploc) that

‖1B(xQ,rt)(u− uQ)‖22 . (1 + rκeλrt)(rt)2(‖1B(xQ,rt)u‖22 + ‖1B(xQ,rt)∇u‖2L2(T ∗M)).

Now let ν(r) := −r−Me−(m/a)r for all r ≥ a, in which case

dν(r) = (Mr−M−1 + (m/a)r−M)e−(m/a)rdr

is a positive measure on (a,∞). Integrating the above estimate with respect to ν,
we obtain

∫ ∞

a

∫

M

1B(xQ,rt)|u(x)− uQ|2 dµ(x)dν(r)

. t2
∫ ∞

a

rκ+2eλrt
∫

M

1B(xQ,rt)(|u(x)|2 + |∇u(x)|2T ∗

xM
) dµ(x)dν(r).
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It then follows from (4.1) and Fubini’s theorem that

∫

M

|u(x)− uQ|2
〈

t

ρ(x,Q)

〉M

e−mρ(x,Q)/t dµ(x)

.

∫

M

|u(x)− uQ|2
〈

t

ρ(x, xQ)

〉M

e−
m
a
ρ(x,xQ)/t dµ(x)

.

∫

M

|u(x)− uQ|2(max{ρ(x, xQ)/t, a})−Me−
m
a
max{ρ(x,xQ)/t,a} dµ(x)

=

∫

M

|u(x)− uQ|2
∫ ∞

max{ρ(x,xQ)/t,a}

dν(r)dµ(x)

=

∫ ∞

a

∫

M

1B(xQ,rt)|u(x)− uQ|2 dµ(x)dν(r)

. t2
∫ ∞

a

rκ+2eλrt
∫

M

1B(xQ,rt)(|u(x)|2 + |∇u(x)|2T ∗
xM

) dµ(x)dν(r)

= t2
∫

M

(|u(x)|2 + |∇u(x)|2T ∗

xM
)

(∫ ∞

max{ρ(x,xQ)/t,a}

rκ+2eλrtdν(r)

)
dµ(x).

= t2
∫

M

(|u(x)|2 + |∇u(x)|2T ∗

xM
)

(∫ ∞

max{ρ(x,xQ)/t,a}

rκ+2eλrt(Mr−M−1 + m
a
r−M)e−

m
a
r dr

)
dµ(x).

The term in brackets is bounded by

e−(m
a
−λt)ρ(x,Q)/t

∫ ∞

ρ(x,Q)/t

r−(M−(κ+2)) dr . e−(m
a
−λt)ρ(x,Q)/t

〈
t

ρ(x,Q)

〉M−(κ+3)

,

which completes the proof. �

The first term in (5.5) is now estimated in a manner similar to that of Proposi-
tion 5.5 in [6]. The idea to replace the cube counting techniques used in [6] with the
measure based approach below was suggested by Pascal Auscher.

Proposition 5.8. Let CΘ > 0 be the constant from Proposition 5.3. We have

∫ 〈CΘ/4a3λ〉

0

‖ΘB
t Ptu− γtAtPtu‖2

dt

t
. ‖u‖2

for all u ∈ R(Π).

Proof. Choose M > 4κ + 3 and let t0 = 〈CΘ/4a
3λ〉. Let t ∈ (0, t0], u ∈ R(Π) and

set v = Ptu. The Cauchy–Schwartz inequality shows that

‖ΘB
t Ptu− γtAtPtu‖2 =

∑

Q∈∆t

‖ΘB
t

∑

R∈∆t

1R(v − vQ)‖2L2(Q)

≤
∑

Q∈∆t

(
∑

R∈∆t

(
µ(R)

µ(Q)

µ(Q)

µ(R)

) 1
2

‖1QΘ
B
t 1R(v − vQ)‖

)2

≤ sup
Q∈∆t

(
∑

R∈∆t

µ(R)

µ(Q)
‖1QΘ

B
t 1R‖

)
∑

Q∈∆t

∑

R∈∆t

µ(Q)

µ(R)
‖1QΘ

B
t 1R‖‖1R(v − vQ)‖2.
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Then, since CΘ > λt, Lemma 4.5 and the off-diagonal estimates from Proposition 5.3
show that the supremum term is uniformly bounded. Lemma 4.4 and (4.1) show
that the remaining term is bounded by

∑

Q∈∆t

∑

R∈∆t

〈
t

ρ(Q,R)

〉−κ

eaλρ(Q,R)

〈
t

ρ(Q,R)

〉M

e−CΘ
ρ(Q,R)

t ‖1R(v − vQ)‖2

.
∑

Q∈∆t

∑

R∈∆t

∫

R

〈
t

ρ(Q,R)

〉M−κ

e−(CΘ−aλt0)
ρ(Q,R)

t |v(x)− vQ|2 dµ(x)

.
∑

Q∈∆t

∫

M

〈
t

ρ(Q, x)

〉M−κ

e−(
CΘ
a

−λt0)
ρ(Q,x)

t |v(x)− vQ|2 dµ(x).

Using the notation from Section 2 for functions in L2(M ;CN ), write v =
∑N

α=1 vαeα.
The weighted Poincaré inequality from Lemma 5.7, Lemma 4.4 and (H8) then show
that the above estimate is bounded by

t2
∑

Q∈∆t

∫

M

〈
t

ρ(Q, x)

〉M−(2κ+3)

e−(
CΘ
a2

−(λ
a
+λ)t0)

ρ(Q,x)
t (|v(x)|2 +∑α|∇vα(x)|2T ∗

xM
) dµ(x)

≤ t2
∑

R∈∆t

(‖1Rv‖2 +
∑

α‖1R∇vα‖2L2(T ∗M))
∑

Q∈∆t

〈
t

ρ(Q,R)

〉M−(2κ+3)

e−(
CΘ
a2

−2λt0)
ρ(Q,R)

t

. t2‖v‖2W 1,2(M ;CN ) sup
R∈∆t

∑

Q∈∆t

µ(Q)

µ(R)

〈
t

ρ(Q,R)

〉M−(3κ+3)

e−(
CΘ
a2

−3aλt0)
ρ(Q,R)

t

. t2‖v‖2W 1,2(M ;CN )

. t2‖Πv‖2,

where the penultimate inequality is implied by Lemma 4.5 becauseM−(3κ+3) > κ
and CΘ

a2
− 3aλt0 > λt. Therefore, we have

‖ΘB
t Ptu− γtAtPtu‖2 . ‖Qtu‖2

for all u ∈ R(Π) and t ∈ (0, t0]. The result then follows from the quadratic estimate
for the unperturbed operator in (5.2). �

The following interpolation inequality is used to estimate the remaining terms
in (5.5). It is an extension of Lemma 6 in [5]. The result relies on having a certain
control of the volume of dyadic cubes near their boundary. This control is given by
property (6) in Proposition 4.2.

Lemma 5.9. Let Υ denote either Π,Γ or Γ∗, then

∣∣∣∣−
∫

Q

Υu

∣∣∣∣
2

.
1

l(Q)η

(
−
∫

Q

|u|2
) η

2
(
−
∫

Q

|Υu|2
)1− η

2

+−
∫

Q

|u|2

for all u ∈ D(Υ), Q ∈ ∆t and t ∈ (0, 1], where η > 0 is from Proposition 4.2.
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Proof. Let s = ‖1Qu‖/‖1QΥu‖. If s ≥ a0l(Q)/2, then the Cauchy–Schwartz in-
equality implies that

∣∣∣∣−
∫

Q

Υu

∣∣∣∣
2

≤ −
∫

Q

|Υu|2

=
s−η

µ(Q)

(∫

Q

|u|2
) η

2
(∫

Q

|Υu|2
)1− η

2

.
1

l(Q)η

(
−
∫

Q

|u|2
) η

2
(
−
∫

Q

|Υu|2
)1− η

2

.

Now suppose that 0 < s ≤ a0l(Q)/2. Let Qs = {x ∈ Q : ρ(x,M \ Q) > s} ⊂ Q.
It follows from Proposition 4.2 that there exists c > 0 such that

µ(M \Qs) ≤ c(s/l(Q))ηµ(Q)

Choose η :M → [0, 1] in C∞
c (M) satisfying sppt η ⊆ Q as well as

η(x) =

{
1, if x ∈ Qs;

0, if x ∈M \Q

and ‖∇η‖∞ . 1/s. The existence of such functions follows as in the proof of
Proposition 5.3. Using (H6)–(H7), we then obtain

∣∣∣∣
∫

Q

Υu

∣∣∣∣ =
∣∣∣∣
∫

Q

[η,Υ]u+

∫

Q

(1− η)Υu+

∫

Q

Υ(ηu)

∣∣∣∣

. ‖∇η‖∞
∫

sppt(∇η)

|u|+
∫

Q∩sppt(1−η)

|Υu|+ µ(Q)
1
2

(∫

Q

|u|2
) 1

2

. µ(M \Qs)
1
2

(
‖1Qu‖/s+ ‖1QΥu‖

)
+ µ(Q)

1
2‖1Qu‖

. (s/l(Q))
η
2µ(Q)

1
2‖1QΥu‖+ µ(Q)

1
2‖1Qu‖.

This shows that
∣∣∣∣−
∫

Q

Υu

∣∣∣∣
2

.
1

l(Q)η
sη

µ(Q)

∫

Q

|Υu|2 +−
∫

Q

|u|2

=
1

l(Q)η

(
−
∫

Q

|u|2
)η/2(

−
∫

Q

|Υu|2
)1−η/2

+−
∫

Q

|u|2,

as required. �

The second term in (5.5) is now estimated by following the proof of Proposition 5
in [5].

Proposition 5.10. We have
∫ 1

0

‖γtAt(Pt − I)u‖2 dt

t
. ‖u‖2

for all u ∈ L2(M ;CN ).
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Proof. Lemma 5.9 and Hölder’s inequality imply that

‖AtQsu‖2 = s2
∑

Q∈∆t

µ(Q)

∣∣∣∣−
∫

Q

ΠPsu

∣∣∣∣
2

. s2
∑

Q∈∆t

µ(Q)

l(Q)η

(
−
∫

Q

|Psu|2
) η

2
(
−
∫

Q

|ΠPsu|2
)1− η

2

+ s2‖Psu‖2

.
(s
t

)η ∑

Q∈∆t

(∫

Q

|Psu|2
) η

2
(∫

Q

|Qsu|2
)1− η

2

+ s2‖Psu‖2

≤
(s
t

)η
‖Psu‖η‖Qsu‖2−η + t2

(s
t

)2
‖u‖2

. ( s
t
)η‖u‖2

for all u ∈ L2(M ;CN) and 0 < s < t ≤ 1. The result then follows by the arguments
in the proof of Proposition 5 in [5]. �

To estimate the third and final term in (5.5), it follows from Theorem 4.3 that it
suffices to show that there exists t0 ∈ (0, 1] such that

(5.6)

∫∫

C(Q)

|γt(x)|2 dµ(x)
dt

t
. µ(Q)

for all dyadic cubes Q ∈ ⋃t∈(0,t0]
∆t.

Following [6], we let σ > 0 to be fixed later. Given v ∈ L(CN) with |v| = 1, define
the cone of aperture σ by

Kv,σ := {v′ ∈ L(CN) \ {0} :

∣∣∣∣
v′

|v′| − v

∣∣∣∣ ≤ σ}.

Let Vσ be a finite set of v ∈ L(CN) with |v| = 1 such that
⋃

v∈Vσ
Kv,σ = L(CN)\{0}.

To prove (5.6), it suffices to prove that there exists t0 > 0 and σ > 0 such that

(5.7)

∫∫

(x,t)∈C(Q)
γt(x)∈Kv,σ

|γt(x)|2 dµ(x)
dt

t
. µ(Q)

for each v ∈ Vσ and for all Q ∈ ⋃t∈(0,t0]
∆t. This in turn reduces to proving the

following proposition.

Proposition 5.11. Let t0 = 〈CΘ/4a
3λ〉 , where CΘ > 0 is the constant from

Proposition 5.3. There exist σ, τ, c > 0 such that for all Q ∈ ⋃t∈(0,t0]
∆t and v ∈

L(CN) with |v| = 1, there exists a collection {Qk}k ⊆ ∆(0,1] of disjoint subsets
of Q such that the set EQ := Q \ ⋃k Qk satisfies µ(EQ) > τµ(Q) and the set
E∗

Q := C(Q) \⋃k C(Qk) satisfies

∫∫

(x,t)∈E∗

Q

γt(x)∈Kv,σ

|γt(x)|2 dµ(x)
dt

t
≤ cµ(Q).
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To see that Proposition 5.11 implies (5.7), write

{(x, t) ∈ C(Q) : γt(x) ∈ Kv,σ} = E∗
Q ∪

(
⋃

k1

{(x, t) ∈ C(Qk1) : γt(x) ∈ Kv,σ}
)

= E∗
Q ∪ E∗

Qk1
∪
(
⋃

k2

{(x, t) ∈ C(Qk2) : γt(x) ∈ Kv,σ}
)

=
∞⋃

j=0

∞⋃

kj=0

E∗
Qkj

.

Monotone convergence then implies that
∫∫

(x,t)∈C(Q)
γt(x)∈Kv,σ

|γt(x)|2 dµ(x)
dt

t
=

∫∫ ∞∑

j=0

∞∑

kj=0

1E∗

Qkj

(x, t)|γt(x)|2 dµ(x)
dt

t

=
∞∑

j=0

∞∑

kj=0

∫∫

E∗

Qkj

|γt(x)|2 dµ(x)
dt

t

.

∞∑

j=0

∞∑

kj=0

µ(Qkj)

=
∞∑

j=0

µ(
∞⋃

kj=0

Qkj )

<

∞∑

j=0

(1− τ)jµ(Q)

=
1

τ
µ(Q).

The proof of Proposition 5.11 is a matter of constructing suitable test functions
and applying a stopping-time argument. The test functions are constructed as in [6],
with some minor modifications. Fix v ∈ L(CN) with |v| = 1 and choose ŵ, w ∈ CN

such that |ŵ| = |w| = 1 and v∗(ŵ) = w. For each Q ∈ ⋃t∈(0,1] ∆t, let BQ denote a

ball of radius a1l(Q) such that (a0/a1)BQ ⊆ Q ⊆ BQ. Then let ηQ :M → [0, 1] be a
smooth function supported on 3BQ and equal to 1 on 2BQ. Define wQ := ηQw, and
for each ǫ > 0, define the test function

fw
Q,ǫ := wQ − iǫl(Q)ΓRB

ǫl(Q)wQ = (I + iǫl(Q)Γ∗
B)R

B
ǫl(Q)wQ.

These functions have the following properties. The proof is almost identical to that
of Lemma 7 in [5] but we include it for completeness.

Lemma 5.12. There exists c > 0 such that the following hold for all Q ∈ ∆(0,1] and
ǫ > 0:

(1) ‖fw
Q,ǫ‖ ≤ cµ(Q)

1
2 ;

(2)

∫∫

C(Q)

|ΘB
t f

w
Q,ǫ|2 dµ(x)

dt

t
≤ cǫ−2µ(Q);

(3)

∣∣∣∣−
∫

Q

fw
Q,ǫ − w

∣∣∣∣ < cǫ
η
2 ,
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where η > 0 is the constant Proposition 4.2.

Proof. 1. Let Q ∈ ⋃t∈(0,1] ∆t. Using (2.1), Proposition 5.3 and (Eloc), we obtain

‖fw
Q,ǫ‖ . ‖ηQ‖+ ‖iǫl(Q)ΠBR

B
ǫl(Q)ηQ‖ . ‖ηQ‖ ≤ µ(2BQ)

1/2 . µ(Q)1/2,

where the constant in the last inequality is uniform for all Q ∈ ⋃t∈(0,1] ∆t.

2. Next, by the nilpotency of Γ∗
B and [Γ∗

B, P
B
t ] = 0 on D(Γ∗

B), we have

ΘB
t f

w
Q,ǫ = tPB

t Γ∗
B(I + iǫl(Q)Γ∗

B)R
B
iǫl(Q)wQ = tPB

t Γ∗
BR

B
iǫl(Q)wQ.

Therefore, using (2.1), Proposition 5.3 and (Eloc) again, we obtain
∫∫

C(Q)

|ΘB
t f

w
Q,ǫ|2 dµ(x)

dt

t
≤
∫ l(Q)

0

‖tPB
t Γ∗

BR
B
iǫl(Q)wQ‖2

dt

t

.

∫ l(Q)

0

t

(ǫl(Q))2
‖iǫl(Q)ΠBR

B
iǫl(Q)ηQ‖2 dt

.
1

ǫ2
µ(Q).

3. Finally, since ηQ = 1 on Q, by Lemma 5.9 with Υ = Γ and u = RB
ǫl(Q)wQ, and

using (2.1), Proposition 5.3 and (Eloc) again, we obtain
∣∣∣∣−
∫

Q

fw
Q,ǫ − w

∣∣∣∣ = ǫl(Q)

∣∣∣∣−
∫

Q

ΓRB
ǫl(Q)wQ

∣∣∣∣

. ǫl(Q)1−
η
2

(
−
∫

Q

|RB
ǫl(Q)wQ|2

) η
4
(
−
∫

Q

|ΓRB
ǫl(Q)wQ|2

) 1
2
− η

4

+ ǫl(Q)

(
−
∫

Q

|RB
ǫl(Q)wQ|2

) 1
2

. µ(Q)−
1
2‖RB

ǫl(Q)wQ‖
η
2

(∫

Q

|iǫl(Q)ΠBR
B
ǫl(Q)wQ|2

) 1
2
− η

4

+ ǫµ(Q)−
1
2‖RB

ǫl(Q)wQ‖

. ǫ
η
2µ(Q)−

1
2‖RB

ǫl(Q)wQ‖
η
2 ‖(I − RB

ǫl(Q))wQ‖1−
η
2 + ǫµ(Q)−

1
2‖ηQ‖

. ǫ
η
2µ(Q)−

1
2‖ηQ‖

. ǫ
η
2 ,

as required. �

We now fix ǫ = ( 1
2c
)2/η and the test functions fw

Q := fw,ǫ
Q , where c is the constant

from Lemma 5.12. The preceding result then implies that

Re

(
w,−
∫

Q

fw
Q

)
≥ 1

2
.

The stopping-time argument from Lemma 5.11 in [6] can then be applied to obtain
the following result. The properties of the dyadic cube structure in Proposition 4.2
suffice for this purpose.

Lemma 5.13. Let t0 = 〈CΘ/4a
3λ〉. There exist α, β > 0 such that for all dyadic

cubes Q ∈ ⋃
t∈(0,t0]

∆t there exists a collection {Qk}k ⊆ ∆(0,1] of disjoint subsets

of Q such that the set EQ := Q \ ⋃k Qk satisfies µ(EQ) > βµ(Q) and the set
E∗

Q := C(Q) \⋃k C(Qk) has the following property:

Re

(
w,−
∫

Q′

fw
Q

)
≥ α and −

∫

Q′

|fw
Q | ≤

1

α
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for all Q′ ∈ ∆(0,1] that are contained in Q and satisfy C(Q′) ∩ E∗
Q 6= ∅.

We can now prove Proposition 5.11 by following closely the ideas at the end of
Section 5 in [6].

Proof of Proposition 5.11. Choose σ ∈ (0, α2) and let τ = β, where α, β > 0 are the
constants from Lemma 5.13.
Let Q ∈ ⋃t∈(0,t0]

∆t and v ∈ L(CN) with |v| = 1. Let {Qk}k ⊆ ∆(0,1] denote the

collection of disjoint subsets of Q given by Lemma 5.13 and suppose that (x, t) ∈ E∗
Q.

This implies that (x, t) ∈ C(Q) and that t ≤ l(Q) ≤ t0/δ. Now let Q′ be the unique
dyadic cube in ∆t that contains x. Then, since l(Q

′) ≥ t, we must have (x, t) ∈ C(Q′)
and so C(Q′)∩E∗

Q 6= ∅. Lemma 5.13 and the Cauchy–Schwartz inequality then imply
that

|v(Atf
w
Q (x))| ≥ Re(ŵ, v(Atf

w
Q (x))) = Re

(
w,−
∫

Q′

fw
Q (x)

)
≥ α

and that

|Atf
w
Q (x)| =

∣∣∣∣−
∫

Q′

fw
Q (x)

∣∣∣∣ ≤
1

α
.

The choice of σ then implies that
∣∣∣∣
γt(x)

|γt(x)|
Atf

w
Q (x)

∣∣∣∣ ≥ |v(Atf
w
Q (x))| −

∣∣∣∣
γt(x)

|γt(x)|
− v

∣∣∣∣
∣∣Atf

w
Q (x)

∣∣ ≥ α− σ

α
& 1.

Therefore, we have
∫∫

(x,t)∈E∗

Q

γt(x)∈Kv,σ

|γt(x)|2 dµ(x)
dt

t
.

∫∫

C(Q)

|γt(x)Atf
w
Q (x)|2 dµ(x)

dt

t

.

∫∫

C(Q)

|ΘB
t f

w
Q − γtAtf

w
Q |2 dµ

dt

t
+

∫∫

C(Q)

|ΘB
t f

w
Q |2 dµ

dt

t
.

Lemma 5.12 shows that the last term above is bounded by c(2c)4/ηµ(Q). It remains
to show that ∫∫

C(Q)

|ΘB
t f

w
Q − γtAtf

w
Q |2 dµ

dt

t
. µ(Q).

Now let v = iǫl(Q)ΓRB
ǫl(Q)wQ and write

(5.8) ΘB
t f

w
Q − γtAtf

w
Q = −(ΘB

t − γtAt)v + (ΘB
t − γtAt)wQ.

Then, since v ∈ R(Γ), by (i) in Proposition 4.8 of [6], Proposition 5.8 and Proposi-
tion 5.10, we have

∫∫

C(Q)

|(ΘB
t − γtAt)v|2 dµ

dt

t
.

∫ t0

0

‖ΘB
t (I − Pt)v‖2

dt

t

+

∫ t0

0

‖(ΘB
t Pt − γtAtPt)v‖2

dt

t

+

∫ t0

0

‖γtAt(Pt − I)v‖2dt
t

. µ(Q).
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To handle the remaining term in (5.8), recall that (a0/a1)BQ ⊆ Q ⊆ BQ and that
ηQ = 1 on 2BQ. This implies that if x ∈ Q and t ∈ (0, l(Q)], then

(ΘB
t − γtAt)wQ(x) = ΘB

t ((ηQ − 1)w)(x).

Now choose M > κ/2 and consider the characteristic functions 1j(BQ) defined by

1j(BQ) =

{
12BQ

if j = 0;

12j+1BQ\2jBQ
if j = 1, 2, . . . .

Then, since ηQ − 1 = 0 on 2BQ, the off-diagonal estimates from Proposition 5.3 and
(Eloc) imply that

‖ΘB
t (ηQ − 1)w‖2L2(Q) ≤

∞∑

j=1

‖1BQ
ΘB

t 1j(BQ)‖2‖1j(BQ)(ηQ − 1)‖2

.

∞∑

j=1

(
t

(2j − 1)a1l(Q)

)2M

e−2CΘ(2j−1)a1l(Q)/tµ(2j+1BQ)

.
t

l(Q)
µ(BQ)

∞∑

j=1

2−j(2M−κ)e−(CΘ−λt0)2j+1a1l(Q)/t

≤ t

l(Q)
µ(Q)

for all t ∈ (0, l(Q)]. This shows that
∫∫

C(Q)

|(ΘB
t − γtAt)wQ|2 dµ

dt

t
. µ(Q),

so the proof is complete. �

As shown previously, Proposition 5.11 implies (5.7), which in turn implies (5.6)
and allows us to estimate the final term in (5.5). In summary, as a consequence of
Propositions 5.8, 5.10 and 5.11, we have proved the local quadratic estimate

∫ 〈CΘ/4a3λ〉

0

‖ΘB
t Ptu‖2

dt

t
. ‖u‖2

for all u ∈ R(Γ). The hypothesis (H1)–(H8) are invariant upon replacing {Γ, B1, B2}
with {Γ∗, B2, B1}, {Γ∗, B∗

2 , B
∗
1} and {Γ, B∗

1 , B
∗
2}. This completes the proof of the

main result, since Proposition 5.2 then allows us to conclude that the quadratic
estimate in Theorem 2.4 holds.
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